KR102621480B1 - 이동가능 니들 바디들을 갖는 저항성 프로브 - Google Patents

이동가능 니들 바디들을 갖는 저항성 프로브 Download PDF

Info

Publication number
KR102621480B1
KR102621480B1 KR1020237018177A KR20237018177A KR102621480B1 KR 102621480 B1 KR102621480 B1 KR 102621480B1 KR 1020237018177 A KR1020237018177 A KR 1020237018177A KR 20237018177 A KR20237018177 A KR 20237018177A KR 102621480 B1 KR102621480 B1 KR 102621480B1
Authority
KR
South Korea
Prior art keywords
probe
substrate
probes
pins
metal
Prior art date
Application number
KR1020237018177A
Other languages
English (en)
Other versions
KR20230080506A (ko
Inventor
지안리 쿠이
월터 에이치. 존슨
시앙화 리우
빈 시 (주빈)
지안오우 시
하이양 요우 (오션)
루 유
판 장
주오샨 장
난창 주
Original Assignee
케이엘에이 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이엘에이 코포레이션 filed Critical 케이엘에이 코포레이션
Publication of KR20230080506A publication Critical patent/KR20230080506A/ko
Application granted granted Critical
Publication of KR102621480B1 publication Critical patent/KR102621480B1/ko

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • G01R1/06761Material aspects related to layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2831Testing of materials or semi-finished products, e.g. semiconductor wafers or substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

집적 회로들을 테스트하기 위해 저항성 프로브가 사용될 수 있다. 일 예시에서, 저항성 프로브는 다수의 비아들 및 다수의 금속핀들을 갖는 기판을 갖는다. 금속핀들 각각은 비아들 중 하나 내에 배치된다. 금속핀들은 기판의 외측으로 연장된다. 상호연결부들은 금속핀들에의 전기적 연결을 제공한다. 다른 예시에서, 저항성 프로브는 최상면을 갖는 기판 및 기판으로부터 연장되는 다수의 엘리먼트들을 갖는다. 엘리먼트들 각각은, 엘리먼트들 각각이 기판의 최상면에 비평행하도록, 기판으로부터 상기 엘리먼트의 팁까지 굴곡진다.

