KR102623139B1 - 해양 선박의 자율 도킹을 위한 방법, 디바이스 및 장치 - Google Patents

해양 선박의 자율 도킹을 위한 방법, 디바이스 및 장치 Download PDF

Info

Publication number
KR102623139B1
KR102623139B1 KR1020207037352A KR20207037352A KR102623139B1 KR 102623139 B1 KR102623139 B1 KR 102623139B1 KR 1020207037352 A KR1020207037352 A KR 1020207037352A KR 20207037352 A KR20207037352 A KR 20207037352A KR 102623139 B1 KR102623139 B1 KR 102623139B1
Authority
KR
South Korea
Prior art keywords
vessel
speed
heading
setpoint
docking
Prior art date
Application number
KR1020207037352A
Other languages
English (en)
Other versions
KR20210016565A (ko
Inventor
마이어 얀-티모시 그루네발트
칼 소데르스트예르나
Original Assignee
베르트질레 보이지 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62705732&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR102623139(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 베르트질레 보이지 게엠베하 filed Critical 베르트질레 보이지 게엠베하
Publication of KR20210016565A publication Critical patent/KR20210016565A/ko
Application granted granted Critical
Publication of KR102623139B1 publication Critical patent/KR102623139B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/40Monitoring properties or operating parameters of vessels in operation for controlling the operation of vessels, e.g. monitoring their speed, routing or maintenance schedules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B49/00Arrangements of nautical instruments or navigational aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/10Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/02Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring
    • B63H25/04Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring automatic, e.g. reacting to compass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0206Control of position or course in two dimensions specially adapted to water vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft
    • G08G3/02Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B2213/00Navigational aids and use thereof, not otherwise provided for in this class
    • B63B2213/02Navigational aids and use thereof, not otherwise provided for in this class using satellite radio beacon positioning systems, e.g. the Global Positioning System GPS

Landscapes

  • Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Navigation (AREA)

Abstract

자율 해양 선박 도킹을 위한 장치 및 컴퓨터 구현 방법으로서, 방법은 포트들 사이의 수송 동작을 정의하는 노선 계획 데이터와 연관된 수송 제어 모드를 결정하는 단계; 웨이포인트 특성들의 세트를 포함하고 웨이포인트들에 결합된 트랙 세그먼트들 및 접근 구역 정보를 정의하는 항만 트랙 데이터와 연관된 자율 도킹 제어 모드를 결정하는 단계를 포함한다. 방법은 선박 위치, 속도 및 헤딩을 결정하는 단계; 선박 위치, 속도 및 헤딩을 접근 구역 정보와 비교하고, 위치 영역 정보로 포함된 선박 위치; 선박 속도가 접근 구역에 진입하기 위한 최대 선박 속도 미만인 것; 및 접근 구역에 진입하기 위한 최대 헤딩 편향에 의해 정의된 선박 해딩 매칭 기준에 응답하여 수송 제어 모드를 자율 도킹 제어 모드로 변경하는 단계를 더 포함한다.

Description

해양 선박의 자율 도킹을 위한 방법, 디바이스 및 장치
본 출원은 일반적으로 자율 선박 조종 방법, 디바이스 및 장치에 관한 것이다.
이 섹션은 최신 기술을 나타내는 본 명세서에 기재된 임의의 기법을 허용하지 않으면서 유용한 배경 정보를 예시한다.
본 발명은 자동화된 도킹 및 언도킹을 포함하는 자동화된 선박 조종을 제공하기 위한 자동화된 선박 조종 시스템 (Automated Vessel Maneuvering System; AVMS) 에 관한 것이다.
동적 포지셔닝 (DP) 은 알려져 있다. 이는 하나 이상의 포지션 참조들에 대해 그 자신의 프로펠러들 및 추진기 (thruster) 들을 사용하여 선박의 포지션 및 헤딩의 자동 또는 반자동 제어를 수반한다. 통상적으로, 의도는 주어진 파라미터들 내에 고정된 선박의 포지션을 유지하는 것이다. 동적 포지셔닝 (DP) 은, 예를 들어 오프쇼어 드릴링 (offshore drilling) 동작들에서 활용된다.
자동 조타장치 (autopilot) 가 또한 알려져 있다. 자동 조타장치 (또한 자기조향 (self-steering) 으로 알려짐) 는 인간 조작자에 의한 수동 (hands-on) 제어가 반드시 필요하지 않도록 해양 선박의 선택된 코스를 안내하거나 유지하는 자동 디바이스 또는 시스템이다.
자동 레이더 플로팅 지원이 또한 알려져 있다. 이것은 예를 들어, 추적된 오브젝트의 코스, 속도 및 가장 가까운 접근 지점을 계산하는데 활용되어 다른 함선이나 육지와의 충돌 위험이 있는지를 검출할 수 있다.
그러나, 안전하고 효율적인 방식으로 수송에서 도킹까지 자율적인 해양 선박 조종이 여전히 필요하다.
따라서, 자동 도킹 및 언도킹을 위한 정확하고, 효율적이며 신뢰성있는 방법을 가능하게 하는 솔루션이 필요하다.
발명의 다양한 예시의 양태들이 청구항들에 제시된다.
본 발명의 제 1 예시적인 측면에 따르면, 자율 해양 선박 도킹을 위한 컴퓨터 구현 방법이 제공되며, 이 방법은 다음을 포함한다:
포트들 사이의 수송 동작을 정의하는 노선 계획 데이터와 연관된 수송 제어 모드를 결정하는 단계;
웨이포인트 특성들의 세트를 포함하고 웨이포인트들에서 결합된 트랙 세그먼트들 및 접근 구역 정보를 정의하는 항만 트랙 데이터와 연관된 자율 도킹 제어 모드를 결정하는 단계로서, 접근 구역 정보가,
접근 구역에 대한 위치 영역 정보;
접근 구역에 진입하기 위한 최대 선박 속도; 및
접근 구역에 진입하기 위한 최대 헤딩 편향
을 포함하는, 상기 자율 도킹 제어 모드를 결정하는 단계;
선박 위치, 속도 및 헤딩을 결정하는 단계;
선박 위치, 속도 및 헤딩을 접근 구역 정보와 비교하고,
선박 위치가 위치 영역 정보에 의해 포함되는 것;
선박 속도가 접근 구역에 진입하기 위한 최대 선박 속도 미만인 것; 및
선박 헤딩이 접근 구역에 진입하기 위한 최대 헤딩 편향에 의해 정의된 기준에 매칭하는 것
에 응답하여, 수송 제어 모드에서 자율 도킹 제어 모드로 변경하는 단계.
일 실시형태에서, 방법은 웨이포인트 특성들에 기초하여 동적 설정포인트를 결정하는 단계를 더 포함하고, 동적 설정포인트는 항만 트랙 데이터에 기초하여 변화하는 설정포인트 포지션, 설정포인트 속도 및 설정포인트 헤딩을 포함한다.
일 실시형태에서, 방법은
폐쇄 루프 제어기를 사용하여 동적 설정포인트와 결정된 선박 위치 사이의 차이 정보를 결정하는 단계;
차이 정보에 기초하여 힘 벡터를 결정하는 단계; 및
힘 벡터에 기초하여 자율 도킹 제어 모드의 추진기 커맨드들을 제어하는 단계를 더 포함한다.
일 실시형태에서, 방법은
선박 헤딩을 설정포인트 헤딩에 그리고 선박 속도를 설정포인트 속도에 맞추는 단계를 더 포함하고, 설정포인트 헤딩 및 설정포인트 속도는 구성가능한 파라미터들이다.
일 실시형태에서, 방법은
트랙 세그먼트 상의 해양 선박의 위치에 기초하여 개개의 설정포인트 값들과 웨이포인트들 사이에서 설정포인트 속도 및 설정포인트 헤딩을 보간하는 단계; 및
선박 헤딩을 보간된 설정포인트 헤딩에 그리고 선박 속도를 보간된 설정포인트 속도에 맞추는 단계를 더 포함한다.
일 실시형태에서, 보간하는 단계는 해양 선박이 헤딩하고 있는 웨이포인트의 웨이포인트 특성에 기초하여 인에이블된다.
일 실시형태에서, 방법은
더 낮은 속도 임계치 및 더 높은 속도 임계치를 정의하는 단계; 및
동적 설정포인트 및 결정된 선박 위치에 기초하여 흔들림 제어 정보를 결정하는 단계를 더 포함한다.
일 실시형태에서, 방법은
저속 모드에서, 해양 선박 속도가 더 낮은 속도 임계치 미만일 때, 해양 선박의 적어도 하나의 추진기에 전체 스케일 추력을 할당하는 것에 의해 헤딩 제어 및 전체 스케일 3 축 포지션을 활성화하는 것에 의해 흔들림 제어 정보에 기초하여 해양 선박의 적어도 하나의 추진기의 흔들림 제어 추진기 커맨드들을 제어하는 단계를 더 포함한다.
일 실시형태에서, 방법은
고속 모드에서, 해양 선박 속도가 더 높은 속도 임계치 초과일 때, 해양 선박의 적어도 하나의 추진기의 흔들림 제어 추진기 커맨드들을 디스에이블하는 단계를 더 포함한다.
일 실시형태에서, 방법은
중간 속도 모드에서, 해양 선박 속도가 더 낮은 속도 임계치와 더 높은 속도 임계치 사이일 때, 해양 선박의 적어도 하나의 추진기에 부분 스케일 추력을 할당하는 것에 의해 헤딩 제어 및 부분 스케일 3 축 포지션을 활성화하는 것에 의해 흔들림 제어 정보에 기초하여 해양 선박의 적어도 하나의 추진기의 흔들림 제어 추진기 커맨드들을 제어하는 단계를 더 포함한다.
일 실시형태에서, 부분 스케일은 전체 스케일보다 더 작다.
일 실시형태에서, 중간 속도 모드에서, 부분 스케일은 해양 선박 속도에 대해 제로와 전체 스케일 사이에서 점진적으로 변화된다.
일 실시형태에서, 중간 속도 모드에서, 부분 스케일은 더 높은 속도 임계치에서 더 낮은 속도 임계치로 감소하는 해상 선박 속도에 대해 제로와 전체 스케일 사이에서 점진적으로 증가된다.
일 실시형태에서, 방법은
포트 내의 정박 포지션 및 기항지에 대한 항만 트랙 데이터를 유지하는 단계를 더 포함하고, 항만 트랙 데이터는,
항만 조종 동안 허용된 최대 트랙 포지션 편향에 대한 경계들을 정의하는 접근 회랑 (corridor) 데이터; 및
접근 구역 정보를 포함한다.
일 실시형태에서, 접근 구역 정보는 접근 구역에 진입하기 위한 최대 측방향 편향을 더 포함하고, 방법은,
선박 위치, 속도 및 헤딩을 접근 구역 정보와 비교하고,
선박 편향이 접근 구역에 진입하기 위한 최대 측방향 편향 미만인 것에 응답하여, 수송 제어 모드에서 자율 도킹 제어 모드로 변경하는 단계를 더 포함한다.
일 실시형태에서, 방법은
자율 도킹 제어 모드로 변경하는 것에 응답하여 진입 다리 데이터를 결정하는 단계를 더 포함하고, 진입 다리 데이터는 항만 트랙 데이터에 의해 정의된 항만 트랙 상으로 해양 선박을 안내하도록 구성된다.
일 실시형태에서, 수송 제어 모드에서, 해양 선박은 적어도 부분적으로 수동 제어 모드에 있도록 구성된다.
일 실시형태에서, 방법은
항만 트랙 데이터를 사용하여 항만 트랙을 고려하여 해양 선박의 정렬을 결정하는 단계; 및
결정된 정렬에 기초하여 항해 방향을 선택하는 단계를 더 포함한다.
발명의 제 2 예시의 양태에 따라, 자율 도킹을 위한 해양 선박 장치가 제공되며,
적어도 하나의 센서;
데이터 송수신하기 위한 통신 인터페이스;
적어도 하나의 프로세서; 및
컴퓨터 프로그램 코드를 포함하는 적어도 하나의 메모리를 포함하고,
적어도 하나의 메모리 및 컴퓨터 프로그램 코드는, 적어도 하나의 프로세서로, 장치로 하여금:
포트들 사이의 수송 동작을 정의하는 노선 계획 데이터와 연관된 수송 제어 모드를 결정하게 하고;
웨이포인트 특성들의 세트를 포함하고 웨이포인트들에서 결합된 트랙 세그먼트들 및 접근 구역 정보를 정의하는 항만 트랙 데이터와 연관된 자율 도킹 제어 모드를 결정하게 하는 것으로서, 접근 구역 정보가,
접근 구역에 대한 위치 영역 정보;
접근 구역에 진입하기 위한 최대 선박 속도; 및
접근 구역에 진입하기 위한 최대 헤딩 편향
을 포함하는, 상기 자율 도킹 제어 모드를 결정하게 하고;
선박 위치, 속도 및 헤딩을 결정하게 하고;
선박 위치, 속도 및 헤딩을 접근 구역 정보와 비교하고,
선박 위치가 위치 영역 정보에 의해 포함되는 것;
선박 속도가 접근 구역에 진입하기 위한 최대 선박 속도 미만인 것; 및
선박 헤딩이 접근 구역에 진입하기 위한 최대 헤딩 편향에 의해 정의된 기준에 매칭하는 것
에 응답하여, 수송 제어 모드에서 자율 도킹 제어 모드로 변경하게 하도록 구성된다.
일 실시형태에서, 적어도 하나의 센서는 포지션 관련 데이터 또는 환경 관련 데이터를 제공하도록 구성된다.
일 실시형태에서, 적어도 하나의 센서는 다음 중 적어도 하나를 포함한다:
글로벌 내비게이션 위성 시스템 (global navigation satellite system; GNSS) 포지션 센서;
정박지에 대한 상대적 포지셔닝 정보를 제공하기 위한 도킹 센서;
헤딩 정보를 제공하기 위한 자이로 컴퍼스 센서;
피치 및 롤 정보를 제공하기 위한 모션 참조 유닛 (motion reference unit; MRU) 센서; 및
풍속 및 풍향 정보를 제공하기 위한 바람 센서.
일 실시형태에서, 적어도 하나의 메모리 및 컴퓨터 프로그램 코드는 추가로, 적어도 하나의 프로세서로, 장치로 하여금:
트랙 세그먼트들의 제 1 세트에서 포지셔닝 정보 소스로서 글로벌 내비게이션 위성 시스템 (GNSS) 포지션 센서를 선택하게 하고; 그리고
정박지까지의 선박 거리를 결정하고 선박 거리가 미리정의된 임계치 미만인 것에 응답하여 트랙 세그먼트들의 제 2 세트에서 포지셔닝 정보 소스로서 도킹 센서를 선택하게 하도록 구성된다.
일 실시형태에서, 적어도 하나의 메모리 및 컴퓨터 프로그램 코드는 추가로, 적어도 하나의 프로세서로, 장치로 하여금:
웨이포인트 특성들에 기초하여 동적 설정포인트를 결정하게 하도록 구성되고, 동적 설정포인트는 항만 트랙 데이터에 기초하여 변화하는 설정포인트 포지션, 설정포인트 속도 및 설정포인트 헤딩을 포함한다.
일 실시형태에서, 적어도 하나의 메모리 및 컴퓨터 프로그램 코드는 추가로, 적어도 하나의 프로세서로, 장치로 하여금:
폐쇄 루프 제어기를 사용하여 동적 설정포인트와 결정된 선박 위치 사이의 차이 정보를 결정하게 하고;
차이 정보에 기초하여 힘 벡터를 결정하게 하며; 그리고
힘 벡터에 기초하여 자율 도킹 제어 모드의 추진기 커맨드들을 제어하게 하도록 구성된다.
일 실시형태에서, 장치는
적어도 하나의 추진기를 더 포함하고;
적어도 하나의 메모리 및 컴퓨터 프로그램 코드는, 적어도 하나의 프로세서로, 장치로 하여금:
외부 힘 정보를 결정하게 하고;
힘 벡터를 외부 힘 정보와 조합하게 하고;
조합에 기초하여 추진기 커맨드들을 결정하게 하며; 그리고
추진기 커맨드들에 기초하여 적어도 하나의 추진기를 제어하게 하도록 구성된다.
일 실시형태에서, 외부 힘 정보는 바람 정보를 포함한다.
일 실시형태에서, 장치는
복수의 추진기들을 더 포함하고;
적어도 하나의 메모리 및 컴퓨터 프로그램 코드는 추가로, 적어도 하나의 프로세서로, 장치로 하여금:
복수의 추진기들에 추력을 할당함으로써 전체 3 축 포지션 및 헤딩을 제어하게 하도록 구성된다.
본 발명의 제 3 예시의 양태에 따라, 컴퓨터 실행가능 프로그램 코드를 포함하는 컴퓨터 판독가능 매체 상에 수록된 컴퓨터 프로그램이 제공되며, 코드는, 장치의 적어도 하나의 프로세서에 의해 실행될 때, 장치로 하여금:
포트들 사이의 수송 동작을 정의하는 노선 계획 데이터와 연관된 수송 제어 모드를 결정하게 하고;
웨이포인트 특성들의 세트를 포함하고 웨이포인트들에서 결합된 트랙 세그먼트들 및 접근 구역 정보를 정의하는 항만 트랙 데이터와 연관된 자율 도킹 제어 모드를 결정하게 하는 것으로서, 접근 구역 정보가,
접근 구역에 대한 위치 영역 정보;
접근 구역에 진입하기 위한 최대 선박 속도;
접근 구역에 진입하기 위한 최대 헤딩 편향; 및
접근 구역에 진입하기 위한 최대 측방향 편향
을 포함하는, 상기 자율 도킹 제어 모드를 결정하게 하고;
선박 위치, 속도 및 헤딩을 결정하게 하고;
선박 위치, 속도 및 헤딩을 접근 구역 정보와 비교하고,
선박 위치가 위치 영역 정보에 의해 포함되는 것;
선박 속도가 접근 구역에 진입하기 위한 최대 선박 속도 미만인 것; 및
선박 헤딩이 접근 구역에 진입하기 위한 최대 헤딩 편향에 의해 정의된 기준에 매칭하는 것
에 응답하여, 수송 제어 모드에서 자율 도킹 제어 모드로 변경하게 한다.
본 발명의 상이한 비-구속적인 예시의 양태들 및 실시형태들이 앞에서 예시되었다. 전술한 실시형태들은 단지 본 발명의 구현들에서 활용될 수도 있는 선택된 양태들 또는 단계들을 설명하기 위해서만 사용된다. 일부 실시형태들은 발명의 소정의 예시의 양태들만을 참조하여 제시될 수도 있다. 대응하는 실시형태들이 다른 예시의 양태들에도 또한 적용될 수도 있음을 알아야 한다.
본 발명의 예시의 실시형태들의 보다 완전한 이해를 위해, 이제, 첨부 도면들과 함께 취해진 다음의 설명을 참조한다.
도 1 은 발명의 예시의 실시형태에 따른 시스템의 개략적인 도면이다.
도 2 는 발명의 다양한 실시형태들이 적용될 수도 있는 사용자 장치의 예시의 블록 다이어그램을 제시한다.
도 3 은 발명의 다양한 실시형태들이 적용될 수도 있는 캡처링 디바이스의 예시의 블록 다이어그램을 제시한다.
도 4 는 발명의 다양한 실시형태들이 적용될 수도 있는 서버 장치의 예시의 블록 다이어그램을 제시한다.
도 5 는 발명의 다양한 실시형태들이 적용될 수도 있는 컴퓨터 장치의 예시의 블록 다이어그램을 제시한다.
도 6 은 발명의 예시의 실시형태에 따른 동작들을 나타내는 플로우 다이어그램을 나타낸다.
도 7 은 발명의 예시의 실시형태에 따른 제어 시스템의 개략적인 도면을 나타낸다.
도 8 은 발명의 예시의 실시형태에 따른 폐쇄 루프 제어기 블록 다이어그램의 개략적인 도면을 나타낸다.
도면들의 상세한 설명
다음의 설명에서, 같은 숫자들은 같은 엘리먼트들을 표기한다.
발명의 실시형태들은 자동화된 도킹 및 언도킹을 포함하는 자동화된 선박 조종을 제공하기 위한 자동화된 선박 조종 시스템 (AVMS) 에 관련된다.
센서 프로세싱, 안내 및 제어 로직, 추진기 할당 등과 같은 구축 블록들은 자율 선박 제어를 위해 존재한다. 그러나, 개시된 상이한 실시형태들은, 특히 자율적으로 도킹 또는 언도킹할 때, 안내, 제어, 센서 프로세싱, 추정 및 추진기 할당의 영역들에 대한 기술적 효과들을 나타낸다.
도 1 은 예시의 실시형태에 따른 시스템 (100) 의 개략적인 도면을 나타낸다. 해양 선박 (121) 은 예를 들어, 선박 관련 데이터를 생성, 프로세싱 및 송수신하기 위한 수단을 포함하는 장치 (120) 를 포함할 수도 있다. 장치 (120) 는 소프트웨어 프로그램 코드를 다운로드하고 로컬로 실행할 수 있다. 소프트웨어 프로그램 코드는 가능한 서버 애플리케이션이 시스템 (100) 의 서버 장치 (130, 131) 에서 실행 중인 서비스의 클라이언트 애플리케이션일 수도 있다. 장치 (120) 는 선박 관련 신호들 및 데이터를 제공하기 위한, 센서 디바이스와 같은 캡처링 디바이스를 포함할 수도 있다. 센서 디바이스는 예를 들어, 가속도계, 경사계, 자이로스코프, 바람 센서, 포지셔닝 센서, 온도 센서, 압력 센서 또는 카메라를 포함할 수도 있다. 카메라는 또한 비디오 데이터를 제공하는데 사용될 수도 있고 마이크로폰은 예를 들어, 오디오 데이터를 제공하기 위해 사용될 수도 있다. 센서 디바이스는 또한 환경 신호들 및 데이터를 제공할 수도 있다.
일 실시형태에서, 해양 선박 (121) 의 트랙 팔로우 능력은 고속 트랙 팔로우 모드 (High-Speed Track Follow mode; HSTF) 에 의해 제공될 수도 있다. 이 모드에서는, 속도가 수동으로 제어될 수도 있는 한편 헤딩은 자동으로 제어되어 러더 (rudder) 들 또는 조향가능 추진기들을 사용하여 트랙에 대한 선박의 측방향 포지션을 유지한다. 이 모드는 직접 흔들림 제어를 제공하지 않으므로 고속에 대해 중간에만 적합할 수도 있으며, 여기서 흔들림 제어는 요 (yaw) 제어기에 대한 헤딩 설정포인트를 제어함으로써 직접 달성될 수 있다.
저속 추적에 대해, 저속 트랙 팔로우 모드 (Low Speed Track Follow mode; LSTF) 가 제공될 수도 있으며, 여기에서는 다이렉트 전체 3 축 포지션 및 헤딩 제어가 모든 이용가능한 추진기들에 추력을 할당함으로써 달성된다.
일 실시형태에서, 고속 트랙 팔로우 (HSTF) 모드는 선박 속도를 자동으로 제어하도록 구성될 수도 있다. 속도 커맨드는 트랙 데이터에 정의되며 조작자는 필요한 경우 이를 제한 내에서 위 또는 아래로 조정할 수 있다. GNSS 데이터는 추가로 속도 커맨드를 따르도록 추력 커맨드를 조정하는데 사용될 수도 있다.
일 실시형태에서, 자동화된 선박 조종 시스템 (AVMS) 은, 도킹 및 언도킹을 위한 정밀 조종을 달성하기 위해 자동 포지션 및 LSTF 모드들에 대해 확장하는, 추가 모드, 자동화된 항만 조종 (Automated Harbor Maneuvering; AHM) 을 포함한다.
포트들 사이에서, 시스템 (100) 은 HSTF 를 사용하여 노선들을 따를 수 있을 것이다. 그러나, 도킹 및 언도킹 동안, 시스템 (100) 은 "항만 트랙" (170) 을 따라 정밀한 조종을 자동으로 따르고 실행하기 위해 AHM 모드에서 동작할 것이다. 항만 트랙 (170) 은 도킹된 포지션과 HSTF 노선 사이에서 선박 (121) 을 조종하는데 필요한 정보를 모두 포함한다. 그래서 환경 또는 다른 제약들이 필요한 경우, 조작자는 상이한 항만 트랙들 (170) 중에서 선택할 수 있다. 도 1 은 도킹된 포지션 (171) 으로 항만 트랙 (170) 을 따르는 선박 (121) 의 개념적 예시를 제공한다.
일 실시형태에서, 자동화된 선박 조종 시스템 (AVMS) 은 LSTF 와 HSTF 거동 사이의 자동 혼합을 가능하게 하도록 구성된다. 중간 속도에서, 해양 선박 (121) 제어는 원활한 수송을 제공하고 임의의 속도로 동작을 허용하는, 두 가지의 조합일 수도 있다. 예를 들어, 저속에서는, 직접 흔들림 제어가 사용된다. 이 제어는 해양 선박 (121) 이 가속됨에 따라 점진적으로 감소되어 고속에서 직접 흔들림 제어가 없다. 이러한 기능성은 자동화된 선박 조종 시스템 (AVMS) 이 개방 수역의 고속에서 도크 (171) 의 정지에 이르기까지 해양 선박 (121) 을 이동시킨다.
포트들 사이의 수송 동작, 및 자동화된 도킹/언도킹 동작은, 별도의 모드들을 사용하여 수행될 수도 있다. 대안으로, 이들은 단일 모드로서 조합될 수도 있다.
수동 선박 제어는 선박 속도 및 헤딩을 수동으로 제어하기 위해 추력 제어 레버들을 사용하는 것을 수반한다. 자동화된 선박 제어는 AVMS 로의 조향 및 선박 돌진의 스위칭 제어를 수반할 것이다. 이는 선박 (121) 내에 가교 설치된 기계식의 2 개의 포지션 스위치의 사용을 통해 달성되며, 하나의 포지션은 "수동" 제어에 전용되고 다른 하나의 포지션은 "AVMS" 제어에 전용된다. 스위치의 사용은 제어가 항상 추력 레버들 및 코닝 (conning) 으로 복원될 수 있는 것을 보장한다.
일 실시형태에서, 더 낮은 속도 임계치 및 더 높은 속도 임계치가 정의되고 동적 설정포인트 및 결정된 선박 위치에 기초하여 흔들림 제어 정보가 결정될 수도 있다. 저속 모드에서, 해양 선박 속도가 더 낮은 속도 임계치 미만일 때, 해양 선박의 적어도 하나의 추진기에 전체 스케일 추력을 할당하는 것에 의해 헤딩 제어 및 전체 스케일 3 축 포지션을 활성화하는 것에 의해 흔들림 제어 정보에 기초하여 해양 선박의 적어도 하나의 추진기의 흔들림 제어 추진기 커맨드들이 제어된다. 고속 모드에서, 해양 선박 속도가 더 높은 속도 임계치 초과일 때, 해양 선박의 적어도 하나의 추진기의 흔들림 제어 추진기 커맨드들이 디스에이블된다. 중간 속도 모드에서, 해양 선박 속도가 더 낮은 속도 임계치와 더 높은 속도 임계치 사이일 때, 해양 선박의 적어도 하나의 추진기에 부분 스케일 추력을 할당하는 것에 의해 헤딩 제어 및 부분 스케일 3 축 포지션을 할당하는 것에 의해 흔들림 제어 정보에 기초하여 해양 선박의 적어도 하나의 추진기의 흔들림 제어 추진기 커맨드들이 제어된다. 부분 스케일은 전체 스케일보다 작으며, 부분 스케일은 해양 선박 속도에 대해 제로와 전체 스케일 사이에서 점진적으로 변화될 수도 있다. 중간 속도 모드에서, 부분 스케일은 예를 들어, 더 높은 속도 임계치에서 더 낮은 속도 임계치로 감소하는 해양 선박 속도에 대해 제로와 전체 스케일 사이에서 점진적으로 증가될 수도 있다.
선박 (121) 수송 및 도킹에 대해, AVMS 는 세가지 가능한 상태들, 예를 들어 대기 (Standby), 도킹 및 항해 중 하나에서 기능할 수도 있다.
선박 (121) 제어가 초기에 AVMS 로 전달될 때, AVMS 는 대기 상태에 있을 것이다. 이 상태에서, 추진기들은 조작자가 시스템을 구성할 수 있게 하는 제로 커맨드로 설정된다. 대기에서는 다음의 동작들이 이용가능할 수도 있다: 예를 들어, 시스템 파라미터들의 구성, 센서 선택, 항만 트랙 선택, 추진기 선택, 추진기 체크들 (자동화된 커맨드/피드백 테스트), 및 모니터링.
대기 상태로부터 AVMS 는 특정 상황의 요건들에 의존하여 도킹 또는 항해 상태들로 전환할 수도 있다. AVMS 는 특정 정박지에 대한 요건들에 의존하여, 일단 도킹되면 다시 대기 상태로 스위칭할 수도 있다.
일 실시형태에서, 2-포지션 스위치가 수동 포지션으로 복귀될 때, AVMS 는 대기 상태로 복귀 (또는 유지) 할 것이지만, 이 경우 추진기들 및 조향에 대한 어떠한 제어도 없을 것이다 (추진기가 기능을 체크하지 않을 것이다).
도킹 상태는 AVMS 가 시간 주기 동안 도킹된 포지션 (171) 에서 선박 (121) 을 능동적으로 유지하는 것을 필요로 하는 경우를 포함한다. 이 상태에서 AVMS 는 자동으로 (예를 들어, "램프 다운" 신호에 의해 트리거됨) 추진기들을 제어하여 로딩 및 언로딩 동작들이 발생하는 동안 선박 (121) 을 정박지 벽에 대해 단단히 유지할 수도 있다.
도킹 상태로의 전환은 또한 도크에 접촉하기 직전에 일어나야 하기 때문에 수동으로 수행될 수도 있다. 램프는 해양 선박 (121) 이 도크 (171) 에 대해 안전할 때까지 내려질 수 없다.
항해 상태는 하나 이상의 웨이포인트들 (181-187) 내에 포함된 지침들 및 트랙 (170) 의 다음을 수반하는 모든 동작들을 포함한다.
AVMS 는 수송 및 도킹/언도킹 조종들을 수반하는 연속적인 자동화된 선박 (121) 동작들을 지원하도록 구성된다. 동작이 자동화되는 동안 동작의 안전성을 위해 그리고 또한 동작 변동들을 제공하기 위해, 일부 사용자 입력이 필요할 수도 있다. 이것의 예는 다양한 환경 조건들로 인해 다중 트랙들 (170) 이 존재하는 수송 동작일 수도 있거나, 다중 정박들이 이용가능한 도킹 동작들을 위한 것일 수도 있다. 예를 들어, 일 포트로부터 떠나는 선박 (121) 은 복수의 대안의 가능한 목적지들을 가질 수 있다. 이 경우, 조작자는 AVMS 가 언도킹 동작을 완료하기 전에 다음 목적지 포트를 선택할 필요가 있을 수도 있다. 자동화된 동작 동안 필요한 사용자 입력이 다기능 디스플레이 (Multi-Function Display; MFD) 상에 가시적인 요청들, 및 궁국적으로는 가청 경보로 사용자에게 플래그될 수도 있다. 안전 조치들로서, 필요한 시간까지 조작자에 의해 필요한 입력이 입력되지 않으면 (예컨대 선박 (121) 이 접근 회랑 (190) 에 진입할 준비가 되었을 때에 이용가능한 다중으로부터의 정박지 선택), AVMS 는 추가 조작자 입력이 수신될 때까지 선박 (121) 을 정지 및 유지 스테이션에 있게 할 것이다. 다기능 디스플레이 (MFD) 는 또한 조작자 인터페이스를 제공하도록 구성될 수도 있다. 이러한 인터페이스는 선박 상태와 관련된 정보를 디스플레이하고 조작자가 AVMS 거동을 시작, 정지 및 조정할 수 있게 하는 터치 스크린을 포함할 수도 있다. 터치 스크린은 예를 들어, 경보 및 다른 상태 정보 뿐만 아니라 트랙에 대한 선박 상태를 나타낸다.
일 실시형태에서, 해양 선박 장치 (120) 는 포트 내의 정박 포지션 및 기항지에 대한 항만 트랙 (170) 데이터를 유지하도록 구성되며, 항만 트랙 데이터는 항만 조종 동안 허용된 최대 트랙 포지션 편향에 대한 경계들을 정의하는 접근 회랑 데이터 (190); 및 접근 구역 (180) 정보를 포함한다. 접근 구역 (180) 정보는 접근 구역 (180) 에 진입하기 위한 최대 측방향 편향을 더 포함하고, AVMS 방법은 선박 위치, 속도 및 헤딩을 접근 구역 정보와 비교하고, 선박 편향이 접근 구역 (180) 에 진입하기 위한 최대 측방향 편향 미만인 것에 응답하여 수송 제어 모드에서 자율 도킹 제어 모드로 변경하는 단계를 더 포함한다.
더욱이, 진입 다리 데이터는 자율 도킹 제어 모드로 변경하는 것에 응답하여 결정될 수도 있으며, 진입 다리 데이터는 항만 트랙 데이터에 의해 정의된 항만 트랙 (170) 상으로 해양 선박 (121) 을 안내하도록 구성된다. 수송 제어 모드에서, 해양 선박 (121) 은 적어도 부분적으로 수동 제어 모드에 있도록 구성된다.
해양 선박 (121) 의 정렬은 결정된 정렬에 기초하여 결정된 항만 트랙 데이터 및 항해 방향을 이용하여 항만 트랙 (170) 을 고려하여 결정될 수도 있다.
본 설명에서, 선박이란 임의의 종류들의 수상 선박들, 통상적으로는 해양 선박들을 의미한다. 가장 통상적으로, 선박은 페리, 화물선 또는 대형 크루즈 선박이지만, 본 개시는 예를 들어, 요트들에도 또한 적용가능하다.
장치 (120) 는 무선 접속 (140) 을 통해 무선 접속 네트워크 (140) 를 경유하여 또는 로컬 접속을 경유하여 직접, 인터넷과 같은 공중 네트워크 (150) 에 접속가능하도록 구성된다. 무선 접속 (122) 은 예를 들어, 모바일 셀룰러 네트워크, 위성 네트워크 또는 무선 로컬 영역 네트워크 (WLAN) 를 포함할 수도 있다. 무선 통신 네트워크 (140) 는 데이터 접속 (141) 을 통해, 공중 데이터 통신 네트워크 (150), 예를 들어 인터넷에 접속될 수도 있다. 장치 (120) 는 고정 또는 무선 모바일 브로드밴드 액세스를 포함할 수도 있는 데이터 접속을 통해 직접, 공중 데이터 통신 네트워크 (150), 예를 들어 인터넷에 접속가능하도록 구성될 수도 있다. 무선 통신 네트워크 (140) 는 데이터 접속을 통해, 시스템 (100) 의 서버 장치 (130) 에 접속될 수도 있다.
일 실시형태에서, 해양 선박 장치 (120) 는 적어도 하나의 캡처링 디바이스 및 컴퓨터 디바이스와 선박 (121) 내에 로컬 접속을 설정할 수도 있다. 센서와 같은 캡처링 디바이스는 장치 (120) 또는 해양 선박 (121) 에 통합되고, 해양 선박 (121) 의 선체에 부착되며 선박 제어 시스템에 접속되거나 별도의 접속을 통해 네트워크 (150) 에 접속가능하거나 별도의 센서 디바이스로서 배열되거나 선박 제어 시스템에 접속될 수도 있다.
장치 (120) 및 그 클라이언트 애플리케이션은 예를 들어, 장치 (120) 가 서버 (130) 상에서 실행되는 선박 데이터 서비스에 로그인할 수 있게 한다.
일 실시형태에서, 네트워크 (150) 를 통해 해양 선박 데이터에 대해 협력하기 위해 장치 (120) 와 서버 (130) 사이에 실시간 상호작용이 제공될 수도 있다. 실시간 상호작용은 또한, 네트워크 (150, 161) 를 통해 해양 선박 데이터에 대해 협력하기 위해 장치 (120) 와 원격 사용자 디바이스 (160) 사이에 제공될 수도 있다.
센서 데이터 항목은 해양 선박 (121) 의 센서 디바이스에 의해 생성된다. 센서 데이터 항목들은 또한 서버 (130) 로 송신될 수도 있다. 센서 데이터 항목들은 송신 전에 장치 (120) 에서 프로세싱될 수도 있거나 추가 프로세싱없이 전송될 수도 있다.
센서 데이터는 또한 네트워크 (150) 를 통한 송신 전에 장치 (120) 내에 저장될 수도 있다. 그 후 다시, 송신된 센서 데이터는 서버 장치 (130) 에서 또는 원격 사용자 디바이스 (160) 에서 저장 및/또는 프로세싱될 수도 있다.
장치 (120) 는 복수의 상이한 캡처링 디바이스 및 기구들에 접속될 수도 있고 장치 (120) 는 어떤 센서 디바이스가 능동적으로 협력되는지를 선택하도록 구성될 수도 있다.
원격 사용자 디바이스 (160) 또는 장치 (120) 의 사용자/조작자는 네트워크 서버 (130) 의 선택된 서비스에 대한 사용자 자격증명으로 로그인될 필요가 있을 수도 있다.
일 실시형태에서, 시스템 (100) 은 로컬 접속을 통해 장치 (120) 로 포함되거나 장치 (120) 에 접속가능하도록 구성된 센서 디바이스를 포함한다. 로컬 접속은 유선 접속 또는 무선 접속을 포함할 수도 있다. 유선 인터페이스는 예컨대, USB (universal serial bus) 또는 NMEA (National Marine Electronics Association) 0183/2000 표준을 포함할 수도 있다. 무선 접속은 예를 들어, 음향 접속, 블루투스™, 무선 주파수 식별 (RF-ID) 또는 무선 로컬 영역 네트워크 (WLAN) 를 포함할 수도 있다. 근거리장 통신 (Near Field Communication; NFC) 은 또한 예를 들어, 센서 디바이스와 장치 (120) 사이의 센서 디바이스 식별을 위해 사용될 수도 있다.
일 실시형태에서, 시스템 (100) 은 데이터 접속 (151) 을 통해 서비스 데이터, 서비스 메트릭들 및 가입자 정보를 저장하기 위한 저장 디바이스 (131) 를 포함하는 서버 장치 (130) 를 포함할 수도 있다. 서비스 데이터는 예를 들어, AVMS 관련 데이터, 웨이포인트 특성 관련 데이터, 선박 관련 데이터, 환경 데이터, 구성 데이터; 계정 생성 데이터; 센서 데이터; 센서 ID; 참조 데이터 항목, 사용자 입력 데이터; 실시간 협업 데이터; 미리정의된 설정; 및 속성 데이터를 포함할 수도 있다.
일 실시형태에서, 장치 (120) 에서의 독점 애플리케이션은 서버 애플리케이션이 시스템 (100) 의 서버 장치 (130) 에서 실행중인 서비스의 클라이언트 애플리케이션일 수도 있다.
장치 (120) 의 독점 애플리케이션은 센서 입력 데이터를 수신하고 출력 데이터를 제공할 수도 있다. 입력 데이터는 센서 디바이스 또는 카메라와 같은 캡처링 디바이스에 의해 캡처된 데이터를 포함할 수도 있다.
일 실시형태에서, 임의의 장치에 대한 구성 정보 또는 애플리케이션 다운로드 정보는 서버 (130) 에 의해 자동으로 다운로드되고 구성될 수도 있다. 따라서, 디바이스들의 사용자는 서비스를 위한 임의의 초기화 또는 구성을 행할 필요가 없을 수도 있다. 시스템 서버 (130) 는 또한 서비스, 이러한 센서 디바이스들, 장치들 및 사용자들에 대해 계정 생성 프로세스를 처리할 수도 있다. 다운로드의 타이밍은 또한 선박 이동 계획을 고려하여 자동적이며 최적화도록 구성될 수도 있다. 예를 들어, 해양 선박이 항만에 도킹될 때 다운로드가 자동으로 발생하고 있을 수도 있다.
일 실시형태에서, 디바이스들의 연관성은 일회성일 수 있거나 서버 (130) 또는 디바이스들 중 임의의 것 상에 지속적으로 저장될 수 있다.
일 실시형태에서, 시스템 서버 (130) 상의 센서 디바이스 또는 장치 (120) 의 인증은 IMEI (International Mobile Equipment Identity) 또는 IMSI (International Mobile Subscriber Identity) 와 같은 하드웨어 또는 SIM 자격증명을 활용할 수도 있다. 센서 디바이스 또는 장치 (120) 는 예를 들어, IMEI 및/또는 IMSI 를 포함하는 인증 정보를 시스템 서버 (130) 로 송신할 수도 있다. 시스템 서버 (130) 는 수신된 인증 정보를 예를 들어, 시스템 서버 데이터베이스 (131) 에 저장된 등록된 사용자들/디바이스들/선박들/장치들의 인증 정보와 비교함으로써 디바이스를 인증한다. 이러한 인증 정보는 디바이스들 및/또는 장치들을 페어링하여 선박 데이터 접속을 위해 이들 사이의 연관성을 생성하는데 사용될 수도 있다.
일 실시형태에서, 서비스 웹 애플리케이션은 시스템의 구성을 위해 사용될 수도 있다. 서비스 웹 애플리케이션은 예를 들어, 인터넷 (150) 과 같은 공중 데이터 네트워크에 접속된 개인용 컴퓨터와 같은 임의의 사용자 디바이스, 관리 디바이스 또는 원격 제어 디바이스 (160) 에서 실행될 수도 있다. 제어 장치 (160) 는 또한 로컬 접속 (123) 을 통해 장치 (120) 에 로컬로 접속될 수도 있고 구성 목적을 위해 장치 (120) 의 네트워크 접속들을 활용할 수도 있다. 제어 장치의 서비스 웹 애플리케이션은 예를 들어, 기구들을 탐색/부가, 속성 결정, 디바이스 설정 및 구성을 제공할 수도 있다. 제어 장치 (160) 의 서비스 웹 애플리케이션은 예를 들어, 장치 (120) 의 사용자 인터페이스 상에서 수행하기에는 너무 복잡한 태스크들을 위한 일반적인 구성 툴일 수도 있다.
일 실시형태에서, 원격 제어 장치 (160) 가 인증되고 제어 장치 (160) 로부터 시스템 서버 (130, 131) 로 구성 데이터가 전송될 수도 있으며, 구성 설정들은 수신된 데이터에 기초하여 수정될 수도 있다. 일 실시형태에서, 수정된 설정들은 네트워크 (150) 및 로컬 접속 또는 무선 조작자를 통해 장치 (120) 로 전송될 수도 있다. 대응하여 수정된 설정들은 또한 예를 들어, 장치 (120) 를 통해 또는 네트워크 (150) 를 통해 직접, 외부 디바이스들에 전송될 수도 있다.
일 실시형태에서, 센서 디바이스는 무선 또는 유선일 수도 있다.
시스템 (100) 은 또한 지구 주위의 궤도에 복수의 위성들 (110) 을 포함할 수도 있다. 각각의 위성 (110) 의 궤도가 반드시 다른 위성의 궤도와 동기할 필요는 없으며, 실제로 비동기일 가능성이 있다. 본 발명의 바람직한 실시형태들과 관련하여 설명된 것들과 같은 글로벌 포지셔닝 시스템 수신기 장치는 다양한 위성들 (110) 로부터 확산 스펙트럼 글로벌 내비게이션 위성 시스템 글로벌 포지셔닝 시스템 (GNSS) 위성 신호들 (112) 을 수신하는 것으로 나타나 있다.
원격 제어 장치 (160) 는 선박 (121) 의 원격 조작자에 의해 동작되도록 구성될 수도 있다. 원격 제어 장치 (160) 는 예를 들어 지상국, 선박 (121) 또는 다른 선박 상에 배열될 수도 있다.
일 실시형태에서, 자동화된 동작들을 시작하는 것은 AVMS 에 연결 (engaging) 한 다음 다기능 디스플레이 (MFD) 상에서 "항해" 를 활성화하는 것을 포함할 수도 있으며, 이는 AVMS 를 항해 모드로 전환할 것이다. "항해" 를 활성화하기 전에 AVMS 를 정확히 구성되는 것이 필요하며, 그렇지 않으면 AVMS 가 항해 모드로 전환되지 않을 것이다.
AVMS 의 구성은 충분한 센서들이 온라인이고 선택되는 것, 충분한 추진기들이 온라인이고 선택되는 것, 및 트랙 (170) 및 목적지 (171) 가 선택된 것을 필요로 한다. 선박 (121) 의 위치 (도킹 또는 코닝 제어 하에 수송 시) 에 의존하여, 조작자는 "항해" 모드를 활성화하기 전에, 트랙 라이브러리에서 다중 트랙들 (170) 로부터 선택해야 할 수도 있거나, 선택한 트랙 (170) 상에서 웨이포인트 (180-187) 에 가깝게 이동해야 할 수도 있다.
일 실시형태에서, 자동화된 선박 조종 시스템 (AVMS) 은 양단 (double-ended) 선박들을 지원하도록 구성된다. 자동화된 선박 조종 시스템 (AVMS) 은 AVMS 가 개시될 때 선박 (121) 이 트랙 (170) 과 어떻게 정렬되는지에 기초하여 항해 방향을 자동으로 고르도록 구성된다.
일 실시형태에서, 조작자에 대해, 포트들 사이의 자동화된 조종은 로딩 램프가 상승되고 선박 (121) 이 언도킹될 준비가 된 후 시작하여 선박 (121) 이 다음 정박지의 포지션에 있고 로딩 램프를 하강할 준비가 될 때 종료할 것이다. 자동화된 조종 동작은 3 개의 페이즈들로 분할될 수도 있다: 다음 단락들에서 정의된 바와 같이, 수송, 도킹, 및 언도킹.
일 실시형태에서, 해양 선박 장치 (120) 는 웨이포인트 특성들에 기초하여 동적 설정포인트를 결정하도록 구성되고, 동적 설정포인트는 항만 트랙 데이터에 기초하여 변화하는 설정포인트 포지션, 설정포인트 속도 및 설정포인트 헤딩을 포함한다. 또한, 차이 정보는 폐쇄 루프 제어기를 사용하여 결정된 선박 위치와 동적 설정포인트 사이에서 결정될 수도 있고, 이 차이 정보에 기초하여 힘 벡터가 결정되고; 및 힘 벡터에 기초하여 자율 도킹 제어 모드의 추진기 커맨드들이 제어될 수도 있다.
일 실시형태에서, 선박 헤딩은 설정포인트 헤딩에 정렬되고 선박 속도는 설정포인트 속도에 정렬될 수도 있으며, 설정포인트 헤딩 및 설정포인트 속도는 구성가능한 파라미터들이다.
또한, 개개의 설정포인트 값들과 웨이포인트들 사이의 설정포인트 속도 및 설정포인트 헤딩은 트랙 세그먼트 상의 해양 선박의 위치에 기초하여 보간될 수도 있고, 선박 헤딩은 보간된 설정포인트 헤딩에 정렬되고 선박 속도는 보간된 설정포인트 속도에 정렬된다. 보간하는 것은 해양 선박이 헤딩하고 있는 웨이포인트들의 웨이포인트 특성에 기초하여 인에이블될 수도 있다.
도킹
AVMS 는 포트 내의 각각의 정박 포지션 (171), 및 각각의 기항지에 대해 미리계획된 항만 트랙 (170) 을 포함할 것이고, 이는 자동 도킹을 위해 항만 진입 구역 (180) 에서 정박지 (171) 까지 이어질 수 있다. 이 트랙 (170) 은 항만 조종 동안 허용된 최대 트랙 포지션 편향에 대한 경계들을 설정하고 도킹 페이즈로 전환할 때 사용되는 진입 구역 (180) 을 포함하는 접근 회랑 (190) 을 포함할 것이다. 항만 트랙 (170) 데이터는 AVMS 의 동작을 위해 해양 선박 장치 (120) 내에 저장되고, 예를 들어 항만 트랙 (170), 정박 포지션 (171), 웨이포인트들 (182-187), 항만 진입 구역 (180), 및 접근 회랑 (190) 과 같은, AVMS 를 위해 필요한 모든 데이터를 포함한다.
고려되어야 하는 몇 가지 시나리오들이 있다. 하나의 시나리오는 선박 (121) 이 자율 수송에서 도킹 페이즈로 전환하는 경우를 포함하고, 두 번째 시나리오는 선박 (121) 이 수동 모드 (오퍼레이터가 코닝 (conning) 을 사용하여 수동 수송을 수행함) 에 있고 (자율) 도킹 페이즈로 전환하고 있는 것이다. 양자의 경우들에 대해, 선박 (121) 은 접근 구역 (180) 내에 포지셔닝되어야 하고, 도킹 페이즈로 전화하는 것이 허용되도록, 필요한 전제 조건들을 충족해야 한다.
도킹 페이즈로의 전환을 위한 전제 조건들은, 예를 들어 다음을 포함할 수도 있다:
a. 선박 속도가 접근 회랑 웨이포인트들 (181-187) 에 의해 특정된 최대치 미만이어야 함
b. 헤딩 편향이 접근 회랑 (190) 웨이포인트들 (181-187) 에 의해 특정된 최대치 미만이어야 함
c. 측방향 편향이 접근 회랑 (190) 폭 미만이어야 함
d. 헤딩 및 측방향 편향들이 함께 체크될 것이다. 선박 (121) 이 항만 트랙 (170) 으로부터 떨어져서 조향하는 것과 반대로 트랙 (170) 을 향해 조향하고 있는 경우, 더 큰 헤딩 편향이 허용될 수 있다.
선박 (121) 이 접근 구역 (180) 내에 포지셔닝되고 전제 조건들 (위 참조) 을 충족하면, 선박 (121) 을 항만 트랙 (170) 상으로 자동으로 안내하기 위해 AVMS 에 의해 사용되는 "진입 다리" 가 자동으로 계산된다. 이 지점에서 도킹 페이즈가 시작하였고 AVMS 는 항만 트랙 (170) 데이터에 특정된 미리-프로그래밍된 속도 및 단계들을 사용하여 선박 (121) 을 도크 (171) 로 조종하게 될 것이다.
초기 접근 동안, 해양 선박 장치 (120) 는 포지셔닝을 위해 GNSS (110) 를 사용할 수도 있다. 선박 (121) 이 특정된 정박지 (171) 의 근접에 도달하면, 시스템은 정박지 (171) 에 대한 선박 (121) 의 포지션 및 헤딩을 자동으로 추적하기 시작할 수도 있다. 최종 접근 동안, 해양 선박 장치 (120) 는 도킹 동안 더 높은 정밀도를 허용하기 위해 상대 포지셔닝 (도킹 센서) 을 사용할 수도 있다. 절대 포지셔닝과 상대 포지셔닝 사이의 전환은 AVMS 에 의해 범프없는 방식으로 자동으로 핸들링될 수도 있다.
도킹 페이즈의 끝은 선박 (121) 이 최종 웨이포인트 (187) 에 도달했고, 포지션 (171) 에 정박되며 예를 들어, 로딩 램프를 내릴 준비가 될 때 도달된다. 항만 트랙 (170) 의 종점 (171) 에서의 거동은 예를 들어 다음의 옵션들로부터 최종 웨이포인트 (187) 특성들에서 구성가능할 수도 있다: 유지 스테이션 (이것은 스테이션 유지와 동일함), 대기 상태로의 전환 (수동 제어로 다시 스위치), 및 도킹 상태로의 전환.
유지 스테이션을 제외한 모든 경우들에서, 램프를 배치하기 전에 선박 (121) 포지션이 고정되어야 하기 때문에 로딩 램프를 내리기 전에 도킹 페이즈 (항해 상태) 로부터 전환할 필요가 있을 수도 있다.
별도로 AVMS 가 후속 언도킹 페이즈 동안 필요하게 될 특정 파라미터들을 저장하기 위한 옵션이 있을 수도 있다 (이는 주로 폐쇄 루프 제어기의 동적 컴포넌트를 형성하는 "통합(integrals)" 과 관련됨).
일 실시형태에서, 정박되는 동안 자율 동작을 계속하기 위해, AVMS 는 최종 웨이포인트 (187) 특성들에 포함된 정보를 사용하여 도크 (171) 에 대해 선박 (121) 을 유지하기 위해 선박 추진기들을 자동으로 사용하도록 구성될 수 있다. 이 경우 선박 (121) 이 도킹 페이즈를 완료할 때, 이것은 자동으로 도킹 상태로 전환할 것이고 추진기들은 도크에 대해 선박을 푸시하도록 램프 업할 것이다.
언도킹
언도킹은 기본적으로 도킹과는 반대 절차이다. 선박 (121) 이 언도킹 페이즈에 진입하기 위해서는, 새로운 목적지 (및 여러 개가 이용가능한 경우, 가능하게는 트랙 (트랙 데이터와 연관됨)) 가 선택되어야 하고, 로딩 램프가 업되어야 하며, 조작자는 선박 (121) 이 언도킹하기에 클리어한지를 확인해야 한다. 목적지 및 트랙 (트랙 데이터를 가짐) 이 선택되었고 로딩 램프가 상승되면, 확인 요청 메시지가 MFD 상에 나타날 수도 있다. 조작자는 AVMS 가 언도킹 페이즈로 전환하고 정박지 (171) 로부터의 출발을 시작하기 위해 언도킹 요청에 대한 클리어를 확인하는 것이 필요할 수도 있다. 일단 확인되면, AVMS 는 트랙 데이터에 포함된 단계들, 및 미리 프로그래밍된 속도를 사용하여 도크로부터 떨어져서 선박 (121) 을 조종하게 될 것이다.
도킹 페이즈와 관련하여 AVMS 는 선박 (121) 을 항만 영역 밖으로 안내하기 위해 출발 트랙, 출발 회랑 및 출구 구역을 활용할 수도 있다. 대부분의 경우들에서, 이들은 항만 진입을 위해 사용된 트랙 (170), 회랑 (190), 및 구역 (180) 과 동일할 것이다. 출발 트랙은 출구 구역에서 종료할 것이다.
수송
출구 구역에서의 최종 항만 트랙 웨이포인트, 및 다음 포트에 대한 진입 구역 (180) 에서의 트랙 웨이포인트 (111) 로부터의 선박 (121) 의 자율 조정은 수송 페이즈로서 지칭된다. 이 페이즈에서 AVMS 는 선박 속도 및 헤딩을 제어하기 위해 트랙 데이터에 포함된 웨이포인트들 내에 포함된 정보를 사용하여 수송 트랙을 따를 것이다.
수송 페이즈와 도킹/언도킹 페이즈들 사이의 전환은 범프없는 것으로 구성된다. 이러한 전환들 동안 AVMS 는 고속 트랙 팔로우 모드 (HSTF) 와 저속 트랙 팔로우 모드 (LSTF) 사이에서 속도에 따라 점진적으로 전환하고 있을 것이지만, 이 전환이 조작자에게는 명백할 수도 있다.
도킹 및 언도킹 페이즈들 동안, 시스템은 항만 트랙 (170) 을 따라 정밀한 조종들을 자동으로 따르고 실행하기 위해 자동화된 항만 조종 (Automated Harbor Maneuvering; AHM 모드) 에서 동작할 것이다. 항만 트랙 (170) 은 도킹된 포지션 (171) 과 진입/출구 구역 (180) 사이에서 선박을 조정하는데 필요한 모든 정보를 포함한다.
항만 트랙들 (170) 은 항만 내부에서 그리고 정박지 (171) 에 근접하여 정밀한 조정을 위해 독립적인 미리정의된 선회 (turning) 반경으로 웨이포인트들 (181-187) 에서 결합된 직선 세그먼트들 (다리들) 를 포함할 수도 있다. 항만 내부에서 그리고 정박지에 근접하여 정밀한 조종 요건들로 인해, 항만 트랙 (170) 은 포괄적인 웨이포인트 특성들의 세트를 포함할 것이고, 이는 선박 (121) 을 안내하는 것을 도울 뿐만 아니라 트랙 (170) 을 따라 제어 시스템의 거동을 제어할 것이다. 하기 표는 항만 트랙 (170) 목적들을 위해 사용될 수도 있는 일부 웨이포인트 특성들을 열거한다.
항만 트랙 (170) 을 따라갈 때, 복수의 액션들 및 파라미터들이 필요할 수도 있다. 다음의 피처들은 단지 예시적일 뿐이며 모든 피처들이 반드시 필요한 것은 아니다.
속도 조절
AHM 모드에 대한 디폴트 설정포인트 속도는 웨이포인트 (181-187) 를 사용하여 항만 트랙 (170) 데이터에 미리 프로그래밍된다. 예를 들어, 조작자는 0 내지 100 % 사이에서 스케일링된 MFD 온스크린을 사용하여 설정포인트 속도를 오버라이드 (감소) 시킬 수 있다.
일 실시형태에서, 조작자는 예를 들어, 0.5 knots 의 증분으로 속도를 조정할 수 있다. 속도는 정의된 트랙 제한 내에 있는 한 감소되거나 증가될 수도 있다.
정지
AHM 모드에 있는 동안, 조작자는 MFD "현재 포지션" 기능을 활성화함으로써 언제든지 트랙 상에 선박 (121) 을 정지시킬 수 있다. 이것은 특정된 감속 프로파일을 따라 선박 (121) 을 트랙 (170) 상에 정지시키게 할 것이다. 감속 동안, 감속이 진행 중임을 표시하기 위해 "현재 포지션"기능이 사용자 인터페이스 상에 표시될 수도 있다. 조작자가 이미 프로세스에 있는 동안 "현재 포지션" 기능을 두 번째로 활성화하는 경우, 설정포인트는 즉시 중지하게 될 것이다. 상술한 양자의 액션들은 부주의한 액션을 방지하기 위해 MFD 온스크린 확인을 필요로 할 수도 있다. 선박 (121) 이 정지 중이거나 정지된 동안, "계속" 기능이 인에이블된다. "계속" 기능을 활성화시킴으로써, 이것은 항만 트랙 (170) 데이터에 정의된 조종 단계들을 계속 실행할 것이다.
트랙 오프셋
AHM 모드에 있는 동안, 조작자는 예를 들어, MFD 온스크린 "포트" 및 "우현" 오프셋 기능들을 사용함으로써, 트랙 (170) 에 대한 선박 (121) 의 측방향 포지션을 조정할 수 있다. 기능이 활성화될 때마다, 측방향 오프셋이 활성화된 기능 (예를 들어, 터치 기반 버튼 또는 터치 디스플레이 상의 아이콘) 의 방향에서 증가될 것이다. 오프셋들은 MFD 개요 디스플레이 상에 숫자 및 그래픽으로 디스플레이될 수도 있다. 또한, 오프셋 트랙 라인은 디폴트 트랙에 대해 디스플레이될 수도 있다. 오프셋은 설정포인트의 포지션에서 하버 트랙 (170) 의 회랑 (190) 폭에 의해 제한될 것이다. 조작자가 회랑 (190) 외부에 오프셋 배치를 시도하는 경우, MFD 상에 경고가 디스플레이될 수도 있다. 선박 (121) 이 트랙 (170) 을 따라 이동함에 따라 회랑 (190) 폭이 감소되면, 선박 (121) 을 회랑 (190) 내부에 안전하게 유지하도록 트랙 오프셋이 자동으로 감소될 것이다. 조작자가 단일 단계에서 오프셋들을 제거할 수 있게 하도록 오프셋 리셋 기능이 제공될 것이다.
트랙 제어
고속 추적 동안, 선박 (121) 은 제로 크로스 트랙 에러를 유지하기 위해 필요한 헤딩 조정들로 트랙 (170) 의 헤딩을 따를 수도 있다. 헤딩 조정들은 고속 조향 할당 (예를 들어, 러더들 또는 메인 방위각 추진기들) 을 사용하여 이루어질 것이다.
저속 추적 동안, 선박 (121) 은 옵션으로 그 헤딩을 미리 프로그래밍된 설정포인트 헤딩에 정렬할 수 있다. 이것은 선박 (121) 이 접근 동안 크래빙 (crabbinbg) 조작을 수행할 수 있게 한다. 헤딩 및 속도 설정포인트들은 구성가능한 웨이포인트 (181-187) 특성들이다. 웨이포인트들 (181-187) 사이에서, 속도 및 헤딩 설정포인트들은 트랙 (170) 상의 선박 (121) 위치에 기초하여 보간될 수도 있다. 보간 옵션은 선박 (121) 이 헤딩하고 있는 웨이포인트 (181-187) 의 웨이포인트 특성에 의해 구성가능하다.
요 피벗 지점은 선상 관찰자에게 회전의 중심으로 보이는 선박 (121) 의 중심선에 있는 지점이다. 그 지점에서의 측방향 흔들림 속도는 정의상 0 이다. 이것은 피벗 지점이 제어 포인트로서 사용되는 경우, 선회하는 동안 흔들림 제어 힘이 사용될 필요가 없다는 것을 의미하기 때문에 중요하다. 선박 (121) 의 요 피벗 지점의 위치는 선박의 선회율 및 측방향 속도에 의존할 수도 있다.
일 실시형태에서, 자동 조작에 연결하기 전에, 모든 추진기들이 완전히 동작하는 것을 검증하는 것이 필요하다. 추진기들은 장시간 동안 사용되지 않았을 수도 있기 때문에, 추진기 준비 표시가 추진기의 동작을 보장하기에 충분하지 않을 수도 있다. 이러한 목적을 위해, 자동으로 커맨드를 발행하고 추진기가 예상대로 따르는지를 검증하는 자동화된 추진기 체크 기능이 사용된다. AHM 에 연결하기 직전에 성공적인 추진기 체크들이, 시스템 준비를 위한 조건으로서 포함될 수 있다.
일 실시형태에서, 해양 선박 (121) 의 제어 모드는 예를 들어, 트랙 특성들 (트랙 데이터) 및 선박 속도로부터 결정된다. 그 후 동적 설정포인트와 결정된 선박 위치 사이의 차이 정보가 폐쇄 루프 제어기를 사용하여 결정될 수도 있고 그 차이 정보에 기초하여 힘 벡터가 결정될 수도 있다. 추진기 커맨드들은 제어 모드 및 힘 벡터로부터 결정된다.
또한, 외부 힘 정보는 장치 (120) 에 의해 결정될 수도 있고, 힘 벡터는 외부 힘 정보와 조합될 수도 있으며, 그 조합에 기초하여 추진기 커맨드들이 결정될 수도 있다. 적어도 하나의 추진기는 추진기 커맨드들에 기초하여 제어될 수도 있다. 외부 힘 정보는 예를 들어, 캡처링 디바이스 (예를 들어, 바람 센서) 를 사용하여 검출되는 바람 정보를 포함할 수도 있다.
도 2 는 발명의 다양한 실시형태들이 적용될 수도 있는 해양 선박 장치 (120) 의 예시의 블록 다이어그램을 제시한다. 해양 선박 장치 (120) 는 자율 도킹을 위해 동작하도록 구성된다.
해양 선박 장치 (120) 의 일반적인 구조는 사용자 인터페이스 (240), 통신 인터페이스 (250), 위성 포지셔닝 디바이스 (GNSS)(270), 현재 선박 활동 데이터 및 현재 환경 데이터를 캡처하기 위한 캡처링 디바이스 (260), 프로세서 (210) 및 프로세서 (210) 에 커플링된 메모리 (220) 를 포함한다. 해양 선박 장치 (120) 는 메모리 (220) 에 저장되고 프로세서 (210) 로 로딩되고 프로세 (210) 에서 실행되도록 동작가능한 소프트웨어 (230) 를 더 포함한다. 소프트웨어 (230) 는 하나 이상의 소프트웨어 모듈들을 포함할 수도 있고 컴퓨터 프로그램 제품의 형태일 수도 있다. 해양 선박 장치 (120) 는 사용자 인터페이스 제어기 (280) 를 더 포함할 수도 있다.
프로세서 (210) 는 예를 들어, 중앙 프로세싱 유닛 (CPU), 마이크로 프로세서, 디지털 신호 프로세서 (DSP), 그래픽 프로세싱 유닛 등일 수도 있다. 도 2 는 하나의 프로세서 (210) 를 나타내지만, 장치 (120) 는 복수의 프로세서들을 포함할 수도 있다.
메모리 (220) 는 예를 들어, 비휘발성 또는 휘발성 메모리, 예컨대 판독전용 메모리 (read-only memory; ROM), 프로그램가능 판독전용 메모리 (programmable read-only memory; PROM), 소거가능 프로그램가능 판독전용 메모리 (erasable programmable read-only memory; EPROM), 랜덤 액세스 메모리 (RAM), 플래시 메모리, 데이터 디스크, 광학 스토리지, 자기 스토리지, 스마트 카드 등일 수도 있다. 장치 (120) 는 복수의 메모리들을 포함할 수도 있다. 메모리 (220) 는 장치 (120) 의 일부로서 구축될 수도 있고, 또는 사용자에 의해 사용자 장치 (120) 의 슬롯, 포트 등에 삽입될 수도 있다. 메모리 (220) 는 데이터를 저장하는 유일한 목적을 제공할 수도 있거나, 데이터를 프로세싱하는 것과 같은 다른 목적들을 제공하는 장치의 일부로서 구축될 수도 있다. 독점 자율 해양 선박 도킹 애플리케이션, 트랙 데이터, 자율 선박 모드 관련 데이터, 센서 데이터, 선박 관련 데이터 또는 환경 데이터가 메모리 (220) 에 저장될 수도 있다.
일 실시형태에서, 장치 (120) 는 자율 해양 선박 도킹을 위한 컴퓨터 구현 방법을 수행하도록 구성되며, 방법은 항만들 사이의 수송 동작을 정의하는 노선 계획 데이터와 연관된 수송 제어 모드를 결정하는 단계; 웨이포인트 특성들의 세트를 포함하고 접근 구역 정보 및 웨이포인트들에 결합된 트랙 세그먼트들을 정의하는 항만 트랙 데이터와 연관된 자율 도킹 제어 모드를 결정하는 단계를 포함한다. 접근 구역 정보는 접근 구역에 대한 위치 영역 정보; 접근 구역에 진입하기 위한 최대 선박 속도; 및 접근 구역에 진입하기 위한 최대 헤딩 편향을 포함한다. 방법은 선박 위치, 속도 및 헤딩을 결정하는 단계; 선박 위치, 속도 및 헤딩을 접근 구역 정보와 비교하고, 선박 위치가 위치 영역 정보에 의해 포함되는 것; 선박 속도가 접근 구역에 진입하기 위한 최대 선박 속도 미만인 것; 및 선박 헤딩이 접근 구역에 진입하기 위한 최대 헤딩 편향에 의해 정의된 기준에 매칭하는 것에 응답하여 수송 제어 모드를 자율 도킹 제어 모드로 변경하는 단계를 더 포함한다.
사용자 인터페이스 제어기 (280) 또는 사용자 인터페이스 (240) 는 키보드, 해양 선박 장치 (120) 의 사용자 인터페이스들 (240) 의 디스플레이 상에 나타낸 그래픽 사용자 인터페이스, 스피치 인식 회로부, 또는 악세서리 디바이스, 예컨대 헤드셋을 통해, 해양 선박 장치 (120) 의 사용자로부터 입력을 수신하고, 예를 들어, 그래픽 사용자 인터페이스 또는 라우드스피커를 통해, 사용자에게 출력을 제공하기 위한 회로부를 포함할 수도 있다.
글로벌 내비게이션 위성 시스템 (Global Navigation Satellite System)(GPS 와 같은 GNSS) 디바이스 (270) 가 위치 정보를 제공하도록 구성된다. 이러한 정보는 예를 들어 포지션 좌표들, 속도, 이동 방향; 및 플루트 높이 정보를 포함할 수도 있다.
통신 인터페이스 모듈 (250) 은 데이터 송신의 적어도 일부를 구현한다. 통신 인터페이스 모듈 (250) 은 예를 들어, 무선 또는 유선 인터페이스 모듈을 포함할 수도 있다. 무선 인터페이스는 예컨대, WLAN, 블루투스, 적외선 (IR), 무선 주파수 식별 (RF ID), GSM/GPRS, CDMA, WCDMA, LTE (Long Term Evolution) 또는 5G 무선 모듈을 포함할 수도 있다. 유선 인터페이스는 예컨대, USB (universal serial bus) 또는 NMEA (National Marine Electronics Association) 0183/2000 표준을 포함할 수도 있다. 통신 인터페이스 모듈 (250) 은 해양 선박 장치 (120) 에 통합되거나, 또는 해양 선박 장치 (120) 의 적절한 슬롯 또는 포트에 삽입될 수도 있는 어댑터, 카드 등에 통합될 수도 있다. 통신 인터페이스 모듈 (250) 은 하나의 무선 인터페이스 기술 또는 복수의 기술들을 지원할 수도 있다. 해양 선박 장치 (120) 는 복수의 통신 인터페이스 모듈들 (250) 을 더 포함할 수도 있다.
당업자는 도 2 에 나타낸 엘리먼트들에 부가하여, 해양 선박 장치 (120) 가 마이크로폰들, 추가 디스플레이들과 같은 다른 엘리먼트들 뿐만 아니라, 입력/출력 (I/O) 회로부, 메모리 칩들, 주문형 집적 회로들 (ASIC), 소스 코딩/디코딩 회로부, 채널 코딩/디코딩 회로부, 암호/해독 회로부 등과 같은 특정 목적들을 위한 프로세싱 회로부와 같은 부가 회로부를 포함할 수도 있음을 인식한다. 또한, 해양 선박 장치 (120) 는 외부 전력 공급이 이용가능하지 않은 경우 외부 전력을 공급하기 위한 일회용 또는 재충전가능한 배터리 (나타내지 않음) 를 포함할 수도 있다.
일 실시형태에서, 해양 선박 장치 (120) 는 스피치 인식 수단을 포함한다. 이러한 수단을 사용하여, 미리정의된 구절이 스피치로부터 인식되고 예를 들어, 장치 (120) 에 대한 제어 정보로 번역될 수도 있다.
위성 포지셔닝 디바이스 (270) 및 캡처링 디바이스 (260) 는 해양 선박 장치 (120) 로 포함되거나 별도의 디바이스들로서 장치 (120) 에 접속되도록 구성될 수도 있다. 위성 포지셔닝 디바이스 (270) 및 캡처링 디바이스 (260) 가 장치 (120) 에 포함되는 경우, 이들은 장치 (120) 의 내부 버스를 사용하여 장치 (120) 에 접속될 수도 있다. 위성 포지셔닝 디바이스 (270) 및 캡처링 디바이스 (260) 가 장치 (120) 에 접속된 외부 디바이스들인 경우, 이들은 장치 (120) 의 통신 인터페이스를 사용하여 또는 내부 버스로의 접속을 사용하여 장치 (120) 에 접속될 수도 있다.
일 실시형태에서, 캡처링 디바이스 (260) 는 글로벌 내비게이션 위성 시스템 (GNSS) 포지션 센서 및 도킹 센서를 포함할 수도 있다. 해양 선박 장치 (120) 는 트랙 세그먼트들의 제 1 세트에서 위치 정보 소스로서 글로벌 내비게이션 위성 시스템 (GNSS) 포지션 센서를 선택하고, 정박지까지의 선박 거리를 결정하며, 선박 거리가 미리정의된 임계치 미만인 것에 응답하여 트랙 세그먼트들의 제 2 세트에서 포지셔닝 정보 소스로서 도킹 센서를 선택하도록 구성된다.
도 3 은 발명의 다양한 실시형태들이 적용될 수도 있는, 센서 또는 센서 디바이스와 같은 캡처링 디바이스 (260) 의 예시의 블록 다이어그램을 제시한다. 캡처링 디바이스 (260) 는 예를 들어, 활동 데이터 검출 및 환경 데이터 검출을 위한 다양한 수단을 포함할 수 있다. 캡처링 디바이스 (260) 는 참조 데이터 및 현재 데이터 캡처링 양자 모두를 위해 사용될 수도 있다.
일 실시형태에서, 캡처링 디바이스 (260) 는 다음의 디바이스들 중 적어도 하나를 포함할 수도 있다:
- 바람 정보를 제공하기 위한 풍속계
- 바람 정보를 제공하기 위한 바람 센서
- 플루트 높이 정보를 제공하기 위한 센서;
- 기압을 측정하기 위한 기압계;
- 환경 온도를 측정하기 위한 온도 센서;
- 깊이 정보를 측정하기 위한 수심 센서;
- 포지션 정보를 제공하기 위한 차트 플로터;
- 항해 정보를 제공하기 위한 항해 센서;
- 속도 정보를 제공하기 위한 속도 센서
- 비디오 신호를 제공하기 위한 비디오 카메라;
- 방향 정보를 제공하기 위한 자이로 컴퍼스;
- GNSS 디바이스, 즉 위성 내비게이션에 기초한 절대 포지션 센서 (GLONASS, GPS, GALILEO); 및
- 모션 참조 유닛 (MRU) 센서, 즉 피치 및 롤 센서.
일 실시형태에서, 해양 선박 장치 (120) 는 제어기 동작을 지원하기 위해 포지션 및 환경 데이터를 제공할 센서들 (260) 의 모음을 포함할 수도 있다. GNSS 센서는 지구의 표면 상에서 현재 측정된 선박의 포지션을 제공하는 위성 내비게이션 (GLONASS, GPS, GALILEO) 에 기초한 절대 포지션 센서로서 포함된다. 예를 들어, 사용될 수도 있는 GNSS 시스템은, 3 개의 GNSS 수신기들의 조합으로 포지션 측정을 위한 데시미터 정확도를 제공하는 Fugro OceanStar ™ 3 이다. 이용가능한 정확도가 적더라도, 백업 포지션 측정 방법으로서 개별 수신기들로부터의 데이터가 또한 이용가능하다. 자이로 컴퍼스는 진북에서 선박의 측정된 오프셋을 제공하는 절대 헤딩 센서를 포함한다. 모션 참조 유닛 (MRU) 센서는 피치 및 롤에 대해 수직으로부터 측정된 오프셋을 제공하는 피치 및 롤 센서를 포함한다. GNSS 시스템은 그 자신의 캡티브 (captive) 모션 참조 유닛 (MRU) 을 포함할 수도 있다. 이것은 GNSS 안테나가 피치 및 롤 중에 큰 아크를 통해 스윙할 수 있기 때문에 GNSS 의 정확도를 증가시키는 것을 필요로 할 수도 있다. 피치 및 롤 측정에 기초하여 수직으로의 측정을 정규화하는데 수학적 계산이 사용될 수 있다.
캡처링 디바이스 (260) 는 또한 여러 캡처링 디바이스들 (260), 임의의 위에 언급된 디바이스들의 조합들 등을 포함할 수도 있다. 환경 온도는 예를 들어, 공기 온도, 수온 또는 지표면 온도를 포함할 수도 있다.
일 실시형태에서, 바람 센서 (260) 는 풍각 및 풍속을 결정하거나 측정하도록 구성된다. 바람 센서 (260) 는 사용자 장치 (120) 에 의한 사용을 위해 바람 관련 정보를 감지하도록 동작가능한 엘리먼트들의 조합의 임의의 엘리먼트를 포함할 수도 있다. 예를 들어, 바람 센서 (260) 는 겉보기 풍속, 겉보기 풍각, 실제 풍속, 실제 풍각, 양호한 풍속 (VMG), 이들의 조합 등을 감지하도록 동작가능할 수도 있다.
일 실시형태에서, 항해 센서 (260) 는 항해 정보를 결정하도록 구성된다. 항해 정보는 보트에서 현재 사용되는 항해들의 상태와 이들의 변경 타이밍을 제공한다. 항해 센서 (260) 는 보트의 돛대에서의 제 1 센서 및 항해에서의 제 2 센서를 포함하여 돛대에서 어떤 항해가 사용되는지를 식별할 수도 있다. 이들 센서들로부터 수신된 정보에 기초하여, 사용자 장치 (120) 는 어떤 돛에서 어떤 항해가 사용되는지 및 항해를 변경하는 시간을 정의할 수도 있다. 따라서 항해 정보는 참조 활동 데이터 및 현재 활동 데이터의 일부로서 사용될 수도 있다. 항해는 또한 로터 항해 또는 다른 유사한 기계식 항해 시스템을 포함할 수도 있다.
일 실시형태에서, 비디오 카메라 (260) 는 비디오 신호를 제공하도록 구성된다. 비디오 신호에 기초하여 해양 선박 장치 (120) 는 해양 선박 (121) 주위의 오브젝트 정보 또는 환경 데이터의 적어도 일부를 결정할 수도 있다. 예를 들어, 플루트 높이는 비디오 카메라 (260) 로부터의 비디오 신호에 기초하여 결정될 수도 있다. 결정은 예를 들어, 비디오 이미지 프로세싱, 패턴 인식, 로킹 (rocking) 움직임 또는 수평선의 상대적 움직임의 측정에 의해 행해질 수도 있다.
캡처링 디바이스 (260) 는 데이터 송신의 적어도 일부를 구현하는 통신 인터페이스 모듈을 포함할 수도 있다. 통신 인터페이스 모듈은 예를 들어, 무선 또는 유선 인터페이스 모듈을 포함할 수도 있다. 무선 인터페이스는 예컨대, WLAN, 블루투스, 적외선 (IR), 무선 주파수 식별 (RF ID), GSM/GPRS, CDMA, WCDMA, LTE (Long Term Evolution) 또는 5G 무선 모듈을 포함할 수도 있다. 유선 인터페이스는 예컨대, USB (universal serial bus) 또는 NMEA (National Marine Electronics Association) 0183/2000 표준을 포함할 수도 있다. 통신 인터페이스 모듈은 캡처링 디바이스 (260) 에 통합될 수도 있거나, 캡처링 디바이스 (260) 의 적절한 슬롯 또는 포트에 삽입될 수도 있는 어댑터, 카드 등에 통합될 수도 있다. 통신 인터페이스 모듈은 하나의 무선 인터페이스 기술 또는 복수의 기술들을 지원할 수도 있다. 캡처링 디바이스 (260) 는 복수의 통신 인터페이스 모듈들을 포함할 수도 있다.
도 4 는 발명의 다양한 실시형태들이 적용될 수도 있는 서버 장치 (130) 의 예시의 블록 다이어그램을 제시한다.
서버 장치 (130) 의 일반적인 구조는 프로세서 (410), 및 프로세서 (410) 에 커플링된 메모리 (420) 를 포함한다. 서버 장치 (130) 는 메모리 (420) 에 저장되고 프로세서 (410) 로 로딩되고 프로세서 (410) 에서 실행되도록 동작가능한 소프트웨어 (430) 를 더 포함한다. 소프트웨어 (430) 는 하나 이상의 소프트웨어 모듈들을 포함할 수도 있고 컴퓨터 프로그램 제품의 형태일 수 있다.
프로세서 (410) 는 예를 들어, 중앙 프로세싱 유닛 (CPU), 마이크로 프로세서, 디지털 신호 프로세서 (DSP), 그래픽 프로세싱 유닛 등일 수도 있다. 도 4 는 하나의 프로세서 (410) 를 나타내지만, 서버 장치 (130) 는 복수의 프로세서들을 포함할 수도 있다.
메모리 (420) 는 예를 들어, 비휘발성 또는 휘발성 메모리, 예컨대 판독전용 메모리 (read-only memory; ROM), 프로그램가능 판독전용 메모리 (programmable read-only memory; PROM), 소거가능 프로그램가능 판독전용 메모리 (erasable programmable read-only memory; EPROM), 랜덤 액세스 메모리 (RAM), 플래시 메모리, 데이터 디스크, 광학 스토리지, 자기 스토리지, 스마트 카드 등일 수도 있다. 서버 장치 (130) 는 복수의 메모리들을 포함할 수도 있다. 메모리 (420) 는 서버 장치 (130) 의 일부로서 구축될 수도 있고, 또는 사용자에 의해 서버 장치 (130) 의 슬롯, 포트 등에 삽입될 수도 있다. 메모리 (420) 는 데이터를 저장하는 유일한 목적을 제공할 수도 있거나, 데이터를 프로세싱하는 것과 같은 다른 목적들을 제공하는 장치의 일부로서 구축될 수도 있다.
통신 인터페이스 모듈 (450) 은 무선 송신의 적어도 일부를 구현한다. 통신 인터페이스 모듈 (450) 은 예를 들어, 무선 또는 유선 인터페이스 모듈을 포함할 수도 있다. 무선 인터페이스는 예컨대, WLAN, 블루투스, 적외선 (IR), 무선 주파수 식별 (RF ID), GSM/GPRS, CDMA, WCDMA, LTE (Long Term Evolution) 또는 5G 무선 모듈을 포함할 수도 있다. 유선 인터페이스는 예컨대, USB (universal serial bus) 또는 NMEA (National Marine Electronics Association) 0183/2000 표준을 포함할 수도 있다. 통신 인터페이스 모듈 (450) 은 서버 장치 (130) 에 통합되거나, 또는 서버 장치 (130) 의 적절한 슬롯 또는 포트에 삽입될 수도 있는 어댑터, 카드 등에 통합될 수도 있다. 통신 인터페이스 모듈 (450) 은 하나의 무선 인터페이스 기술 또는 복수의 기술들을 지원할 수도 있다. 캡처된 해양 선박 장치 (120) 의 자율 도킹 관련 데이터, 트랙 데이터, 선박 활동 연관 또는 환경 데이터는 통신 인터페이스 (450) 를 사용하여 서버 장치 (130) 에 의해 수신될 수도 있다. 데이터는 백업을 위해 저장되거나 프로세싱되고 해양 선박 장치에 제공될 수도 있다. 데이터는 예를 들어, 다른 해양 선박 또는 함대의 AVMS 를 위해 활용될 수도 있다.
이메일 서버 프로세스 (460) 는 네트워크 (150) 를 통해 해양 선박 장치들 (120) 및 컴퓨터 장치들 (160) 로부터 전송된 이메일 메시지를 수신한다. 서버 (460) 는 수신된 메시지의 콘텐츠가 서비스의 새로운 활동 데이터 항목에 대해 설정되는 기준을 충족하는지를 체크하는 콘텐츠 분석기 모듈 (461) 을 포함할 수도 있다. 콘텐츠 분석기 모듈 (461) 은 예를 들어 이메일 메시지가, 예를 들어 추가 자율 선박 프로세싱에서 참조 데이터 항목으로서 사용될 유효한 선박 활동 데이터 항목을 포함하는지 여부를 체크할 수도 있다. 이메일 서버에 의해 수신된 유효한 참조 데이터 항목은 애플리케이션 서버 (440) 로 전송되며, 이는 예를 들어 사용자 데이터베이스 (470) 에 저장된 사용자 계정들 및 콘텐츠 관리 서비스의 콘텐츠에 관한, 애플리케이션 서비스들을 제공한다. 서비스 시스템 (100) 에 의해 제공된 콘텐츠는 콘텐츠 데이터베이스 (480) 에 저장된다.
당업자는 도 4 에 나타낸 엘리먼트들에 부가하여, 서버 장치 (130) 가 마이크로폰들, 디스플레이들과 같은 다른 엘리먼트들 뿐만 아니라, 입력/출력 (I/O) 회로부, 메모리 칩들, 주문형 집적 회로들 (ASIC), 소스 코딩/디코딩 회로부, 채널 코딩/디코딩 회로부, 암호/해독 회로부 등과 같은 특정 목적들을 위한 프로세싱 회로부와 같은 부가 회로부를 포함할 수도 있음을 인식한다.
도 5 는 발명의 다양한 실시형태들이 적용될 수도 있는 컴퓨터 장치 (160) 의 예시의 블록 다이어그램을 제시한다. 컴퓨터 장치 (160) 는 사용자 장비 (UE), 사용자 디바이스 또는 장치, 예컨대 모바일 단말기, 스마트 폰, 랩탑 컴퓨터, 데스크탑 컴퓨터 또는 다른 통신 디바이스들일 수도 있다.
컴퓨터 장치 (160) 의 일반적인 구조는 사용자 인터페이스 (540), 통신 인터페이스 (550), 프로세서 (510), 및 프로세서 (510) 에 커플링된 메모리 (520) 를 포함한다. 컴퓨터 장치 (160) 는 메모리 (520) 에 저장되고 프로세서 (510) 로 로딩되고 프로세서 (510) 에서 실행되도록 동작가능한 소프트웨어 (530) 를 더 포함한다. 소프트웨어 (530) 는 하나 이상의 소프트웨어 모듈들을 포함할 수도 있고 컴퓨터 프로그램 제품의 형태일 수 있다. 컴퓨터 장치 (160) 는 사용자 인터페이스 제어기 (560) 를 더 포함할 수도 있다.
프로세서 (510) 는 예를 들어, 중앙 프로세싱 유닛 (CPU), 마이크로 프로세서, 디지털 신호 프로세서 (DSP), 그래픽 프로세싱 유닛 등일 수도 있다. 도 5 는 하나의 프로세서 (510) 를 나타내지만, 컴퓨터 장치 (160) 는 복수의 프로세서들을 포함할 수도 있다.
메모리 (520) 는 예를 들어, 비휘발성 또는 휘발성 메모리, 예컨대 판독전용 메모리 (read-only memory; ROM), 프로그램가능 판독전용 메모리 (programmable read-only memory; PROM), 소거가능 프로그램가능 판독전용 메모리 (erasable programmable read-only memory; EPROM), 랜덤 액세스 메모리 (RAM), 플래시 메모리, 데이터 디스크, 광학 스토리지, 자기 스토리지, 스마트 카드 등일 수도 있다. 컴퓨터 장치 (160) 는 복수의 메모리들을 포함할 수도 있다. 메모리 (520) 는 컴퓨터 장치 (160) 의 일부로서 구축될 수도 있고, 또는 사용자에 의해 컴퓨터 장치 (160) 의 슬롯, 포트 등에 삽입될 수도 있다. 메모리 (520) 는 데이터를 저장하는 유일한 목적을 제공할 수도 있거나, 데이터를 프로세싱하는 것과 같은 다른 목적들을 제공하는 장치의 일부로서 구축될 수도 있다.
사용자 인터페이스 제어기 (560) 는 키보드, 컴퓨터 장치 (160) 의 사용자 인터페이스들 (540) 의 디스플레이 상에 나타낸 그래픽 사용자 인터페이스, 스피치 인식 회로부, 또는 악세서리 디바이스, 예컨대 헤드셋을 통해, 컴퓨터 장치 (160) 의 사용자로부터 입력을 수신하고, 예를 들어, 그래픽 사용자 인터페이스 또는 라우드스피커를 통해, 사용자에게 출력을 제공하기 위한 회로부를 포함할 수도 있다.
통신 인터페이스 모듈 (550) 은 무선 송신의 적어도 일부를 구현한다. 통신 인터페이스 모듈 (550) 은 예를 들어, 무선 또는 유선 인터페이스 모듈을 포함할 수도 있다. 무선 인터페이스는 예컨대, WLAN, 블루투스, 적외선 (IR), 무선 주파수 식별 (RF ID), GSM/GPRS, CDMA, WCDMA, LTE (Long Term Evolution) 또는 5G 무선 모듈을 포함할 수도 있다. 유선 인터페이스는 예컨대, USB (universal serial bus) 또는 NMEA (National Marine Electronics Association) 0183/2000 표준을 포함할 수도 있다. 통신 인터페이스 모듈 (550) 은 컴퓨터 장치 (160) 에 통합되거나, 또는 컴퓨터 장치 (160) 의 적절한 슬롯 또는 포트에 삽입될 수도 있는 어댑터, 카드 등에 통합될 수도 있다. 통신 인터페이스 모듈 (550) 은 하나의 무선 인터페이스 기술 또는 복수의 기술들을 지원할 수도 있다. 컴퓨터 장치 (160) 는 복수의 통신 인터페이스 모듈들 (550) 을 포함할 수도 있다.
당업자는 도 5 에 나타낸 엘리먼트들에 부가하여, 컴퓨터 장치 (160) 가 마이크로폰들, 디스플레이들과 같은 다른 엘리먼트들 뿐만 아니라, 입력/출력 (I/O) 회로부, 메모리 칩들, 주문형 집적 회로들 (ASIC), 소스 코딩/디코딩 회로부, 채널 코딩/디코딩 회로부, 암호/해독 회로부 등과 같은 특정 목적들을 위한 프로세싱 회로부와 같은 부가 회로부를 포함할 수도 있음을 인식한다. 부가적으로, 컴퓨터 장치 (160) 는 외부 전력 공급이 이용가능하지 않은 경우 외부 전력을 공급하기 위한 일회용 또는 재충전가능한 배터리 (나타내지 않음) 를 포함할 수도 있다.
도 6 은 발명의 예시의 실시형태에 따른 동작들을 나타내는 플로우 다이어그램을 나타낸다. 단계 (600) 에서, 자율 선박 도킹을 위한 컴퓨터 구현 방법이 시작된다. 단계 (610) 에서, 포트들 사이의 수송 동작을 정의하는 노선 계획 데이터와 연관된 수송 제어 모드가 결정된다. 단계 (620) 에서, 웨이포인트 특성들의 세트를 포함하고 웨이포인트들에 결합된 트랙 세그먼트들 및 접근 구역 정보를 포함하는 항만 트랙 데이터와 연관된 자율 도킹 제어 모드가 결정되고, 접근 구역 정보는,
접근 구역에 대한 위치 영역 정보;
접근 구역에 진입하기 위한 최대 선박 속도; 및
접근 구역에 진입하기 위한 최대 헤딩 편향
을 포함하는, 상기 자율 도킹 제어 모드를 결정하는 단계;
단계 (630) 에서, 선박 위치, 속도 및 헤딩이 결정된다. 단계 (640) 에서, 선박 위치, 속도 및 헤딩은 접근 구역 정보와 비교되고, 수송 제어 모드는,
선박 위치가 위치 영역 정보에 의해 포함되는 것;
선박 속도가 접근 구역에 진입하기 위한 최대 선박 속도 미만인 것; 및
선박 헤딩이 접근 구역에 진입하기 위한 최대 헤딩 편향에 의해 정의된 기준에 매칭하는 것에 응답하여, 수송 제어 모드에서 자율 도킹 제어 모드로 변경하는 단계.
방법은 단계 (650) 에서 종료한다.
도 7 은 발명의 예시의 실시형태에 따른 제어 시스템 (AVMS)(700) 의 개략적인 도면을 나타낸다. 도 2 의 해양 선박 장치 (120) 는 시스템 (700) 의 대부분의 엘리먼트들을 포함한다.
자동화된 선박 조종 시스템 (AVMS)(700) 은 듀얼 제어 프로세서들 (CP)(710, 720) 및 듀얼 리던던트 네트워크들 (711, 721) 을 사용하여 상호접속된 듀얼 조작자 워크스테이션들 (730, 740) 을 포함할 수도 있다.
MFD (다기능 디스플레이)(730, 740) 는 예를 들어, 컴퓨터, 터치스크린을 갖는 디스플레이, 및 스프링이 로딩되지 않은 3 축 조이스틱 (731, 741) 을 포함할 수도 있다. MFD (730, 740) 는 시스템과의 모든 조작자 상호작용을 위해 사용되도록 구성될 수도 있으며 조작자가 선박에 대한 라우팅, 목적지 및 항만 트랙 정보를 선택하는 방법을 제공할 수도 있다. MFD 는 또한 동작들 동안 경보 정보를 제시하는 것을 담당할 수도 있다.
GNSS 시스템 (750) 은 예를 들어, 지구 표면 상에 선박의 현재 측정된 포지션을 제공하는, 복수의 GNSS 수신기들, 자신의 모션 참조 유닛 (MRU)(752) 및 브리지 캐비닛 (751) 을 포함할 수도 있는 위성 내비게이션 (GLONASS, GPS, GALILEO) 에 기초한 절대 포지션 센서를 제공하도록 구성된다. 예를 들어 GNSS 시스템은, 도 7 에 나타낸 바와 같이, 3 개의 GNSS 수신기들의 조합 사용으로 포지션 측정들을 위한 데시미터 정확도를 제공하는 Fugro OceanStar ™ 3 을 포함할 수도 있다. 이용가능한 정확도가 적더라도, 백업 포지션 측정 방법으로서 개별 수신기들로부터의 데이터가 또한 이용가능하다.
기존 함선의 자이로 센서 (755), 바람 센서 (753) 및 안내 해양 모션 참조 유닛 (MRU) 센서 (754) 와 같은 추가 센서들 (753-755) 이 또한 예시된다. 센서들 (750-755) 은 직렬 버스 (760) 를 통해 제어 프로세서들 (710-720) 에 접속될 수도 있다. 제어 프로세서들 (710, 720) 은 또한 각각 하이브리드 제어기 (FWD) (711) 및 하이브리드 제어기 (AFT)(721) 와 동작가능하게 접속될 수도 있다. 하이브리드 제어기들 (711, 721) 과 제어 프로세서들 (710, 720) 사이의 접속들은 예를 들어 Modbus RTU 를 사용하여 수행될 수도 있다. 제어 프로세서들 (710, 720) 은 또한 해양 선박의 추진기들로/로부터의 I/O 액세스 (712, 722) 를 제공하도록 구성될 수도 있다.
일 실시형태에서, 해양 선박은 복수의 추진기들을 포함할 수도 있다. 조종 추진기 (선수 (bow) 추진기 또는 선미 (stern) 추진기) 는 함선이나 보트의 선수 또는 선미에 내장되거나 장착되어 더많이 조종가능하게 하는 횡단 돌진 디바이스이다. 선수 추진기들은, 선박이 선회를 위한 약간의 포워드 모션을 필요로 하는 메인 돌진 메커니즘을 사용하지 않으면서, 포트 또는 우현 측으로 선회될 수 있게 하기 때문에, 도킹을 더 쉽게 한다. 추진기의 효과는 효과로 인해 임의의 포워드 모션에 의해 축소된다. 선미 추진기는 선미에 피팅된, 동일한 원리의 것이다. 대형 함선들은 다중 선수 추진기들 및 선미 추진기들을 가질 수도 있다. 대형 선박들은 보통 수선 아래의 선수에 내장된 하나 이상의 터널 추진기들을 갖는다. 터널에서의 임펠러는 함선을 선회하게 하는 어느 방향으로든 추력을 생성할 수 있다. 대부분의 터널 추진기들은 전기 모터들로 구동되지만, 일부는 수력으로 전력공급된다. 터널 추진기들로서 또한 알려진 이들 선수 추진기들은, 함선이 터그보트들의 도움없이 도킹할 수 있게 하여, 이러한 서비스 비용을 절약할 수도 있다.
일 실시형태에서, 해양 선박의 자동화된 선박 조종 시스템 (AVMS) 은 상이한 속도들에서 추진기들과 같은, 흔들림 제어 디바이스들을 자동으로 제어하도록 구성될 수도 있다. 따라서, 포트들 사이의 고속 수송으로부터 포트 접근 및 자율 도킹으로의 원활한 전환이 가능해지고 임의의 속도에서 동작을 허용한다. 예를 들어, 저속에서는, 직접 흔들림 제어가 사용된다. 이 제어는 선박이 가속됨에 따라 점진적으로 감소되어 고속에서 직접 흔들림 제어가 없다. 이러한 기능성은 자동화된 선박 조종 시스템 (AVMS) 이 개방 수역의 고속에서 도크의 정지에 이르기까지 선박을 이동시킬 수 있게 하는 것이다.
도 7 에 도시된 설정은 단지 예시일 뿐이다. 시스템은 예를 들어, 리던던시 및 브리지 레이아웃 요구들에 의존하여 다양한 방식들로 구성될 수도 있다. 따라서, 시스템은 예를 들어, 1, 2 또는 3 개의 제어 프로세서 (710, 720) 및 임의의 수의 MFD (다기능 디스플레이) (730, 740), 및 상이한 수의 센서들 (750-754) 을 또한 포함할 수도 있다.
도 8 은 발명의 예시의 실시형태에 따른 폐쇄 루프 제어기 블록 다이어그램 (800) 의 개략적인 도면을 나타낸다.
도 7 에 나타낸 바와 같은 제어 프로세서 (710, 720) 는 예를 들어, 선박 상에 추진기들과, 시스템을 인터페이스하는데 사용되는 폐쇄 루프 제어기 (810) 및 IO 의 랙 (820-850) 을 포함할 수도 있다.
제어 프로세서는 센서 프로세싱 모듈 (860) 및 추진기 할당 로직 (Thruster Allocation Logic; TAL) 모듈 (870) 과 협력하여 작동하는 폐쇄 루프 제어기 (810) 를 포함한다. 간단히 말해서, 폐쇄 루프 제어기 (810) 는 항만 트랙 정보의 웨이포인트들와 관련하여 미리-프로그램되고 액세스가능할 수도 있는 포지션 및 헤딩 설정포인트 정보 (840) 에 기초한 포지션 및 헤딩 설정포인트에 걸쳐 선박을 유지하는데 사용된다. 스테이션 유지에 대해, 설정포인트는 고정된 위치 및 베어링으로 구성될 것이지만, 수송 및 도킹 동작들에 대해, 설정포인트는 일련의 웨이포인트들 사이의 트랙을 따라 이동함에 따라 지속적으로 변화하는 포지션 및 헤딩으로 구성된다. 설정포인트가 이동됨에 따라, 폐쇄 루프 제어기 (810) 는 설정포인트 (840) 와 실제 선박 포지션 사이의 차이를 계산할 것이고, 이를 2 개의 포지션들 사이의 거리에 근접하는데 필요한 힘 벡터를 계산하기 위해 사용할 것이다. 실제 선박 포지션은 포지션 및 헤딩 센서 데이터 (830) 에 기초하여 계산되며, 센서 프로세싱 모듈 (860) 에 의해 프로세싱되어 칼만 필터 (Kalman filter) 모듈 (880) 에 의해 필터링되어 설정포인트 (840) 과 비교될 포지션 및 헤딩 추정을 제공하는 포지션 추정을 제공한다. 힘 벡터는 추진기 할당 로직 (TAL)(870) 에 의해, (바람 같은 외부 힘과 같은 환경 데이터 (850) 을 뺀 후) 실제 추진기 커맨드들로 변환되는 비례-적분-도함수 제어기 (proportional-integral-derivative controller)(PID 제어기 또는 3 항 제어기)(890) 에 의해 결정될 수도 있고, 그 후 IO 랙 (820) 이 이들 커맨드들을 각각의 추진기에 통신하기 위해 사용된다.
다양한 실시형태들이 제시되었다. 이 문서에서 포함한다는 단어들 (comprise, include 및 contain) 은 각각 의도된 배타성 없이 개방형 표현들로서 사용됨을 알아야 한다. 원하는 경우, 본 명세서에서 논의된 상이한 기능들은 서로 상이한 순서로 및/또는 동시에 수행될 수도 있다. 또한, 원하는 경우, 상술한 기능들 중 하나 이상은 옵션일 수도 있고 또는 조합될 수도 있다. 발명의 다양한 양태들이 독립 청구항들에 기술되지만, 발명의 다른 양태들은 설명된 실시형태들로부터의 피처들의 다른 조합들 및/또는 독립 청구항들의 피처들을 갖는 종속 청구항들을 포함할 수도 있으며, 청구항들에 명시적으로 기술된 조합들만을 단독으로 포함하지 않는다.
하기에 나타나는 청구항들의 범위, 해석 또는 적용을 어떤 식으로든 제한하지 않으면서, 본 명세서에 개시된 하나 이상의 예시의 실시형태들의 기술적 효과는 자율 해양 선박 도킹을 위한 개선된 방법 및 장치이다.
본 명세서에 개시된 하나 이상의 예시의 실시형태들의 또 다른 기술적 효과는 가능한 가장 안전하고 가장 효율적인 방식으로 자동으로 도킹 조정을 수행하는 것을 가능하게 하는 것이다. 이 절차는 선박이 도크에 접근함에 따라 풍속, 무게, 피치, 롤, 수심 및 해류와 같은 모든 관련 변수들로 프로그래밍되는 것을 의미한다. 이 데이터는 가능한 가장 안전하고 가장 효율적인 방식으로 자동으로 도킹 조정을 수행하는 것을 가능하게 한다. 선박의 선장이 감독을 받을 수 있지만, 조향은 주로 소프트웨어에 의해 핸들링된다. 시스템은 2 개의 제어 프로세서들을 가져서 도킹 동안 완전한 리던던시 및 안전을 제공한다. 이것은 또한 함선이 전진 항해 중인지 또는 후진 항해 중인지에 관계없이 쉽게 볼 수 있도록 2 개의 조작자 워크스테이션들을 특별히 포함한다. 완전 리던던시는 또한 시스템의 센서에도 적용되고 있다.
본 명세서에 개시된 하나 이상의 예시의 실시형태들의 또 다른 기술적 효과는 인간 에러의 가능성이 적기 때문에 안전성이 개선되고; 추진기들이 효율적으로 활용되기 때문에 마모가 적으며; 그리고 정박지에서 더 많은 시간을 허용하는 도킹에서 효율성이 더 크다는 것이다.
발명의 다양한 양태들이 독립 청구항들에 기술되지만, 발명의 다른 양태들은 설명된 실시형태들로부터의 피처들의 다른 조합들 및/또는 독립 청구항들의 피처들을 갖는 종속 청구항들을 포함할 수도 있으며, 청구항들에 명시적으로 기술된 조합들만을 단독으로 포함하지 않는다.
전술한 것은 발명의 예시의 실시형태들을 설명하지만, 이러한 설명들은 제한적인 의미로 보여지지 않아야 됨을 본 명세서에서 또한 유의한다. 오히려, 첨부된 청구항들에서 정의된 바와 같은 본 발명의 범위로부터 벗어나지 않으면서 이루어질 수도 있는, 여러 변형들 및 수정들이 있다.

Claims (28)

  1. 자율 해양 선박 도킹을 위한 컴퓨터 구현 방법으로서,
    포트들 사이의 수송 동작을 정의하는 노선 계획 데이터와 연관된 수송 제어 모드를 결정하는 단계;
    웨이포인트 특성들의 세트를 포함하고 웨이포인트들에서 결합된 트랙 세그먼트들 및 접근 구역 정보를 정의하는 항만 트랙 데이터와 연관된 자율 도킹 제어 모드를 결정하는 단계로서, 상기 접근 구역 정보는,
    접근 구역에 대한 위치 영역 정보를 포함하는, 상기 자율 도킹 제어 모드를 결정하는 단계를 포함하고,
    상기 접근 구역 정보는,
    상기 접근 구역에 진입하기 위한 최대 선박 속도; 및
    상기 접근 구역에 진입하기 위한 최대 헤딩 편향을 더 포함하고, 그리고
    상기 방법은,
    선박 위치, 속도 및 헤딩을 결정하는 단계;
    상기 선박 위치, 속도 및 헤딩을 상기 접근 구역 정보와 비교하고,
    상기 선박 위치가 상기 위치 영역 정보에 의해 포함되는 것;
    상기 선박 속도가 상기 접근 구역에 진입하기 위한 최대 선박 속도 미만인 것; 및
    상기 선박 헤딩이 상기 접근 구역에 진입하기 위한 최대 헤딩 편향에 의해 정의된 기준에 매칭하는 것
    에 응답하여, 상기 수송 제어 모드에서 상기 자율 도킹 제어 모드로 변경하는 단계;
    상기 웨이포인트 특성들에 기초하여 동적 설정포인트를 결정하는 단계로서, 상기 동적 설정포인트는 상기 항만 트랙 데이터에 기초하여 변화하는 설정포인트 포지션, 설정포인트 속도 및 설정포인트 헤딩을 포함하는, 상기 동적 설정포인트를 결정하는 단계;
    상기 트랙 세그먼트 상의 상기 해양 선박의 위치에 기초하여 개개의 설정포인트 값들과 웨이포인트들 사이에서 상기 설정포인트 속도 및 상기 설정포인트 헤딩을 보간하는 단계; 및
    상기 선박 헤딩을 보간된 상기 설정포인트 헤딩에 그리고 상기 선박 속도를 보간된 상기 설정포인트 속도에 맞추는 단계를 포함하는 것을 특징으로 하는, 자율 해양 선박 도킹을 위한 컴퓨터 구현 방법.
  2. 삭제
  3. 제 1 항에 있어서,
    폐쇄 루프 제어기를 사용하여 상기 동적 설정포인트와 결정된 상기 선박 위치 사이의 차이 정보를 결정하는 단계;
    상기 차이 정보에 기초하여 힘 벡터를 결정하는 단계; 및
    상기 힘 벡터에 기초하여 상기 자율 도킹 제어 모드의 추진기 커맨드들을 제어하는 단계를 더 포함하는, 자율 해양 선박 도킹을 위한 컴퓨터 구현 방법.
  4. 제 1 항에 있어서,
    상기 선박 헤딩을 상기 설정포인트 헤딩에 그리고 상기 선박 속도를 상기 설정포인트 속도에 맞추는 단계를 더 포함하고, 상기 설정포인트 헤딩 및 상기 설정포인트 속도는 구성가능한 파라미터들인, 자율 해양 선박 도킹을 위한 컴퓨터 구현 방법.
  5. 삭제
  6. 제 1 항에 있어서,
    더 낮은 속도 임계치 및 더 높은 속도 임계치를 정의하는 단계; 및
    상기 동적 설정포인트 및 결정된 상기 선박 위치에 기초하여 흔들림 제어 정보를 결정하는 단계를 더 포함하는, 자율 해양 선박 도킹을 위한 컴퓨터 구현 방법.
  7. 제 6 항에 있어서,
    저속 모드에서, 해양 선박 속도가 상기 더 낮은 속도 임계치 미만일 때, 상기 해양 선박의 적어도 하나의 추진기에 전체 스케일 추력을 할당하는 것에 의해 헤딩 제어 및 전체 스케일 3 축 포지션을 활성화하는 것에 의해 흔들림 제어 정보에 기초하여 상기 해양 선박의 상기 적어도 하나의 추진기의 흔들림 제어 추진기 커맨드들을 제어하는 단계를 더 포함하는, 자율 해양 선박 도킹을 위한 컴퓨터 구현 방법.
  8. 제 6 항에 있어서,
    고속 모드에서, 해양 선박 속도가 상기 더 높은 속도 임계치 초과일 때, 상기 해양 선박의 적어도 하나의 추진기의 흔들림 제어 추진기 커맨드들을 디스에이블하는 단계; 및/또는
    중간 속도 모드에서, 해양 선박 속도가 상기 더 낮은 속도 임계치와 상기 더 높은 속도 임계치 사이일 때, 상기 해양 선박의 적어도 하나의 추진기에 부분 스케일 추력을 할당하는 것에 의해 헤딩 제어 및 부분 스케일 3 축 포지션을 활성화하는 것에 의해 흔들림 제어 정보에 기초하여 상기 해양 선박의 상기 적어도 하나의 추진기의 흔들림 제어 추진기 커맨드들을 제어하는 단계를 더 포함하는, 자율 해양 선박 도킹을 위한 컴퓨터 구현 방법.
  9. 제 1 항에 있어서,
    포트 내의 정박 포지션 및 기항지에 대한 상기 항만 트랙 데이터를 유지하는 단계를 더 포함하고, 상기 항만 트랙 데이터는,
    항만 조동 동안 허용된 최대 트랙 포지션 편향에 대한 경계들을 정의하는 접근 회랑 데이터; 및
    상기 접근 구역 정보를 포함하는, 자율 해양 선박 도킹을 위한 컴퓨터 구현 방법.
  10. 제 9 항에 있어서,
    상기 접근 구역 정보는 상기 접근 구역에 진입하기 위한 최대 측방향 편향을 더 포함하고, 상기 방법은,
    상기 선박 위치, 속도 및 헤딩을 상기 접근 구역 정보와 비교하고,
    선박 편향이 상기 접근 구역에 진입하기 위한 최대 측방향 편향 미만인 것
    에 응답하여, 상기 수송 제어 모드에서 상기 자율 도킹 제어 모드로 변경하는 단계를 더 포함하는, 자율 해양 선박 도킹을 위한 컴퓨터 구현 방법.
  11. 제 1 항에 있어서,
    상기 자율 도킹 제어 모드로 변경하는 것에 응답하여 진입 다리 데이터를 결정하는 단계로서, 상기 진입 다리 데이터는 상기 항만 트랙 데이터에 의해 정의된 항만 트랙 상으로 상기 해양 선박을 안내하도록 구성되는, 상기 진입 다리 데이터를 결정하는 단계를 더 포함하는, 자율 해양 선박 도킹을 위한 컴퓨터 구현 방법.
  12. 자율 도킹을 위한 해양 선박 장치로서,
    적어도 하나의 센서;
    데이터를 송수신하기 위한 통신 인터페이스;
    적어도 하나의 프로세서; 및
    컴퓨터 프로그램 코드를 포함하는 적어도 하나의 메모리를 포함하고,
    상기 적어도 하나의 메모리 및 상기 컴퓨터 프로그램 코드는, 상기 적어도 하나의 프로세서로, 상기 장치로 하여금:
    포트들 사이의 수송 동작을 정의하는 노선 계획 데이터와 연관된 수송 제어 모드를 결정하게 하고;
    웨이포인트 특성들의 세트를 포함하고 웨이포인트들에서 결합된 트랙 세그먼트들 및 접근 구역 정보를 정의하는 항만 트랙 데이터와 연관된 자율 도킹 제어 모드를 결정하게 하도록 구성되고,
    상기 접근 구역 정보가,
    접근 구역에 대한 위치 영역 정보;
    상기 접근 구역에 진입하기 위한 최대 선박 속도; 및
    상기 접근 구역에 진입하기 위한 최대 헤딩 편향
    을 포함하는 것을 특징으로 하고,
    상기 적어도 하나의 메모리 및 상기 컴퓨터 프로그램 코드는, 상기 적어도 하나의 프로세서로, 상기 장치로 하여금:
    선박 위치, 속도 및 헤딩을 결정하게 하고;
    상기 선박 위치, 속도 및 헤딩을 상기 접근 구역 정보와 비교하고,
    상기 선박 위치가 상기 위치 영역 정보에 의해 포함되는 것;
    상기 선박 속도가 상기 접근 구역에 진입하기 위한 최대 선박 속도 미만인 것; 및
    상기 선박 헤딩이 상기 접근 구역에 진입하기 위한 최대 헤딩 편향에 의해 정의된 기준에 매칭하는 것에 응답하여, 상기 수송 제어 모드에서 상기 자율 도킹 제어 모드로 변경하게 하고;
    상기 웨이포인트 특성들에 기초하여 동적 설정포인트를 결정하게 하는 것으로서, 상기 동적 설정포인트는 상기 항만 트랙 데이터에 기초하여 변화하는 설정포인트 포지션, 설정포인트 속도 및 설정포인트 헤딩을 포함하는, 상기 동적 설정포인트를 결정하게 하고;
    상기 트랙 세그먼트 상의 상기 해양 선박의 위치에 기초하여 개개의 설정포인트 값들과 웨이포인트들 사이에서 상기 설정포인트 속도 및 상기 설정포인트 헤딩을 보간하게 하고;
    상기 선박 헤딩을 보간된 상기 설정포인트 헤딩에 그리고 상기 선박 속도를 보간된 상기 설정포인트 속도에 맞추게 하도록 더 구성되는, 자율 도킹을 위한 해양 선박 장치.
  13. 제 12 항에 있어서,
    상기 적어도 하나의 메모리 및 상기 컴퓨터 프로그램 코드는, 상기 적어도 하나의 프로세서로, 상기 장치로 하여금:
    상기 트랙 세그먼트들의 제 1 세트에서 포지셔닝 정보 소스로서 글로벌 내비게이션 위성 시스템 (GNSS) 포지션 센서를 선택하게 하고; 그리고
    정박지까지의 선박 거리를 결정하고 상기 선박 거리가 미리정의된 임계치 미만인 것에 응답하여 상기 트랙 세그먼트들의 제 2 세트에서 포지셔닝 정보 소스로서 도킹 센서를 선택하게 하도록 구성되는, 자율 도킹을 위한 해양 선박 장치.
  14. 제 13 항에 있어서,
    복수의 추진기들을 더 포함하고, 그리고
    상기 적어도 하나의 메모리 및 상기 컴퓨터 프로그램 코드는, 상기 적어도 하나의 프로세서로, 상기 장치로 하여금:
    외부 힘 정보를 결정하게 하고;
    상기 힘 벡터를 상기 외부 힘 정보와 조합하되, 상기 외부 힘은 동적 설정포인트와 선박 위치 사이의 차이에 기초하여 결정되게 하고;
    상기 조합에 기초하여 상기 추진기 커맨드들을 결정하게 하며; 그리고
    상기 추진기 커맨드들에 기초하여 상기 복수의 추진기들에 추력을 할당함으로써 전체 3 축 포지션 및 헤딩을 제어하게 하도록 구성되는, 자율 도킹을 위한 해양 선박 장치.
  15. 컴퓨터 실행가능 프로그램 코드를 포함하는 컴퓨터 판독가능 매체 상에 수록된 컴퓨터 프로그램으로서,
    상기 코드는, 장치의 적어도 하나의 프로세서에 의해 실행될 때, 상기 장치로 하여금:
    포트들 사이의 수송 동작을 정의하는 노선 계획 데이터와 연관된 수송 제어 모드를 결정하게 하고;
    웨이포인트 특성들의 세트를 포함하고 웨이포인트들에서 결합된 트랙 세그먼트들 및 접근 구역 정보를 정의하는 항만 트랙 데이터와 연관된 자율 도킹 제어 모드를 결정하게 하는 것으로서, 상기 접근 구역 정보가,
    접근 구역에 대한 위치 영역 정보;
    상기 접근 구역에 진입하기 위한 최대 선박 속도; 및
    상기 접근 구역에 진입하기 위한 최대 헤딩 편향
    을 포함하는, 상기 자율 도킹 제어 모드를 결정하게 하고;
    선박 위치, 속도 및 헤딩을 결정하게 하고;
    상기 선박 위치, 속도 및 헤딩을 상기 접근 구역 정보와 비교하고,
    상기 선박 위치가 상기 위치 영역 정보에 의해 포함되는 것;
    상기 선박 속도가 상기 접근 구역에 진입하기 위한 최대 선박 속도 미만인 것; 및
    상기 선박 헤딩이 상기 접근 구역에 진입하기 위한 최대 헤딩 편향에 의해 정의된 기준에 매칭하는 것
    에 응답하여, 상기 수송 제어 모드에서 상기 자율 도킹 제어 모드로 변경하게 하고,
    상기 웨이포인트 특성들에 기초하여 동적 설정포인트를 결정하게 하는 것으로서, 상기 동적 설정포인트는 상기 항만 트랙 데이터에 기초하여 변화하는 설정포인트 포지션, 설정포인트 속도 및 설정포인트 헤딩을 포함하는, 상기 동적 설정포인트를 결정하게 하고;
    상기 트랙 세그먼트 상의 상기 선박의 위치에 기초하여 개개의 설정포인트 값들과 웨이포인트들 사이에서 상기 설정포인트 속도 및 상기 설정포인트 헤딩을 보간하게 하고;
    상기 선박 헤딩을 보간된 상기 설정포인트 헤딩에 그리고 상기 선박 속도를 보간된 상기 설정포인트 속도에 맞추게 하는, 컴퓨터 판독가능 매체 상에 수록된 컴퓨터 프로그램.
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
KR1020207037352A 2018-06-01 2018-06-01 해양 선박의 자율 도킹을 위한 방법, 디바이스 및 장치 KR102623139B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2018/035586 WO2019231464A1 (en) 2018-06-01 2018-06-01 Method, device and apparatus for autonomous docking of marine vessel

Publications (2)

Publication Number Publication Date
KR20210016565A KR20210016565A (ko) 2021-02-16
KR102623139B1 true KR102623139B1 (ko) 2024-01-09

Family

ID=62705732

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207037352A KR102623139B1 (ko) 2018-06-01 2018-06-01 해양 선박의 자율 도킹을 위한 방법, 디바이스 및 장치

Country Status (8)

Country Link
US (1) US11691703B2 (ko)
EP (1) EP3803525B1 (ko)
KR (1) KR102623139B1 (ko)
CN (1) CN112334852A (ko)
CA (1) CA3101609C (ko)
DK (1) DK3803525T3 (ko)
SG (1) SG11202011726WA (ko)
WO (1) WO2019231464A1 (ko)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11480965B2 (en) 2010-11-19 2022-10-25 Maid Ip Holdings Pty/Ltd Automatic location placement system
US9778657B2 (en) 2010-11-19 2017-10-03 Bradley Tyers Automatic location placement system
EP3803525B1 (en) 2018-06-01 2023-04-05 Wärtsilä SAM Electronics GmbH Method, apparatus and computer program product for autonomous docking of marine vessel
DE102018118496B3 (de) * 2018-07-31 2020-01-16 Schottel Gmbh Verfahren zur Evaluierung des Flachwassereinflusses
JP6661708B2 (ja) * 2018-08-01 2020-03-11 三菱電機株式会社 船舶の着岸支援装置
US11181915B2 (en) * 2018-08-31 2021-11-23 Abb Schweiz Ag Apparatus and method for maneuvering marine vessel
US11453471B1 (en) * 2019-03-25 2022-09-27 Yamaha Hatsudoki Kabushiki Kaisha Vessel steering system and vessel steering method
WO2020230228A1 (ja) * 2019-05-13 2020-11-19 三菱電機株式会社 ロケータ装置およびその精度評価システム、gnss受信機、測位方法およびgnss受信機のデータ出力方法
US11955011B2 (en) * 2020-03-20 2024-04-09 Cashman Dredging And Marine Contracting, Co., Llc LiDAR vessel-to-vessel docking system and method
EP4154080A1 (en) * 2020-05-20 2023-03-29 CPAC Systems AB Method to control a marine vessel, a control unit and a vessel
EP4154079A1 (en) * 2020-05-20 2023-03-29 CPAC Systems AB Control method and control unit for a marine vessel
CN112486168B (zh) * 2020-11-19 2022-05-20 哈尔滨工程大学 一种基于回转圆的移动式对接轨迹规划方法
CN112520048A (zh) * 2020-11-27 2021-03-19 武汉海博瑞科技有限公司 基于单刀双控开关的航行数据显控仪及显控方法
EP4086574A1 (en) * 2021-05-06 2022-11-09 Furuno Electric Co., Ltd. Apparatus and method for route editing assistance
CN114610774B (zh) * 2022-02-10 2023-01-20 天津中远海运散运数字科技有限公司 一种分析船舶经过选定区域方法、装置、电子设备及介质
CN114802649B (zh) * 2022-04-18 2023-07-07 大连理工大学 一种离岸式无人船坞及无人船进出坞方法
EP4300235A1 (en) * 2022-07-01 2024-01-03 Volvo Penta Corporation Method to automatically navigate and control a marine vessel
CN115268459B (zh) * 2022-08-12 2024-05-24 中国船舶集团有限公司第七一六研究所 一种基于双喷水推进器无人艇自主靠泊控制方法
CN116743227B (zh) * 2023-05-15 2024-01-30 捷信(浙江)通信技术有限公司 基于船舶定位信息匹配卫星覆盖区域的卫星网络切换系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015066979A (ja) * 2013-09-26 2015-04-13 ヤマハ発動機株式会社 船舶用表示システムおよびそれを備えた小型船舶

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6677889B2 (en) * 2002-01-22 2004-01-13 Raytheon Company Auto-docking system
JP5000244B2 (ja) * 2005-09-15 2012-08-15 ヤマハ発動機株式会社 着岸支援装置およびそれを備えた船舶
US7780490B2 (en) * 2008-09-16 2010-08-24 AB Volvo Penla Watercraft with control system for controlling wake and method for controlling wake
US8155811B2 (en) 2008-12-29 2012-04-10 General Electric Company System and method for optimizing a path for a marine vessel through a waterway
CN102020004B (zh) * 2010-07-09 2013-04-17 华南理工大学 水面垃圾清理船
CN201834181U (zh) * 2010-07-09 2011-05-18 华南理工大学 水面垃圾清理船
US20130080044A1 (en) * 2010-11-19 2013-03-28 Maxwell Tyers Automatic Docking System
US20120129410A1 (en) * 2010-11-19 2012-05-24 Maxwell Tyers Automatic docking system
KR20130018001A (ko) * 2011-08-12 2013-02-20 현대중공업 주식회사 선박의 횡동 저감 장치
DE102013008299A1 (de) 2013-05-15 2014-11-20 Man Truck & Bus Ag Haltevorrichtung, insbesondere für einen Fahrzeugsitz
NO338259B1 (no) 2014-12-09 2016-08-08 Kongsberg Maritime As Navigasjon blant faste installasjoner
DE102015202496A1 (de) * 2015-02-12 2016-08-18 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Wasserfahrzeugs und zum Betreiben eines Hafens
AU2016228565A1 (en) * 2015-03-12 2017-10-12 Transocean Sedco Forex Ventures Limited Dynamic positioning (DP) drive-off (DO) mitigation with inertial navigation system
FI130355B (en) 2016-01-29 2023-07-17 Rolls Royce Oy Ab Independent use of a fat cloth
US10198005B2 (en) * 2016-03-01 2019-02-05 Brunswick Corporation Station keeping and waypoint tracking methods
EP3803525B1 (en) 2018-06-01 2023-04-05 Wärtsilä SAM Electronics GmbH Method, apparatus and computer program product for autonomous docking of marine vessel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015066979A (ja) * 2013-09-26 2015-04-13 ヤマハ発動機株式会社 船舶用表示システムおよびそれを備えた小型船舶

Also Published As

Publication number Publication date
US20210221485A1 (en) 2021-07-22
US11691703B2 (en) 2023-07-04
EP3803525B1 (en) 2023-04-05
DK3803525T3 (da) 2023-07-03
SG11202011726WA (en) 2020-12-30
CA3101609C (en) 2023-10-10
WO2019231464A1 (en) 2019-12-05
EP3803525A1 (en) 2021-04-14
CN112334852A (zh) 2021-02-05
KR20210016565A (ko) 2021-02-16
CA3101609A1 (en) 2019-12-05

Similar Documents

Publication Publication Date Title
KR102623139B1 (ko) 해양 선박의 자율 도킹을 위한 방법, 디바이스 및 장치
US9594375B2 (en) Heading control using multiple autopilots
EP3486742B1 (en) System and method for controlling a position of a marine vessel near an object
WO2020171797A1 (en) Method and apparatus for automated tugging of marine vessel
JP5442071B2 (ja) 操船制御装置、自動操船制御システム、操船制御方法、及びプログラム
JP7202389B2 (ja) 船舶及び推進システム
US9594374B2 (en) Operating multiple autopilots
AU2018379592B2 (en) Interface unit
JP2009132257A (ja) 操船制御方法、プログラム及び装置、並びに自動操船制御システム
JP7417538B2 (ja) 制御目標生成装置及び操船制御装置
JP3999976B2 (ja) 操船方法及び装置
JP5566426B2 (ja) 操船制御装置、自動操船制御システム、操船制御方法、及びプログラム
RU2809129C1 (ru) Способ проводки, швартовки и отшвартовки морского грузового судна в автономном режиме и способ работы цифровой инструментальной платформы управления движением группы автономных судов-буксиров в портовой акватории
KR102095414B1 (ko) 휴대단말장치를 이용한 선박의 위치 제어 시스템 및 방법
US20230204362A1 (en) Anchoring systems and methods for marine vessels
JP2020132095A (ja) 遠隔操船装置及び遠隔操船システム
KR101524153B1 (ko) 해양 작업 시의 능동적 위치 제어 방법
KR20220156858A (ko) 조선 지원 시스템
JPH06102439B2 (ja) 船舶の総括操縦装置
JP2000264284A (ja) 舵減揺トラッキング装置

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant