KR20010081600A - 선택적 FXa 억제활성을 갖는 알라닌 유도체 - Google Patents

선택적 FXa 억제활성을 갖는 알라닌 유도체 Download PDF

Info

Publication number
KR20010081600A
KR20010081600A KR1020000007489A KR20000007489A KR20010081600A KR 20010081600 A KR20010081600 A KR 20010081600A KR 1020000007489 A KR1020000007489 A KR 1020000007489A KR 20000007489 A KR20000007489 A KR 20000007489A KR 20010081600 A KR20010081600 A KR 20010081600A
Authority
KR
South Korea
Prior art keywords
phenyl
aminoiminomethylphenyl
alanine
cyanophenyl
compound
Prior art date
Application number
KR1020000007489A
Other languages
English (en)
Inventor
박태교
장혜경
이태희
문광율
이상구
윤경희
권오환
강명균
박두희
이선화
이승학
김은경
황광연
허용석
Original Assignee
성재갑
주식회사 엘지씨아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성재갑, 주식회사 엘지씨아이 filed Critical 성재갑
Priority to KR1020000007489A priority Critical patent/KR20010081600A/ko
Priority to JP2001561005A priority patent/JP2003523356A/ja
Priority to KR1020027009662A priority patent/KR20020070385A/ko
Priority to PCT/KR2001/000013 priority patent/WO2001055146A1/en
Priority to US10/181,975 priority patent/US20030065176A1/en
Priority to EP01901571A priority patent/EP1254136A4/en
Priority to AU2001227122A priority patent/AU2001227122A1/en
Priority to UY26564A priority patent/UY26564A1/es
Publication of KR20010081600A publication Critical patent/KR20010081600A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 트립신, 트롬빈 등의 유사한 효소들에 대해 탁월한 선택성을 보일 뿐아니라 경구흡수도 가능한 하기 화학식 1의 FXa 억제제 및 이 화합물을 유효성분으로 함유하는 혈액응고 예방 및 혈전증 치료용 약제학적 조성물에 관한 것이다:
상기식에서
D, A, X, Y, P, Q, G1, G2및 G3는 명세서에 정의한 바와 같다.

Description

선택적 FXa 억제활성을 갖는 알라닌 유도체 {Alanine derivatives having a selective FXa inhibitory activity}
본 발명은 FXa 억제제로 사용가능한 하기 화학식 1의 알라닌 유도체, 그의 약제학적으로 허용되는 염, 프로드럭, 수화물, 용매화물 및 이성체에 관한 것이다. 본 발명은 또한, 약제학적으로 허용되는 담체와 함께 화학식 1의 화합물을 유효성분으로 함유하는 혈액응고 예방 및 각종 혈전증 치료를 위한 조성물에 관한 것이다.
일반적으로 혈액응고 과정에는 여러가지 복잡한 효소반응이 관여하고 있는 것으로 알려져 있다. 혈액응고의 마지막 단계는 프로트롬빈을 트롬빈으로 전환시키는 반응인데, 이 과정에 관여하는 효소가 FXa 이다. 반응 결과 생성된 트롬빈은 혈소판을 활성화시키고, 섬유소원을 섬유소로 바꾸는 등의 역할을 수행하며, 섬유소는 중합반응에 의해 고분자물질로 바뀌고, 활성화된 혈액인자 XIII 에 의해 교차결합되어 불용성 응혈이 된다. 트롬빈은 또한 혈액응고 과정에 참여하는 혈액인자 V와 VIII를 활성화시키는 역할을 수행하여 혈액응고 반응을 더욱 가속화시킨다.따라서, 트롬빈의 억제제는 효과적인 항응혈제로 작용하는 동시에, 혈소판 활성을 억제하고, 섬유소 생성 및 안정화를 막을 수 있으므로, 오래전부터 트롬빈 활성을 억제할 수 있는 신규물질을 개발함으로써 혈액응고를 예방하고 각종 혈전증을 치료하기 위한 방법이 모색되어 왔다. 한편, 트롬빈 억제제를 이용한 임상시험에서 여러 억제제들이 혈중 트롬빈을 효과적으로 억제하지만, 트롬빈의 생성반응 자체는 억제하지 못하여 충분한 효과를 발휘하지 못하였다. 따라서, 트롬빈의 생성을 억제하기 위해서는 과량의 억제제가 투여되어야 하고, 이에 따른 출혈부작용이 다수 보고되었다.
반면, FXa 억제제는 트롬빈 생성에 직접적으로 관여하는 FXa의 활성을 차단하기 때문에 혈전증 및 이와 관련한 질환을 치료, 예방할 목적으로 꾸준하게 연구가 진행되어 왔다. 또한, 동물실험을 통해 트롬빈 억제제가 지니고 있던 한계점, 즉 트롬빈 생성 억제능 미비, 출혈부작용 등의 단점도 보완할 수 있음이 증명되었다. 이에 대한 과학적 증명의 내용은 실로 다양하다. 가장 중요한 예로서, 진드기나 거머리 등 피를 먹고사는 동물에서 진드기 항응혈 단백질(Tick Anticoagulant Protein; TAP), 안티스타신(antistasin) 등의 FXa 억제 단백질을 발견하였고, 이들은 실제로 몇가지 동물모델 실험을 통하여 항응혈제로서의 효과를 갖는 것으로 입증되었다. 또한, FXa의 활성부위를 화학적으로 차단한 단백질(DEGR-Xa)을 사용한 심정맥혈전증(deep vein thrombosis) 및 견치 동맥 혈전증(canine arterial thrombosis) 모델 동물실험에서도 위와 같은 접근방법은 유효한 것으로 밝혀졌다.
인체 FXa는 인체 인자 X로부터 활성화되는데, 인체 인자 X는 139개의 아미노산으로 이루어진 경쇄(light-chain)와 303개의 아미노산으로 이루어진 중쇄(heavy-chain)가 하나의 디설파이드 결합으로 연결된 단백질이다. 경쇄는 단백질 발현 후γ-카복실화된 11개의 글루탐산과 β-하이드록실화된 아스파트산 하나를 가지고 있다. 중쇄는 약 15% 정도의 아미노산이 글리코실화되어 있으며, 촉매도메인도 여기에 포함되어 있다. 인자 X에서 FXa로의 활성화 과정은 내부 또는 외부경로에 의해 이루어진다. 내부경로(intrinsic pathway)라 함은 혈액응고 과정에 필요한 모든 것이 혈액내에 존재하기 때문에 붙여진 이름인데, 여기에 관여하는 물질로는 세린 프로테아제 단백질인 인자 IX와 인자 XI, 비효소 공인자(non-enzymatic co-factor)인 인자 VIII 등이 있다. 인자 XI에서 인자 XIa로의 활성화로 부터 시작되며, 인자 XIa는 인자 IX를 인자 IXa로 변환시키고, 생성된 인자 IXa는 인자 VIII와 포스포리피드 표면상에서 결합하여 테나제 복합체(tenase complex)를 생성하는데, 이 복합체가 인자 X을 FXa로 변환시키는 역할을 수행한다. 외부경로(extrinsic pathway)는 인자 VII과 결합하여 이를 활성화시키는 조직인자가 혈액 외부로부터 유래된 것이기 때문에 붙여진 이름이다. 인자 VIIa-조직인자 복합체가 인자 X를 FXa로 직접 변환시킨다. 이렇게 생성된 FXa는 포스포리피드 표면상에서 공인자 Va와 결합하여 프로트롬비나제 복합체를 이루고, 이 복합체가 프로트롬빈을 트롬빈으로 활성화시키게 된다.
계산상으로 FXa 한 분자가 138 분자의 트롬빈을 생성시키며 혈중 프로트롬빈의 농도가 FXa에 비해 약 10배 이상 높기 때문에 트롬빈 억제제를 사용하면 FXa 억제제를 사용하는 경우에 비해 높은 농도의 약물이 요구된다. 또한, FXa 억제제는생리적으로 혈전형성에 필요한 혈중 트롬빈농도를 유지시켜주기 때문에 앞서 언급한 바와 같은 출혈부작용이 감소되어 안전성 측면에서 커다란 장점을 가지고 있다.
이와같은 여러가지 이유로, 트롬빈 억제제 뿐만 아니라 FXa 억제제의 필요성이 대두되었고, 세계적인 연구기관들에 의해 FXa 억제제를 개발하고자 하는 노력이 활발히 진행되어 왔다.
효과적인 FXa 억제제로서 개발된 비스아미딘계 화합물로는 다이이치사가 연구한 DX-9065a(EP 0540051-A1), 야마노우치사의 YM-60828(J. Med. Chem.1999,42, 2752-2759), 벌렉스사의 ZK-80719(WO 97/29067), ZK-807369(WO 97/21437) 등을 언급할 수 있다. 이들은 비스아미딘계 화합물로서 공통적으로 카복스산을 가지고 있으며, 경구흡수가 가능한 것으로 알려져 있다.
모노아미딘계 화합물로는 듀폰-머크사의 SK-549(J.Med.Chem.1999,42, 2760-2773)와 론-폴랭-로러사의 RPR-130737(WO 96/40679) 등이 있다. 이들은 트롬빈, 트립신 등 유사효소들에 대한 선택성이 뛰어나고, FXa 억제제로서의 효과는 훌륭하나, 경구흡수 여부는 잘 알려져 있지 않다.
이러한 기술적 배경하에 본 발명자들은 FXa 억제활성이 뛰어나고 궁극적으로 트립신과 트롬빈에 대한 선택성이 우수한 새로운 화합물을 개발하기 위해 집중적인 연구를 수행하였으며, 그 결과, 하기 화학식 1의 화합물이 이러한 목적에 부합됨을 발견하고 본 발명을 완성하게 되었다.
따라서, 본 발명의 목적은 선택성이 높은 신규의 FXa 억제제를 제공하는 것이다.
본 발명은 또한, 이러한 FXa 억제제를 유효성분으로 함유함을 특징으로 하는 혈액응고 예방 및 혈전증 치료용 약제학적 조성물을 제공함을 목적으로 한다.
본 발명에 따르면 선택성이 높은 FXa 억제제로서 하기 화학식 1로 표시되는 신규한 알라닌 유도체, 그의 약제학적으로 허용되는 염, 프로드럭, 수화물, 용매화물 및 이성체가 제공된다:
[화학식 1]
상기식에서
D 는 -NH2, -CN, -아미노이미노메틸[-C(=NH)NH2] 및 -아미노메틸[-CH2NH2] 중에서 선택되고,
A 는 페닐, 하이드록시페닐, 피리딘, 피롤, 푸란, 티오펜, 옥사졸, 이소옥사졸, 이미다졸, 1,2-디아졸, 티아졸, 이소티아졸, 피리다진(=1,2-디아진), 피리미딘, 피라진(=1,4-디아진), 나프탈렌, 퀴놀린, 이소퀴놀린, 벤조푸란, 벤조티오펜 및 인돌 중에서 선택되며,
X 및 Y 중에서 한쪽은 아미노그룹으로부터 유도된 것이고, 다른 한쪽은 카복실그룹으로부터 유도된 것으로서,
X 가 -NRCO- (R 은 수소 또는 탄소수 10개 이하의 선형, 가지형, 고리형 또는 부분고리형 알킬그룹으로 정의하며, 동일한 분자내에 두개 이상의 R 이 있는 경우 상호 독립적이다), -NRSO2- 및 -NRCH2- 중에서 선택될 경우, Y 는 -CO2R, -CH2OR, -CH2OAr [Ar 는 페닐, 피리딘, 피롤, 푸란, 티오펜, 옥사졸, 이소옥사졸, 이미다졸, 1,2-디아졸, 티아졸, 이소티아졸, 피리다진(=1,2-디아진), 피리미딘, 피라진(=1,4-디아진), 1,2,3-트리아졸, 1,2,4-트리아졸, 테트라졸 또는 1,3,5-트리아진을 나타낸다], -CH2O(C=O)R, -CH2O(C=O)Ar, -CONR(R1) 및 -CON(R1)2, (R1은 R 그룹이거나, 아미노산의 아미노그룹을 제외한 잔기(=residue)로서 이들의 단순 에스테르도 포함한다) 중에서 선택되고,
X 가 -CONR-, -CO2-, -CH2O- 및 -CH2NR- 중에서 선택될 경우, Y 는 -NR2, -NR(C=O)R, -NR(C=O)Ar, -NRCO2R, -NRCO2Ar, -NRSO2R, -NR2, -NR(C=O)(CH2)nZ, -NRSO2(CH2)nZ1(Z 및 Z1은 -CO2R, -CONR2, -CN, -OR, -SR 또는 -NR2이며, n = 0,1,2,3,4,5 이다) 및 -NR(C=O)Z2(Z2는 아미노산의 카복실 그룹을 제외한 잔기이다) 중에서 선택되며,
P 및 Q 는 독립적으로 페닐, 피리딘, 피롤, 푸란, 티오펜, 옥사졸, 이소옥사졸, 이미다졸, 1,2-디아졸, 티아졸, 이소티아졸, 피리다진(=1,2-디아진), 피리미딘, 피라진(=1,4-디아진), 1,2,3-트리아졸, 1,2,4-트리아졸, 테트라졸 및 1,3,5-트리아진 중에서 선택되고,
G1, G2및 G3는 독립적으로 H, -F, -Cl, -Br, -I, -CN, -R, -OR, -SR, -NR2, -CO2R, -COR, -CONR2, -NR(C=O)R, -NR(C=O)Ar, -N[(C=O)R]2, -SO2R, -SO2NR2, -S(=O)R,-C(=NH)NH2, -CF3, -OCF3, -SCF3및 -NR(C=O)CF3중에서 선택된다.
본 발명에 따른 화학식 1의 화합물 중에서도 바람직한 화합물은
D 는 -아미노이미노메틸[-C(=NH)NH2]이고,
A 는 페닐, 하이드록시페닐 및 피리딘 중에서 선택되며,
X 가 -NRCO-, -NRSO2- 및 -NRCH2- 중에서 선택될 경우, Y 는 -CO2R, -CH2OR, -CH2OAr, -CONR(R1) 및 -CON(R1)2중에서 선택되고,
X 가 -CONR-, -CO2-, -CH2O- 및 -CH2NR- 중에서 선택될 경우, Y 는 -NR2, -NR(C=O)R, -NR(C=O)Ar, -NRCO2R, -NRSO2R 및 -NR(C=O)Z2중에서 선택되며,
P 및 Q 는 독립적으로 페닐 및 피리딘 중에서 선택되고,
G1, G2및 G3는 독립적으로 H, -F, -CN, -R, -CONR2, -SO2R, -SO2NR2, -C(=NH)NH2및 -CF3중에서 선택되는 화합물이다.
화학식 1의 화합물중 대표적인 화합물로는 다음과 같은 것을 들 수 있다.
4-(2-시아노페닐)-페닐 N-메톡시카보닐-3-(3-아미노이미노메틸페닐)알라닌 아미드;
4-(2-아미노설포닐-5-플루오로-페닐)-페닐 N-메탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드;
4-(2-아미노설포닐페닐)-페닐 N-메톡시카보닐-3-(3-아미노이미노메틸-6-하이드록시-페닐)알라닌 아미드;
4-(2-아미노카보닐페닐)-페닐 N-메탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드;
4-(2-시아노페닐)페닐 N-메탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드;
4-(2-아미노설포닐페닐)-페닐 N-메탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드;
4-(2-아미노설포닐-5-메틸-페닐)-페닐 N-메탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드;
4-(2-아미노설포닐페닐)-페닐 N-메톡시카보닐-3-(3-아미노이미노메틸페닐)알라닌 아미드;
5-(2-시아노페닐)-피리딘-2-일 N-메탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드;
4-(2-시아노페닐)-페닐 N-(카복시메틸)-3-(3-아미노이미노메틸페닐)알라닌 아미드;
4-(2-시아노페닐)-페닐 N-에탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드;
1-[4-(2-아미노설포닐페닐)페녹시]-2-메탄설포닐아미노-3-(3-아미노이미노메틸페닐)프로판;
(S)-3-(3-아미노이미노메틸페닐)-1-하이드록시-프로판-2-일 4-(2-아미노설포닐-5-플루오로페닐)-벤즈아미드;
(S)-N-{4-(2-시아노페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌 메틸에스테르;
(S)-N-{4-(2-시아노페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌 에틸아미드;
4-(2-시아노페닐)-페닐 (S)-N-아세틸-3-(3-아미노이미노메틸페닐)알라닌 아미드;
(S)-N-{4-(2-시아노-5-플루오로-페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌 메틸에스테르;
(S)-N-{4-(2-아미노설포닐-5-메틸-페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌 메틸에스테르;
(S)-N-{4-(2-아미노설포닐페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌;
(S)-N-{4-(2-아미노설포닐페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌 메틸에스테르; 및
(S)-N-{4-(2-아미노설포닐페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌 에틸에스테르.
본 발명에 따른 화학식 1의 화합물은 또한 약제학적으로 허용되는 염을 형성할 수 있다. 이러한 약제학적으로 허용되는 염에는 약제학적으로 허용되는 음이온을 함유하는 무독성 산부가염을 형성하는 산, 예를 들면 염산, 황산, 질산, 인산, 브롬화수소산, 요오드화수소산 등과 같은 무기산, 타타르산, 포름산, 시트르산, 아세트산, 트리클로로아세트산, 트리플루오로아세트산, 글루콘산, 벤조산, 락트산, 푸마르산, 말레인산 등과 같은 유기 카본산, 메탄설폰산, 벤젠설폰산, p-톨루엔설폰산 또는 나프탈렌설폰산 등과 같은 설폰산 등에 의해 형성된 산부가염이 포함된다.
화학식 1의 화합물은 그 구조내에 비대칭 탄소중심을 가질 수 있으므로(예: G에 아미노산 유도체가 포함된 경우), 개개의 에난티오머 또는 부분입체이성체로 존재할 수 있고, 라세미체를 포함한 이들의 혼합물로도 존재할 수 있다. 따라서, 이러한 입체이성체 또는 이들의 혼합물 역시 본 발명의 범위에 포함된다.
이하, 상기 정의된 화학식 1의 화합물을 합성하는 일반적인 과정을 설명한다.
화학식 1의 화합물은 전구물질로 부터 몇가지 단위조작 과정을 통하여 합성되며, 여기서는 여러 가능한 경로를 일반화시켜서 표시하였다. 예를들어, 프라임화된(예: G1') 작용그룹은 상응하는 작용그룹(예: G1)으로 변환될 수 있는 일반화된 작용그룹의 표시이다. 여기에는 보호기를 비롯하여, 원하는 작용그룹으로 변환시킬 수 있는 여러 가지 경우가 포함되는데, 예컨데 니트로(NO2) 그룹은 NH2, NHR, NH(C=O)R 등의 작용그룹의 전구형태로 볼 수 있고, 브롬(Br)이나 요오드(I)는 카복실산 유도체(예: CO2H, CONH2, CN 등)의 전구형태로 볼 수 있다.
먼저, 알라닌 유도체를 합성하는 일반적 방법을 반응식 1에 나타내었다. 이 방법은 라세미체 합성 방법이지만 효소를 이용하여 레졸루션함으로써 단일 광학이성체도 얻을 수 있다. 알라닌 유도체를 합성하기 위해서는 우선 보호기로 보호된 아미노말로네이트[2]를 할라이드(X1으로 표시)화합물[3]과 소듐에톡사이드 존재하에 반응시켜 화합물[4]를 얻고, 가수분해-탈카복시화 반응을 수행하여 화합물[5]를 얻는다. 카복실산 부분을 반응시키는 경우에는 상기 수득된 화합물[5]를 직접 사용하고, 아미노기를 반응시키는 경우에는 화합물[5]를 에스테르화한 다음, 탈보호기화하여 화합물[6]을 제조하여 사용한다.
상기식에서
X1은 할로겐을 나타내고,
R 은 카복실보호기를 나타내며,
PG 는 아미노보호기를 나타내고, 이하 동일한 의미로 사용된다.
상기 제조된 알라닌 유도체와 반응시킬 아로마틱 부분을 합성하는 방법은 하기 반응식 2에 나타내었다. 아로마틱 아민[7] 또는 아로마틱 카복실산[8]을 보호화하여 각각 화합물[9] 또는 [10]을 합성한다. 아로마틱 할라이드[11]나 아로마틱 화합물[12]을 당업계에 주지된 반응(참조: J. Med. Chem. 1999,42, 2752-2759)에 따라 반응시켜 보론산 화합물[13] 또는 트리부틸틴 화합물[14]를 합성한다. 화합물[9] 또는 [10]을 보론산 화합물[13] 또는 트리부틸틴 화합물[14]와 반응시켜 화합물[15] 또는 [16]을 얻는다. 이들을 각각 탈보호기화하여 화합물[17] 또는 [18]을 얻는다.
또한, 알라닌 유도체와 아로마틱 화합물을 반응시켜 목적하는 화학식 1의 억제제 화합물을 제조하는 과정을 하기 반응식 3 및 4에 나타내었다. 반응식 3에서는, 화합물[5]를 아로마틱 화합물[17]과 반응시켜 화합물[19]를 얻는다. 화합물[19]는 알라닌 유도체[5]를 화합물[7]과 반응시켜 중간체[20]을 얻은다음 다시 보론산 화합물[13] 또는 트리부틸틴 화합물[14]와 반응시켜 얻을 수도 있다. 수득된 화합물[19]를 탈보호기화하여 아민유도체를 얻은 다음(구조표시는 생략하였음), 아민부분을 다시 적당한 형태로 변형시켜 화합물[21]을 얻는다. 얻어진 화합물[21]을 탈보호기화하거나 작용기를 변형시키고(예: G1'→G1), 마지막으로 니트릴 그룹을 아미딘으로 전환시켜 화학식 1의 화합물(1A 시리즈)을 얻는다. 이때, 아미딘화 과정에는 통상적인 방법을 이용하였다.
반응식 4에서는, 화합물[6]을 아로마틱 화합물[18]과 반응시켜 화합물[22]를 얻는다. 화합물[22]는 알라닌 유도체[6]을 화합물[8]과 반응시켜 중간체[23]을 얻은다음 다시 보론산 화합물[13] 또는 트리부틸틴 화합물[14]와 반응시켜 얻을 수도 있다. 수득된 화합물[22]를 탈보호기화하여 카복실산 유도체를 얻은 다음(구조표시는 생략하였음), 카복실산 부분을 다시 적당한 형태로 변형시켜 화합물[24]를 얻는다. 얻어진 화합물[24]를 탈보호기화하거나 작용기를 변형시키고(예: G1'→G1), 마지막으로 니트릴 그룹을 아미딘으로 전환시켜 화학식 1의 화합물(1B 시리즈)을 얻는다. 이때, 아미딘화 과정에는 통상적인 방법을 이용하였다.
상기 설명된 제조방법에서, 아미노 그룹의 커플링 반응을 위해 사용될 수 있는 공지의 커플링 시약으로는 디사이클로헥실카보디이미드(DCC), 3-에틸-3'-(디메틸아미노)-프로필카보디이미드(EDC), 비스-(2-옥소-3-옥사졸리디닐)-포스핀산 클로라이드(BOP-Cl), 디페닐포스포릴아지드(DPPA), 이소부틸클로로포르메이트, O-(7-아자벤조트리아졸-1-일)-N,N,N',N'-테트라메틸우로늄 헥사플루오로포스페이트(HATU) 등을 언급할 수 있으나, 이들로 제한되는 것은 아니다.
본 발명에 따른 화학식 1의 화합물은 공지의 화합물에 비해 트롬빈에 대한 선택성이 뛰어날 뿐아니라 경구투여에 의해서도 약효를 발휘할 수 있는 FXa 억제제이다. 따라서, 본 발명은 약제학적으로 허용되는 담체와 함께 화학식 1의 화합물, 그의 약제학적으로 허용되는 염, 프로드럭, 수화물, 용매화물 또는 이성체를 유효성분으로 함유함을 특징으로 하는 혈액응고 예방 및 혈전증 치료용 약제학적 조성물을 제공하는 것을 또다른 목적으로 한다.
본 발명의 화합물을 임상적인 목적으로 투여시에 단일용량 또는 분리용량으로 숙주에게 투여될 총 일일용량은 체중 1kg 당 0.001mg 내지 10mg의 범위가 바람직하나, 특정 환자에 대한 특이 용량 수준은 사용될 특정 화합물, 체중, 성, 건강상태, 식이, 투여시간, 투여방법, 배설률, 약제혼합 및 질환의 중증도에 따라 변화될 수 있다.
본 발명의 화합물은 목적하는 바에 따라 주사용 제제 및 경구용 제제로 투여할 수 있다.
주사용 제제, 예를들면 멸균 주사용 수성 또는 유성 현탁액은 공지된 기술에 따라 적합한 분산제, 습윤제 또는 현탁제를 사용하여 제조할 수 있다. 이때, 사용될 수 있는 용매에는 물, 링거액 및 등장성 NaCl 용액이 있으며, 멸균 고정 오일은 통상적으로 용매 또는 현탁 매질로서 사용한다. 모노-, 디-글리세라이드를 포함하여 어떠한 무자극성 고정오일도 이러한 목적으로 사용될 수 있으며, 올레산과 같은 지방산은 주사용 제제에 사용할 수 있다.
경구투여용 고체투여 형태는 캅셀제, 정제, 환제, 산제 및 입제가 가능하고, 특히 캅셀제와 정제가 유용하다. 정제 및 환제는 장피제로 제조하는 것이 바람직하다. 고체투여 형태는 본 발명에 따른 화학식 1의 활성화합물을 슈크로오즈, 락토오즈, 전분 등과 같은 하나 이상의 불활성 희석제, 마그네슘 스테아레이트와 같은 윤활제, 붕해제 및 결합제 중에서 선택된 담체와 혼합시킴으로서 제조한다.
본 발명에 따른 화학식 1 화합물의 커다란 특징중의 하나는 이를 함유하는 약제학적 조성물을 경구형 제제로 제형화하여 경구투여하는 경우에도 약효를 나타낸다는 점이다. 이러한 사실은 쥐를 실험동물로 하여 약물동력학 실험을 수행한 결과, 본 발명의 약제학적 조성물을 경구투여한 경우 약물 농도가 혈중에서 오랫동안 유지되는 특성이 있음을 확인함으로써 입증되었다. 따라서, 기존의 트롬빈 억제제와 달리 경구용 제제로서 효과적으로 사용될 수 있다는 점에서 본 발명은 더욱 유용하다.
본 발명의 화합물을 임상적으로 투여하여 목적하는 항응혈 효과 및 혈전용해 효과를 얻고자 하는 경우에, 화학식 1의 활성화합물은 혈전 용해제 및 혈소판활성 억제제 중에서 선택된 1종 이상의 성분과 동시에 투여할 수 있다. 이러한 방식으로 본 발명의 화합물과 혼합하여 투여될 수 있는 혈전용해제로는 티피에이(t-PA), 유로키나아제(Urokinase), 스트렙토키나아제(Streptokinase) 등을 들 수 있고, 혈소판활성 억제제로는 아스피린, 티클로피딘(Ticlopidin), 클로피드로겔(Clopidro- gel), 7E3 단일항체 등을 들 수 있다.
그러나, 혈전의 치료 및 예방을 목적으로하는 본 발명에 따른 화합물 함유 제제는 상술된 것으로 제한되는 것은 아니며, 혈전의 치료 및 예방에 유용한 제제라면 어떠한 것도 포함될 수 있다.
이하, 본 발명을 하기 실시예 및 실험예에 의해 더욱 구체적으로 설명한다. 그러나, 이들 실시예 및 실험예는 본 발명에 대한 이해를 돕기위한 것일 뿐, 어떤 의미로든 본 발명의 범위가 이들에 의해 제한되는 것은 아니다.
하기 실시예 및 실험예에서 자주 사용되는 시약은 아래와 같이 약어로 기술하고자 한다.
DMF : 디메틸포름아미드
THF : 테트라하이드로푸란
TEA : 트리에틸아민
DIPEA : 디이소프로필에틸아민
EDC : 1-(3-디메틸아미노프로필)-3-에틸카보디이미드 하이드로클로라이드
HOBt : 하이드록시벤조트리아졸
DIBAL: 디이소부틸알루미늄하이드리드
MeOH : 메탄올
DEAD : 디에틸 아조디카복실레이트
NMM : N-메틸모폴린
TFA : 트리플루오로아세트산
HATU : O-(7-아자벤조트리아졸-1-일)-N,N,N',N'-테트라메틸우로늄 헥사플루오로포스페이트
MNNG : 1-메틸-3-니트로-1-니트로소구아니딘
DME : 1,2-디메톡시에탄
제조예 1: 디에틸 2-t-부톡시카보닐아미노말로네이트의 합성
디에틸 2-아미노말로네이트(5g, 23.6mmol)와 디-t-부틸디카보네이트(5.65g, 25.96mmol)를 디클로로메탄(50㎖)에 녹이고 교반하였다. 여기에 트리에틸아민(2.43g, 24mmol)을 10분간 적가하였다. 상온에서 3시간동안 교반한후 물로 2회 세척해주었다. 용액을 건조 및 여과시킨 후 감압하에서 농축시켜 표제화합물을 6.16g(수율 95%) 수득하였다.
1H-NMR (500 MHz, CDCl3) δ 5.54 (d, J = 7.3 Hz, 1H), 4.93 (d, J = 7.8 Hz, 1H), 4.26 (m, 4H), 1.44 (s, 9H), 1.29 (t, J = 6.9 Hz, 6H)
제조예 2: 디에틸 2-t-부톡시카보닐아미노-2-(3-시아노페닐)메틸말로네이트의 합성
무수 에탄올(30㎖)에 나트륨(440mg)을 넣고 질소 기압하에서 교반하였다. 나트륨이 전부 녹으면 0℃로 냉각시키고 제조예 1에서 수득한 화합물(4g, 14.5 mmol)을 적가하였다. 10분간 교반한 후 무수 테트라하이드로푸란(7㎖)에 녹인 알파브로모-메타톨루니트릴(3.13g, 15.13mmol)을 천천히 적가하였다. 0℃에서 2시간동안 교반한 후 물로 반응을 종결시키고 감압하에서 용액을 농축시켰다. 농축된 용액을 에틸아세테이트로 묽히고 암모늄클로라이드 용액과 소금물로 각각 한번씩 세척해주었다. 용액을 건조, 여과한 후 감압하에서 농축시켜 표제화합물 5.38g (수율 95%)을 수득하였다.
위와 유사한 방법으로 하기 화합물들을 합성하였다.
디에틸 2-t-부톡시카보닐아미노-2-(3-시아노-6-t-부톡시-페닐)메틸말로네이트
1H-NMR (500 MHz, CDCl3) δ 7.44 (dd, J = 8.7, 2.3 Hz, 1H), 7.35 (s, 1H), 7.06 (d, J = 8.3 Hz, 1H), 5.67 (s, 1H), 4.32 (m, 2H), 4.15 (m, 2H), 3.62 (s, 2H), 1.47 (s, 9H), 1.41 (s, 9H), 1.25 (m, 6H)
디에틸 2-t-부톡시카보닐아미노-2-(2-시아노-피리딘-4-일-메틸)말로네이트
제조예 3: N-t-부톡시카보닐-3-(3-시아노페닐)알라닌의 합성
디에틸 2-t-부톡시카보닐아미노-2-(3-시아노페닐)메틸말로네이트(5.38g, 13.8mmol)를 에탄올(40㎖)에 녹이고 환류시켰다. 여기에 1.5N NaOH 용액(20㎖)을 천천히 적가하였다. 3시간동안 환류시킨 후 감압하에서 에탄올을 제거하고 0℃로 냉각시켰다. 이 용액을 1N 염산용액으로 주의깊게 중화시키고 CH2Cl2로 추출하였다. 추출한 용액을 마그네슘설페이트로 건조시키고 여과하였다. 용액을 감압하에 농축시켜 표제화합물을 3.5g(12mmol) 수득하였다(수율 86.9%).
1H-NMR (500 MHz, CDCl3) δ 7.55 (d, J = 7.3 Hz, 1H), 7.48 (s, 1H), 7.45-7.40 (m, 2H), 5.02 (d, J = 6.0 Hz, 1H), 4.61 (m, 1H), 3.27 (m, 1H), 3.09 (m, 1H), 1.41 (s, 9H)
위와 유사한 방법으로 하기 화합물들을 합성하였다.
N-t-부톡시카보닐-3-(3-시아노-6-t-부톡시-페닐)알라닌
N-t-부톡시카보닐-3-(2-시아노피리딘-4-일)알라닌
제조예 4: (S)-N-t-부톡시카보닐-3-(3-시아노페닐)알라닌 메틸에스테르(광학활성)의 합성
플라스크에 6N NaOH(1㎖)와 Et2O(3㎖)를 넣고 0℃로 냉각시켰다. 여기에 MNNG(588mg, 4mmol)를 주의깊게 조금씩 가하였다(가스 발생). 더 이상 가스가 발생하지 않으면 유기층을 KOH(solid)로 건조하였다. 다른 플라스크에 (S)-N-t-부톡시카보닐-3-(3-시아노페닐)알라닌(610mg, 2.1mmol)을 넣고 무수 테트라하이드로푸란으로 녹인 후 0℃로 냉각시켰다. 여기에 위에서 제조한 디아조메탄용액을 천천히 적가하여 10분간 교반시킨 후 아세트산으로 반응을 중지시키고 과량의 디에틸에테르를 가하였다. 용액을 소금물로 두번 세척해주고 마그네슘설페이트로 건조시킨 후, 여과 및 감압농축시켜 표제화합물 609mg(2mmol)을 수득하였다(수율 95%).
1H-NMR (500 MHz, CDCl3) δ 7.53-7.39 (m, 4H), 5.03 (m, 1H), 4.55 (m, 1H), 4.18 (q, J = 6.9 Hz, 2H), 3.18 (m, 1H), 3.06 (m, 1H), 1.42 (s, 9H), 1.24 (t, J = 6.9 Hz, 3H)
제조예 5: 2-(t-부톡시카보닐아미노)-3-(3-시아노페닐)-프로판-1-올(라세믹)의 합성
2-(t-부톡시카보닐아미노)-3-(3-시아노페닐)-프로판산(625mg, 2.1mmol)과 NMM(0.254㎖, 2.31mmol)을 THF(10㎖)에 녹이고 -30℃로 냉각시켰다. 여기에 이소부틸클로로포메이트 (0.29㎖, 2.2mmol)를 가하고 30분간 교반하였다. 소듐보로하이드리드(159mg, 4.2mmol)에 무수 THF-메탄올(4:1, 10㎖)를 -78℃에서 가하여 10분간 교반한 후 혼합 무수물을 글래스필터로 여과하고, 상기 반응액에 가하였다. 반응액을 상온으로 천천히 승온시키면서 2시간동안 교반하였다. AcOH를 가하여 반응을 중지시키고 감압하에 농축시킨 후 통상적인 방법으로 정제, 분리하여 표제화합물을 485mg(수율 84%) 수득하였다.
1H-NMR (500 MHz, CDCl3) δ 7.53-7.39 (m, 4H), 4.77 (m, 1H), 3.85 (m, 1H), 3.67 (m, 1H), 3.56 (m, 1H), 2.89 (m, 2H), 1.40 (s, 9H)
제조예 6: 1-(4-요오도페녹시)-2-t-부톡시카보닐아미노-3-(3-시아노페닐)-프로판(라세믹)의 합성
2-(t-부톡시카보닐아미노)-3-(3-시아노페닐)-프로판-1-올(485mg, 1.78mmol), PPh3(600mg, 2.31mmol) 및 4-요오도페놀(424mg, 1.95mmol)을 THF(10㎖)에 녹이고 0℃에서 DEAD(0.36㎖, 2.31mmol)를 천천히 적가하였다. 0℃에서 3시간동안 교반하고 감압하에 농축시킨 후 칼럼 크로마토그래피로 정제, 분리하여 표제화합물을 285mg(수율 93%) 수득하였다.
1H-NMR (500 MHz, CDCl3) δ 7.65 (s, 1H), 7.58-7.38 (m, 5H), 6.66 (d, 2H), 4.90 (m, 1H), 4.16 (m, 1H), 3.92-3.83 (m, 2H), 2.88 (dd, J = 14.7, 4.6 Hz, 1H), 2.76 (dd, J = 14.7, 6.9 Hz, 1H), 1.40 (s, 9H)
제조예 7: 2-t-부틸아미노설포닐-벤젠보론산(J. Med. Chem. 1999, 42 , 2752-2759)의 합성
t-부틸아미노설포닐벤젠(30g, 0.14mol)을 THF(350㎖)에 녹이고 0℃에서 n-부틸리튬(2.2M 헥산용액, 130㎖)을 30분간 가하였다. 이 반응물을 10℃에서 30분간 교반하였다. 여기에 내부 온도를 35℃ 이하로 유지시키면서 트리이소프로필보레이트(36g)를 천천히 가해주었다. 1시간 동안 교반하고 아이스베스로 냉각시킨 후 1 N HCl(228㎖)을 가하고 다시 하루동안 교반하였다. 반응물을 디에틸에테르 (200㎖x3)로 추출한 후 이 유기 추출액을 다시 1N NaOH(200㎖x3)로 추출하였다. 6N HCl을 사용하여 수층의 pH를 1로 조정한 후 다시 디에틸에테르(200㎖x3)로 추출, 무수 황산마그네슘으로 건조 및 농축시켜 표제화합물을 18g(수율 50%) 수득하였다.
위와 유사한 방법으로 하기 보론산 유도체들을 합성하였다.
2-t-부틸아미노설포닐-5-플루오로-벤젠보론산
2-t-부틸아미노설포닐-5-메틸-벤젠보론산
1H-NMR (500 MHz, CDCl3) δ 7.92 (d, J = 7.8 Hz, 1H), 7.68 (s, 1H), 7.31 (d, J = 7.8 Hz, 1H), 5.86 (s, 2H), 4.71 (s, 1H), 2.42 (s, 3H), 1.18 (s, 9H)
제조예 8: 2-트리부틸틴-벤조니트릴의 합성
2-브로모벤조니트릴(5.0g, 27.5mmol)을 THF(50㎖)와 디에틸에테르(5㎖)에 녹이고 -100℃에서 n-부틸리튬(1.75M 헥산용액, 9.88㎖)을 약 5분동안 가한 후 5분간 교반하였다. 트리부틸틴-클로라이드(9.13g)를 가한 후 반응 온도를 상온으로 올려주고 30분간 교반하였다. 물을 넣고 농축시킨 후 에틸아세테이트(40㎖x3)로 추출하고, 무수 황산마그네슘으로 건조시키고 농축시켰다. 잔류물을 칼럼 크로마토그래피(헥산:에틸아세테이트, 50:1)로 정제하여 무색 오일상의 표제화합물을 9.8g(수율 90%) 수득하였다.
1H-NMR (500 MHz, CDCl3) δ 7.64 (d, J = 7.8 Hz, 1H), 7.54 (d, J = 7.4 Hz, 1H), 7.48 (m, 1H), 7.36 (m, 1H), 1.56 (m, 6H), 1.34 (m, 6H), 1.22 (m, 6H), 0.88 (m, 9H)
위와 유사한 방법으로 하기 틴화합물을 합성하였다.
4-t-부톡시카보닐아미노페닐-트리부틸주석
2-트리부틸틴-피리딘의 합성
2-브로모피리딘(0.57㎖, 6.0mmol), Mg(360mg, 15mmol), 1,2-디브로모에탄 (0.57㎖, 6.6mmol) 및 비스트리부틸틴옥사이드(3.06㎖, 6.0mmol)에 무수 THF(20㎖)를 넣고 45℃에서 소니케이션하였다. 1.5시간 후 H2O로 반응을 종결시키고 에틸아세테이트로 추출, 건조, 농축시켰다. 칼럼 크로마토그래피로 정제하여 표제화합물을 1.1g(수율 50%) 수득하였다.
1H-NMR (500 MHz, CDCl3) δ 8.73 (d, J = 5.1 Hz, 1H), 7.48 (td, J = 7.3, 1.9 Hz, 1H), 7.39 (dd, J = 8.7, 1.4 Hz, 1H), 7.10 (m, 1H), 1.49-1.28 (m, 12H), 0.92-0.86 (m, 15H)
위와 유사한 방법으로 하기 화합물들을 합성하였다.
3-트리부틸틴-피리딘(수율 92%)
1H-NMR (500 MHz, CDCl3) δ 8.59 (s, 1H), 8.50 (dd, J = 5.1, 2.3 Hz,1H), 7.73 (m, 1H), 7.21 (m, 1H), 1.53 (m, 6H), 1.33 (m, 6H), 1.10 (m, 6H), 0.88 (t, J = 6.9 Hz, 9H)
4-트리부틸틴-피리딘(수율 40%)
1H-NMR (500 MHz, CDCl3) δ 8.47 (d, J = 6.0 Hz, 2H), 7.35 (d, J = 5.5 Hz, 2H), 1.40-1.30 (m, 12H), 0.95-0.86 (m, 15H)
제조예 9: 메틸 4-(2-t-부틸아미노설포닐페닐)-벤조에이트의 합성
플라스크에 2-t-부틸아미노설포닐-벤젠보론산(250mg, 0.965mmol)과 4-브로모 메틸벤조에이트(172mg, 0.8mmol)를 넣고 탈기된 DME(5㎖)와 2M Na2CO3용액 1.5㎖를 가하여 녹였다. 질소 대기하에서 Pd(Ph3P)4를 넣고 환류시켰다. 1.5 시간동안 반응시킨 후 과량의 에틸아세테이트로 묽히고 물로 세척해준 후 건조 및 농축시켰다. 농축된 오일을 액상 크로마토그래피(헥산:에틸아세테이트, 6:1)로 분리, 정제하여 표제화합물을 정량적인 수율로 수득하였다.
1H-NMR (500 MHz, CDCl3) δ 8.18 (d, J = 7.8 Hz, 1H), 8.11 (d, J = 8.3 Hz, 2H), 7.59-7.50 (m, 4H), 7.29 (d, J = 7.3 Hz, 1H), 3.95 (s, 3H), 3.48 (s, 1H), 1.02 (s, 9H)
위와 유사한 방법으로 하기 비아릴화합물들을 합성하였다.
메틸 4-(2-t-부틸아미노설포닐-5-메틸-페닐)-벤조에이트
1H-NMR (500 MHz, CDCl3) δ 8.10 (d, J = 8.3 Hz, 2H), 8.05 (d, J = 8.3 Hz, 1H), 7.58 (d, J = 8.7 Hz, 2H), 7.28 (m, 1H), 7.09 (s, 1H), 3.95 (s, 3H), 3.45 (s, 1H), 2.43 (s, 3H), 1.00 (s, 9H)
4-(2-t-부틸아미노설포닐-페닐)-아닐린
1H-NMR (500 MHz, CDCl3) δ 8.14 (dd, J = 7.8, 1.4 Hz, 1H), 7.51 (m, 1H), 7.42 (m, 1H), 7.32 (d, J = 8.9 Hz, 2H), 7.29 (m, 1H), 6.74 (d, J = 8.7 Hz, 2H), 3.81 (br s, 2H), 3.70 (s, 1H), 0.98 (s, 9H)
2-아미노-5-(2-t-부틸아미노설포닐-페닐)-피리딘
1H-NMR (500 MHz, CDCl3) δ 8.16 (d, J = 7.8 Hz, 1H), 8.07 (d, J = 2.3 Hz, 1H), 7.70 (dd, J = 8.3, 2.3 Hz, 1H), 7.56 (t, J = 7.3 Hz, 1H), 7.47 (t, J = 7.8 Hz, 1H), 7.28 (d, J = 7.4 Hz, 1H), 6.56 (d, J = 8.2 Hz, 1H), 4.56 (br s, 2H), 3.74 (s, 1H), 1.04 (s, 9H)
4-(2-t-부틸아미노설포닐-5-메틸-페닐)-아닐린
1H-NMR (500 MHz, CDCl3) δ 8.01(d, J = 7.8 Hz, 1H), 7.31 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 9.6 Hz, 1H), 7.09 (s, 1H), 6.74 (d, J = 8.3 Hz, 2H), 3.79 (br s, 2H), 3.66 (s, 1H), 2.40 (s, 3H), 0.98 (s, 9H)
4-(2-t-부틸아미노설포닐-5-플루오로-페닐)-아닐린
1H-NMR (500 MHz, CDCl3) δ 8.14 (dd, J = 9.2, 6.0 Hz, 1H), 7.31 (d, J = 8.3 Hz, 2H), 7.08 (m, 1H), 6.99 (dd, J = 9.2, 2.8 Hz, 1H), 6.74 (d, J = 8.7 Hz, 2H), 3.85 (br s, 2H), 3.68 (s, 1H), 0.98 (s, 9H)
메틸 4-(2-t-부틸아미노설포닐-5-플루오로-페닐)-벤조에이트
1H-NMR (500 MHz, CDCl3) δ 8.19 (dd, J = 9.2, 5.5 Hz, 1H), 8.12 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.3 Hz, 2H), 7.16 (m, 1H), 7.01 (dd, J = 8.7, 2.3 Hz, 1H), 3.95 (s, 3H), 3.48 (s, 1H), 1.02 (s, 9H)
제조예 10: 2-(4-t-부톡시카보닐아미노페닐)-벤조니트릴의 합성
2-트리부틸틴-벤조니트릴(392mg, 1mmol), N-(t-부톡시카보닐아미노)-4-브로모벤젠(272mg, 1mmol), Ag2O(231mg, 1mmol) 및 Pd(PPh3)4(58mg, 5mol%)에 DMF(2㎖)를 가하고 상온에서 3시간동안 교반하였다. 반응물을 셀라이트로 여과한 후 농축시키고, EtOAc에 녹인 후 물로 세척해주었다. 무수 마그네슘설페이트로 건조시킨 후 농축시키고, 칼럼 크로마토그라피(헥산:에틸아세테이트, 1:9)로 분리, 정제하여 표제화합물을 175mg(수율 60%) 수득하였다.
1H-NMR (500 MHz, CDCl3) δ 7.74 (d, J = 7.8 Hz, 1H), 7.61 (m, 1H), 7.49-7.47 (m, 5H), 7.40 (m, 1H), 6.61 (s, 1H), 1.53 (s, 9H)
위와 유사한 방법으로 하기 비아릴 화합물들을 합성하였다.
2-아미노-5-(2-시아노페닐)-피리딘
1H-NMR (500 MHz, CDCl3) δ 8.24 (s, 1H), 7.75-7.40 (m, 5H), 6.61 (m, 1H), 4.65 (s, 2H)
3-(4-t-부톡시카보닐아미노페닐)-피리딘
1H-NMR (500 MHz, CDCl3) δ 8.81 (d, J = 1.8 Hz, 1H), 8.55 (dd, J = 4.6, 1.4 Hz, 1H), 7.83 (dt, J = 8.3, 1.8 Hz, 1H), 7.52 (d, J = 8.7 Hz, 2H), 7.47 (d, J = 8.7 Hz, 2H), 7.33 (dd, J = 7.8, 5.1 Hz, 1H), 6.58 (s, 1H), 1.53 (s, 9H)
메틸 4-(2-t-부틸아미노설포닐-5-메틸-페닐)-벤조에이트
1H-NMR (500 MHz, CDCl3) δ 8.10 (d, J = 8.3 Hz, 2H), 8.05 (d, J = 8.3 Hz, 1H), 7.57 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 7.8 Hz, 1H), 7.09 (s, 1H), 3.95 (s, 3H), 3.48 (s, 1H), 2.43 (s, 3H), 1.02 (s, 9H)
메틸 4-(2-시아노페닐)-벤조에이트
1H-NMR (500 MHz, CDCl3) δ 8.16 (d, J = 8.3 Hz, 2H), 7.79 (d, J = 7.8 Hz, 1H), 7.67 (m, 1H), 7.63 (d, J = 8.7 Hz, 2H), 7.53 (d, J = 7.3 Hz, 1H), 7.49 (m, 1H), 3.95 (s, 3H)
제조예 11: 4-(2-t-부틸아미노설포닐-5-메틸-페닐)-벤조산의 합성
제조예 9, 10 에서 얻은 에스테르를 통상적인 방법에 따라 가수분해하여 카복실산 유도체를 수득하였다.
1H-NMR (500 MHz, CDCl3) δ 8.08 (d, J = 8.3 Hz, 1H), 7.99 (d, J = 8.3 Hz, 2H), 7.47 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.3 Hz, 1H), 7.05 (s, 1H), 5.86 (s, 1H), 2.43 (s, 3H), 1.17 (s, 9H)
4-(2-t-부틸아미노설포닐페닐)벤조산
1H-NMR (500 MHz, CDCl3) δ 8.21 (1H), 8.00 (2H), 7.60-7.35 (m, 5H), 5.92 (1H), 1.17 (s, 9H)
4-(2-t-부틸아미노설포닐-5-플루오로-페닐)-벤조산
1H-NMR (500 MHz, CDCl3) δ 8.23 (dd, J = 9.2, 5.5 Hz, 1H), 7.99 (d, J = 8.3 Hz, 2H), 7.45 (d, J = 8.3 Hz, 2H), 7.19 (m, 1H), 6.97 (dd, J = 8.7, 2.8 Hz, 1H), 6.25 (s, 1H), 1.21 (s, 9H)
4-(2-시아노페닐)-벤조산
1H-NMR (500 MHz, DMSO-d6) δ 8.08 (d, J = 8.3 Hz, 2H), 7.99 (d, J = 7.8 Hz, 1H), 7.82 (m, 1H), 7.71 (d, J = 8.3 Hz, 2H), 7.68 (d, J = 7.8 Hz, 1H), 7.63 (m, 1H)
제조예 12: Boc 그룹의 제거
a) N-Boc 그룹은 통상적인 방법으로 트리플루오로아세트산/디클로로메탄중에서 처리하여 탈보호기화 하였다.
4-(2-시아노페닐)-아닐린
1H-NMR (500 MHz, CDCl3) δ 7.70 (d, J = 7.8 Hz, 1H), 7.58 (m, 1H), 7.46 (d, J = 7.8 Hz, 1H), 7.38 (d, J = 8.3 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H), 6.76 (d, J = 8.7 Hz, 2H), 3.47 (br s, 2H)
b) t-부틸아미노설포닐 그룹의 t-부틸은 100% 트리플루오로아세트산중에서 약 20시간 교반하여 제거하였다. 여기에 보고한 단순 방향족 화합물 이외에 시아노페닐 알라닌 그룹과 커플링한 복잡한 중간체의 경우도 마찬가지로 이와같이 처리할 수 있으며 NMR 보고는 생략하였다. 최종화합물의 합성을 보면 이 반응이 아무런 문제없이 진행됨을 알 수 있다.
4-(2-아미노설포닐페닐)-벤조산
1H-NMR (500 MHz, DMSO-d6) δ 8.05 (d, J = 7.4 Hz, 1H), 7.95 (d, J = 8.3 Hz, 2H), 7.67-7.60 (m, 3H), 7.49 (d, J = 8.3 Hz, 2H), 7.34-7.31 (m, 3H)
4-(2-아미노설포닐-5-메틸-페닐)-벤조산
1H-NMR (500 MHz, DMSO-d6) δ 7.93 (m, 3H), 7.48 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 8.3 Hz, 1H), 7.21 (s, 2H), 7.14 (s, 1H), 2.39 (s, 3H)
제조예 13: (S)-N-{4-(2-t-부틸아미노설포닐페닐)-벤조일}-3-(3-시아노페닐)알라닌 메틸에스테르의 합성
(S)-N-t-부톡시카보닐-3-(3-시아노페닐)알라닌 메틸에스테르(639mg, 2.2 mmol)를 메탄올(5㎖)에 녹이고 0℃로 냉각시켰다. 여기에 아세틸클로라이드(1㎖)를 적가하고 0℃에서 교반하였다. 2시간 후 메탄올을 감압하에 제거하고 디에틸에테르를 가하여 고체화시켜 (S)-3-(3-시아노페닐)알라닌 메틸에스테르 하이드로클로라이드(430mg, 1.79mmol)를 수득하였다.
4-(2-t-부틸아미노설포닐페닐)-벤조산(195mg, 0.7mmol)과 위에서 제조한 (S)-3-(3-시아노페닐)알라닌 메틸에스테르 하이드로클로라이드(202mg, 0.84mmol)를 DMF(10㎖)에 녹이고 0℃로 냉각시켰다. 여기에 HOBT(123mg, 0.91mmol) 및 EDC (174mg, 0.91mmol)를 가하고 이어서 TEA(0.29㎖, 2.1mmol)를 적가하였다. 0℃에서15시간동안 반응시킨 후 DMF를 감압하에 제거하고 과량의 에틸아세테이트로 묽히고 물로 세척해주었다. 용액을 마그네슘설페이트로 건조시키고 여과하고 감압하에 농축시켰다. 농축된 오일을 칼럼 크로마토그래피(헥산:에틸아세테이트, 3:1)로 분리, 정제하여 표제화합물을 218mg(0.468mmol) 수득하였다(수율 67.1%).
1H-NMR (500 MHz, CDCl3) δ 8.18 (d, J = 8.3 Hz, 1H), 7.82 (d, J = 8.3 Hz, 2H), 7.60-7.40 (m, 8H), 7.28 (m, 1H), 6.74 (d, J = 7.3 Hz, 1H), 5.07 (m, 1H), 4.25 (q, J = 7.4 Hz, 2H), 3.57 (s, 1H), 3.37 (m, 1H), 3.28 (m, 1H), 1.30(t, J = 7.4 Hz, 3H), 1.02 (s, 9H)
위와 유사한 방법으로 하기 중간체 화합물들을 합성하였다.
(S)-N-[4-(2-아미노설포닐-5-메틸-페닐)-벤조일]-3-(3-시아노페닐)알라닌 메틸에스테르
1H-NMR (500 MHz, CDCl3) δ 8.04 (d, J = 8.3 Hz, 1H), 7.79 (d, J = 8.3 Hz, 2H), 7.55 (m, 3H), 7.44 (m, 3H), 7.32 (d, J = 7.8 Hz, 1H), 7.12 (s, 1H), 6.77 (1NH), 5.09 (m, 1H), 4.28 (s, 2H), 3.80 (s, 3H), 3.39 (dd, J = 14.2, 5.5 Hz, 1H), 3.24 (dd, J = 14.2, 6.0 Hz, 1H), 2.44 (s, 3H)
(S)-N-[4-(2-아미노설포닐페닐)-벤조일]-3-(3-시아노페닐)알라닌 에틸에스테르
1H-NMR (500 MHz, CDCl3) δ 8.16 (d, J = 8.3 Hz, 1H), 7.77 (d, J = 8.3 Hz, 2H), 7.63-7.44 (m, 8H), 7.33 (d, J = 7.4 Hz, 1H), 7.00 (d, J = 6.9 Hz, 1H), 5.08 (m, 1H), 4.45 ((br, 2H), 4.27 (m, 2H), 3.38 (dd, J = 14.2, 6.4 Hz, 1H), 3.28 (dd, J = 14.2, 6.0 Hz, 1H), 1.31 (t, J = 7.3 Hz, 3H)
(S)-N-[4-(2-아미노설포닐페닐)-벤조일]-3-(3-시아노페닐)알라닌 메틸에스테르
1H-NMR (500 MHz, CDCl3) δ 8.17 (d, J = 8.3 Hz, 1H), 7.79 (d, J = 8.3 Hz, 2H), 7.63-7.42 (m, 8H), 7.32 (d, J = 7.4 Hz, 1H), 6.78 (d, J = 7.3 Hz, 1H), 5.10 (m, 1H), 4.34 (s, 2H), 3.80 (s, 3H), 3.41-3.22 (m, 2H)
(S)-N-[4-(2-아미노설포닐페닐)-벤조일]-3-(3-시아노페닐)알라닌
(S)-N-[4-(2-시아노페닐)-벤조일]-3-(3-시아노페닐)알라닌 메틸에스테르
1H-NMR (500 MHz, CDCl3) δ 7.85 (d, J = 8.3 Hz, 2H), 7.79 (d, J = 7.4 Hz, 1H), 7.69-7.63 (m, 3H), 7.57-7.47 (m, 3H), 7.45-7.41 (m, 3H), 6.73 (d, J = 6.9 Hz, 1H), 5.11(m, 1H), 3.80 (s, 3H), 3.38 (dd, J = 14.3, 6.0 Hz, 1H), 3.25 (dd, J = 14.3, 5.5 Hz, 1H)
(S)-N-[4-(2-t-부틸아미노설포닐-5-플루오로-페닐)-벤조일]-3-(3-시아노페닐)알라닌 메틸에스테르
1H-NMR (500 MHz, CDCl3) δ 8.19 (dd, J = 9.3, 6.0 Hz, 1H), 7.82 (d, J = 7.8 Hz, 2H), 7.57 (m, 3H), 7.43 (m, 3H), 7.18 (m, 1H), 7.00 (dd, J = 8.7, 2.8 Hz, 1H), 6.72 (d, J = 6.9 Hz, 1H), 5.11 (m, 1H), 3.81 (s, 3H), 3.58 (s, 1H),3.39 (dd, J = 14.2, 6.0 Hz, 1H), 3.26 (dd, J = 14.2, 5.5 Hz, 1H), 1.04 (s, 9H)
제조예 14: 4-(2-아미노카보닐페닐)-페닐 N-t-부톡시카보닐-3-(3-시아노페닐)알라닌 아미드의 합성
N-t-부톡시카보닐-3-(3-시아노페닐)알라닌(190mg), 4-(2-아미노카보닐페닐)아닐린(127mg) 및 HATU(297mg)을 DMF(4㎖)에 녹이고 DIPEA(232mg)를 가한 후 10시간동안 교반하였다. DMF를 감압하에서 제거하고, 과량의 에틸아세테이트로 묽힌 다음 포화 NaHCO3로 세척해주었다. 용액을 마그네슘설페이트로 건조시키고 여과한 다음 감압하에 농축시켰다. 농축된 오일을 칼럼 크로마토그래피로 분리, 정제(헥산:에틸아세테이트, 1:1)하여 표제화합물을 278mg(수율 95%) 수득하였다.
1H-NMR (500 MHz, DMSO-d6) δ 10.11 (s, 1H), 7.79 (s, 1H), 7.68 (m, 2H), 7.60-7.35 (m, 10H), 7.25 (s, 1H), 7.19 (d, J = 9.2 Hz, 1H), 4.37 (m, 1H), 3.09 (m, 1H), 2.90 (m, 1H), 1.31 (s, 9H)
위와 유사한 방법으로 하기 중간체 화합물들을 합성하였다.
4-(2-t-부틸아미노설포닐-5-플루오로-페닐)-페닐 N-t-부톡시카보닐-3-(3-시아노페닐)알라닌 아미드(라세믹)
1H-NMR (500 MHz, CDCl3) δ 8.41 (br, 1H), 8.18 (dd, J = 8.7, 5.5 Hz, 1H), 7.56-7.40 (m, 8H), 7.14 (m, 1H), 6.99 (dd, J = 9.2, 2.8 Hz, 1H), 5.15 (d, J = 7.8 Hz, 1H), 4.51 (m, 1H), 3.68 (s, 1H), 3.30 (dd, J = 14.2, 6.4 Hz, 1H), 3.08 (dd, J = 14.2, 7.8 Hz, 1H), 2.80 (s, 3H), 1.42 (s, 9H), 1.01 (s, 9H)
4-(2-t-부틸아미노설포닐페닐)-페닐 N-메톡시카보닐-3-(3-시아노페닐)알라닌 아미드(라세믹)
1H-NMR (500 MHz, CDCl3) δ 8.16 (d, J = 7.8 Hz, 1H), 8.12 (br, 1H), 7.56-7.40 (m, 10H), 7.28 (d, J = 7.8 Hz, 1H), 5.33 (br d, 1H), 4.56 (m, 1H), 3.70 (s, 3H), 3.69 (br, 1H), 3.30-3.12 (m, 2H), 1.05 (s, 9H)
4-(2-시아노페닐)페닐 N-t-부톡시카보닐-3-(3-시아노페닐)알라닌 아미드(라세믹)
1H-NMR (500 MHz, CDCl3) δ 8.23 (br, 1H), 7.75 (d, 1H), 7. 64-7.42 (m, 11H), 5.07 (m, 1H), 4.50 (m, 1H), 3.31 (m, 1H), 3.09 (m, 1H), 1.41 (s, 9H)
4-(2-아미노설포닐페닐)페닐 N-t-부톡시카보닐-3-(3-시아노-6-t-부톡시-페닐)알라닌 아미드(라세믹)
1H-NMR (500 MHz, CDCl3) δ 8.46 (br, 1H), 8.14 (d, J = 8.3 Hz, 1H), 7.58-7.42 (m, 8H), 7.32 (d, J = 7.8 Hz, 1H), 7.13 (d, J = 8.7 Hz, 1H), 5.65 (d, J = 6.9 Hz, 1H), 5.45 (m, 1H), 4.30 (s, 2H), 3.21 (m, 1H), 3.09 (m, 1H), 1.56 (s, 9H), 1.41 (s, 9H)
제조예 15: (S)-3-(3-시아노페닐)-1-하이드록시-프로판-2-일 4-(2-아미노설포닐-5-플루오로-페닐)벤즈아미드의 합성
(S)-N-{4-(2-아미노설포닐-5-플루오로-페닐)-벤조일}-3-(3-시아노페닐)알라닌 메틸에스테르를 통상적인 방법으로 가수분해하여 얻은 산(108mg, 0.23mmol)과 N-메틸모폴린(50㎕, 2.0당량)을 THF에 녹인 후 -40℃에서 이소부틸클로로포르메이트(31㎕, 1.05당량)를 가하고 30분간 교반하였다. 소듐보로하이드리드(17mg, 2.0당량)에 무수 메탄올(5㎖)을 -78℃에서 가하여 10분간 교반한 후 혼합 무수물을 글래스필터로 여과하고 가하였다. 상온으로 천천히 승온시키면서 2시간동안 교반하였다. 감압하에 농축시킨 후 통상적인 방법으로 정제, 분리하여 표제화합물을 33mg(수율 32%) 수득하였다.
1H-NMR (500 MHz, CDCl3) δ 8.15 (dd, J = 8.7, 5.5 Hz, 1H), 7.76 (d, J = 8.0 Hz, 2H), 7.56-7.40 (m, 6H), 7.19 (m, 1H), 7.01 (dd, J = 8.3, 2.3 Hz, 1H), 6.79 (d, J = 8.3 Hz, 1H), 4.60 (s, 2H), 3.78 (m, 1H), 3.67 (m, 1H), 3.04 (d,J = 7.4 Hz, 2H)
제조예 16: 4-(2-t-부틸아미노설포닐페닐)-페닐 N-메탄설포닐-3-(3-시아노페닐)알라닌 아미드의 합성
4-(2-t-부틸아미노설포닐페닐)-페닐 N-t-부톡시카보닐-3-(3-시아노페닐)알라닌 아미드(163mg, 0.28mmol)를 디클로로메탄(5㎖)에 녹이고 TFA(2.5㎖)를 적가하였다. 상온에서 3시간동안 교반한 후 감압하에 농축시켰다. 농축된 오일을 다시 무수 디클로로메탄에 녹이고 -20℃로 냉각시켰다. 여기에 트리에틸아민(78㎕, 0.56mmol)을 적가하고 메탄설포닐클로라이드(26㎕, 0.33mmol)를 천천히 적가하였다. -20℃에서 30분간 반응시킨 후 과량의 에틸아세테이트로 묽히고 물로 세척해주었다. 용액을 마그네슘설페이트로 건조시키고 여과한 다음, 감압하에 농축시켰다. 농축된 오일을 칼럼 크로마토그래피로 분리, 정제하여 표제화합물을 70mg (0.119mmol) 수득하였다(수율 42.5%).
위와 유사한 방법으로 하기 중간체 화합물들을 합성하였다.
1-(4-요오도페녹시)-2-메탄설포닐아미노-3-(3-시아노페닐)-프로판(라세믹)
1H-NMR (500 MHz, CDCl3) δ 7.60-7.42 (m, 6H), 6.65 (d, J = 9.2 Hz, 2H), 4.67 (d, J = 9.2 Hz, 1H), 4.00-3.89 (m, 3H), 3.06 (m, 2H), 2.74 (s, 3H)
4-(2-아미노카보닐페닐)-페닐 N-메탄설포닐-3-(3-시아노페닐)알라닌 아미드(라세믹)
1H-NMR (500 MHz, DMSO-d6) δ 10.22 (s, 1H), 7.84-7.80 (m, 2H), 7.72 (d, J = 7.4 Hz, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.58-7.35 (m, 10H), 7.25 (s, 1H), 4.28 (m, 1H), 3.12 (m, 1H), 2.94 (m, 1H), 2.68 (s, 3H)
4-(2-시아노페닐)-페닐 N-메탄설포닐-3-(3-시아노페닐)알라닌 아미드(라세믹)
1H-NMR (500 MHz, DMSO-d6) δ 10.36 (s, 1H), 7.93 (d, J = 6.8 Hz, 1H), 7.86 (m, 1H), 7.80-7.76 (m, 2H), 7.72 (m, 3H), 7.67 (d, J = 7.8 Hz, 1H), 7.61 (d, J = 7.4 Hz, 1H), 7.58-7.53 (m, 4H), 4.30 (m, 1H), 3.13 (dd, J = 13.8, 5.5 Hz, 1H), 2.95 (dd, J = 13.8, 10.1 Hz, 1H), 2.68 (s, 3H)
4-(2-t-부틸아미노설포닐-5-플루오로-페닐)-페닐 N-메탄설포닐-3-(3-시아노페닐)알라닌 아미드(라세믹)
1H-NMR (500 MHz, CDCl3) δ 8.44 (s, 1H), 8.19 (dd, J = 8.7, 5.5 Hz, 1H), 7.62-7.43 (m, 8H), 7.17 (m, 1H), 7.00 (m, 1H), 5.46 (d, J = 8.7 Hz, 1H),4.32 (m, 1H), 3.92 (s, 1H), 3.30 (m, 1H), 3.09 (m, 1H), 2.68 (s, 3H), 1.04 (s, 9H)
4-(2-아미노설포닐페닐)-페닐 N-메톡시카보닐-3-(3-시아노-6-t-부톡시-페닐)알라닌 아미드
1H-NMR (500 MHz, CDCl3) δ 8.31 (br, 1H), 8.14 (d, J = 7.8 Hz, 1H), 7.59-7.42 (m, 8H), 7.32 (d, J = 7.4 Hz, 1H), 7.14 (d, J = 8.7 Hz, 1H), 5.90 (d, J = 6.9 Hz, 1H), 4.48 (m, 1H), 4.32 (s, 2H), 3.67 (s, 3H), 3.15 (m, 2H), 1.55 (s, 9H)
4-(2-시아노페닐)-페닐 N-(t-부톡시카보닐메틸)-3-(3-시아노페닐)알라닌 아미드
1H-NMR (500 MHz, CDCl3) δ 9.44 (s, 1H), 7.75 (dd, J = 7.8, 0.9 Hz, 1H), 7.71 (d, J = 8.7 Hz, 2H), 7.63 (m, 1H), 7.58-7.50 (m, 6H), 7.46-7.41 (m, 2H), 3.49 (dd, J = 8.3, 4.6 Hz, 1H), 3.34-3.23 (m, 3H), 3.04 (dd, J = 13.7, 7.8 Hz, 1H), 1.44 (s, 9H)
제조예 17: 4-(2-아미노설포닐페닐)-페닐 N-메탄설포닐-3-(3-시아노페닐)알라닌 아미드의 합성
4-(2-t-부틸아미노설포닐페닐)-페닐 N-메탄설포닐-3-(3-시아노페닐)알라닌 아미드(70mg, 0.119mmol)에 TFA(5㎖)를 적가하고 상온에서 20시간동안 교반한 후 감압하에 농축시켜 표제화합물을 63mg 수득하였다.
위와 유사한 방법으로 보고된 모든 t-부틸아미노설포닐 그룹의 N-t-부틸 그룹을 제거하였다(NMR 보고 생략).
제조예 18: 4-요오도페닐 (S)-N-t-부톡시카보닐-3-(3-시아노페닐)알라닌 아미드의 합성
N-t-부톡시카보닐-3-(3-시아노페닐)알라닌(890mg, 2.89mmol), 4-요오도아닐린(831mg, 1.1당량) 및 HATU(1.70g, 1.3당량)를 DMF(10㎖)에 녹인 후 0℃에서 TEA (1.45㎖, 3.0당량)를 가하고 하룻동안 상온에서 교반하였다. 감압하에 농축시킨 후 통상적인 방법으로 분리-정제하여 흰색 분말상의 표제화합물을 1.07g(수율 75%) 수득하였다.
1H-NMR (500 MHz, CDCl3) δ 8.28 (br, 1H), 7.61-7.19 (m, 8H), 5.14 (br, 1H), 4.47 (m, 1H), 3.26 (dd, J = 13.8, 6.4 Hz, 1H), 3.04 (dd, J = 13.8, 8.3 Hz, 1H), 1.41 (s, 9H)
위와 유사한 방법으로 하기 중간체 화합물들을 합성하였다.
5-브로모-피리딘-2-일 (S)-N-t-부톡시카보닐-3-(3-시아노페닐)알라닌 아미드
1H-NMR (500 MHz, CDCl3) δ 8.77 (br, 1H), 8.30 (d, J = 2.3 Hz, 1H), 8.11 (d, J = 8.7 Hz, 1H), 7.81 (dd, J = 8.7, 2.3 Hz, 1H), 7.53-7.37 (m, 4H), 5.34 (br, 1H), 4.59 (m, 1H), 3.29 (dd, J = 14.2, 6.6 Hz, 1H), 3.04 (dd, J = 14.2, 8.3 Hz, 1H), 1.40 (s, 9H)
4-요오도페닐 (S)-N-메탄설포닐-3-(3-시아노페닐)알라닌 아미드
1H-NMR (500 MHz, DMSO-d6) δ 10.22 (s, 1H), 7.83 (d, J = 8.7 Hz, 1H), 7.78 (s, 1H), 7.71-7.38 (m, 7H), 4.23 (m, 1H), 3.08 (dd, J = 13.8, 5.5 Hz, 1H), 2.91 (dd, J = 13.8, 9.2 Hz, 1H), 2.65 (s, 3H)
제조예 19: N-(4-브로모벤조일)-3-(3-시아노페닐)알라닌 메틸에스테르의 합성
3-(3-시아노페닐)알라닌 메틸에스테르(489mg, 2.39mmol), 4-브로모벤조산 (528mg, 1.1당량), EDC(593mg, 1.3당량) 및 HOBT(419mg, 1.3당량)를 DMF에 녹인 후 0℃에서 TEA(1.0㎖, 3.0당량)를 가하고 상온에서 하루동안 교반하였다. 통상적인 방법으로 분리, 정제하여 흰색 분말상의 표제화합물을 835mg(수율 90%) 수득하였다.
제조예 20: 4-(2-피리딜)-페닐 (S)-N-메탄설포닐-3-(3-시아노페닐)알라닌 아미드의 합성
4-요오도페닐 (S)-N-메탄설포닐-3-(3-시아노페닐)알라닌 아미드(234mg, 0.50 mmol), Pd(PPh3)4(29mg, 5mol%), LiCl(64mg, 3.0당량) 및 CuBr(14mg, 0.2당량)에 디옥산(5㎖)을 가한 후 2-트리부틸틴-피리딘(203mg, 1.1당량)을 천천히 N2하에 가하였다. 이 혼합물을 하루동안 환류시킨 후, 통상적인 방법으로 분리, 정제하여 오일상의 표제화합물을 118mg(수율 58%) 수득하였다.
위와 유사한 방법으로 하기 중간체 화합물들을 합성하였다.
4-(2-t-부틸아미노설포닐-5-플루오로-페닐)페닐 N-t-부톡시카보닐-3-(3-시아노페닐)알라닌 아미드
1H-NMR (500 MHz, CDCl3) δ 8.31 (br, 1H), 8.17 (dd, J = 8.7, 5.5 Hz, 1H), 7.56-7.51 (m, 5H), 7.47-7.41 (m, 3H), 7.14 (m, 1H), 7.00 (dd, J = 9.2, 2.8 Hz, 1H), 5.08 (br, 1H), 4.50 (m, 1H), 3.65 (s, 1H), 3.31 (dd, J = 14.2, 6.5 Hz, 1H), 3.09 (dd, J = 14.2, 7.8 Hz, 1H), 1.43 (s, 9H), 1.01 (s, 9H)
4-(2-시아노페닐)페닐 N-메톡시카보닐-3-(3-시아노페닐)알라닌 아미드
1H-NMR (500 MHz, CDCl3) δ 8.11 (br, 1H), 7.75 (d, J = 7.8 Hz, 1H), 7.63 (m, 1H), 7.59-7.48 (m, 8H), 7.43 (m, 2H), 5.30 (br, 1H), 4.54 (m, 1H), 3.71 (s, 3H), 3.28 (m, 1H), 3.13 (m, 1H)
4-(2-시아노페닐)페닐 N-에탄설포닐-3-(3-시아노페닐)알라닌 아미드
1H-NMR (500 MHz, CDCl3) δ 8.33 (s, 1H), 7.75 (d, J = 7.8 Hz, 1H), 7.65-7.43 (m, 11H), 5.30 (d, J = 9.2 Hz, 1H), 4.31 (m, 1H), 3.26 (m, 1H), 3.11 (m, 1H), 2.88 (m, 1H), 2.81 (m, 1H), 1.23 (m, 3H)
실시예 1: 4-(2-시아노페닐)-페닐 N-메톡시카보닐-3-(3-아미노이미노메틸페닐)알라닌 아미드 트리플루오로아세트산염 (라세믹, LB33223)의 합성
4-(2-시아노페닐)-페닐 N-메톡시카보닐-3-(3-시아노페닐)알라닌 아미드(61 mg, 0.14mmol)를 포화 H2S 용액(Pyr:TEA, 4:1)(3㎖)에 녹인 후 상온에서 10시간동안 교반하였다. 감압농축시킨 후 에틸아세테이트에 녹여 0.5N HCl로 세척해주었다. 무수 황산마그네슘으로 건조시킨 후 농축시켜 얻어진 화합물에 아세토니트릴(5㎖)과 메틸요오다이드(0.18㎖, 20당량)를 가하고 1시간동안 환류시켰다. 농축시킨 후 MeOH (5㎖)와 무수 NH4OAc(33mg, 3당량)를 가하고 다시 1시간동안 환류시켰다. 농축시킨 후 RP-HPLC(Microsorb C18, 232nm, 15㎖/분, 20% AcCN to 40% in H2Ocontaining 0.1% TFA)로 정제하고, 동결건조시켜 표제화합물을 49mg(수율 61%) 수득하였다.
1H-NMR (500 MHz, DMSO-d6) δ 10.27 (s, 1H), 9.28 (s, 2H), 9.02 (s, 2H), 7.93 (d, J = 7.8 Hz, 1H), 7.80-7.54 (m, 12H), 4.48 (m, 1H), 3.50 (s, 3H), 3.16 (m, 1H), 2.98 (m, 1H)
MS : 442 [m + H]
위와 유사한 방법으로 하기 최종 화합물들을 합성하였다.
4-(2-아미노설포닐-5-플루오로-페닐)-페닐 N-메탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드 트리플루오로아세트산염 (라세믹, LB33200)
1H-NMR (500 MHz, DMSO-d6) δ 10.23 (s, 1H), 9.30 (s, 2H), 8.97 (s, 2H), 8.08 (dd, J = 8.7, 6.0 Hz, 1H), 7.83 (d, J = 8.7 Hz, 1H), 7.77 (s, 1H), 7.69 (d, J = 7.8 Hz, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.59-7.56 (m, 3H), 7.43 (m, 1H), 7.38 (d, J = 8.7 Hz, 2H), 7.30 (s, 2H), 7.16 (m, 1H), 4.34 (m, 1H), 3.16 (m, 1H), 2.99 (m, 1H), 2.69 (s, 3H)
MS : 534 [m + H]
4-(2-아미노설포닐페닐)-페닐 N-메톡시카보닐-3-(3-아미노이미노메틸-6-하이드록시-페닐)알라닌 아미드 트리플루오로아세트산염 (라세믹, LB33203)
1H-NMR (500 MHz, DMSO-d6) δ 10.83 (s, 1H), 9.99 (s, 1H), 8.99 (s, 2H), 8.78 (s, 2H), 8.03 (d, J = 7.8 Hz, 1H), 7.70 (s, 1H), 7.62-7.54 (m, 5H), 7.36-7.29 (m, 4H), 7.18 (s, 2H), 6.97 (d, J = 8.7 Hz, 1H), 4.49 (m, 1H), 3.50 (s, 3H), 3.12 (m, 1H), 2.90 (m, 3H)
MS : 512 [M + H]
4-(2-아미노카보닐페닐)-페닐 N-메탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드 트리플루오로아세트산염 (라세믹, LB33209)
1H-NMR (500 MHz, DMSO-d6) δ 10.21 (s, 1H), 9.30 (s, 2H), 9.15 (s, 2H), 7.82 (d, J = 9.2 Hz, 1H), 7.78 (s, 1H), 7.68-7.63 (m, 3H), 7.58-7.54 (m, 3H), 7.48-7.34 (m, 6H), 7.26 (s, 1H), 4.33 (m, 1H), 3.15 (dd, J = 13.8, 6.0 Hz, 1H), 3.00 (dd, J = 13.8, 8.7 Hz, 1H), 2.69 (s, 3H)
MS : 480 [M + H]
4-(2-시아노페닐)페닐 N-메탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드 트리플루오로아세트산염 (라세믹, LB33210)
1H-NMR (500 MHz, DMSO-d6) δ 10.32 (s, 1H), 9.29 (s, 2H), 8.95 (s, 2H),7.94 (d, J = 7.8 Hz, 1H), 7.84 (d, J = 8.7 Hz, 1H), 7.80-7.77 (m, 2H), 7.71-7.65 (m, 4H), 7.61-7.55 (m, 5H), 4.34 (m, 1H), 3.17 (dd, J = 13.3, 6.0 Hz, 1H), 3.00 (dd, J = 13.3, 8.8 Hz, 1H), 2.71 (s, 3H)
MS : 462 [M + H]
4-(2-아미노설포닐페닐)-페닐 N-메탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드 트리플루오로아세트산염 (라세믹, LB33192)
1H-NMR (500 MHz, CD3OD) δ 8.10 (d, J = 7.8 Hz, 1H), 7.73-7.51 (m, 8H), 7.38 (d, J = 8.7 Hz, 2H), 7.30 (dd, J = 7.3, 2.4 Hz, 1H), 4.38 (m, 1H), 3.28 (m, 1H), 3.14 (m, 1H), 2.84 (s, 3H)
4-(2-아미노설포닐-5-메틸-페닐)-페닐 N-메탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드 트리플루오로아세트산염 (라세믹, LB33204)
1H-NMR (500 MHz, CD3OD) δ 7.97 (d, J = 8.3 Hz, 1H), 7.74-7.66 (m, 3H), 7.57 (m, 1H), 7.51 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.7 Hz, 2H), 7.33 (d, J = 6.9 Hz, 1H), 7.12 (s, 1H), 4.38 (m, 1H), 3.29 (m, 1H), 3.16 (m, 1H), 2.84 (s, 3H), 2.42 (s, 3H)
4-(2-아미노설포닐페닐)-페닐 N-메톡시카보닐-3-(3-아미노이미노메틸페닐)알라닌 아미드 트리플루오로아세트산염 (라세믹, LB33188)
1H-NMR (500 MHz, DMSO-d6) δ 10.17 (s, 1H), 9.20 (br, 4H), 8.03 (d, J = 7.8 Hz, 1H), 7.79 (s, 1H) 7.70 (d, J = 7.3 Hz, 1H), 7.65-7.54 (m, 9H), 7.34 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 7.8 Hz, 1H), 4.48 (m, 1H), 3.49 (s, 3H), 3.15 (m, 1H), 2.98 (m, 1H)
5-(2-시아노페닐)-피리딘-2-일 N-메탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드 트리플루오로아세트산염 (광학활성, LB33221)
1H-NMR (500 MHz, DMSO-d6) δ 10.89 (s, 1H), 9.30 (s, 12H), 9.05 (s, 2H), 8.57 (d, J = 2.3 Hz, 1H), 8.23 (d, J = 8.8 Hz, 1H), 8.08 (dd, J = 8.8, 2.3 Hz, 1H), 7.99 (d, J = 7.4 Hz, 1H), 7.89-7.81 (m, 3H), 7.74-7.55 (m, 5H), 4.48 (m, 1H), 3.23 (m, 3H), 2.94 (m, 1H), 2.60 (s, 1H)
MS : 463 [M + H]
4-(2-시아노페닐)-페닐 N-(카복시메틸)-3-(3-아미노이미노메틸페닐)알라닌 아미드 트리플루오로아세트산염 (라세믹, LB33222)
1H-NMR (500 MHz, DMSO-d6) δ 10.40 (s, 1H), 9.27 (s, 2H), 9.08 (s, 2H), 7.94 (d, J = 7.8 Hz, 1H), 7.80-7.76 (m, 2H), 7.68 (d, J = 7.8 Hz, 1H), 7.62-7.54 (m, 8H), 4.15 (m, 1H), 3.72 (br, 2H), 3.21 (m, 1H)
MS : 442 [m + H]
4-(2-시아노페닐)-페닐 N-에탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드 트리플루오로아세트산염 (라세믹, LB33224)
1H-NMR (500 MHz, DMSO-d6) δ 10.31 (s, 1H), 9.29 (s, 2H), 8.93 (s, 2H), 7.94 (d, J = 6.9 Hz, 1H), 7.82-7.77 (m, 3H), 7.70-7.65 (m, 4H), 7.61-7.55 (m, 5H), 4.31 (m, 1H), 3.16 (m, 1H), 2.99 (m, 1H), 2.78 (m, 2H), 1.04 (m, 3H)
MS : 476 [m + H]
1-[4-(2-아미노설포닐페닐)페녹시]-2-메탄설포닐아미노-3-(3-아미노이미노메틸페닐)프로판 트리플루오로아세트산염 (라세믹, LB33225)
1H-NMR (500 MHz, DMSO-d6) δ 9.29 (br, 2H), 8.94 (br, 2H), 8.02 (d, J = 7.8 Hz, 1H), 7.79 (s, 1H), 7.71 (d, J = 7.8 Hz, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.62-7.52 (m, 4H), 7.34 (d, J = 8.7 Hz, 2H), 7.29 (d, J = 6.9 Hz, 1H), 7.16 (s, 1H), 6.97 (d, J = 8.7 Hz, 2H), 4.03-3.92 (m, 3H), 3.11 (m, 1H), 2.90 (m, 1H), 2.62 (s, 3H)
(S)-3-(3-아미노이미노메틸페닐)-1-하이드록시-프로판-2-일 4-(2-아미노설포닐-5-플루오로페닐)-벤즈아미드 트리플루오로아세트산염 (광학활성, LB33215)
1H-NMR (500 MHz, DMSO-d6) δ 9.28 (s, 2H), 9.04 (s, 2H), 8.30 (d, J = 8.3 Hz, 1H), 8.09 (dd, J = 9.2, 6.0 Hz, 1H), 7.80 (d, J = 8.7 Hz, 2H), 7.74 (s, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.54-7.45 (m, 4H), 7.37 (s, 2H), 7.18 (dd, J = 9.2, 2.8 Hz, 1H), 4.29 (m, 1H), 3.53 (m, 2H), 3.08 (dd, J = 13.8, 5.1 Hz, 1H), 2.92 (dd, J = 13.8, 9.2 Hz, 1H)
MS : 471 [M + H]
(S)-N-{4-(2-시아노페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌 메틸에스테르 트리플루오로아세트산염 (광학활성, LB33218)
1H-NMR (500 MHz, DMSO-d6) δ 9.31 (s, 2H), 9.23 (s, 2H), 9.07 (d, J = 7.8 Hz, 1H), 7.98 (d, J = 7.9 Hz, 1H), 7.93 (d, J = 8.3 Hz, 2H), 7.82 (m, 2H), 7.72-7.61 (m, 6H), 7.54 (m, 1H), 4.82 (m, 1H), 3.69 (s, 3H), 3.31 (m, 1H), 3.21 (m, 1H)
MS : 427 [M + H]
(S)-N-{4-(2-시아노페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌 에틸아미드 트리플루오로아세트산염 (광학활성, LB33219)
MS : 440 [m + H]
4-(2-시아노페닐)-페닐 (S)-N-아세틸-3-(3-아미노이미노메틸페닐)알라닌 아미드 트리플루오로아세트산염 (광학활성, LB33220)
MS : 426 [m + H]
(S)-N-{4-(2-시아노-5-플루오로-페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌 메틸에스테르 트리플루오로아세트산염 (광학활성, LB33205)
MS : 499[m + H]
(S)-N-{4-(2-아미노설포닐-5-메틸-페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌 메틸에스테르 트리플루오로아세트산염 (광학활성, LB33195)
1H-NMR (500 MHz, CD3OD) δ 7.98 (d, J = 8.3 Hz, 1H), 7.74 (m, 3H), 7.67 (m, 2H), 7.54 (m, 1H), 7.47 (d, J = 8.7 Hz, 2H), 7.38 (m, 1H), 7.13 (s, 1H), 4.50 (m, 1H), 3.77 (s, 3H), 3.47 (m, 1H), 3.30 (m, 1H), 2.43 (s, 3H)
(S)-N-{4-(2-아미노설포닐페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌 트리플루오로아세트산염 (광학활성, LB33190)
1H-NMR (500 MHz, DMSO-d6) δ 9.26 (br, 4H), 8.75 (br, 2H), 8.05 (d, J = 7.8 Hz, 1H), 7.80 (m, 3H), 7.71 (d, J = 6.9 Hz, 1H), 7.66-7.59 (m, 3H), 7.54(m, 1H), 7.45 (d, J = 8.3 Hz, 2H), 7.31 (m, 3H), 4.74 (m, 1H), ~3.30 (1H, 물에 의한 피크에 묻혀있음), 3.20 (m, 1H)
(S)-N-{4-(2-아미노설포닐페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌 메틸에스테르 트리플루오로아세트산염 (광학활성, LB33184)
1H-NMR (500 MHz, DMSO-d6) δ 9.29 (s, 2H), 9.04 (s, 2H), 8.97 (d, J = 8.3 Hz, 1H), 8.05 (d, J = 7.4 Hz, 1H), 7.80 (m, 3H), 7.73 (d, J = 7.8 Hz, 1H), 7.65-7.59 (m, 3H), 7.56 (m, 1H), 7.46 (d, J = 8.3 Hz, 2H), 7.31 (m, 3H), 4.82 (m, 1H), 3.69 (s, 3H), 3.34 (m, 1H), 3.21 (m, 1H)
(S)-N-{4-(2-아미노설포닐페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌 에틸에스테르 트리플루오로아세트산염 (광학활성, LB33189)
1H-NMR (500 MHz, CD3OD) δ 8.11 (d, J = 7.8 Hz, 1H), 7.75 (m, 3H), 7.68-7.61 (m, 3H), 7.58-7.52 (m, 2H), 7.49 (d, J = 7.4 Hz, 2H), 7.31 (d,J = 7.3 Hz, 1H), 4.97 (m, 1H), 4.23 (q, J = 6.9 Hz. 2H), 3.46 (m, 1H), 3.22 (m, 1H), 1.27 (t, J = 6.9 Hz, 3H)
실험예: FXa 억제제의 생물학적 활성분석
본 발명에 따른 화학식 1 화합물의 FXa 억제효과는 문헌(참조: Methods in Enzymology, Vol.80, p341-361; Biochemistry,27,p2144-2151,1988)에 기재된 방법에 따라 하기 수학식 1을 이용하여 해리상수 Ki 값을 결정함으로써 측정하였다.
상기식에서
[E] 는 억제제와 결합하고 있지 않은 효소의 농도를 나타내고,
[I] 는 효소와 결합하고 있지 않은 억제제의 농도를 나타내며,
[EI] 는 효소와 억제제 결합물의 농도를 나타낸다.
해리상수 Ki는 효소와 FXa 억제제 화합물의 해리정도를 나타내는 것이므로 해리상수 값이 작을수록 효소에 대한 억제제의 결합성이 큰 것을 의미하며, 따라서 억제활성이 큰 것으로 평가될 수 있다. 이러한 해리상수는 FXa의 작용을 받아 가수분해되면 발색성을 나타내는 특정 기질과 반응시키고 그 발색정도를 분광도법에 따라 시간의 함수로 측정함으로서 구할 수 있다.
본 발명에서는 FXa의 기질로서 FXa의 작용을 받아 가수분해되면 발색하는 물질 크로모자임 X(Chromozyme X : Nle-Gly-Arg-4-NA)를 사용하였다. 크로모자임 X가 FXa에 의해 가수분해되면 노란색의 파라-니트로아닐린(p-NA)이 생성된다. 따라서, 생성되는 파라-니트로아닐린의 양을 시간에 따른 흡광도의 변화로 측정함으로써 본 발명에 따른 화합물의 FXa 억제활성을 측정할 수 있다. 즉, 흡광도의 변화로부터 효소의 활성을 측정할 수 있으며, 이는 곧바로 FXa 억제제의 효소활성 억제능력과 연관될 수 있다.
본 발명에 따른 화합물의 트롬빈 대비 FXa 억제에 대한 선택성을 알아보기 위하여, 상기 FXa 억제활성을 측정하는 방법과 동일하게 실시하여 트롬빈에 대한 화학식 1 화합물의 억제효과를 Ki 값으로 측정한 다음 트롬빈/FXa의 비율을 구하였다. 이 때, 트롬빈에 대한 실험방법은 FXa과 동일하게 하되, 단 기질로는 크로모자임 TH(Chromozyme TH : Tosyl-Gly-Pro-Arg-4-니트로아닐리드 아세테이트)를 사용하였다.
또한, 본 발명에 따른 화합물의 트립신 대비 FXa 억제에 대한 선택성을 알아보기 위하여 상기 FXa 억제 할성을 측정하는 방법과 동일하게 실시하여 트립신에 대한 화학식 1 화합물의 억제효과를 Ki 값으로 측정한 다음 트립신/FXa의 비율을 구하였다. 이 때, 트립신에 대한 실험방법은 FXa과 동일하게 하되, 단 기질로는 N-벤조일-발린-글리신-알지닌 파라-니트로아닐리드 하이드로클로라이드(N-benzoyl- Val- Gly-Arg-p-nitroanilide hydrochloride)를 사용하였다.
실험예 1: FXa의 제조
재료 및 방법 (materials and methods):
시트레이트화된 플라스마(Citrated plasma)는 충청남도 적십자 혈액원(대전 소재)에서 구입하였고, FXa 분리-정제에 사용하는 시약은 모두 시약등급의 것을 사용하였다.
FXa 의 분리-정제:
인자 X를 분리-정제하는 방법은 기존의 알려진 방법을 사용하였다(참조: S. Paul Bajaj 및 Jens J. Birktoft: Methods in Enzymology, Vol 222, 100-107). 이 방법을 인자 IX를 분리-정제하는데 적용하였으며, 약간 변형시켜 인자 X을 분리-정제하는데 사용하였다. 수득된 인자 X를 Russel's viper venom(1/40 w/w) - 20mM 트리스-HCl(pH = 7.5) - 150mM NaCl - 10mM CaCl2용액으로 37℃에서 30분간 부드럽게 흔들어 주면서 활성화시키고, 1M EGTA로 반응을 종결시켜 최종농도가 12.5mM 되게하였다. p-아미노벤즈아미딘-세파로오스 크로마토그라피 방법에 의해 활성화된 FXa를 분리-정제하였다. 분리-정제된 FXa는 80% 암모늄설페이트-0.1% BSA 현탁액 상태로 -70℃에서 보관하였다.
실험예 2: FXa 억제능 분석
재료 (material):
FXa 분석에 필요한 크로모제닉 기질(chromogenic substrate)인 크로모자임 X (chromozyme X : Nle-Gly-Arg-4-NA)는 뵈링거 맨하임(Boehringer Mannheim)으로부터 구입하여 사용하였다. 기질을 10mM DDW 용액으로 만들고, 사용하기 직전에 150mM NaCl - 100mM 트리스-HCl(pH = 7.8) - 0.1% PEG 8000 용액으로 희석하여 0.25mM이 되도록 하였다.
FXa 억제제의 억제활성:
하기 설명하는 바에 따라 본 발명에 따른 화합물의 FXa 활성에 대한 억제 능력을 측정하였다.
96-웰 플레이트의 웰(well)에 150mM NaCl 및 0.1% PEG 8000(폴리에틸렌글리콜, 분자량 약 8,000)이 함유되어 있는 0.1M 트리스 완충용액(pH 7.8)을 90㎕씩 가하였다. 기질용액으로는 크로모자임 X를 이차증류수(DDW)에 10mM 농도로 용해시킨 후 상기 완충용액으로 희석시켜 0.25mM 농도가 되도록 제조한 것을 사용하였다. 이렇게 제조한 0.25mM 기질용액 70㎕를 각 웰(well)에 더하였다. 억제제 용액으로는 본 발명에 따른 억제제 화합물을 디메틸설폭사이드로 10mM 되게 용해시킨 후 상기 완충용액으로 희석시켜 0.1mM, 0.01mM, 0.001mM 농도로 만든 것을 0 에서 20㎕ 사이의 양으로 취한 후 트리스 완충용액으로 전체 부피가 20㎕로 되도록 조절하여 각 웰에 가하였다.
실온에서 반응 용액이 들어있는 웰에 상기 트리스 완충용액에 80nM 농도로 용해시킨 FXa 20㎕를 각각 가하여 효소가수분해 반응을 시작하였다. 효소를 가한 순간부터 2분 동안 반응에 의해 생성되는 파라-니트로아닐리드의 양을 381nm 에서 흡광도의 변화로 모니터하여, 반응시간 대 흡광도의 연속 스펙트럼을 도시하였다(Spectra-Max 340 Spectrophotometer, Molecular Device Co., USA). 여러 종류의 억제제 농도에 대해 위의 실험을 수행하여 연속 스펙트럼을 얻었다.
각 스펙트럼에서 반응시간 10분 이내의 기울기로 부터 초기속도 Vi을 구한 후, 억제제 농도 대비 초기속도의 역수(1/Vi) 그래프를 도시하였다. 그래프 위의 점들을 만족하는 1차식을 계산해낸 후 그 식의 x 절편으로 부터 효소 반응식을 사용하여 Ki 를 계산해 낼 수 있다. 이 계산에 사용된 Km 값은 0.4uM이며, 이는 일정한 효소농도에서 기질의 농도를 변화시킴으로써 구한 것이다.
실험예 3: 혈액응고에 미치는 영향
본 발명에 따른 화합물의 혈액응고에 미치는 영향은 하기 실험방법에 따라 측정하였다.
aPTT의 측정:
동물이나 사람에서 채혈한 후, 3.8% 시트르산나트륨 용액으로 희석(1:10)시켜 혈장을 분리하였다. 혈장 45㎕에 본 발명에 따른 화합물 용액(농도 5uM) 5㎕와 Platelin LS(Organon Teknika) 50㎕를 넣은 뒤, 37℃에서 5분간 반응시키고, 25mM CaCl250㎕를 첨가하여 혈장응고 시간을 측정하였다. 이때, 혈장응고 시간은 340nm에서의 흡광도가 0.1이 되는 시점으로 정하였다.
PT의 측정:
혈장 45㎕에 본 발명에 따른 화합물 용액(농도 5uM) 5㎕를 넣은 뒤, 37℃에서 3분간 반응시키고, Simplastin(Organon Teknika) 100㎕를 첨가하여 혈장응고 시간을 측정하였다. 이때, 혈장응고 시간은 340nm에서의 흡광도가 0.1이 되는 시점으로 정하였다.
동물모델:
본 발명에 따른 화합물의 혈전형성에 대한 억제능력을 동물모델에서 측정하였다. 사용한 동물은 엘지화학 기술연구원 실험동물실에서 온도 20-22℃, 12시간 간격의 명암 조건에서 시판 표준사료를 사용하여 사육된, 체중 250-300g의 웅성 흰쥐(Sprague Dawley)이며, 실험군당 3-4 마리를 사용하였다. 먼저 쥐에 체중 kg당 1.3g 용량으로 우레탄(urethane)을 복강주사하여 마취하였다. 실시예의 화합물을 왼쪽 대퇴정맥(left femoral vein)을 통하여 연속주입하면서 쥐의 복부를 절개하여 하대정맥(inferior vena cava)을 노출시킨 다음, 왼쪽 신정맥 아래부위에서 혈관을 주위 조직과 분리하였다. 파라필름으로(25 x 8mm) 혈관을 가볍게 감싸둔 다음 내장을 복강내에 원위치시키고 지혈용포셉으로 복강 절개부를 임시적으로 봉해두었다. 실시예의 화합물을 연속주입한 15분 후에 하대정맥을 다시 노출시켜 35% FeCl3용액을 적신 여과지(직경 6mm)를 파라필름으로 감싸둔 혈관위에 조용히 올려두고 다시 파라필름으로 혈관과 여과지를 감싸두었다. 실시예의 화합물을 계속적으로 주입하면서 여과지 적용 15분 후에 여과지를 분리하였다. 추가 45분간 실시예의 화합물을 연속주입한 후에 하대정맥을 적출하여 생성된 혈전을 취하여 무게를 측정하였다.
실험예 4: 경구투여시 흡수효과
본 발명에 따른 화합물의 경구투여시 흡수효과는 다음과 같은 실험 방법에 따라 혈중약물농도를 측정함으로써 결정하였다.
웅성 쥐와 개를 각각 18시간씩 절식시킨 후 실험하였다. 적당한 용해보조제를 사용하여 실시예 화합물의 1%(10mg/㎖) 용액을 조제한 후 경구로 투여하였다. 정해진 시간간격에 따라서 혈액을 채취한 후, 메틸렌클로라이드로 액상추출하고, 다시 묽은 염산 용액으로 역추출하여, 고압 액체 크로마토그라피법(HPLC)으로 혈중약물농도를 측정하였다.
실험예 5: 트롬빈과 트립신에 대한 선택성
트롬빈에 대한 선택성:
하기 설명하는 바에 따라 본 발명에 따른 화합물의 트롬빈 활성에 대한 억제 능력을 측정하였다.
1.5㎖ 큐벳에 150mM NaCl 및 0.1% PEG 8000(폴리에틸렌글리콜, 분자량 약 8,000)이 함유되어 있는 0.1M 트리스 완충용액(pH 7.8)을 1160㎕씩 가하였다. 기질용액으로는 크로모자임 TH를 디메틸설폭사이드(DMSO)에 10mM 농도로 용해시킨 후 상기 완충용액으로 희석시켜 0.1mM 농도가 되도록 제조한 것을 사용하였다. 이렇게 제조한 0.1mM 기질용액 225㎕를 큐벳에 더하였다. 억제제 용액으로는 본 발명에 따른 억제제 화합물을 디메틸설폭사이드로 10㎎/㎖되게 용해시킨 후 상기 완충용액으로 희석시켜 0.1㎎/㎖, 0.01㎎/㎖, 0.001㎎/㎖ 농도로 만든 것을 0 내지 10㎕의 양이 되게 취한 후 트리스 완충용액으로 전체 부피가 100㎕이 되도록 하여 큐벳에 가하였다.
실온에서 반응 용액이 들어있는 큐벳에 상기 트리스 완충용액에 0.1mg/㎖ 농도로 용해시킨 트롬빈(human thrombin) 15㎕를 각각 가하여 효소가수분해 반응을 시작하였다. 효소를 가한 순간부터 2분 동안 반응에 의해 생성되는 파라-니트로아닐리드의 양을 381nm 에서 흡광도의 변화로 모니터하여, 반응시간 대 흡광도의 연속 스펙트럼을 도시하였다. 여러 종류의 억제제 농도에 대해 위의 실험을 수행하여 연속 스펙트럼을 얻었다.
각 스펙트럼에서 반응시간 초기 30초 이내의 기울기로 부터 초기속도 Vi을 구한 후, 억제제 농도 대비 초기속도의 역수(1/Vi) 그래프를 도시하였다. 그래프 위의 점들을 만족하는 1차식을 계산해낸 후 그 식의 x 절편으로 부터 효소 반응식을 사용하여 Ki 를 계산해 낼 수 있다. 이 계산에 사용된 Km 값은 5.2uM이며, 이는 일정한 효소농도에서 기질의 농도를 변화시킴으로써 구한 것이다.
속도 상수 Ks는 상기 Ki를 구할때 사용한 것과 동일한 용액을 동일한 농도로 사용하였으나, 실험 방법이 다음과 같이 상이하였다. 즉, 1.5㎖ 용량 큐벳에 완충용액을 1160㎕ 넣고, 여기에 0.1㎎/㎖ 트롬빈(human thrombin) 용액 15㎕ 및 억제제 용액 100㎕를 가하여 실온에서 15분 동안 방치한 후 0.1mM 기질용액 225㎕를 가하면서 2분 동안 시간의 변화에 따른 흡광도의 변화를 모니터하였다. 얻어진 연속 스펙트럼에서 직선을 나타내는 부분의 기울기를 측정하여 Vs로 나타내었다. 이 실험을 여러 억제제 농도에서 실행하여 각 억제제 농도에서의 Vs값을 구하고 억제제 농도에 대한 1/Vs의 그래프를 도시하였다. 그래프 위의 점들을 만족시키는 1차식을 얻어낸 후 그 x절편으로 부터 효소 반응식을 이용하여 Ks값을 결정하였다.
트립신에 대한 선택성:
트립신에 대한 본 발명에 따른 화합물의 억제활성도 상기 FXa의 경우에 대해 설명한 바에 따라 실시하여 측정하였다. 기질로는 엔-벤조일-발린-글리신-알지닌 파라-니트로아닐리드 하이드로클로라이드(N-benzoyl-Val-Gly-Arg-p-nitroanilide hydrochloride)의 20uM 용액을 사용하였으며, 억제제는 0 내지 120uM 범위내에서 여러가지 농도를 사용하였다. 또한, 트립신은 0.1N HCl에 용해시킨 것을 실험 직전에 상기 트리스 완충용액을 사용하여 45㎍/㎖로 만든 후 40㎕를 사용하였다. 트롬빈에 대한 실험과 마찬가지로 반응용액의 총 부피는 0.2㎖로 하였고 그밖에도 동일한 방법으로 실험하였으며, Ki 계산에 사용된 Km 값도 동일한 방법으로 정하였는데, 그 값은 20.2uM이었다.
이상 설명한 방법에 따라 FXa, 트롬빈 및 트립신에 대해 측정된 본 발명에 따른 억제제의 각 효소활성 능력을 Ki 값으로 나타내었으며 또한 FXa에 대한 선택성은 트롬빈/FXa, 트립신/FXa로 나타내었다. 그 결과는 하기 표 1에 나타내었다.
억제제의 FXa, 트롬빈, 트립신에 대한 저해능력 및 선택성
화합물번호 FXa에 대한 저해능력 Ki(nM) 트롬빈에 대한 저해능력 Ki(nM) 트립신에 대한 저해능력 Ki(nM) 선택성(트롬빈/FXa) 선택성(트립신/FXa)
33184331883318933190331923319533200332033320433205332093321033215332183321933220332213322233223 662615.44.33.5202220120131407.444351812011 1100030006202500030001200300050009901000730018001000051017003000170017001300 250 1833500310410555280857250455061138716939869414118 46

Claims (5)

  1. 하기 화학식 1의 알라닌 유도체, 그의 약제학적으로 허용되는 염, 프로드럭, 수화물, 용매화물 및 이성체:
    [화학식 1]
    상기식에서
    D 는 -NH2, -CN, -아미노이미노메틸[-C(=NH)NH2] 및 -아미노메틸[-CH2NH2] 중에서 선택되고,
    A 는 페닐, 하이드록시페닐, 피리딘, 피롤, 푸란, 티오펜, 옥사졸, 이소옥사졸, 이미다졸, 1,2-디아졸, 티아졸, 이소티아졸, 피리다진(=1,2-디아진), 피리미딘, 피라진(=1,4-디아진), 나프탈렌, 퀴놀린, 이소퀴놀린, 벤조푸란, 벤조티오펜 및 인돌 중에서 선택되며,
    X 및 Y 중에서 한쪽은 아미노그룹으로부터 유도된 것이고, 다른 한쪽은 카복실그룹으로부터 유도된 것으로서,
    X 가 -NRCO- (R 은 수소 또는 탄소수 10개 이하의 선형, 가지형, 고리형 또는 부분고리형 알킬그룹으로 정의하며, 동일한 분자내에 두개 이상의 R 이 있는 경우 상호 독립적이다), -NRSO2- 및 -NRCH2- 중에서 선택될 경우, Y 는 -CO2R, -CH2OR,-CH2OAr [Ar 는 페닐, 피리딘, 피롤, 푸란, 티오펜, 옥사졸, 이소옥사졸, 이미다졸, 1,2-디아졸, 티아졸, 이소티아졸, 피리다진(=1,2-디아진), 피리미딘, 피라진(=1,4-디아진), 1,2,3-트리아졸, 1,2,4-트리아졸, 테트라졸 또는 1,3,5-트리아진을 나타낸다], -CH2O(C=O)R, -CH2O(C=O)Ar, -CONR(R1) 및 -CON(R1)2, (R1은 R 그룹이거나, 아미노산의 아미노그룹을 제외한 잔기(=residue)로서 이들의 단순 에스테르도 포함한다) 중에서 선택되고,
    X 가 -CONR-, -CO2-, -CH2O- 및 -CH2NR- 중에서 선택될 경우, Y 는 -NR2, -NR(C=O)R, -NR(C=O)Ar, -NRCO2R, -NRCO2Ar, -NRSO2R, -NR2, -NR(C=O)(CH2)nZ, -NRSO2(CH2)nZ1(Z 및 Z1은 -CO2R, -CONR2, -CN, -OR, -SR 또는 -NR2이며, n = 0,1,2,3,4,5 이다) 및 -NR(C=O)Z2(Z2는 아미노산의 카복실 그룹을 제외한 잔기이다) 중에서 선택되며,
    P 및 Q 는 독립적으로 페닐, 피리딘, 피롤, 푸란, 티오펜, 옥사졸, 이소옥사졸, 이미다졸, 1,2-디아졸, 티아졸, 이소티아졸, 피리다진(=1,2-디아진), 피리미딘, 피라진(=1,4-디아진), 1,2,3-트리아졸, 1,2,4-트리아졸, 테트라졸 및 1,3,5-트리아진 중에서 선택되고,
    G1, G2및 G3는 독립적으로 H, -F, -Cl, -Br, -I, -CN, -R, -OR, -SR, -NR2,-CO2R, -COR, -CONR2, -NR(C=O)R, -NR(C=O)Ar, -N[(C=O)R]2, -SO2R, -SO2NR2, -S(=O)R,-C(=NH)NH2, -CF3, -OCF3, -SCF3및 -NR(C=O)CF3중에서 선택된다.
  2. 제1항에 있어서,
    D 는 -아미노이미노메틸[-C(=NH)NH2]이고,
    A 는 페닐, 하이드록시페닐 및 피리딘 중에서 선택되며,
    X 가 -NRCO-, -NRSO2- 및 -NRCH2- 중에서 선택될 경우, Y 는 -CO2R, -CH2OR, -CH2OAr, -CONR(R1) 및 -CON(R1)2중에서 선택되고,
    X 가 -CONR-, -CO2-, -CH2O- 및 -CH2NR- 중에서 선택될 경우, Y 는 -NR2, -NR(C=O)R, -NR(C=O)Ar, -NRCO2R, -NRSO2R 및 -NR(C=O)Z2중에서 선택되며,
    P 및 Q 는 독립적으로 페닐 및 피리딘 중에서 선택되고,
    G1, G2및 G3는 독립적으로 H, -F, -CN, -R, -CONR2, -SO2R, -SO2NR2, -C(=NH)NH2및 -CF3중에서 선택되는 화합물.
  3. 제1항에 있어서,
    4-(2-시아노페닐)-페닐 N-메톡시카보닐-3-(3-아미노이미노메틸페닐)알라닌아미드;
    4-(2-아미노설포닐-5-플루오로-페닐)-페닐 N-메탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드;
    4-(2-아미노설포닐페닐)-페닐 N-메톡시카보닐-3-(3-아미노이미노메틸-6-하이드록시-페닐)알라닌 아미드;
    4-(2-아미노카보닐페닐)-페닐 N-메탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드;
    4-(2-시아노페닐)페닐 N-메탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드;
    4-(2-아미노설포닐페닐)-페닐 N-메탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드;
    4-(2-아미노설포닐-5-메틸-페닐)-페닐 N-메탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드;
    4-(2-아미노설포닐페닐)-페닐 N-메톡시카보닐-3-(3-아미노이미노메틸페닐)알라닌 아미드;
    5-(2-시아노페닐)-피리딘-2-일 N-메탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드;
    4-(2-시아노페닐)-페닐 N-(카복시메틸)-3-(3-아미노이미노메틸페닐)알라닌 아미드;
    4-(2-시아노페닐)-페닐 N-에탄설포닐-3-(3-아미노이미노메틸페닐)알라닌 아미드;
    1-[4-(2-아미노설포닐페닐)페녹시]-2-메탄설포닐아미노-3-(3-아미노이미노메틸페닐)프로판;
    (S)-3-(3-아미노이미노메틸페닐)-1-하이드록시-프로판-2-일 4-(2-아미노설포닐-5-플루오로페닐)-벤즈아미드;
    (S)-N-{4-(2-시아노페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌 메틸에스테르;
    (S)-N-{4-(2-시아노페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌 에틸아미드;
    4-(2-시아노페닐)-페닐 (S)-N-아세틸-3-(3-아미노이미노메틸페닐)알라닌 아미드;
    (S)-N-{4-(2-시아노-5-플루오로-페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌 메틸에스테르;
    (S)-N-{4-(2-아미노설포닐-5-메틸-페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌 메틸에스테르;
    (S)-N-{4-(2-아미노설포닐페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌;
    (S)-N-{4-(2-아미노설포닐페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌 메틸에스테르; 및
    (S)-N-{4-(2-아미노설포닐페닐)-벤조일}-3-(3-아미노이미노메틸페닐)알라닌 에틸에스테르 중에서 선택된 화합물.
  4. 약제학적으로 허용되는 담체와 함께 제1항에 정의된 화학식 1의 화합물, 그의 약제학적으로 허용되는 염, 프로드럭, 수화물, 용매화물 또는 이성체를 유효성분으로 함유함을 특징으로 하는 혈액응고 예방 및 혈전증 치료용 약제학적 조성물.
  5. 제4항에 있어서, 경구투여형으로 제형화된 조성물.
KR1020000007489A 2000-01-29 2000-02-17 선택적 FXa 억제활성을 갖는 알라닌 유도체 KR20010081600A (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020000007489A KR20010081600A (ko) 2000-02-17 2000-02-17 선택적 FXa 억제활성을 갖는 알라닌 유도체
JP2001561005A JP2003523356A (ja) 2000-01-29 2001-01-04 アリール−アミジンを持つXa因子阻害剤とその誘導体、及びそれらのプロドラッグ
KR1020027009662A KR20020070385A (ko) 2000-01-29 2001-01-04 아릴-아미딘을 가진 팩터 Xa 억제제와 그의 유도체, 및그의 프로드럭
PCT/KR2001/000013 WO2001055146A1 (en) 2000-01-29 2001-01-04 FACTOR Xa INHIBITORS WITH ARYL-AMIDINES AND DERIVATIVES, AND PRODRUGS THEREOF
US10/181,975 US20030065176A1 (en) 2000-01-29 2001-01-04 Factor xa inhibitors with aryl-amidines and derivatives, and prodrugs thereof
EP01901571A EP1254136A4 (en) 2000-01-29 2001-01-04 ARYLAMIDINES AND DERIVATIVES AS FACTOR XA INHIBITORS AND THEIR PRO-PHARMAKA
AU2001227122A AU2001227122A1 (en) 2000-01-29 2001-01-04 Factor xa inhibitors with aryl-amidines and derivatives, and prodrugs thereof
UY26564A UY26564A1 (es) 2000-01-29 2001-01-29 Inhibidores del factor xa con aril - amidinas y sus derivados, y composiciones farmacéuticas que contienen los mismos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000007489A KR20010081600A (ko) 2000-02-17 2000-02-17 선택적 FXa 억제활성을 갖는 알라닌 유도체

Publications (1)

Publication Number Publication Date
KR20010081600A true KR20010081600A (ko) 2001-08-29

Family

ID=19647242

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000007489A KR20010081600A (ko) 2000-01-29 2000-02-17 선택적 FXa 억제활성을 갖는 알라닌 유도체

Country Status (1)

Country Link
KR (1) KR20010081600A (ko)

Similar Documents

Publication Publication Date Title
US6403644B1 (en) Method of treating disease with sulfonylamino acid derivatives
AU725403B2 (en) Thrombin inhibitors
EP0915086A1 (en) Phenylsulfonamide derivatives
KR100544542B1 (ko) 펩티드 함유 α-케토아미드 시스테인 및 세린 프로테아제억제제
AU2002211464B2 (en) Aminopyridinyl-, aminoguanidinyl- and alkoxyguanidinyl- substituted phenyl acetamides as protease inhibitors
CA2294042A1 (en) Antithrombotic agents
KR0173034B1 (ko) 선택적 트롬빈 억제제
KR20000069139A (ko) 프로테아제 억제제인 아미노구아니딘 및 알콕시구아니딘
JP2001508796A (ja) トロンビン阻害薬
US20030065176A1 (en) Factor xa inhibitors with aryl-amidines and derivatives, and prodrugs thereof
KR19990076817A (ko) 아미디노 프로테아제 억제제
CA2418283A1 (en) Novel compounds inhibiting factor xa activity
AU2011221601B2 (en) Urethanes, ureas, amidines and related inhibitors of factor Xa
CZ20022783A3 (cs) Derivát aminosulfonylbifenylu, jeho pouľití a farmaceutický prostředek, který ho obsahuje
JP4209659B2 (ja) アミジノ誘導体並びにそれを用いた抗血液凝固剤および血栓症治療剤
US6727266B2 (en) Substituted tryptophan derivatives
KR0173035B1 (ko) 선택적 트롬빈 억제제
KR20010081600A (ko) 선택적 FXa 억제활성을 갖는 알라닌 유도체
JPH02209861A (ja) アミノ酸誘導体及び該誘導体を有効成分として含有するエンケファリナーゼ阻害剤
KR20010081598A (ko) 페닐아미딘 골격을 가진 선택적 FXa 억제제
JP2004143053A (ja) β−アミノヒドロキサム酸誘導体およびその用途
KR20010081202A (ko) 사이클로프로필 골격을 갖는 선택적 FXa 억제제
KR100377557B1 (ko) 아실 구아니딘 작용기를 갖는 선택적 트롬빈 억제제
KR100377558B1 (ko) 피페리딘 작용기를 갖는 선택적 트롬빈 억제제
KR20010076973A (ko) 피롤 골격을 가진 선택적 FXa 억제제