Description

이동가능 니들 바디들을 갖는 저항성 프로브{RESISTIVITY PROBE HAVING MOVABLE NEEDLE BODIES}
본 출원은 2016년 8월 22일에 출원되고 미국 출원 제 62/378,161 호가 부여된 특허 가출원을 우선권으로 주장하며, 이 가출원의 개시는 참조로서 본원에 포함된다.
본 개시는 저항성 프로브들에 관한 것이다.
반도체 제조 산업의 진화는 수율 관리에 대한, 특히 계측 및 검사 시스템들에 대한 더 큰 요구사항들을 제시하고 있다. 임계 치수(critical dimension)들이 축소되고 있는 반면 웨이퍼 사이즈는 증가하고 있다. 경제는 높은 수율의, 높은 가치의 생산을 달성하기 위한 시간을 줄이도록 산업을 몰아가고 있다. 따라서, 수율 문제를 검출하고 이 문제를 바로잡는데까지의 총 시간을 최소화하는 것이 반도체 제조자에 대한 투자 수익(return-on-investment)을 결정한다.
집적 회로들을 제조 프로세스의 일부로서 테스트하는 것이 필수적이다. 테스트는, 테스트될 목격 샘플(witness sample) 또는 집적 회로 상의 선택된 포인트와의 테스트 프로브 또는 프로브들 사이에 일시적인 전기적 접촉을 생성함으로써 수행된다. 이어서 프로브들을 통해 회로에 인가되고 그 회로로부터 유래되는 신호들을 사용하여 미리 결정된 프로그래밍된 테스트가 착수된다. 회로들, 특히 극히 조밀한(compact) 집적 회로들의 복잡성 및 작은 사이즈 때문에, 적절한 테스팅을 위해 회로와 이루어져야 하는 다수의 접촉들이 접촉 프로브들의 위치지정에 대해 엄격한 제어를 요구한다. 또한, 프로브들이 미리 결정된 회로 패드들 또는 포인트들에 맞대어 위치되는 힘이 중요할 수 있다. 각각의 프로브에 대한 힘뿐만 아니라 프로브들의 정확한 위치지정을 제어하는 것은 프로브 시스템들의 제조에서의 정확성을 요한다.
그러한 프로브 시스템들은 일반적으로, 보통 미세한 니들들의 형태에 있는 프로브들을 사용했다. 프로브들은, 프로브를 인쇄 회로 보드에 직접적으로, 또는 종국에는 인쇄 회로 보드에 납땜되는 홀딩 디바이스에 납땜함으로써 인쇄 회로 보드에 개별적으로 부착된다. 프로브들은 일반적으로, 테스트될 집적 회로 상의 포인트까지 수백 밀리미터 정도에 이르는 캔틸레버(cantilever) 암 방식으로, 블레이드와 같은 마운팅 위치로부터 연장된다. 프로브 상의 힘을 변화시키는 것은 프로브를 더 강하게 또는 더 유연하게 하기 위해 프로브 직경을 변화시키는 것, 또는 프로브 길이 또는 캔틸레버 길이를 변화시키는 것을 요한다. 또한, 그러한 프로브들의 사용은 제어되는 임피던스 전송 라인을 구현하는 것에 대한 편리한 수단을 제공하지 못한다.
일례로, 저항성의 생성에 의해 집적 회로의 전기적 특성들을 테스트하기 위해 또는 프로세싱된 반도체 웨이퍼의 표면의 캐리어 농도 프로파일들을 테스트하기 위해 4포인트(four-point) 프로브가 사용될 수 있다. 종래의 4포인트 프로브 기술은 일반적으로 인라인(in-line) 구성으로 위치되는 포인트들을 갖는다. 2개의 주변 포인트들에 전류를 인가함으로써, 4포인트 프로브의 2개의 내측 포인트들 사이에서 전압이 측정된다. 따라서, 테스트 샘플의 전기 저항률(ρ)이 식[ρ=c(V/I)]을 통해 결정될 수 있고, 여기서 V는 내측 포인트들 사이에서 측정된 전압이고, I는 주변 포인트들에 인가된 전류이며, c는 테스트 샘플의 치수들 및 표면 접촉 간격(d)에 따른 기하학적 인자이다.
종래에는 프로브 팁들이 평면형(planar) 마이크로전자기계 시스템(microelectromechanical systems; MEMS) 제조 프로세스들에 의해 제조된다. 프로브 캔틸레버들은, 평평한 웨이퍼 표면 상의 동시적 안착(landing)뿐만 아니라 쉬운 제조를 위해 지지 바디 표면에 평행하게 연장되고, 이는 평면도(planarity)로 지칭된다. 캔틸레버가 웨이퍼 표면과 접촉을 이룰 때, 캔틸레버는 구부러지고 웨이퍼 표면과 스크러빙되며 상당한 사이즈의 접촉을 형성한다. 접촉 사이즈는 접촉력 및 프로브 마모에 관련된다. 이 설계는 결국 도전성 재료들을 손실시키고, 전류를 통과시키는 능력을 손실시켜 측정의 정밀도(precision)를 제한하며, 프로브의 수명을 단축시킨다. 지지 칩 표면에 대한 프로브의 공동 평면도(co-planarity) 및 웨이퍼 표면에 대한 캔틸레버되는 프로브들 간의 약 30°의 각도로 인해, 접촉 사이즈는 프로브 팁 마모와 관련하여 가변적이며, 도전성 코팅이 안착 및 측정 동안 쉽게 제거될 수 있다. 접촉 사이즈의 변화 및 도전성 코팅의 제거는 측정 정확도를 저하시킬 것이고, 프로브 수명을 상당히 단축시킨다.
기존 프로브들에서 금속 코팅이 변형되고 빠르게 마모되며, 이는 대략 100 내지 500 터치들 또는 측정들의 수명을 초래한다. 부러지기 쉬운 SiO2 캔틸레버들이 또한 쉽게 부러질 수 있다. 따라서, 향상된 저항성 프로브 설계들이 필요된다.
제 1 실시예에서, 저항성 프로브가 제공된다. 저항성 프로브는 복수의 비아들을 규정하는 기판, 하나 이상의 행들 내의 복수의 금속핀들, 및 기판 내의 복수의 상호연결부들을 포함한다. 금속핀들 각각은 비아들 중 하나 내에 배치된다. 금속핀들 각각은 기판의 외측으로 연장된다. 상호연결부들은 금속핀들에의 전기적 연결을 제공한다.
암이 포함될 수 있다. 암 상에 기판이 배치될 수 있다. 플래턴(platen)이 또한 포함될 수 있다. 암은 기판을 플래턴을 향해 그리고 플래턴으로부터 멀리 이동시키도록 구성될 수 있다.
금속핀들은 텅스텐, 텅스텐 카바이드, 텅스텐 레늄 합금, 베릴륨 구리 합금, 또는 금, 팔라듐, 백금, 은, 구리, 및 아연을 함유하는 합금으로 제조될 수 있다.
저항성 프로브는 복수의 스프링들을 포함할 수 있다. 금속핀들 각각은 스프링들 중 하나를 포함할 수 있다.
핀들은 적어도 2개의 행들을 갖는 어레이 내에 있을 수 있다. 행들 각각은 적어도 2개의 금속핀들을 포함한다.
일례로, 저항성 프로브는 복수의 니들 바디들, 복수의 도전성 와이어들, 인클로저(enclosure), 및 유체원(fluid source)을 포함한다. 금속핀들 각각은 니들 바디들 중 하나 상에 배치된다. 니들 바디들 각각은 메인 바디 및 숄더 부분을 포함한다. 도전성 와이어들 각각은 니들 바디들 중 하나 상에 배치된다. 니들 바디들 각각은 인클로저의 벽을 관통하여 연장되도록 위치된다. 유체원은 인클로저 내에 유체를 지향시키도록 구성된다. 니들 바디들은 유체에의 노출시 인클로저를 통해 이동하도록 구성된다. 숄더 부분들 중 하나는 숄더 부분들 중 하나가 배치되는 니들 바디의 이동을 멈추도록 구성된다. 저항성 프로브는 그 위에 인클로저가 배치되는 암을 더 포함할 수 있다. 플래턴이 또한 포함될 수 있다. 암은 인클로저를 플래턴을 향해 그리고 플래턴으로부터 멀리 이동시키도록 구성될 수 있다.
제 2 실시예에서, 방법이 제공된다. 기판의 기본 재료 내에 홀이 에칭된다. 스루홀의 벽이 캡 정지부(cap stop)를 규정한다. 스루홀의 벽이 릴리즈층으로 라이닝(lining)된다. 스루홀 및 캡 정지부 내에 금속이 퇴적된다. 금속은, 금속이 기본 재료와 동일 평면을 이루어 핀을 형성하도록 평탄화된다. 릴리즈층이 에칭된다.
방법은 평탄화 후 릴리즈층으로 금속을 라이닝하는 단계 및 에칭 전에 릴리즈층 상에 도체를 퇴적하는 단계를 더 포함할 수 있다. 도체 및 금속은 에칭 후 서로 독립적이다.
방법은 평탄화 후에 그리고 에칭 전에 금속 및 릴리즈층 상에 도체를 퇴적하는 단계를 더 포함할 수 있다. 금속 및 도체가 에칭 후 접촉한다. 도체의 반대측에 있는 포인트에서 금속의 팁이 에칭될 수 있다.
핀을 형성하는 것은 라이닝하는 단계 전에 스루홀 및 캡 정지부 상에 절연체를 퇴적하는 것을 더 포함할 수 있다. 도체의 반대측에 있는 포인트에서 금속의 팁이 에칭될 수 있다. 기본 재료는 그라운딩될 수 있고/있거나 도체를 둘러싸는 그라운드층이 퇴적될 수 있다.
제 3 실시예에서, 저항성 프로브가 제공된다. 저항성 프로브는 최상면을 규정하는 기판 및 기판으로부터 연장되는 복수의 프로브들을 포함한다. 프로브들 각각은, 엘리먼트들 각각이 기판의 최상면에 비평행하도록, 기판으로부터 상기 프로브의 팁까지 굴곡진다.
프로브들 각각은 재료의 2개의 층들을 포함할 수 있다. 2개의 층들은 상이한 응력들을 가져서 굴곡을 유발한다.
기판은 프로브들의 굴곡과 매칭되는 지지 영역을 포함할 수 있다. 기판의 지지 영역은 에칭되어 나간다.
본 개시의 속성 및 목적들의 더 완전한 이해를 위해, 첨부 도면들과 관련하여 취해지는 다음의 상세한 설명에 대한 참조가 이루어져야 한다.
도 1은 본 개시에 따른 저항성 프로브의 실시예의 사시도이다.
도 2는 도 1의 저항성 프로브의 저면도이다.
도 3은 도 2 내의 라인(A-A)을 따른 도 1의 저항성 프로브의 단면도이다.
도 4는 도 1의 저항성 프로브에 대한 핀들의 실시예를 예시한다.
도 5의 A 내지 도 5의 C는 핀 구성들을 예시한다.
도 6의 A 내지 도 6의 H는 도 1의 저항성 프로브의 제조 프로세스의 제 1 실시예를 예시하고, 여기서 핀들은 프로브 바디에 대해 이동할 수 있다.
도 7의 A 내지 도 7의 H는 도 1의 저항성 프로브의 제조 프로세스의 제 2 실시예를 예시하고, 여기서 핀들은 프로브 바디에 대해 이동할 수 있다.
도 8의 A 내지 도 8의 I는 도 1의 저항성 프로브의 제조 프로세스의 제 3 실시예를 예시한다.
도 9는 4분면이 채워진 기판을 예시한다.
도 10은 선형 어레이를 예시한다.
도 11은 저항성 프로브의 일부에 대한 제조 프로세스의 다른 실시예를 예시한다.
도 12는 칩 프로브 웨이퍼의 상면도이다.
도 13은 체커보드(checkerboard) 칩 프로브의 도면이다.
도 14는 프로브 헤드의 단면 블록도이다.
도 15는 제어 암 상의 프로브 헤드의 블록도이다.
도 16은 가변 형상 프로브 핀들의 저면도를 예시한다.
도 17은 도 16의 가변 형상 프로브 핀들의 측면도를 예시한다.
도 18은 본 개시에 따른 저항성 프로브의 제 2 실시예를 예시하며 단면도 및 대응하는 상면도를 도시한다.
도 19의 A 내지 도 19의 E는 도 18의 저항성 프로브의 일부에 대한 제조 프로세스의 실시예를 예시한다.
도 20의 A 내지 도 20의 E는 도 18의 저항성 프로브의 일부에 대한 제조 프로세스의 다른 실시예를 예시한다.
청구되는 발명내용이 특정 실시예들에 의해 설명될 것이지만, 본원에서 제시되는 이익들 및 특징들 모두를 제공하는 것은 아닌 실시예들을 포함하여 다른 실시예들이 또한 본 개시의 범위 내에 있다. 다양한 구조적, 논리적, 프로세스 단계, 및 전자적 변경들이 본 개시의 범위를 벗어나지 않고 이루어질 수 있다. 따라서, 본 개시의 범위는 첨부된 청구항들에 대한 참조에 의해서만 규정된다.
본원에서 개시되는 저항성 프로브들의 실시예들은, 반도체 웨이퍼 상의 테스트 패드들과 같은 제한된 공간들 내의 시트 저항(sheet resistance)을 결정하기 위해 사용될 수 있다. 본원에서 개시되는 저항성 프로브들의 실시예들은 또한, 전류 면내 터널링(current in-plane tunneling; CIPT) 또는 다른 기술들을 통해 몇몇 상이한 핀 간격들에서 4포인트 프로브 측정들을 사용함으로써 자기 랜덤 액세스 메모리(magnetic random access memory; MRAM) 스택들을 특성화하기 위해 사용될 수 있다. 집적 회로 상의 다른 디바이스들이 또한 테스트될 수 있다. 본원에서 개시되는 핀들은 향상된 마모 특성들을 갖고, 저항성 프로브의 수명을 수백 퍼센트 증가시킬 수 있다. 수직 핀 움직임은 캔틸레버 방법의 스크러빙 액션을 없애고, 이는 또한 마모를 감소시키며 과도한 구부러짐으로부터의 부러짐을 없앤다. 공기압의 사용은 안착 높이 또는 핀 평면도 변이(variation)들에 의해 유발되는 핀력(pin force) 변이를 없앨 수 있다. 수직 순응(compliance)이 상당히 증가될 수 있고, 이는 안착 방법을 덜 위험하게 할 수 있다.
도 1은 저항성 프로브(100)의 실시예의 사시도이다. 도 2는 도 1의 저항성 프로브(100)의 저면도이다. 도 3은 도 2 내의 라인(A-A)을 따른 도 1의 저항성 프로브(100)의 단면도이다. 일례로 제위치에 고정될 수 있는 핀들(102)이 저항성 프로브(100)의 바디(101)의 표면에 위치된다. 바디(101)는 실리콘일 수 있다. 핀들(102)은 고체 금속일 수 있다. 핀들(102)은 바디(101) 내에서 고정적일 수 있거나 개별 스프링력을 사용하여 수직으로 변위될 수 있다. 핀들(102) 각각은 바디(101)를 관통하는 비아 내에 위치될 수 있다. 비아는 바디(101)를 완전히 관통하거나 또는 바디(101)를 부분적으로만 관통하여 연장될 수 있다.
9개의 핀들(102)이 예시된다. 저항성 프로브(100)는 도 1에 예시된 것보다 많거나 적은 핀들(102)을 포함할 수 있다. 핀들(102)은 하나 이상의 행 내에 있을 수 있다. 예를 들어, 12개의 핀들(102)이 포함될 수 있다. 도 1 및 도 2에 예시된 것과 상이한 핀들의 배열들이 가능하다. 더 많거나 적은 행들 또는 시리즈가 포함될 수 있다. 도 5의 A 내지 도 5의 C는 핀 구성들의 다양한 예시들을 예시한다. 도 5의 A 내지 도 5의 C에 도시된 바와 같이, 거리(106)는 거리(104)보다 크고, 거리(104)는 거리(105)보다 크다. 따라서, (A에서와 같은) 다중 행 어레이 또는 (B에서와 같은) 엇갈린(staggered) 어레이가 (C에서와 같은) 핀들의 단일 행보다 주어진 최소 피처 사이즈에 대해 더 작은 깊이의 침투(penetration)를 제공할 수 있다.
도 1 내지 도 3으로 돌아가면, 핀들(102) 각각은 평면형 팁을 가질 수 있다. 팁들의 치수들은 마이크로미터(micron) 스케일일 수 있다. 다른 치수들이 가능하지만, 대략 0.1 마이크로미터의 최소 간격이 사용될 수 있다.
고정되는 대신, 핀들(102) 각각은 스프링 상에 위치될 수 있다.
고정되는 대신, 핀들(102) 각각은 스프링으로서 공기압을 사용할 수 있다. 핀들(102) 또는 바디(101)가 피스톤으로서 역할할 수 있다. 이는 프로그래밍가능한 핀(102) 압력을 가능하게 할 수 있다. 예를 들어, 공기압은 핀들과의 옴 접촉(Ohmic contact)이 이루어질 때까지 증가될 수 있다.
핀들(102)이 바디(101)에 대해 이동할 때, 핀들(102)은 휘어진(warped) 웨이퍼들과 같은 고르지 못한 표면들에 부합할 수 있다. 핀(102)의 높이에서의 변화가 팁력(tip force)을 상당히 변화시킬 수 있는 편향(deflection)에서의 변화를 야기할 수 있지만, 공기압 버전은 핀들(102) 사이에서 일정한 압력을 유지할 것이다. 정지 높이와 핀 높이 변이 사이에 약간의 조정이 있을 수 있다.
핀들(102) 간의 간격은 응용에 따라 달라질 수 있다.
도 4는 도 1의 저항성 프로브(100)에 대한 핀들의 실시예를 예시한다. 도 4에 예시된 핀들은 도 1에 예시된 평평한 팁들과 달리 둥근 팁들을 갖는다. 핀들은 서브 마이크로(sub-micro) 피치 및 향상된 내구성을 가질 수 있다. 핀들은 자기 터널 접합(magnetic tunnel junctions; MTJ) CIPT용 및 임플란트용 둘 다로 구성될 수 있다. 도 4에 라운드형으로 예시되었지만, 핀들의 팁의 형상은 뾰족한 것부터 둥근 것, 평평한 것까지 다양할 수 있다. 뾰족한 것은 양호한 침투성을 제공할 수 있지만, 제한된 전류 전달 능력을 가질 수 있다. 둥근 것은 접촉 면적 및 접촉 저항을 증가시킬 뿐만 아니라 침투성을 감소시킨다. 평평한 것은 가장 큰 접촉 면적을 제공할 수 있고 가장 많은 전류를 전달할 수 있지만, 산화된 표면들에 대해서는 제한된 낮은 침투성을 가질 수 있다.
도 1로 돌아가면, 핀들(102)은 Z 방향으로의 제한된 움직임을 제공하도록 구성될 수 있다. 이는 스크러빙에 대한 수요를 방지하거나 감소시킬 수 있다. 스크러빙은 최상부 배리어층(예를 들어, 산화물)을 관통하는 침투성을 지원할 수 있다. 스크러빙은 또한 풋 프린트(foot print)를 증가시킬 수 있고, 입자들을 증가시킬 수 있으며, 프로빙되고 있는 표면으로부터의 팁 오염의 양을 증가시킬 수 있으며, 잃은(loose) 입자들로부터 접촉 저항을 증가시킬 수 있다. 특히 실리콘은 입자들을 잃기 쉬울 수 있고 접촉 저항이 증가되기 쉬울 수 있다. 한가지 가능한 메커니즘은, 핀을 스크러빙하는 것으로부터 재료들이 축적되고 축적물 또는 입자 위에 머물러 접촉 저항을 증가시키는 것이다. 다른 메커니즘들이 가능할 수 있다.
스크러빙은 거칠기와 같은 핀들(102) 상의 표면층을 뚫고 나가는 것에 대해 제한적인 옵션들이 없는 한 회피될 수 있다. 거칠기는 마이크로 침투 포인트들을 포함하는 텅스텐 카바이드와 같은 큰 그레인(grain) 재료를 사용한 것에 포함될 수 있다. 핀들(102)의 팁들을 세정하기 위한 임의의 스크러빙이 샘플과 떨어져서 수행될 수 있다.
일례로, 핀들(102)은 최소 100,000번의 접촉 수명을 제공할 수 있다. 더 예리한 팁이 더 빠르게 마모될 수 있다. 평평한 팁 표면은 마모를 최소화할 수 있고, 핀(102)이 수직 측벽들을 가지면 이는 핀(102)이 마모될지라도 접촉 면적을 변화시키지 않을 것이다. 수명들은 또한 단단한 재료들에 대해 매우 길 수 있다. 텅스텐 카바이드 핀들(102)은 핀(102) 표면 면적이 수 백만번의 접촉들로도 변화되지 않도록 구성될 수 있다.
핀들(102)은 Z 높이에 독립적인 일정한 접촉력을 제공할 수 있다. 핀들(102)은 또한 핀 수명 동안 일정한 접촉 면적을 제공할 수 있다.
핀들(102)의 전기적 접촉은 다음의 특성들 중 하나 이상을 포함할 수 있다. 핀들(102)이 100 Ohm-cm2 아래일 수 있는 낮은 옴 접촉을 제공할 수 있음. 핀들(102)이 블록킹층들을 침투하는 능력을 가질 수 있음. 핀들(102)이 오염되지 않을 수 있고, 자가 세정될 수 있고/있거나, 스크러빙하지 않을 수 있음. 제어가능한 접촉 압력(예를 들어, 기계적 스프링 또는 공기압)이 핀들(102)을 사용하여 제공될 수 있음. 모든 핀들(102)이 동일한 압력으로 샘플 표면에 접촉할 수 있음.
저항성 프로브(100)는 4 포인트 프로브 방법론의 수직 핀 설계를 소형화할 수 있다. 예를 들어, 저항성 프로브(100)의 사이즈는 시판되는 수직 4 포인트 프로브들보다 1,000배 이상 작을 수 있다.
핀들(102)은 텅스텐, 텅스텐 카바이드, 텅스텐 레늄 합금, 베릴륨 구리 합금, 또는 금, 팔라듐, 백금, 은, 구리, 및 아연을 함유하는 합금으로 제조될 수 있다. 핀들(102)에 대해 다른 금속들, 합금들, 또는 재료들이 가능하다. 핀들(102)에 대한 일부 예시적인 재료들의 특성들에 대한 다음의 표를 보라.
알루미늄 패드들 상의 웨이퍼 프로빙을 위해 텅스텐이 사용될 수 있다. 텅스텐의 경도(hardness)가 긴 프로브 수명을 제공하며, 스프링 특질들이 프로브 안정성에 대해 바람직하다. 접촉 저항이 대부분의 응용들에 대해 허용가능하다. 텅스텐의 섬유질(fibrous) 속성으로 인해, 산화물 결정들이 프로브 팁 내에 갇히게 되는 경향이 있고, 따라서 접촉 저항을 허용가능한 레벨들로 유지하기 위해 세정이 필요될 수 있다.
텅스텐 레늄(예를 들어, 97% 텅스텐, 3% 레늄)은 텅스텐과 유사한 특성들을 갖지만, 섬유질과 같지 않아 산화물 결정들을 가두는 경향이 있지 않다. 접촉 저항은 텅스텐보다 높지만, 시간이 지남에 따라 일정하다. 텅스텐 레늄은 텅스텐보다 적은 유지보수(maintenance)를 필요로 할 수 있고, 따라서 그 수명 기대치가 일반적으로 더 높다.
베릴륨 구리(beryllium-copper; BeCu)는 응용들이 낮은 접촉 저항 또는 높은 전류를 필요로 하는 경우 사용될 수 있다. 베릴륨 구리는 상대적으로 부드럽다(soft). 따라서, 프로브 팁들이 다른 재료들보다 빠르게 마모되지만, 자가 세정될 수 있다. 베릴륨 구리 프로브들은 일반적으로 금 패드들과 같이 경도 요건들이 덜 엄격한 응용들에서 사용된다.
(일리노이주 버논 힐즈에 있는 Deringer-Ney사에 의해 판매되는) Paliney® 7은 금, 팔라듐, 백금, 은, 구리, 및 아연을 함유하고 베릴륨 구리보다 단단하다. 이 합금은 비싸며 낮은 접촉 저항 및 양호한 도전율을 필요로 하는 응용들에 사용될 수 있다. 따라서, 이 합금은 금 패드들에 접촉하기 위해 사용될 수 있다.
텅스텐 카바이드는 훨씬 더 큰 그레인 구조를 갖는다. 이는 스크러빙하지 않는 팁들에 대한 산화물 침투를 지원하지만, 스크러빙하는 프로브들에 대한 오염을 증가시킨다. 이 특성들에 기반하면, 텅스텐 레늄이 스크러빙하는 팁들에 대해 사용될 수 있고, 텅스텐 카바이드가 스크러빙하지 않는 프로브들에 대해 사용될 수 있다.
탄소 나노튜브들이 또한 핀들(102)로서 사용될 수 있다. 각각의 핀(102)은 단일 탄소 나노튜브일 수 있다. 나노튜브들은 지지 암에 부착될 수 있거나 또는 적절한 사이즈의 홀들 내에 위치될 수 있다. 전기적 측정을 용이하게 하기 위해 나노튜브의 일 단부에 와이어들이 부착될 수 있다.
도 3에 도시된 바와 같이, 각각의 핀(102)은 저항성 프로브(100)의 바디(101) 내의 상호연결부(103)에 연결된다. 핀들(102)은, 바디(101)로부터는 등거리로 연장되지만, 바디(101) 내로는 상이한 깊이들로 연장될 수 있다. 따라서, 상호연결부들(103)은 바디(101) 내에서 상이한 깊이들에 있을 수 있으므로, 상호연결부들(103)은 교차하지 않는다. 일례로, 핀들(102)은 텅스텐이고 상호연결부들(103)은 텅스텐 또는 구리이다.
도 6의 A 내지 도 6의 H는 도 1의 저항성 프로브의 제조 프로세스의 제 1 실시예를 예시한다. 도 6의 A에, 기판(200)이 예시된다. 도 6의 B에서, 2개의 직경들을 갖는 스루홀(201)이 기판(200) 내에 에칭된다. 따라서, 스루홀(201)은 또한 캡 정지부를 포함한다. 도 6의 C에서, 기판(200)의 기본 재료의 바닥부 및 스루홀(201)에 릴리즈층(202)[예를 들어, SiO2, 포토레지스트, 에어로겔(aerogel)]이 퇴적된다. 도 6의 D에서, 스루홀(201) 내에 금속(203)이 퇴적된다. 금속(203)은 핀을 형성하기 위해 사용될 수 있다. 도 6의 E에서, 가령 화학적 기계적 평탄화를 사용하여 금속(203)의 최상부가 평탄화된다. 평탄화 후, 금속(203)은 기판(200)의 기본 재료와 동일 평면을 이룰 수 있다. 도 6의 F에서, 기판(200)의 최상면에 릴리즈층(202)이 추가된다. 도 6의 G에서, 릴리즈층(202) 상에 도체(204)(또는 컨턱터 트레이스)가 퇴적된다. 도체(204)를 퇴적하는 것은 마스킹 단계(예시 생략)를 포함할 수 있다. 도체(204)는 상호연결부 또는 스프링으로서 역할할 수 있다. 도 6의 H에서, 릴리즈층(202)이 에칭되어, 금속으로 제조된 핀 및 도체(204)를 서로 독립적으로 남긴다. 금속(203)의 팁은 에칭에 의해 필요에 따라 성형될 수 있다. 이 기술은 측방 스크럽(lateral scrub)에 대한 필요성을 회피할 수 있다. 공기가 주 부하원(primary load source)으로서 사용될 수 있거나 또는 주 부하원을 증대시키거나 대체하기 위해 사용될 수 있다.
도 7의 A 내지 도 7의 H는 도 1의 저항성 프로브의 제조 프로세스의 제 2 실시예를 예시한다. 도 7의 A에, 기판(200)이 예시된다. 도 7의 B에서, 2개의 직경들을 갖는 스루홀(201) 기판(200) 내에 에칭된다. 따라서, 스루홀(201)은 또한 캡 정지부를 포함한다. 도 7의 C에서, 기판(200)의 기본 재료의 모든 표면들에 릴리즈층(202)(예를 들어, SiO2)이 퇴적된다. 도 7의 D에서, 스루홀(201) 내에 금속(203)이 퇴적된다. 금속(203)은 핀을 형성하기 위해 사용될 수 있다. 도 7의 E에서, 가령 화학적 기계적 평탄화를 사용하여 금속(203)의 최상부가 평탄화된다. 평탄화 후, 금속(203)은 기판(200)의 기본 재료와 동일 평면을 이룰 수 있다. 도 7의 F에서, 금속(203) 및 릴리즈층(202) 상에 도체(또는 도체 트레이스)가 퇴적된다. 도체(204)를 퇴적하는 것은 마스킹 단계(예시 생략)를 포함할 수 있다. 도체(204)는 상호연결부 또는 스프링으로서 역할할 수 있다. 도 7의 G에서, 릴리즈층(202)이 에칭된다. 도 7의 H에서, 금속(203)의 팁(205)이 에칭된다. 이 실시예에서, 도체(204)는 금속(203) 상에 배치된다. 이 기술은 측방 스크럽을 야기한다. 공기가 주 부하원으로서 사용될 수 있다. 이 설계를 사용한 칩은 밀폐하여(hermetically) 시일링된다.
도 8의 A 내지 도 8의 H는 도 1의 저항성 프로브의 제조 프로세스의 제 3 실시예를 예시한다. 도 8의 A에, 기판(200)이 예시된다. 도 8의 B에서, 2개의 직경들을 갖는 스루홀(201) 기판(200) 내에 에칭된다. 따라서, 스루홀(201)은 또한 캡 정지부를 포함한다. 도 8의 C에서, 기판(200)의 기본 재료의 모든 표면들에 절연체(206)(예를 들어, SiO2)가 퇴적된다. 도 8의 D에서, 절연체(206)에 릴리즈층(202)(예를 들어, SiO2)이 퇴적된다. 도 8의 E에서, 스루홀(201) 내에 금속(203)이 퇴적된다. 금속(203)은 핀을 형성하기 위해 사용될 수 있다. 도 8의 F에서, 가령 화학적 기계적 평탄화를 사용하여 금속(203)의 최상부가 평탄화된다. 평탄화 후, 금속(203)은 기판(200)의 기본 재료와 동일 평면을 이룰 수 있다. 도 8의 G에서, 금속(203) 및 릴리즈층(202) 상에 도체(또는 도체 트레이스)가 퇴적된다. 도체(204)를 퇴적하는 것은 마스킹 단계(예시 생략)를 포함할 수 있다. 도체(204)는 상호연결부 또는 스프링으로서 역할할 수 있다. 도 8의 H에서, 릴리즈층(202)이 에칭된다. 도 8의 I에서, 금속(203)의 팁(205)이 에칭된다. 쉴딩 또는 그라운딩을 위한 금속층이 절연체층과 함께 추가될 수 있다. 공기가 주 부하원으로서 사용될 수 있다. 이 설계를 사용한 칩은 밀폐하여 시일링된다.
도 8의 실시예에서, 기판(200)의 바디가 그라운딩된다. 둘러싸는 바디가 공통 바디로부터 격리될 수 있다. 예를 들어, 도체(204)가 기판(200)의 바디에 연결될 수 있다. 그라운딩층이 또한 금속(203)을 둘러쌀 수 있다.
도 6 내지 도 8의 실시예들에서, 스루홀(201)은 도 1에서의 비아의 예시이다. 그러나, 도 1에서의 비아들이 반드시 프로브의 전체 바디를 관통하여 연장되지는 않는다.
도 9는 4분면이 채워진 기판을 예시한다. 도 9의 실시예는 이동 핀들(301)을 제공할 수 있다. 이 단일의 4분면이 채워진 실시예에서, 기판(300)은 실리콘이지만 다른 재료일 수도 있다. 핀들(301)은 텅스텐 카바이드 또는 다른 재료들일 수 있다. 도체 라인들(302)은 텅스텐 카바이드 또는 다른 재료들일 수 있다. 도체 라인들(302)이 스프링들로서 역할할 수 있다. 핀들(301) 및 임의의 스프링들은 에칭되어 나갈 수 있는 릴리즈층(예를 들어, SiO2)을 포함할 수 있다. 스프링 치수들은 스프링 상수를 매칭시키기 위해 변화될 수 있다. 핀들(301) 및 스프링들은 한 단계에서 퇴적될 수 있거나 또는 릴리즈층이 에칭되어 나가는 것이면 3개의 단계들에서 퇴적될 수 있다. 릴리즈층이 에칭되어 나가는 것은 스프링들 및 핀들(302)을 독립적으로 남기며, 이는 측방 응력을 완화할 수 있다. 도체 라인들(302)은 기판(300)의 원형이고, 평평한 표면에 수직이도록 구성될 수 있다. 핀들(301)은 유연하지 않을 수 있지만, 스프링들은 유연할 수 있다.
도 10은 정사각형 또는 선형 어레이를 예시한다. 기판(400)은 실리콘이거나 다른 재료일 수 있다. 이동할 수 있는 핀들(401)은 텅스텐 카바이드 또는 다른 재료들일 수 있다. 도체 라인들(402)은 구리 또는 다른 재료들일 수 있다. 핀들(401) 및 임의의 스프링들은 에칭되어 나갈 수 있는 릴리즈층(예를 들어, SiO2)을 포함할 수 있다. 핀(401) 부하는 전체적으로 공기압에 의할 수 있다. 기판(400)의 후면은 핀 연장부를 생성하기 위해 희생층으로 코팅될 수 있다. 도체 라인들(402)의 와이어 트레이스들이 구부러질 수 있지만, 스프링 액션을 제공하지 않을 수 있다. 이 실시예는 그들의 전체 길이에 대해 지지면에 평행하지 않은 굴곡형(curved) 엘리먼트들을 포함할 수 있다.
도 11은 저항성 프로브의 일부에 대한 제조 프로세스의 다른 실시예를 예시한다. 도 11은 기판 표면의 상면도이다. 도 11의 A에서, 금속(400)이 퇴적되고 표면 내에 트렌치들(401)이 에칭된다. 금속(400)의 한 세트의 금속 라인들은 예를 들어 1 μm X 1 μm일 수 있다. 도 11의 B에서, 트렌치들(401)을 과충전하도록 절연체(402)가 퇴적된다. 이어서 도 11의 C에서, 절연체(402) 상에 금속(400)이 퇴적되고 표면 내에 트렌치들이 에칭된다. 이는, 예를 들어 1 μm X 1 μm일 수 있는 금속(400)의 제 2 세트의 금속 라인들을 형성한다. 이 프로세스는 도체들의 스택을 도체들의 폭과 동일하게 생성하기 위해 반복될 수 있다. 도 12로부터의 칩들이 90도 회전되었을 때, 칩은 도 13과 같이 보여져야 한다. 다른 프로세스들이 웨이퍼 표면에 수직인 핀들을 생성하는 반면, 이 핀들은 웨이퍼 표면과 동일한 평면 내에 있다.
도 12는 칩 프로브 웨이퍼의 상면도이다. 기판(501)은 다중 칩 프로브들(500)을 포함한다. 칩 프로브들(500) 각각은 도 11에 예시된 프로세스를 사용하여 제조될 수 있다.
도 13은, 도 11에 대한 기술을 사용하거나 또는 화학적 기계적 평탄화를 구비하는 다마신(damascene) 프로세스와 같은 다른 기술들에 의해 형성될 수 있는 체커보드 칩 프로브의 도면이다. 도 13에서의 패턴은 금속층을 퇴적하고, 라인들을 에칭하고, 과충전하고, 이를 반복함으로써 생성된다. 금속 로드들의 일부분을 노출시키기 위해 일 단부가 에칭될 수 있다. 매트릭스 완료 후, 도체 블록들이 단부들에 와이어 본딩된다. 핀들을 가열하기 위해 고전류가 사용될 수 있고, 이는 절연체를 팽창시키고 압축시킨다. 냉각시, 와이어들이 수축되고 절연체로부터 분리된다. 정사각형 절연체가 정사각형 도체보다 조금 클 수 있고, 이는 정사각형 도체가 서로 터치하지 않을 수 있다는 것을 의미한다는 점을 유념한다. 도 13에 예시된 것과 같은 설계가, 예를 들어 도 1의 저항성 프로브의 바닥면에 사용될 수 있다. 이 예시에서, 정사각형 도체는 정사각형 절연체보다 표면으로부터 더 연장되고, 이는 핀들을 제공한다.
도 14는 프로브 헤드(600)의 단면 블록도이다. 프로브 헤드(600)는 절연체(601) 및 커버(602)를 포함한다. 커버(602)는 캐비티(603)를 완전히 에워싼다. 2개의 유입구/배출구(603)가 예시된다. 이들은 깨끗하고, 건조한 공기와 같은 유체를 제공하고 제거한다.
4개의 니들 바디들(604)이 포함된다. 더 많거나 적은 니들 바디들(604)이 포함될 수 있다. 각각의 니들 바디(604)는 뭉툭한(blunt) 니들 팁을 갖는다. 각각의 니들 바디(604)는 또한, 이동을 제한할 수 있는 숄더(606), 및 니들(605)과 전자 통신하는 도전성 와이어(607)를 포함한다. 니들 바디들(604)은, 니들 바디들(604)이 절연체(601)로부터 연장되는 길이가 변화할 수 있도록, 절연체(601) 내의 홀 내에서 이동할 수 있다.
유체는 모든 니들 바디들(604)에 걸쳐 균일하게, 제어되는 압력 및 속도로 공급될 수 있다. 예를 들어, 니들 바디들(604)에 작용하는 부하는 0 kg/cm2 내지 대략 6 kg/cm2 범위일 수 있다. 종래의 스프링 프로브와는 달리, 도 14의 실시예를 사용하는 프로브가 마모되어도 부하가 감소되지 않을 수 있다. 유체는 니들 바디들(604)을 푸시할 수 있거나 니들 바디들(604)이 캐비티(603) 내로 푸시되었을 때 쿠션 또는 스프링으로서 역할할 수 있다.
공기압 또는 다른 유체로부터의 압력을 사용하는 것은 핀마다 일정한 힘을 제공할 수 있다. 공기 또는 다른 유체로부터의 압력의 사용은 팁[예를 들어, 원뿔형(coned) 또는 둥근 팁들] 표면 변화들을, 표면적이 증가하고 유닛 면적당 압력이 감소하므로 보상할 수 있다.
핀들(605)로 예시되지만, 본원에서 개시되는 임의의 핀 실시예들이 사용될 수 있다. 공기압이 사용되는 경우, 인클로저가 시일될 수 있다. 다른 경우, 금속 스프링이 사용되고 인클로저가 시일링되지 않는다. 고정형 핀 설계들에서, 핀들을 홀딩하는 블록들이 스프링으로 부하가 걸릴 수 있다(spring-loaded). 실시예에서, 핀들 및 블록 둘 다가 고정되고 프로브의 무게가 접촉 압력을 결정할 수 있다.
도 15는 제어 암(703) 상의 프로브 헤드(600)의 블록도이다. 시스템(700)에서, 프로브 헤드(600)는 플래턴(702) 상에 배치되는 웨이퍼(701) 위에 위치된다. 액추에이터(704)가 제어 암(703)을, 그에 따라 프로브 헤드(600)를 웨이퍼(703)를 향해 그리고 웨이퍼(703)로부터 멀리 이동시킬 수 있다. 프로브 헤드(600)는 또한 프로브 헤드(600)로부터의 판독들에 기반하여 저항을 결정할 수 있는 제어 시스템(705)과 전자 통신한다.
동작 동안, 프로브 헤드(600) 상의 2개의 핀들 사이에 전류가 통과될 수 있고, 프로브 헤드(600) 상의 다른 2개의 핀들 사이에서 전압이 측정된다. 프로브 헤드(600)의 핀들은 단일 행으로 또는 다중 행들로 배열될 수 있다.
도 14의 프로브 헤드가 제어 암(703) 상에 있는 것으로 예시되지만, 다른 프로브들이 사용될 수 있다. 예를 들어, 도 1의 프로브(100) 또는 도 18의 프로브가 제어 암(703)과 함께 사용될 수 있다.
도 16은 가변 형상(variable-shaped) 프로브 핀들의 저면도를 예시한다. 도 17은 도 16의 가변 형상 프로브 핀들의 측면도를 예시한다. 가변 형상 핀들은 중앙에 포인트를 갖는 둥근 핀들과 비교하여 더 근접한 핀 간격을 제공할 수 있다. 일례로, (삼각형 홀들을 포함하여) 홀들이 에칭되고 홀들 내에 금속이 퇴적된다. 이 배열은 모든 핀들이 동일한 형상인 본원에서 개시되는 임의의 실시예에서 핀들을 대체하기 위해 사용될 수 있다.
도 18은 저항성 프로브(800)의 제 2 실시예를 예시하며 단면도 및 대응하는 상면도를 도시한다. 이 저항성 프로브(800)는 시트 저항, MRAM 내의 터널링 저항, 또는 다른 막 특성들의 측정을 위한 다중 핀 마이크로 프로브들에 대한 긴 수명 성능을 달성할 수 있다. 프로브들(802)은, 엘리먼트들이 기판(801)의 지지면[점선(804)으로 도시됨]에 엘리먼트들의 전체 길이를 따라 평행하지 않도록 굴곡진다. 엘리먼트들의 치수들 및/또는 간격은 서브 마이크로 미터일 수 있다. 기판(801)은 실리콘일 수 있고 프로브들(802) 및 층(803)은 본원에서 개시된 임의의 금속 또는 금속 합금일 수 있다. 4개의 프로브들(802)이 예시되지만, 더 많거나 적은 프로브들이 사용될 수 있다. 저항성 프로브(800)는 접촉 면적 안정성을 향상시킬 수 있고, 테스트 웨이퍼 표면을 손상시킬 가능성을 감소시키며, 프로브의 수명을 연장시킬 수 있다.
프로브들(802)을 지지면에 비평행하게 연장시켜 굴곡형 캔틸레버를 형성함으로써, 특히 팁 자유 단부 부근에서 접촉 각도가 증가된다. 이는, 웨이퍼 표면을 향한 동일한 양의 증속구동(overdrive)에서의 안착 동안 샘플 표면과 프로브(802) 사이의 감소된 접촉 면적을 유발한다.
일례로, 지지면에 대한 프로브(802)의 각도가 90°에 가깝게 이루어질 수 있다(지지 바디 각도 및 총 팁 굴곡 각도 참조). 비도전성 지지 캔틸레버 재료[예를 들어, 기판(801)]를 제거함으로써, 접촉 면적은, 도전성 재료들(또는 층을 이룬 도전성 재료들)에 의해 형성될 수 있는 캔틸레버 프로브(802)의 단면에 의해 결정될 수 있다. 따라서, 마모적(wearing) 프로세스 동안에도 접촉 면적이 일정한 사이즈로 유지될 수 있고, 이는 프로브의 측정 정밀도 및 총 수명을 향상시킨다.
층을 이룬 도전성 재료들은 양호한 접촉 및 표면 산화물층을 관통하는 능력 둘 다를 달성하도록 부드럽고 단단한 도전성 재료들 둘 다를 함유할 수 있다. 프로브들(802)은 팁들 근방에 비도전성 지지 재료들을 포함하지 않을 수 있다.
기판(801)(예를 들어, SiO2)은 프로브들(802)로부터 에칭될 수 있다. 기판(801)(예를 들어, 지지 영역) 또는 다른 지지용 비도전성 재료를 제거함으로써, 응력이 릴리징되어 도전성 프로브(802)가 굴곡질 수 있지만 서로 컨포멀할 수 있다. 이는 웨이퍼 표면 상의 동시적 안착을 가능하게 할 수 있다.
도 19의 A 내지 도 19의 E는 도 18의 저항성 프로브의 일부에 대한 제조 프로세스의 실시예를 예시한다. 도 19의 A에서, 기판(801)(예를 들어, 유리판)이 몰딩된다. 도 19의 B에서, 프로브들(802)을 형성하는 금속층이 퇴적된다. 도 19의 C에서, 금속층(803)이 퇴적된다. 마스크가 또한 퇴적될 수 있다. 도 19의 D에서, 프로브들(802)이 에칭된다. 도 19의 E에서, 기판(801)의 지지 영역이 에칭된다.
도 20의 A 내지 도 20의 E는 도 18의 저항성 프로브의 일부에 대한 제조 프로세스의 다른 실시예를 예시한다. 도 20의 A에서, 제어된 각도로 기판(801) 상에 포토레지스트(805)가 퇴적된다. 도 20의 B에서, 프로브들(802)을 형성하는 금속층이 퇴적된다. 도 20의 C에서, 금속층(803)이 퇴적된다. 마스크가 또한 퇴적될 수 있다. 도 20의 D에서, 프로브들(802)이 에칭된다. 도 20의 E에서, 기판(801)의 지지 영역 및 포토레지스트(805)가 에칭되고/되거나 그렇지 않으면 제거된다. 각진 것으로 예시되었지만, 포토레지스트(805)는 굴곡형을 제공하는 방식으로 퇴적될 수 있다. 따라서, 도 20의 A 내지 도 20의 E의 실시예는 각진 프로브들(801)뿐만 아니라 굴곡형 프로브들(801)을 형성하기 위해 사용될 수 있다.
또 다른 실시예에서, 프로브들(802) 내에 재료의 2개의 층들이 포함될 수 있다. 층들 간의 상이한 응력들로 인해, 프로브들(802)은 기판(801)이 프로브(802)로부터 에칭되어 나갈 때 감길 것이다(curl). 재료의 다른 층은 SiO2와 같은 절연체, 실리콘 질화물, 또는 실리콘일 수 있다.
본 개시가 하나 이상의 특정 실시예에 관하여 설명되었지만, 본 개시의 다른 실시예들이 본 개시의 범위를 벗어나지 않고 구성될 수 있다는 점이 이해될 것이다. 따라서, 본 개시는 첨부된 청구범위 및 이들의 합당한 해석에 의해서만 제한되는 것으로 간주된다.

Claims (9)

  1. 저항성 프로브에 있어서,
    최상면을 규정하는 기판;
    상기 기판으로부터 연장되는 복수의 프로브들로서, 상기 복수의 프로브들 각각의 굴곡진(curved) 부분은, 상기 굴곡진 부분이 상기 기판의 최상면에 비평행하도록, 상기 기판으로부터 프로브의 팁까지 굴곡지는 것인, 상기 복수의 프로브들; 및
    상기 기판의 반대측에서 상기 복수의 프로브들 상에 배치되는 금속층으로서, 상기 복수의 프로브들 각각의 굴곡진 부분은, 상기 복수의 프로브들 각각의 굴곡진 부분의 제1 표면 및 반대측의 제2 표면이 노출되도록, 상기 금속층의 에지로부터 프로브의 팁까지 상기 기판으로부터 멀어지도록 연장되는 것인, 상기 금속층
    을 포함하고,
    상기 기판 중에서 상기 복수의 프로브들 각각의 굴곡진 부분에 매칭되는 부분은 에칭되어 제거됨으로써, 상기 굴곡진 부분 아래에 상기 기판이 존재하지 않는 것인, 저항성 프로브.
  2. 제1항에 있어서,
    상기 복수의 프로브들 간 간격은 1 마이크로미터(micron) 미만인 것인, 저항성 프로브.
  3. 제1항에 있어서,
    상기 복수의 프로브들 각각은 1 마이크로미터 미만의 폭을 갖는 것인, 저항성 프로브.
  4. 제1항에 있어서,
    상기 복수의 프로브들은 금속 또는 금속 합금으로 제조되는 것인, 저항성 프로브.
  5. 제1항에 있어서,
    상기 기판은 실리콘으로 제조되는 것인, 저항성 프로브.
  6. 제1항에 있어서,
    상기 복수의 프로브들 중 하나의 팁은 상기 기판의 최상면으로부터 90도 굴곡진 것인, 저항성 프로브.
  7. 제1항에 있어서,
    상기 복수의 프로브들은 네 개의 프로브들을 포함하는 것인 저항성 프로브.
  8. 제1항에 있어서,
    상기 복수의 프로브들 각각의 곧은 부분은 완전히 상기 기판과 상기 금속층 사이에 배치되고, 상기 곧은 부분은 상기 기판 및 상기 금속층으로부터 응력을 받는 것(under stress)인, 저항성 프로브.
  9. 제1항에 있어서,
    상기 복수의 프로브들 각각은 상기 금속층의 에지를 넘어서는 부분에서 상기 기판 및 상기 금속층으로부터 응력을 받지 않음으로써 상기 굴곡진 부분을 정의하는 것인, 저항성 프로브.
KR1020237018177A 2016-08-22 2017-08-18 이동가능 니들 바디들을 갖는 저항성 프로브 KR102621480B1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201662378161P 2016-08-22 2016-08-22
US62/378,161 2016-08-22
US15/665,730 2017-08-01
US15/665,730 US10514391B2 (en) 2016-08-22 2017-08-01 Resistivity probe having movable needle bodies
KR1020197008207A KR102539408B1 (ko) 2016-08-22 2017-08-18 이동가능 니들 바디들을 갖는 저항성 프로브
PCT/US2017/047622 WO2018039075A1 (en) 2016-08-22 2017-08-18 Multi-pin dense array resistivity probe

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020197008207A Division KR102539408B1 (ko) 2016-08-22 2017-08-18 이동가능 니들 바디들을 갖는 저항성 프로브

Publications (2)

Publication Number Publication Date
KR20230080506A KR20230080506A (ko) 2023-06-07
KR102621480B1 true KR102621480B1 (ko) 2024-01-04

Family

ID=61190720

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020237018177A KR102621480B1 (ko) 2016-08-22 2017-08-18 이동가능 니들 바디들을 갖는 저항성 프로브
KR1020197008207A KR102539408B1 (ko) 2016-08-22 2017-08-18 이동가능 니들 바디들을 갖는 저항성 프로브

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020197008207A KR102539408B1 (ko) 2016-08-22 2017-08-18 이동가능 니들 바디들을 갖는 저항성 프로브

Country Status (4)

Country Link
US (2) US10514391B2 (ko)
KR (2) KR102621480B1 (ko)
CN (2) CN113189378A (ko)
WO (1) WO2018039075A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10514391B2 (en) * 2016-08-22 2019-12-24 Kla-Tencor Corporation Resistivity probe having movable needle bodies
CN110426558B (zh) * 2019-09-02 2024-03-05 麦峤里(上海)半导体科技有限责任公司 导电薄膜方块电阻多探针测量方法及测量头
CN110783218B (zh) * 2019-10-22 2022-04-05 深圳第三代半导体研究院 一种碳化硅外延晶片掺杂浓度三轴型测试方法
US11740279B2 (en) 2020-04-24 2023-08-29 Kla Corporation Measuring temperature-modulated properties of a test sample
JP2022179066A (ja) * 2021-05-21 2022-12-02 富士フイルムビジネスイノベーション株式会社 シート電気抵抗測定器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020142509A1 (en) 2001-03-28 2002-10-03 Atsuo Hattori Probe unit having resilient metal leads
JP2004085241A (ja) 2002-08-23 2004-03-18 Mitsubishi Materials Corp コンタクトプローブ、プローブ装置及びコンタクトプローブの製造方法
JP2006043878A (ja) 2004-08-04 2006-02-16 Palo Alto Research Center Inc 金属間材料からなるバネ構造及びバネ構造の製造方法
US20060211278A1 (en) 1999-12-28 2006-09-21 Formfactor, Inc. Interconnect for microelectronic structures with enhanced spring characteristics
JP2007256078A (ja) 2006-03-23 2007-10-04 Toshiba Corp 多層型プローブピンおよびプローブカード
US20070269997A1 (en) 1999-07-30 2007-11-22 Formfactor, Inc. Electronic components with plurality of contoured microelectronic spring contacts
JP2008216206A (ja) 2007-03-07 2008-09-18 Tokyo Cathode Laboratory Co Ltd コンタクタ、プローブカード及びプローブカードの製造方法
JP2009300079A (ja) 2008-06-10 2009-12-24 Japan Electronic Materials Corp コンタクトプローブ及びプローブカード

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553192A (en) * 1983-08-25 1985-11-12 International Business Machines Corporation High density planar interconnected integrated circuit package
US5066907A (en) 1990-02-06 1991-11-19 Cerprobe Corporation Probe system for device and circuit testing
WO1991013533A1 (en) * 1990-03-01 1991-09-05 Motorola, Inc. Selectively releasing conductive runner and substrate assembly
JP2769015B2 (ja) * 1990-03-08 1998-06-25 株式会社神戸製鋼所 電子回路基板検査用プローバーピンヘッド及びその製造方法
US5166774A (en) * 1990-10-05 1992-11-24 Motorola, Inc. Selectively releasing conductive runner and substrate assembly having non-planar areas
US5389885A (en) * 1992-01-27 1995-02-14 Everett Charles Technologies, Inc. Expandable diaphragm test modules and connectors
JPH0653277A (ja) * 1992-06-04 1994-02-25 Lsi Logic Corp 半導体装置アセンブリおよびその組立方法
US5347226A (en) 1992-11-16 1994-09-13 National Semiconductor Corporation Array spreading resistance probe (ASRP) method for profile extraction from semiconductor chips of cellular construction
JPH06241777A (ja) * 1993-02-16 1994-09-02 Mitsubishi Electric Corp 原子間力顕微鏡用カンチレバー、その製造方法、このカンチレバーを用いた原子間力顕微鏡及びこのカンチレバーを用いた試料表面密着性評価方法
JP2723871B2 (ja) 1995-12-21 1998-03-09 山形日本電気株式会社 電気接続ユニット
US5923178A (en) * 1997-04-17 1999-07-13 Cerprobe Corporation Probe assembly and method for switchable multi-DUT testing of integrated circuit wafers
JPH1116961A (ja) * 1997-06-27 1999-01-22 Mitsubishi Materials Corp 屈曲部を有する金属体およびその成形方法と前記金属体を用いたコンタクトプローブおよびその製造方法
EP1095282B1 (en) 1998-07-08 2007-09-19 Capres Aps Multi-point probe
US7304486B2 (en) 1998-07-08 2007-12-04 Capres A/S Nano-drive for high resolution positioning and for positioning of a multi-point probe
US6255126B1 (en) * 1998-12-02 2001-07-03 Formfactor, Inc. Lithographic contact elements
US7126220B2 (en) * 2002-03-18 2006-10-24 Nanonexus, Inc. Miniaturized contact spring
WO2000073905A2 (en) * 1999-05-27 2000-12-07 Nanonexus, Inc. Test interface for electronic circuits
US6917525B2 (en) * 2001-11-27 2005-07-12 Nanonexus, Inc. Construction structures and manufacturing processes for probe card assemblies and packages having wafer level springs
US7247035B2 (en) * 2000-06-20 2007-07-24 Nanonexus, Inc. Enhanced stress metal spring contactor
US7189077B1 (en) * 1999-07-30 2007-03-13 Formfactor, Inc. Lithographic type microelectronic spring structures with improved contours
US6528350B2 (en) * 2001-05-21 2003-03-04 Xerox Corporation Method for fabricating a metal plated spring structure
US6692145B2 (en) * 2001-10-31 2004-02-17 Wisconsin Alumni Research Foundation Micromachined scanning thermal probe method and apparatus
EP1509776A4 (en) * 2002-05-23 2010-08-18 Cascade Microtech Inc TEST PROBE OF A DEVICE SUBMITTED TEST
KR100573089B1 (ko) * 2003-03-17 2006-04-24 주식회사 파이컴 프로브 및 그 제조방법
US6924655B2 (en) 2003-09-03 2005-08-02 Micron Technology, Inc. Probe card for use with microelectronic components, and methods for making same
US7378742B2 (en) * 2004-10-27 2008-05-27 Intel Corporation Compliant interconnects for semiconductors and micromachines
JP4382593B2 (ja) * 2004-06-29 2009-12-16 山一電機株式会社 プローブユニット及びその製造方法
US8330485B2 (en) * 2004-10-21 2012-12-11 Palo Alto Research Center Incorporated Curved spring structure with downturned tip
KR20070115998A (ko) * 2005-02-24 2007-12-06 에스브이 프로브 피티이 엘티디 웨이퍼 테스트 장치용 프로브
EP1780550A1 (en) * 2005-10-31 2007-05-02 Capres A/S A probe for testing electrical properties of test samples
US7952375B2 (en) * 2006-06-06 2011-05-31 Formfactor, Inc. AC coupled parameteric test probe
US7782072B2 (en) * 2006-09-27 2010-08-24 Formfactor, Inc. Single support structure probe group with staggered mounting pattern
US20080122470A1 (en) * 2006-11-27 2008-05-29 Wen-Yu Lu Probe installed to a probe card
JP2008216216A (ja) * 2007-03-08 2008-09-18 Matsushita Electric Ind Co Ltd プローブカード
JP5046909B2 (ja) * 2007-12-21 2012-10-10 株式会社日本マイクロニクス 電気試験用接触子、これを用いる電気的接続装置、及び接触子の製造方法
JP5222038B2 (ja) * 2008-06-20 2013-06-26 東京エレクトロン株式会社 プローブ装置
US8803539B2 (en) 2009-06-03 2014-08-12 Hsio Technologies, Llc Compliant wafer level probe assembly
US8106671B2 (en) 2009-08-04 2012-01-31 Applied Micro Circuits Corporation Socketless integrated circuit contact connector
JP5427536B2 (ja) * 2009-10-01 2014-02-26 東京エレクトロン株式会社 プローブカード
KR20110085456A (ko) * 2010-01-20 2011-07-27 주식회사 팬아시아정보기술 반도체 패키지 테스트용 소켓, 테스트 프로브, 반도체 패키지 및 반도체 패키지의 테스트 방법
KR101020025B1 (ko) * 2010-06-01 2011-03-09 주식회사 엔티에스 전자부품 검침 프로브
US8519534B2 (en) * 2010-09-22 2013-08-27 Palo Alto Research Center Incorporated Microsprings partially embedded in a laminate structure and methods for producing same
US20120319710A1 (en) 2011-06-15 2012-12-20 Probelogic, Inc. Method and apparatus for implementing probes for electronic circuit testing
KR20140134286A (ko) * 2012-03-07 2014-11-21 주식회사 아도반테스토 벌크 물질로부터 형성된 미세 피치 프로브 어레이
US9470715B2 (en) * 2013-01-11 2016-10-18 Mpi Corporation Probe head
US10514391B2 (en) * 2016-08-22 2019-12-24 Kla-Tencor Corporation Resistivity probe having movable needle bodies
EP3593151B1 (en) * 2017-03-07 2023-07-05 Capres A/S A probe for testing an electrical property of a test sample

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070269997A1 (en) 1999-07-30 2007-11-22 Formfactor, Inc. Electronic components with plurality of contoured microelectronic spring contacts
US20060211278A1 (en) 1999-12-28 2006-09-21 Formfactor, Inc. Interconnect for microelectronic structures with enhanced spring characteristics
US20020142509A1 (en) 2001-03-28 2002-10-03 Atsuo Hattori Probe unit having resilient metal leads
JP2004085241A (ja) 2002-08-23 2004-03-18 Mitsubishi Materials Corp コンタクトプローブ、プローブ装置及びコンタクトプローブの製造方法
JP2006043878A (ja) 2004-08-04 2006-02-16 Palo Alto Research Center Inc 金属間材料からなるバネ構造及びバネ構造の製造方法
JP2007256078A (ja) 2006-03-23 2007-10-04 Toshiba Corp 多層型プローブピンおよびプローブカード
JP2008216206A (ja) 2007-03-07 2008-09-18 Tokyo Cathode Laboratory Co Ltd コンタクタ、プローブカード及びプローブカードの製造方法
JP2009300079A (ja) 2008-06-10 2009-12-24 Japan Electronic Materials Corp コンタクトプローブ及びプローブカード

Also Published As

Publication number Publication date
US10514391B2 (en) 2019-12-24
KR102539408B1 (ko) 2023-06-01
CN113189378A (zh) 2021-07-30
US20200072869A1 (en) 2020-03-05
CN109804254B (zh) 2021-10-26
CN109804254A (zh) 2019-05-24
US11249110B2 (en) 2022-02-15
WO2018039075A1 (en) 2018-03-01
KR20230080506A (ko) 2023-06-07
US20180052189A1 (en) 2018-02-22
KR20190034687A (ko) 2019-04-02

Similar Documents

Publication Publication Date Title
KR102621480B1 (ko) 이동가능 니들 바디들을 갖는 저항성 프로브
US7808261B2 (en) Contact with plural beams
US7674112B2 (en) Resilient contact element and methods of fabrication
US7384277B1 (en) Reinforced contact elements
US20090079455A1 (en) Reduced scrub contact element
US7332921B2 (en) Probe card and method for constructing same
TWI704352B (zh) 測試頭之接觸探針
US20140176174A1 (en) Designed asperity contactors, including nanospikes for semiconductor test, and associated systems and methods
WO2005072438A2 (en) Multi-signal single beam probe
KR101638228B1 (ko) 파인 피치에 대응되는 프로브 핀의 제조 방법
KR100319130B1 (ko) 반도체웨이퍼의전기적특성측정용미세캔티레버형탐침
US20070259456A1 (en) Extended Probe Tips
US8115504B2 (en) Microspring array having reduced pitch contact elements
TW475298B (en) High density interconnection test connector especially for verification of integrated circuits
KR101514636B1 (ko) 외팔보 구조물을 이용한 반도체소자 테스트 소켓용 컨택터 및 그 제조 방법
JP2004228314A (ja) パッドを有する半導体装置
EP2770332A1 (en) Contact probe
TW200532209A (en) Multi-signal single beam probe
KR101420170B1 (ko) 외팔보 구조물을 이용한 반도체소자 테스트 소켓용 컨택터 및 그 제조 방법
KR100430621B1 (ko) 반도체 검사 장치용 프로브
WO2000079293A9 (en) Probe device using superelastic probe elements
WO2000079293A1 (en) Probe device using superelastic probe elements
KR200471926Y1 (ko) 수직프로브

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant