KR102606345B1 - 적어도 하나의 2 상태 줌 카메라를 갖는 멀티-애퍼처 카메라 - Google Patents

적어도 하나의 2 상태 줌 카메라를 갖는 멀티-애퍼처 카메라 Download PDF

Info

Publication number
KR102606345B1
KR102606345B1 KR1020227024832A KR20227024832A KR102606345B1 KR 102606345 B1 KR102606345 B1 KR 102606345B1 KR 1020227024832 A KR1020227024832 A KR 1020227024832A KR 20227024832 A KR20227024832 A KR 20227024832A KR 102606345 B1 KR102606345 B1 KR 102606345B1
Authority
KR
South Korea
Prior art keywords
lens
efl
camera
zoom
module
Prior art date
Application number
KR1020227024832A
Other languages
English (en)
Other versions
KR20220107312A (ko
Inventor
갈 샤브타이
에브라임 골든베르그
에밀 브론스타인
이타이 예디드
로이 루드닉
미카엘 드로어
길 바쳐
이프타 코왈
Original Assignee
코어포토닉스 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코어포토닉스 리미티드 filed Critical 코어포토닉스 리미티드
Priority to KR1020237039764A priority Critical patent/KR102655458B1/ko
Publication of KR20220107312A publication Critical patent/KR20220107312A/ko
Application granted granted Critical
Publication of KR102606345B1 publication Critical patent/KR102606345B1/ko

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1431Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive
    • G02B15/143103Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive arranged ++-
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/04Vertical adjustment of lens; Rising fronts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/105Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens with movable lens means specially adapted for focusing at close distances
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0015Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces

Abstract

멀티 카메라 및 특히 듀얼-카메라는 와이드 유효 초점 길이(EFLW)를 갖는 와이드 렌즈 및 와이드 이미지 센서를 포함하는 와이드 카메라, 제 1 광축을 갖는 텔레 렌즈, 텔레 이미지 센서 및 OPFE를 포함하는 폴디드 또는 난-폴디드 텔레 카메라를 포함하고, 여기서 상기 텔레 렌즈는 객체 측으로부터 이미지 측으로, 제 1 렌즈 요소 그룹(G1), 제 2 렌즈 요소 그룹(G2) 및 제 3 렌즈 요소 그룹(G3)을 포함하고, 여기서 렌즈 요소 그룹 중 적어도 2 개는 텔레 렌즈를 매크로 상태 또는 2 개의 줌 상태로 만들 수 있도록, 제 1 광축을 따라 이미지 센서에 대해 이동 가능하고, 여기서 텔레 렌즈의 유효 초점 길이(EFL)는 하나의 줌 상태에서의 EFLT,min로부터 다른 줌 상태에서의 EFLT,max로 변경되고, 여기서 EFLTmin > 1.5 x EFLW, 및 EFLTmax> 1.5 x EFLTmin이다. 매크로 상태에서, EFLT,min을 갖는 렌즈를 사용하면, 5cm와 같이 짧은 객체-카메라 거리를 갖는 피사체에 포커싱을 할 수 있다. 이동을 가능하게 하는 액츄에이터도 개시된다.

Description

적어도 하나의 2 상태 줌 카메라를 갖는 멀티-애퍼처 카메라{MULTI-APERTURE CAMERAS WITH AT LEAST ONE TWO STATE ZOOM CAMERA}
관련 출원에 대한 상호 참조
이 출원은 2019년 2 월 25 일에 출원된 미국 가특허 출원 제 62/809,871 호에 기초하여 우선권 주장을 하며, 그 출원 전문은 본원에 명백히 참조로 포함된다.
본 명세서에 개시된 실시 예는 일반적으로 디지털 카메라에 관한 것으로서, 보다 상세하게는 폴디드 줌 렌즈를 갖는 듀얼-애퍼처 줌 디지털 카메라에 관한 것이다.
소형 멀티-애퍼처, 특히 듀얼-애퍼처("듀얼-렌즈" 또는 "듀얼-카메라"라고도 함) 디지털 카메라가 공지되어 있다. 소형화 기술은 이러한 카메라를 태블릿 및 휴대폰과 같은 소형 휴대용 전자 장치(후자는 일반적으로 "스마트폰"이라 칭함)에 통합하여, 줌과 같은 고급 이미징 기능을 제공한다. 이는 공동 소유의 PCT 특허 출원 PCT/IB2015/056004에 기재되어 있고, 이는 그 전문이 본원에 참조로 포함된다. 이러한 카메라 및/또는 본 명세서에 개시된 카메라는 얇을수록 더 좋지만, 일반적으로 1cm 미만의 엄격한 높이 제한을 갖는 카메라이다.
와이드 시야(FOVW)를 갖는 하나의 카메라(이는 "와이드 카메라"라고 지칭됨) 및 더 좁은 "텔레포토"(FOVT)를 갖는 다른 카메라(이는 "텔레 카메라"라고 지칭됨)를 포함하는 듀얼-애퍼처 줌 카메라가 공지되어 있다. 텔레 카메라는 일반적으로 사용되는 이미지 센서로 작동하기에 적합하면서, 카메라가 설치된 장치의 두께에 맞도록(바람직하게는 장치 케이스로부터 돌출되지 않는) 가능한 작은 치수를 가져야 한다. 이 문제는 상대적으로 높은 줌 효과를 얻기 위해 긴(텔레) 유효 초점 길이(EFL)를 갖는 텔레 렌즈를 사용할 때 더욱 중요하다. 알려진 바와 같이, 렌즈에 적용되는 용어 "EFL"은 후방 주 평면으로부터 근축 초점 평면까지의 거리를 지칭한다. 후면 주 평면은 무한대로부터 축상(on-axial) 부기저(parabasal) 광선을 추적하여 계산되며, 부기저의 이미지 공간 주변 광선 각도를 이용하여 결정된다.
업라이트 와이드 카메라와 폴디드 텔레 카메라를 포함하는 듀얼-애퍼처 줌 카메라도 또한 공지되어 있다. 이와 관련해서, 예를 들어 공동 소유하는 미국 특허 번호 제 US 9,392,188 호를 참조하라. 와이드 카메라는 와이드 이미지 센서(또는 간단히 "센서"), 및 와이드 렌즈 대칭 축을 갖는 와이드 고정 초점 렌즈 어셈블리(또는 간단히 "렌즈")를 포함하는 와이드 렌즈 모듈로 구성된 "업라이트" 카메라이다. 폴디드 텔레 카메라는 텔레 이미지 센서, 및 텔레 렌즈 대칭 축을 갖는 텔레 고정 초점 렌즈를 포함하는 텔레 렌즈 모듈을 포함한다. 듀얼-애퍼처 줌 카메라는 제 1 광학 경로를 따라 객체 또는 장면으로부터 도달하는 광을 텔레 이미지 센서를 향하는 제 2 광학 경로로 폴딩하는 반사 요소(광학 경로 폴딩 요소 또는 "OPFE"라고도 함)를 더 포함한다. 제 1 및 제 2 광학 경로는 서로 수직이다. 와이드 렌즈 대칭 축은 제 1 광학 경로에(평행하게) 따르며, 텔레 렌즈 대칭 축은 제 2 광학 경로를 따른다. 반사 요소는 와이드 렌즈 대칭 축과 텔레 렌즈 대칭 축 모두에 대해 실질적으로 45도 경사진 반사 요소 대칭 축을 가지며, 객체와 텔레 이미지 센서 사이에 폴디드 광학 경로를 제공하도록 동작한다.
와이드 렌즈는 와이드 시야(FOVW)를 가지며, 텔레 렌즈는 FOVW보다 좁은 텔레 시야(FOVT)를 갖는다. 예를 들어, 텔레 카메라는 와이드 카메라와 비교하여, X5 줌 효과를 제공한다.
다른 렌즈 요소 또는 렌즈 요소 그룹에 대해 이동할 수 있는 하나 이상의("그룹") 렌즈 요소를 가지며, 둘 이상의 그룹으로 분할된 복수의 렌즈 요소를 포함하는 렌즈 어셈블리를 갖는 소형 폴디드 카메라가 또한 공지되어 있다. 상대적인 이동에 사용되는 액추에이터(모터)는 스크루 또는 압전 액추에이터를 갖는 스텝 모터를 포함한다. 그러나, 이러한 카메라의 일반적인 문제점은 그러한 카메라의 구조가 줌 배율(zoom factor)과 함게 F#이 증가함에 따라 3 이상의 좀 더 큰 F 수(F#)를 지시하게 된다는 점이다. 그들의 액추에이터는 느리고 소음이 있거나(압전), 또는 부피가 크며(스테퍼 모터), 신뢰성 문제가 있으며, 고가이다. 알려진 광학 설계는 그러한 카메라에서 얻어진 2 가지의 극단적인 줌 상태에 대해, 주어진 F#에 대해 큰 렌즈 어셈블리 높이를 필요로 한다.
"매크로(macro)-촬영" 모드는 스마트폰 카메라의 인기 있는 차별화 요소가 되고 있다. "매크로 촬영"은 카메라에 매우 가까이 있는 피사체를 촬영하여, 이미지 센서에 기록된 이미지가 실제 촬영된 피사체와 거의 같은 크기로 촬영되게 하는 것을 의미한다. 예를 들어, "매크로 촬영"은 사진 속 피사체의 크기가 실물 크기보다 큰, 아주 작은 피사체 및 곤충과 같은 생물체를 촬영하는 것을 의미할 수 있다. 매크로 촬영은 "매크로 이미지"를 생성한다.
매크로 FOV를 갖는 전용 매크로 카메라를 포함함으로써 매크로 촬영 기능을 제공하는 최초의 스마트폰 모델이 소비자 시장에 진입하였다. 그러나, 추가적인 전용 하드웨어 없이도, 많은 스마트폰에 이미 존재하는 카메라 유형을 사용하여 매크로 촬영 기능을 제공하는 것이 유리할 것이다.
예시적인 실시예들에 있어서, 폴디드 카메라가 제공되는데, 이는 렌즈 광축을 따라 렌즈 요소 그룹(G1), 렌즈 요소 그룹(G2) 및 렌즈 요소 그룹(G3)을 포함하는 렌즈, 이미지 센서, OPFE 및 렌즈를 2 개의 줌 상태로 만들기 위해 렌즈 광축에 평행한 방향으로 이미지 센서에 대해 G1 및 G3을 함께 이동시키는 액추에이터를 포함하고, 여기서 G1 및 G3은 서로 고정적으로 부착되고, G2는 2 개의 스톱부 사이에서 플로팅하고, 여기서 함께 G1 및 G3의 이동은 G2를 하나의 줌 상태에서 G1에 부착하고 다른 줌 상태에서 G3에 부착하는 것을 가능하게 한다.
일부 실시예에서, G1과 G3 사이의 고정된 부착은 G1과 G3을 연결하는 복수의 로드에 의해 가능하고, G2는 복수의 로드에 의해 가이드되며, 상기 복수의 로드에 대해 렌즈 축에 평행한 방향을 따라 대해 이동할 수 있다. G1 또는 G3에 대한 G2의 부착은 자력에 의한 것일 수 있다.
일부 실시예에서, 함께 G1 및 G3의 이동은 2mm보다 크고 20mm보다 작은 스트로크에 걸쳐 있고, 2 개의 스톱부 사이의 G2 이동의 스트로크는 G1 및 G3의 스트로크의 절반보다 작다.
일부 실시예에서, 렌즈는 유효 초점 길이(EFL)을 갖고, EFL은 제1 줌 상태에서의 최소값(EFL,min)으로부터 제2 줌 상태에서의 최대값(EFLmax)으로 변경되고, 비율(EFLmax/EFL,min)은 >1.5이다.
일부 실시예에서, 액추에이터는 복수의 SMA 스프링 및 복수의 기계적 스프링을 갖는 형상 기억 합금(SMA) 액추에이터를 포함한다.
일부 실시예에서, 복수의 SMA 스프링은 4개의 스프링을 포함하고, 복수의 기계적 스프링은 2 개의 스프링을 포함한다.
일부 실시예에서, 카메라는 렌즈를 포커싱하기 위한 보이스 코일 모터(VCM) 메커니즘을 더 포함한다. 일부 실시예에서, 렌즈의 포커싱은 G1+G2+G3을 함께 이동함으로써 수행된다. 일부 실시예에서, 렌즈는 제1 G2 스톱부 및 제2 G2 스톱부를 갖는 G2 스톱 메커니즘을 또한 포함하는 렌즈 및 센서 모듈에 포함되고, 제1 또는 제2 G2 스톱부 중 하나는 매크로 촬영을 위해 G1+G2+G3의 이동이 2mm 이상의 큰 스트로크에 걸쳐 있을 수 있도록, 제거 가능하다.
일부 실시예에서, 액추에이터는 복수의 각각의 자석 및/또는 자석 극성에 커플링된 적어도 3 개의 코일을 포함한다. 일부 실시예에서, 자석에 대한 적어도 3 개의 코일의 위치는 위치 감지를 위한 적어도 하나의 홀 바 센서에 의해 측정된다.
일부 실시예에서, 적어도 3 개의 코일은 자석에 대한 이동을 제공하기 위해 각각의 구동 전류에 의해 공급되고, 여기서 구동 전류는 자석에 대한 코일의 위치에 의존한다.
예시적인 실시예에서, 폴디드 카메라가 제공되는데, 이는 렌즈 광축을 따라 렌즈 요소 그룹(G1), 렌즈 요소 그룹(G2) 및 렌즈 요소 그룹(G3)을 포함하는 렌즈, 이미지 센서, OPFE 및 G1+G2+G3를 상기 렌즈 광축에 평행한 방향으로 함께 이동시켜 렌즈를 포커싱하고, 렌즈를 2 개의 줌 상태로 만들기 위해 상기 렌즈 광축에 평행한 방향으로 상기 이미지 센서에 대해 G1 및 G3를 함께 이동시키는 보이스 코일 모터(VCM) 메커니즘을 포함하고, 여기서 G1 및 G3은 서로 고정적으로 부착되고, G2는 2 개 스톱부 사이에서 플로팅하고, 여기서 함께 G1 및 G3의 이동은 G2를 하나의 줌 상태에서 G1에, 그리고 다른 줌 상태에서 G3에 부착하는 것을 가능하게 한다.
일부 실시예에서, 폴디드 카메라는 제1 G2 스톱부 및 제2 G2 스톱부를 더 포함하고, 제1 또는 제2 G2 스톱부 중 하나는 매크로 촬영을 위해 G1+G2+G3의 이동이 2mm 이상의 큰 스트로크에 걸쳐 있을 수 있도록, 제거 가능하다.
예시적인 실시 예에서, 듀얼-카메라가 제공되는데, 이는 와이드 유효 초점 길이(EFLW)를 갖는 와이드 렌즈 및 와이드 이미지 센서를 포함하는 와이드 카메라; 및 제 1 광축을 갖는 텔레 렌즈, 텔레 이미지 센서 및 OPFE를 포함하는 폴디드 텔레 카메라를 포함하고, 상기 텔레 렌즈는 객체 측으로부터 이미지 측으로, 제 1 렌즈 요소 그룹(G1), 제 2 렌즈 요소 그룹(G2) 및 제 3 렌즈 요소 그룹(G3)을 포함하고, 여기서 렌즈 요소 그룹 중 적어도 2 개는 텔레 렌즈를 2 개의 줌 상태로 만들기 위해 제 1 광축을 따라 이미지 센서에 대해 이동 가능하고, 상기 텔레 렌즈의 유효 초점 길이는 하나의 줌 상태에서의 값(EFLT,min)으로부터 다른 줌 상태에서의 값(EFLT,max)으로 변경되며, 여기서 EFLTmin > 1.5 x EFLW이고, EFLTmax > 1.5 x EFLTmin이다. 와이드 렌즈는 제 2 광축을 가지며, 제 2 광축은 제 1 광축에 수직이다.
일부 실시예(도시되지 않음)에서, 상기 폴디드 텔레 카메라는 동일한 구조 및 특성을 갖는 난-폴디드(업라이트) 텔레 카메라로 대체될 수 있는데, 여기서 상기 난-폴디드 텔레 카메라는 객체 측으로부터 이미지 측으로, 제 1 렌즈 요소 그룹(G1), 제 2 렌즈 요소 그룹(G2) 및 제 3 렌즈 요소 그룹(G3)을 포함하고, 여기서 렌즈 요소 그룹 중 적어도 2 개는 텔레 렌즈를 2 개의 줌 상태로 만들기 위해 제 1 광축을 따라 이미지 센서에 대해 이동 가능하고, 상기 텔레 렌즈의 유효 초점 길이는 하나의 줌 상태에서의 값(EFLT,min)으로부터 다른 줌 상태에서의 값(EFLT,max)으로 변경되며, 여기서 EFLTmin > 1.5 x EFLW이고, EFLTmax > 1.5 x EFLTmin이다.
일부 예시적인 실시 예에서, 상기 텔레 카메라는 제 1 줌 상태 및 제 2 줌 상태 모두에서 G1, G2 및 G3을 서로에 대해 시프트함으로써 초점을 맞추도록 구성된다.
일부 예시적인 실시 예에서, G1, G2 및 G3는 객체 측으로부터 이미지 측으로 배열되며, 여기서 G1은 양의 굴절력을 가지며, G2는 양의 굴절력을 가지며, G3는 음의 굴절력을 갖는다.
일부 예시적인 실시 예에서, 적어도 2 개의 이동 가능한 렌즈 요소 그룹은 G1 및 G3을 포함하고, 여기서 G1 및 G3는 이미지 센서 및 G2에 대해 이동 가능하고, G2는 이미지 센서에 대해 정지되어 있다. 일부 실시 예에서, G3는 이미지 센서, G1 및 G2에 대해 초점을 맞추기 위해 추가로 이동 가능할 수 있다. 일부 실시 예에서, G1은 이미지 센서, G2 및 G3에 대해 초점을 맞추기 위해 추가로 이동 가능할 수 있다.
예시적인 실시 예에서, 객체 측을 향한 제 1 렌즈 요소(L1)는 텔레 렌즈에서 다른 모든 렌즈 요소의 클리어 애퍼처보다 큰 클리어 애퍼처(CA) 값(또는 간단히 "클리어 애퍼처")을 갖는다.
예시적인 실시 예에서, 텔레 렌즈는 총 트랙 길이(TTLT)를 가지며, 최대 TTL(TTLTmax)은 조건 TTLTmax < EFLTmax를 충족시킨다.
예시적인 실시 예에서, 텔레 렌즈는 총 트랙 길이(TTLT)를 가지며, 최대 TTL(TTLTmax)은 조건 TTLTmax < 0.9 x EFLTmax를 충족시킨다.
예시적인 실시 예에서, 텔레 렌즈는 텔레 렌즈 f-수(F#T)를 가지며, F#T의 최소값(F#Tmin)은 조건 F#Tmin < 1.5 x F#Tmax x EFLTmin/EFLTmax를 충족시킨다.
예시적인 실시 예에서, 텔레 렌즈는 텔레 렌즈 f-수(F#T)를 가지며, F#T의 최소값(F#Tmin) 및 F#T의 최대값(F#Tmax)은 조건 F#Tmin < 1.8 x F#Tmax x EFLTmin/EFLTmax를 충족시킨다.
예시적인 실시 예에서, 텔레 렌즈는 텔레 렌즈 f-수(F#T)를 가지며, F#T의 최소값(F#Tmin) 및 F#T의 최대값(F#Tmax)은 조건 F#Tmin < 1.2 x F#Tmax x EFLTmin/EFLTmax를 충족시킨다.
예시적인 실시 예에서, 임의의 렌즈 요소 그룹에 대해, 제 1 줌 상태로부터 제 2 줌 상태로의 이동은 0.75 x (EFLTmax - EFLTmin)보다 작은 스트로크를 갖는다.
예시적인 실시 예에서, 임의의 렌즈 요소 그룹에 대해, 제 1 줌 상태로부터 제 2 줌 상태로의 이동은 0.6 x (EFLTmax - EFLTmin)보다 작은 스트로크를 갖는다.
예시적인 실시 예에서, 제 1 렌즈 요소(L1)는 절단(cut) 렌즈 요소이다.
일부 예시적인 실시 예에서, 적어도 2 개의 이동 가능한 렌즈 요소 그룹은 렌즈 요소 그룹(G1, G2 및 G3)을 포함하고, 여기서 G1 및 G3는 주어진 범위(R1,3)에서 이미지 센서 및 G2에 대해 하나의 유닛으로 이동 가능하며, 여기서 G2는 R1,3보다 작은 범위(R2)에서 이미지 센서에 대해 이동 가능하다. 예시적인 실시 예에서, G1, G2 및 G3는 이미지 측을 향해 이동 가능하다. 일부 예시적인 실시 예에서, G1, G2 및 G3는 하나의 유닛으로서 이미지 센서에 대해 포커싱하기 위해 이동 가능하다.
일부 예시적인 실시 예에서, EFLTmin = 15mm 및 EFLTmax = 30mm이다.
일부 예시적인 실시 예에서, EFLTmin = 13mm 및 EFLTmax = 26mm이다.
일부 예시적인 실시 예에서, 2 개의 줌 상태에서, RAF는 무한대와 1 미터 사이에서의 포커싱을 위해 필요한 G2의 최대 이동 범위이고, RAF < 0.4 x R2이다. 일부 예시적인 실시 예에서, 2 개의 줌 상태에서, RAF는 무한대와 2 미터 사이에서의 포커싱을 위해 필요한 G1 및 G3의 최대 이동 범위이고, RAF < 0.4 x R1,3이다.
일부 예시적인 실시 예에서, G2의 이동을 위한 작동은 폐쇄 루프 제어에서 수행된다.
일부 예시적인 실시 예에서, G1 및 G3의 이동을 위한 작동은 개방 루프 제어에서 수행된다.
일부 예시적인 실시 예에서, G1, G2 및 G3의 이동은 보이스 코일 모터(VCM) 메커니즘을 사용하여 생성된다.
일부 예시적인 실시 예에서, G1, G2 및 G3의 이동은 선형 레일을 생성하는 볼 가이드 메커니즘에 의해 제 1 광축을 따라 가이드된다. 일부 예시적인 실시 예에서, 볼 가이드 메커니즘은 G2 렌즈 캐리어상의 적어도 하나의 그루브, G1 + G3 렌즈 캐리어상의 적어도 하나의 그루브, 및 G2 렌즈 캐리어와 G1 + G3 렌즈 캐리어상의 그루브들 사이의 복수의 볼을 포함한다.
예시적인 실시 예에서, 듀얼-카메라가 제공되는데, 이는 와이드 유효 초점 길이(EFLW)를 갖는 와이드 렌즈 및 와이드 이미지 센서를 포함하는 와이드 카메라; 및 제 1 광축을 갖는 텔레 렌즈, 텔레 이미지 센서 및 OPFE를 포함하는 폴디드 텔레 카메라를 포함하고, 상기 텔레 렌즈는 객체 측으로부터 이미지 측으로, 제 1 렌즈 요소 그룹(G1), 제 2 렌즈 요소 그룹(G2) 및 제 3 렌즈 요소 그룹(G3)을 포함하고, G1 및 G3은 주어진 범위(R1,3)에서 이미지 센서 및 G2에 대해 하나의 유닛으로 제 1 광축을 따라 이동 가능하고, G2는 R1,3보다 작은 범위(R2)에서 이미지 센서에 대해 제 1 광축을 따라 이동 가능하고; 여기서 G1, G2 및 G3의 조합된 이동은 텔레 렌즈를 두 가지 줌 상태로 만들고, 텔레 렌즈의 EFL은 하나의 줌 상태에서의 EFLT,min으로부터 다른 줌 상태에서의 EFLT,max로 변경되고, 여기서 EFLTmin > EFLW이고, EFLTmax > 1.5 x EFLTmin이다.
예시적인 실시 예에서, 폴디드 카메라가 제공되는데, 이는 제 1 광축을 갖는 렌즈, 이미지 센서 및 OPFE를 포함하고, 상기 렌즈는 객체 측으로부터 이미지 측으로, 제 1 렌즈 요소 그룹(G1), 제 2 렌즈 요소 그룹(G2) 및 제 3 렌즈 요소 그룹(G3)을 포함하고, 여기서 G1 및 G3은 주어진 범위(R1,3)에서 이미지 센서 및 G2에 대해 하나의 유닛으로 제 1 광축을 따라 이동 가능하고, G2는 R1,3보다 작은 범위(R2)에서 이미지 센서에 대해 제 1 광축을 따라 이동 가능하고, 여기서 G1, G2 및 G3의 조합된 이동은 텔레 렌즈를 2 개의 줌 상태로 만들고, 여기서 텔레 렌즈의 EFL은 하나의 줌 상태에서의 값(EFL,min)으로부터 다른 줌 상태에서의 값(EFLTmax)으로 변경되고, 여기서 EFLmax > 1.5 x EFLmin이다.
예시적인 실시 예에서, 트리플-카메라가 제공되는데, 이는 와이드 유효 초점 길이(EFLW)를 갖는 와이드 렌즈 및 와이드 이미지 센서를 포함하는 와이드 카메라, 울트라-와이드 유효 초점 길이(EFLUW)를 갖는 울트라-와이드 렌즈 및 울트라-와이드 이미지 센서를 포함하는 울트라-와이드 카메라, 및 제 1 광축을 갖는 텔레 렌즈, 텔레 이미지 센서 및 OPFE를 포함하는 폴디드 텔레 카메라를 포함하고, 여기서 상기 텔레 렌즈는 객체 측으로부터 이미지 측으로, 제 1 렌즈 요소 그룹(G1), 제 2 렌즈 요소 그룹(G2) 및 제 3 렌즈 요소 그룹(G3)을 포함하고, 렌즈 요소 그룹 중 적어도 2 개는 텔레 렌즈를 2 개의 제 1 및 제 2 줌 상태로 만들기 위해 제 1 광축을 따라 이미지 센서에 대해 이동가능하고, 상기 텔레 렌즈의 유효 초점 길이(EFL)는 상기 제 1 줌 상태로에서의 값(EFLT,min)으로부터 제 2 줌 상태에서의 값(EFLT,max)으로 변경되고, 여기서 EFLTmin > 2 x EFLUW, EFLTmin> 1.5 x EFLW, 및 EFLTmax > 1.5 x EFLTmin이다.
예시적인 실시 예에서, 듀얼-카메라가 제공되는데, 이는 와이드 카메라 모듈(또는 간단히 "와이드 카메라"), 및 렌즈 모듈, 제 1 줌 상태와 제 2 줌 상태 사이에서 상기 렌즈 모듈을 이동시키기 위한 렌즈 액추에이터, 및 제 1 및 제 2 캘리브레이션 데이터를 저장하기 위한 메모리를 포함하는 텔레 카메라 모듈(또는 간단히 "텔레 카메라")을 포함하고, 상기 제 1 캘리브레이션 데이터는 상기 제 1 줌 상태에서의 상기 와이드 카메라 모듈과 상기 텔레 카메라 모듈 사이의 캘리브레이션 데이터를 포함할 수 있고, 상기 제 2 캘리브레이션 데이터는 상기 제 2 줌 상태에서의 상기 와이드 카메라 모듈과 상기 텔레 카메라 모듈 사이의 캘리브레이션 데이터를 포함할 수 있다.
다양한 예시적인 실시 예에서, 시스템이 제공되는데, 이는 애플리케이션 프로세서(AP), 제 1 이미지 데이터를 제공하기 위한 와이드 카메라 모듈, 제 2 이미지 데이터를 제공하기 위한 텔레 카메라 모듈로서, 상기 텔레 카메라 모듈은 렌즈 모듈 및 상기 렌즈 모듈을 제 1 줌 상태와 제 2 줌 상태 사이에서 이동시키기 위한 렌즈 액추에이터를 포함하는 텔레 카메라 모듈, 및 제 1 캘리브레이션 데이터 및 제 2 캘리브레이션 데이터를 저장하기 위한 메모리를 포함하고, 상기 제 1 캘리브레이션 데이터는 상기 제 1 줌 상태에서의 상기 와이드 카메라 모듈과 상기 텔레 카메라 모듈 사이의 캘리브레이션 데이터를 포함할 수 있고, 상기 제 2 캘리브레이션 데이터는 상기 제 2 줌 상태에서의 상기 와이드 카메라 모듈과 상기 텔레 카메라 모듈 사이의 캘리브레이션 데이터를 포함할 수 있고, 상기 AP는 상기 제 1 및 제 2 이미지 데이터를 처리하고, 텔레 카메라 모듈이 제 1 줌 상태에 있을 때 상기 제 1 캘리브레이션 데이터를 사용하고, 텔레 카메라 모듈이 제 2 줌 상태에 있을 때 상기 제 2 캘리브레이션 데이터를 사용함으로써, 제 3 이미지 데이터를 생성하도록 구성된다.
시스템의 실시 예에서, 제 1 캘리브레이션 데이터는 제 1 카메라 모듈에 저장되고, 제 2 캘리브레이션 데이터는 제 2 카메라 모듈에 저장된다.
시스템의 실시 예에서, 제 1 캘리브레이션 데이터 및 제 2 캘리브레이션 데이터는 텔레 카메라 모듈에만 저장된다.
시스템의 일 실시 예에서, 제 1 캘리브레이션 데이터 및 제 2 캘리브레이션 데이터는 와이드 카메라 모듈에만 저장된다.
시스템의 실시 예에서, 제 1 캘리브레이션 데이터 및 제 2 캘리브레이션 데이터는 와이드 카메라 모듈 또는 텔레 카메라 모듈에 위치하지 않는 메모리에 저장된다.
시스템의 실시 예에서, 제 1 캘리브레이션 데이터의 제 1 부분 및 제 2 캘리브레이션 데이터의 제 1 부분은 와이드 카메라 모듈 또는 텔레 카메라 모듈에 위치한 메모리에 저장되고, 제 1 캘리브레이션의 제 2 부분 및 제 2 캘리브레이션 데이터의 제 2 부분은 와이드 카메라 모듈 또는 텔레 카메라 모듈에 위치하지 않는 메모리에 저장된다.
본 명세서에 개시된 실시 예들의 비-제한적인 예들은 이 단락 다음에 열거된 첨부된 도면들을 참조하여 아래에 설명된다. 둘 이상의 도면에 나타낸 동일한 구조, 요소 또는 부분은 일반적으로 모든 도면에서 동일한 숫자로 표시된다. 동일한 요소가 하나의 도면에만 표시되고 번호가 매겨진 경우, 모든 도면에서 동일한 번호를 갖는 것으로 가정한다. 도면 및 설명은 본 명세서에 개시된 실시 예를 조명하고 명확하게 하기 위한 것이며, 어떤 식으로든 제한하는 것으로 간주되어서는 안된다.
도 1a는 업라이트 카메라 및 줌 폴디드 카메라를 포함하는 듀얼-카메라의 일반적인 사시도를 개략적으로 도시한다.
도 1b는 도 1a의 듀얼-카메라의 분해도를 도시한다.
도 2a는 제 1 줌 상태에서의 제 1 렌즈 광학 설계 및 광선 추적을 갖는 도 1a 및 도 1b의 줌 폴디드 카메라를 도시한다.
도 2b는 제 2 줌 상태에서의 제 1 렌즈 광학 설계 및 광선 추적을 갖는 도 1a 및 도 1b의 줌 폴디드 카메라를 도시한다.
도 2c는 제 1 줌 상태에서의 제 1 광학 설계의 렌즈 요소의 세부 사항을 도시한다.
도 2d는 제 2 줌 상태에서의 제 1 광학 설계의 렌즈 요소의 세부 사항을 도시한다.
도 3a는 제 1 줌 상태에서의 제 2 광학 설계의 렌즈 요소의 세부 사항을 도시한다.
도 3b는 제 2 줌 상태에서의 제 2 광학 설계의 렌즈 요소의 세부 사항을 도시한다.
도 4a는 제 1 줌 상태에서의 제 3 광학 설계의 렌즈 요소의 세부 사항을 도시한다.
도 4b는 제 2 줌 상태에서의 제 3 광학 설계의 렌즈 요소의 세부 사항을 도시한다.
도 4c는 제 1 줌 상태로에서의 제 4 광학 설계의 렌즈 요소의 세부 사항을 도시한다.
도 4d는 제 2 줌 상태에서의 제 4 광학 설계의 렌즈 요소의 세부 사항을 도시한다.
도 4e는 제 1 줌 상태로에서의 제 5 광학 설계의 렌즈 요소의 세부 사항을 도시한다.
도 4f는 제 2 줌 상태에서의 제 5 광학 설계의 렌즈 요소의 세부 사항을 도시한다.
도 4g는 제 1 줌 상태로에서의 제 6 광학 설계의 렌즈 요소의 세부 사항을 도시한다.
도 4h는 제 2 줌 상태에서의 제 6 광학 설계의 렌즈 요소의 세부 사항을 도시한다.
도 5a는 EFLTmin 상태에서 제 2 예의 광학 설계를 갖는 렌즈를 갖는 텔레 렌즈 및 센서 모듈을 상부 사시도로 개략적으로 도시한다.
도 5b는 도 5a의 텔레 렌즈 및 센서 모듈을 다른 상부 사시도로 개략적으로 도시한다.
도 5c는 EFLTmax 상태에서 제 2 예의 광학 설계를 갖는 렌즈를 갖는 텔레 렌즈 및 센서 모듈을 상부 사시도로 개략적으로 도시한다.
도 5d는 도 5c의 텔레 렌즈 및 센서 모듈을 다른 상부 사시도로 개략적으로 도시한다.
도 5e는 도 5a 내지 도 5d의 텔레 렌즈 및 센서 모듈의 분해도를 도시한다.
도 6a는 도 5a 및 도 5b에서와 같이 EFLTmin 상태에서 텔레 렌즈 및 센서 모듈의 상단 및 하단 작동 서브-어셈블리의 저면도를 일 관점에서 도시한다.
도 6b는 도 5c 및 도 5d에서와 같이 EFLTmax 상태에서 텔레 렌즈 및 센서 모듈의 상단 및 하단 작동 서브-어셈블리의 저면도를 다른 관점에서 도시한다.
도 6c는 상단 작동식 서브-어셈블리를 저면도로 도시한다.
도 7은 도 5의 텔레 렌즈 및 센서 모듈에서의 고정 레일의 세부 사항을 도시한다.
도 8은 도 5의 텔레 렌즈 및 센서 모듈에서의 전자 서브-어셈블리를 도시한다.
도 9a는 축 대칭을 갖는 렌즈 요소를 도시한다.
도 9b는 2 개의 절단부를 갖는 전단 렌즈 요소를 도시한다.
도 10은 본 명세서에 개시된 줌 폴디드 카메라를 동작시키기 위한 예시적인 방법의 흐름도를 도시한다.
도 11a는 본 명세서에 개시된 주제의 일부 예에 따른, 렌즈 요소의 볼록한 표면에 영향을 미치는 광선의 충돌점의 개략도 및 평면(P)상으로의 충돌점의 직교 투영의 개략도이다.
도 11b는 본 명세서에 개시된 주제의 일부 예에 따른, 렌즈 요소의 오목한 표면에 영향을 미치는 광선의 충돌점의 개략도 및 평면(P)상으로의 충돌점의 직교 투영의 개략도이다.
도 12는 본 명세서에 개시된 주제의 일부 예에 따른, 평면(P)상으로의 충돌점 및 클리어 높이 값("CH")의 직교 투영의 개략도이다.
도 13은 본 명세서에 개시된 주제의 일부 예에 따른, 평면(P)상으로의 충돌점 및 클리어 애퍼처의 직교 투영의 개략도이다.
도 14는 본 명세서에 개시된 시스템의 실시 예를 블록도로 개략적으로 도시한다.
도 15a, 도 15b 및 도 15c는 폴디드 및 넌-폴디드 렌즈 설계를 포함하는 듀얼-애퍼처 카메라 및 트리플-애퍼처 카메라의 설계를 개략적으로 도시한다.
도 16a는 EFLTmin 상태에서의 제6 예의 광학 설계를 갖는 렌즈를 구비하는 텔레 렌즈 및 센서 모듈의 제2 실시예를 상부 사시도로 개략적으로 도시한다.
도 16b는 EFLTmax 상태에서의 도 16a의 모듈을 상부 사시도로 개략적으로 도시한다.
도 16c는 도 16a의 모듈 부품들의 세부사항을 개략적으로 도시한다.
도 16d는 도 16b의 모듈 부품들의 세부사항을 개략적으로 도시한다.
도 16e는 도 16a의 모듈 부품들의 세부사항을 측면도로 개략적으로 도시한다.
도 16f는 도 16b의 모듈 부품들의 세부사항을 측면도로 개략적으로 도시한다.
도 16g는 EFLTmin 상태에서의 도 16a의 모듈 부품들의 세부사항을 제1 상부 사시도로 개략적으로 도시한다.
도 16h는 EFLTmin 상태에서의 도 16a의 모듈 부품들의 세부사항을 제2 상부 사시도로 개략적으로 도시한다.
도 17a는 EFLTmin 상태에서의 제6 실시 예의 광학 설계를 갖는 렌즈를 구비하는 텔레 렌즈 및 센서 모듈의 제3 실시예를 상부 사시도로 개략적으로 도시한다.
도 17b는 EFLTmax 상태에서의 도 17a의 모듈을 개략적으로 도시한다.
도 17c는 도 17b의 모듈 부품들의 세부사항을 개략적으로 도시한다.
도 17d는 도 17b의 모듈 부품들의 다른 세부사항을 개략적으로 도시한다.
도 17e는 도 17a 및 도 17a의 모듈에서 자석 어셈블리를 도시한다.
도 17f는 도 17a의 모듈에서 VCM에 의한 EFLTmin 상태와 EFLTmax 상태 사이의 작동 방법을 개략적으로 도시한다.
도 17g는 EFLTmin 상태에서의 도 17f의 VCM의 줌 상태 스위칭을 수행하기 위한 작동 방법을 제1 측면도로 도시한다.
도 17h는 EFLTmax에서의 도 17f의 VCM의 줌 상태 스위칭을 수행하기 위한 작동 방법을 제2 측면도로 도시한다.
도 17i는 EFLTmin 상태에서 포커싱하기 위한 작동 방법을 도 7g 및 도 17h과 반대인 측면도로 도시한다.
도 17j는 EFLTmax 상태에서 포커싱하기 위한 작동 방법을 도 7h 및 도 17h과 반대인 측면도로 도시한다.
도 18a는 렌즈 그룹(G2)을 렌즈 그룹(G1)에 부착하기(sticking) 위한 부착 서브-시스템의 실시예를 사시도로 도시한다.
도 18b는 도 18a의 부착 서브-시스템의 실시예를 다른 사시도로 도시한다.
도 18c는 EFLTmax를 갖는 줌 상태에서 렌즈 그룹(G2)를 렌즈 그룹(G3)에 부착하기 위한 부착 서브-시스템의 다른 실시예를 사시도로 도시한다.
도 18d는 도 18c의 부착 서브-시스템의 실시예를 다른 사시도로 도시한다.
도 19a는 EFLTmax 상태에서 G2 스톱부가 작동된(activated) G2 스톱 제거 메커니즘을 도시한다.
도 19b는 매크로 촬영 모드에서 G2 스톱부가 비작동된(deactivated) 도 19a의 G2 스톱 제거 메커니즘을 도시한다.
도 19c는 G2 스톱부가 작동된 EFLTmin 또는 EFLTmax 상태에서의 G2 스톱 제거 메커니즘의 일부를 도시한다.
도 19d는 G2 스톱부가 비작동된 EFLTmin 또는 EFLTmax 상태에서의 19c의 G2 스톱 제거 메커니즘의 일부를 도시한다.
도 1a는 업라이트 와이드 카메라(102), 및 OPFE(104)(예를 들어 프리즘)과 줌 폴디드 텔레 카메라 렌즈 및 센서 모듈(또는 간단히 "모듈")(106)을 포함하는 폴디드 텔레 카메라(103)를 포함하는 듀얼-카메라(100)의 실시 예의 일반적인 사시도를 개략적으로 도시한다. 와이드 카메라는 고정 유효 초점 길이(EFLW)를 갖는 와이드 렌즈(110)를 포함한다. 예를 들어, EFLW는 2-5mm일 수 있다. 텔레 카메라(103)에서, OPFE(104)는 프리즘 홀더(108)내에 수용된다. 모듈(106)은 실드(107)를 포함한다. 실드(107)는 모듈(106) 또는 카메라(103)의 일부 또는 모든 요소를 커버할 수 있다. 도 1b는 실드(107)가 제거되고 보다 상세한 듀얼-카메라(100)를 도시한다. 모듈(106)은 텔레 렌즈 광축(116)을 갖는 텔레 렌즈(114), 텔레 센서(118) 및 선택적으로 유리창(130)(예를 들어, 도 2a 참조)을 더 포함한다. 유리창(130)은 적외선(IR) 파장에서 광을 필터링하며, 센서(118)의 기계적 보호 및/또는 먼지로부터 센서(118)의 보호를 위해 사용될 수 있다. 간결성을 위해, 카메라, 렌즈 또는 이미지 센서와 관련하여 사용된 "텔레"라는 단어는 이후에 빠질 수 있다. 일부 실시 예에서, 렌즈 및 이미지 센서 모듈은 텔레 센서가 자체 모듈을 갖도록 분리되며, 후술되는 다른 기능 및 부품(특히, 도 5a 내지 도5e의 렌즈 액추에이터 구조(502))은 단지 텔레 카메라 렌즈 모듈에 남아있다. 이하의 전체 설명은 이러한 실시 예들도 참조한다. 다른 실시 예들에서, 본 명세서에 기재된 시스템은 예를 들어 트리플-카메라 시스템을 형성하도록, 하나 이상의 추가 카메라를 포함할 수 있다. 와이드 및 텔레 카메라 외에도 트리플-카메라는 또한 울트라-와이드 카메라를 포함할 수 있으며, 울트라-와이드 카메라 EFL, EFLUW < 0.7 x EFLW이다.
듀얼-카메라(100)는 후술하는 렌즈 그룹 및 요소의 이동을 포함하여, 다양한 카메라 기능을 제어하는 제어기(도시되지 않음)를 더 포함하거나 이에 연결된다.
렌즈(114)는 제 1 그룹(G1) 렌즈 하우징(또는 "홀더")(120), 제 2 그룹(G2) 렌즈 하우징(122) 및 제 3 그룹(G3) 렌즈 하우징(124)에 각각 수용된 3 개 그룹의 렌즈 요소(G1, G2 및 G3)를 포함한다. 렌즈 요소 그룹(G1, G2 및 G3)을 위한 3 개의 상이한 렌즈 설계의 세부 사항은 도 2 내지 도 4를 참조하여 아래에 제공된다. 다음에 상세히 설명되는 다양한 실시 예에서, 적어도 하나의 렌즈 요소 그룹은 렌즈 광축(116)을 따라 다른 렌즈 요소 그룹에 대해 이동하여, 적어도 2 개의 텔레 렌즈 유효 초점 길이(EFLT):최소 EFLTmin 및 최대 EFLTmax를 제공한다. 예를 들어, EFLTmin은 10-20mm이고, EFLTmax는 20-40mm일 수 있다. 이는 작은 텔레 렌즈 f-수(F#T)를 유지하면서, 2 개의 큰 EFL 사이에서 줌 기능을 제공한다. 또한, EFLTmin은 EFLW와 EFLTmax 사이에서 듀얼-카메라(100)에 의해 광학 줌이 제공될 수 있도록, EFLW보다 예를 들어 2 배 이상 더 크다. EFL에 추가하여, 각각의 줌 상태에 대해, 텔레 렌즈 총 트랙 길이(TTLT)는 렌즈가 무한대에 초점 맞춰질 때, 광축을 따라 객체 측을 향하는 제 1 렌즈 요소의 제 1 표면(S1, 아래 참조)으로부터 모든 렌즈 요소 및 유리창을 포함하여 이미지 센서 표면까지의 거리로 정의된다. TTLTmin은 제 1 줌 상태에 대해 정의되고, TTLTmax는 제 2 줌 상태에 대해 정의된다. TTLTmin 및 TTLTmax는 예를 들어, 도 2c, 도 2d, 도 3a 및 도 3b에 표시되어 있지만, 그 정의는 본 출원의 모든 실시 예에 적용된다.
도 2a는 텔레 렌즈(114')의 제 1 예시적인 광학 설계 및 광선 추적을 갖는, OPFE(104)(예를 들어, 프리즘)를 갖는 카메라(103)와 같은 줌 폴디드 텔레 카메라(103'), 렌즈(114)와 같은 렌즈(114'), 및 이미지 센서(118)를 도시하는데, 여기서 텔레 렌즈는 즉, EFL = EFLTmin를 갖는 제 1 줌 상태에 있다. 또한, 유리창(130)은 모든 렌즈 요소와 이미지 센서(118) 사이에 위치될 수 있다. 도 2b는 즉, EFL = EFLTmax를 갖는 제 2 줌 상태에 있는 폴디드 텔레 카메라(103')를 도시한다. 도 2c는 제 1 줌 상태에서의 제 1 광학 설계의 렌즈(114') 세부 사항을 도시한다. 도 2d는 제 2 줌 상태에서의 렌즈(114')의 세부 사항을 도시한다.
렌즈(114')는 표 1 내지 표 4로 표현된 제 1 예시적인 광학 설계를 가지며, 프리즘을 향하는 객체 측("객체 측")에서 L1으로 시작하여 이미지 센서를 향하는 이미지 측에서 L8로 끝나는, L1-L8로 표시된 8 개의 렌즈 요소를 포함한다. 표 1은 광학 렌즈 설계에서 각 표면에 대한 광학 데이터를 제공한다. 당 업계에 공지된 많은 OPFE 설계가 객체와 S1 사이에 사용될 수 있기 때문에, OPFE(프리즘 또는 미러)의 광학 데이터는 표 1에서 생략되어 있다. 이러한 OPFE의 비-제한적인 예는 프리즘의 굴절률이(예를 들어, 1-3 범위내에서) 변할 수 있도록, 유리 또는 플라스틱으로 만들어진 프리즘;(예를 들어, 공동 소유 국제 특허 출원 PCT/IB2018/054928에 개시된 바와 같이) 미광을 제한하는 OPFE; 로우 프로파일 프리즘(예를 들어, 공동 소유 미국 가특허 출원 제 62/657,003 호 참조); 스캐닝 OPFE(예를 들어, 공동 소유 국제 특허 출원 PCT/IB2018/050885 및 PCT/IB2017/참조); OIS 메커니즘을 갖는 OPFE(예를 들어, 공동 소유 미국 특허 제 9927600 호 참조); 및 미러를 포함한다.
표 2는 표 1의 표면 간 거리에 대한 추가 데이터인 줌 데이터와 다양한 줌 위치에 대한 파라미터 변경을 제공한다. 표 3은 구면이 아닌 표 1의 표면에 대한 추가 광학 데이터인 비구면 데이터를 제공한다. 표 4는 렌즈 요소와 렌즈 요소 그룹의 초점 길이를 mm로 제공한다. 제 2 예시적인 광학 설계(표 5-8), 제 3 예시적인 광학 설계(표 9-12), 제 4 예시적인 광학 설계(표 13-16) 및 제 5 예시적인 광학 설계(표 17-20)에 대한 유사한 표가 이하에 존재한다.
이하의 다양한 예시적인 실시 예에 개시된 렌즈는 렌즈 요소의 여러 렌즈 그룹(G1, G2, G3 등)을 포함하며, 각 그룹은 Li로 표시된 복수의 렌즈 요소를 포함한다. 각각의 렌즈 요소(Li)는 각각의 전면(S2i-1) 및 각각의 후면(S2i)을 가지며, 여기서 "i"는 1과 N 사이의 정수이다. 본 명세서에 사용된 바와 같이, 각각의 렌즈 요소의 "전면"이라는 용어는 카메라의 입구에 가깝게 위치된(카메라 객체 측) 렌즈 요소의 표면을 지칭하고, "후면"이라는 용어는 이미지 센서에 가깝게 위치된(카메라 이미지 측) 렌즈 요소의 표면을 지칭한다. 전면 및/또는 후면은 일부 경우, 비구면일 수 있다. 전면 및/또는 후면은 일부 경우, 구형일 수 있다. 그러나, 이러한 옵션은 제한되지 않는다. 렌즈 요소(L1 내지 LN)는 다양한 재료, 예를 들어 플라스틱 또는 유리로 제조될 수 있다. 일부 렌즈 요소는 다른 렌즈 요소와 다른 재료로 만들어 질 수 있다. 기호 "Gi", "Li", "Si"는 예로서 여러 도면에 도시되어 있다("Gi" 기호에 대해서는 도 2c, 2d 참조, "Li" 기호에 대해서는 도 2b 참조, "Si" 기호에 대해서는 도 4a 참조). 그러나, 이들 기호는 본 출원의 모든 실시 예에 적용된다.
본 명세서에서, 부품, 요소 또는 부품 또는 요소 그룹의 "높이"는 제 1 광축 방향(예시 좌표계에서 Y 방향)으로의 부품/요소/그룹의 최하단과 부품/요소/그룹의 최상단 사이의 거리로 정의된다. "상부(upper)"또는 "상단(top)"이라는 용어는 동일한 부품/요소 또는 그룹의 다른 섹션에 비해, Y를 따라 이미지화된(촬영된) 객체에 더 근접하고 이를 마주하는 임의의 부품/요소/그룹의 섹션을 지칭한다. "하부" 또는 "하단"이라는 용어는 동일한 부품/요소 또는 그룹의 다른 섹션에 비해, Y를 따라 이미지화된 객체로부터 가장 멀리 떨어져 있고 이를 마주하지 않는 임의의 부품/요소/그룹의 섹션을 지칭한다.
표 1(또는, 표 5 및 9)에서, R은 표면의 곡률 반경이고, T는 표면으로부터 광축에 평행한 다음 표면까지의 거리이다. 일부 렌즈 요소 사이의 거리는 주밍 및 포커싱에 따라 변경되므로, 다양한 줌 및 포커스 위치에 대한 추가 두께 데이터가 표 2, 6 및 10에 제공된다. TTLT는 표 2, 6 및 10의 추가 데이터가 무한대로 설정된 객체와 함께 사용되는 경우, S1에서 시작하여 이미지 센서까지의 모든 T 값의 합임에 유념하라. D는 표면의 광학 직경이다. D/2는 "반지름" 또는 직경의 절반을 나타낸다. R, T 및 D의 단위는 밀리미터(mm)이다. Nd 및 Vd는 각각 표면과 다음 표면 사이에 존재하는 렌즈 요소 재료의 굴절률 및 아베 수이다.
표면 유형은 표 1, 5 및 9에 정의되어 있으며, 표면 계수는 표 3, 7 및 11에 있다.
-평평한 표면(-)은 무한대 곡률 반경을 가지며;
-고른-비구면(even-Aspherical, EVS) 표면은 식 1을 사용하여 정의되며, 그 세부 사항은 표 3, 7 및 11에 제공된다:
여기서, r은 관련 광축(제 1 또는 제 2)으로부터(및 이에 수직인) 광학 표면에서의 점의 거리(제 1 또는 제 2)이며, k는 원뿔 계수, c = 1/R, 및 α는 표 3, 7 및 11에서 제공된 계수이다. 임의의 비구면 표면에 대하여, r의 최대값("max r")은 각각의 표면의 반경(D/2)인 것에 유념하라.
-QT1 표면은 식 2 및 아래 등식을 사용하여 정의된다:
여기서, {z, r}은 표준 원통형 극좌표, c는 표면의 근축 곡률, k는 원뿔 파라미터, NR은 표준 반경, An은 렌즈 데이터 표에 표시된 다항식 계수이다.
-"스톱부(stop) 표면"(표 2, 6, 10, 14, 18 및 22): 개시된 실시 예에서, 렌즈 애퍼처 스톱부 표면의 위치는 제 1 줌 상태로부터 제 2 줌 상태로 시프트될 때, 변할 수 있다. 이 경우, 스톱부가 전체 렌즈 모듈의 F#을 결정한다. 예를 들어, 일부 실시 예에서, 제 1 줌 상태에서 센터 필드에 이미지를 형성하기 위해 이미지 평면에 도달하는 광량은 객체 측 L1로부터의 제 1 렌즈 근처의 애퍼처 스톱부에 의해 결정되는 반면, 제 2 줌 상태에서는 광량 센터 필드에 이미지를 형성하기 위해 이미지 평면에 도달하는 광량은 다른 렌즈 요소 근처, 예를 들어 렌즈 요소(L4) 근처의 애퍼처 스톱부에 의해 결정된다. 다른 실시 예들에서, 렌즈 애퍼처 스톱부 표면의 위치는 제 1 줌 상태로부터 제 2 줌 상태로 시프트될 때, 변하지 않을 수 있다. 프리즘의 반사 표면은 또한 통상적으로 "미러"라고 알려져 있다.
아래 표에 제시된 이미지 센서의 직경(D)는 이미지 센서 대각선의 가능한 크기를 나타낸다.
[표 1]
[표 2]
[표 3]
[표 4]
제 1 예("예 1")에서, 렌즈 요소(L1-L8)는 3 개의 그룹, 즉 렌즈 요소(L1 및 L2)를 포함하는 제 1 그룹(G1), 렌즈 요소(L3 및 L4)를 포함하는 제 2 그룹(G2) 및 렌즈 요소(L5-L8)를 포함하는 제 3 그룹으로 그룹화된다. 표 4에 열거된 렌즈 또는 그룹 초점 길이는 양 또는 음의 값을 가지며, 이는 관련 렌즈 요소 또는 그룹 각각의 양 또는 음의 굴절력을 나타낸다. 따라서, 표 4에서, L1, L3, L5 및 L8은 양의 굴절력을 가지며, L2, L4, L6 및 L7은 음의 굴절력을 갖는다. 유사하게, G1 및 G2는 양의 굴절력을 가지며, G3는 음의 굴절력을 갖는다. 이것은 표 8과 12에도 적용된다.
예 1에서, 카메라는 그룹(G2)를 이미지 센서(118)에 대해 정지된 상태로 유지하면서, 그룹(G1) 및 그룹(G3)을 이미지 센서(118)에 대해 이동시킴으로써, 2 개의 줌 상태가 만들어진다. G3은 각각의 줌 상태에서 포커싱을 위해 추가적으로 이동 가능하다. 표 2는 정확한 거리와 상대 위치를 지정한다. 예 1에서, G1 및 G3은 카메라가 도 2a 및 도 2c에 도시된 제 1 줌 상태[여기서, EFLT = EFLTmin = 15mm, F# = F#Tmin = 2.8 및 TTLT = TTLTmin = 16.309mm이다] 및 도 2b 및 도 2d에 도시된 제 2 줌 상태[여기서, EFLT = EFLTmax = 30mm, F# = F#Tmax = 4 및 TTLT = TTLTmin = 27.581mm이다]로 되도록, G2(및 이미지 센서)에 대해 상대적으로 이동된다. 이동 범위는 예를 들어 5-10mm일 수 있다. 제 1 상태에서, G1은 거리 d4(15mm EFL의 경우, 표 2에서 S4와 S5 사이의 거리, 즉 0.131mm)만큼 G2로부터 이격되고, G2는 거리 d8(15mm EFL의 경우, 표 2에서 S8과 S9 사이의 거리, 즉 초점 길이에 따라 5.080-5.364mm)만큼 G3으로부터 이격되고, G3은 거리 d16(15mm EFL의 경우, 표 2에서 S16과 S17 사이의 거리, 즉 초점 거리에 따라 1.094-0.810 mm)만큼 창(130)으로부터 이격된다. 제 2 상태에서, G1은 거리 d4'(30mm EFL의 경우, 표 2에서 S4와 S5 사이의 거리, 즉 11.403mm)만큼 G2로부터 이격되고, G2는 거리 d8'(30mm EFL의 경우, 표 2에서 S8과 S9 사이의 거리, 즉 초점 거리에 따라 0.060-0.434mm)만큼 G3으로부터 이격되고, G3은 거리 d16'(30mm EFL의 경우, 표 2에서 S16과 S17 사이의 거리,즉 초점 거리에 따라 6.114mm-5.740mm)만큼 창(130)으로부터 이격된다.
도 3a는 제 1 줌 상태에서의 카메라(103)와 같은 폴디드 텔레 카메라의 예시적인 광학 설계의 제 2 실시 예의 렌즈 요소의 세부 사항을 도시한 반면, 도 3b는 제 2 줌 상태에서의 제 2 광학 설계의 렌즈 요소의 세부 사항을 도시한다. 도면은 렌즈(114''), 이미지 센서(118) 및 선택적인 창(130)을 도시한다. 제 2 광학 설계는 표 5-8에 의해 표현되고, 프리즘을 향하는 객체 측에서 L1으로 시작하여 이미지 센서를 향하는 이미지 측 L8에서 끝나는 L1-L8로 표시된 8 개의 렌즈 요소를 포함한다. 표 5는 광학 데이터를 제공하고, 표 6은 줌 데이터를 제공하고, 표 7은 비구면 데이터를 제공하고, 표 8은 렌즈 또는 그룹 초점 거리를 mm로 제공한다.
제 2 예("예 2")에서, 렌즈(114)에는, 렌즈 요소(L1-L8)가 3 개의 그룹, 즉 렌즈 요소(L1 및 L2)를 포함하는 제 1 그룹(G1), 렌즈 요소(L3-L5)를 포함하는 제 2 그룹(G2) 및 렌즈 요소(L6-L8)을 포함하는 제 3 그룹으로 그룹화된다.
예 2에서, 카메라는 R1,3보다 작은 범위(R2)에서 이미지 센서에 대해 그룹(G2)를 이동시키면서, 주어진 범위(R1,3)에서 이미지 센서에 대해 그룹(G1 및 G3)을 함께 이동시킴으로써, 2 개의 줌 상태로 된다. 실시 예 2에서, R1,3 = 7.509mm이고, R2 = 1.574mm이다. 그룹(G2)는 카메라(106)의 초점 거리를 무한대로부터 1 미터로 변경하기 위해, 임의의 줌 상태에서 RAF 범위에서 이미지 센서에 대하여 추가로 이동 가능하다. RAF는 줌 상태에 따라 최대 550 마이크로미터(um)일 수 있다. 도 3a는 제 1 줌 상태[여기서, EFLT = EFLTmin = 15mm, F# = F#Tmin = 2 및 TTLT = TTLTmin = 17.373mm이다]의 실시 예 2를 도시한다. 도 3b는 제 2 줌 상태[여기서, EFLT = EFLTmax = 30mm, F# = F#Tmax = 4 및 TTLT = TTLTmax = 24.881mm이다]의 실시 예 2를 도시한다.
예 2에서, 다음의 조건이 충족된다.
R1,3 및 R2는 0.6 x(EFLTmax - EFLTmin)보다 작고, 물론 0.75 x (EFLTmax - EFLTmin)보다 작다. F#Tmin은 1.0 x F#Tmax x EFLTmin/EFLTmax보다 작고, 1.2 x F#Tmax x EFLTmin/EFLTmax보다 작고, 1.5 x F#Tmax x EFLTmin/EFLTmax보다 작고, 1.8 x F#Tmax x EFLTmin/EFLTmax보다 작다.
제 1 상태에서, G1은 거리 d4(15mm EFL의 경우, 표 6에서 S4와 S5 사이의 거리, 즉 초점 거리에 따라 1.246 내지 1.012mm)만큼 G2로부터 이격되고, G2는 거리 d10(15mm EFL의 경우, 표 6에서 S10과 S11 사이의 거리, 즉 초점 거리에 따라 6.136-6.370mm)만큼 G3으로부터 이격되고, G3은 거리 d16(15mm EFL, 표 6에서 S16과 S17 사이의 거리, 즉 0.229mm)만큼 창(130)으로부터 이격된다. 제 2 상태에서, G1은 거리 d4'(30mm EFL의 경우, 표 6에서 S4와 S5 사이의 거리, 즉 초점 거리에 따라 7.181 내지 6.658mm)만큼 G2로부터 이격되고, G2는 거리 d10'(30mm EFL의 경우, 표 6에서 S10과 S11 사이의 거리, 즉 초점 거리에 따라 0.2 내지 0.725mm)만큼 G3으로부터 이격되고, G3은 거리 d16'(30mm EFL의 경우, 표 6에서 S16와 S17 사이의 거리, 즉 7.738mm)만큼 창(130)으로부터 이격된다.
[표 5]
[표 6]
[표 7]
[표 8]
도 4a는 제 1 줌 상태에서의 카메라(103)와 같은 폴디드 텔레 카메라의 예시적인 광학 설계의 제 3 실시 예의 렌즈 요소의 세부 사항을 도시한 반면, 도 4b는 제 2 줌 상태에서의 제 3 광학 설계의 렌즈 요소의 세부 사항을 도시한다. 도면은 렌즈(114'''), 이미지 센서(118) 및 선택적인 창(130)을 도시한다. 제 3 광학 설계는 표 9-12에 의해 표현되고, 프리즘을 향한 객체 측에서 L1로 시작하여 이미지 센서를 향한 이미지 측면의 L8로 끝나는 L1-L8로 표시된 8 개의 렌즈 요소를 포함한다. 표 9는 광학 데이터를 제공하고, 표 10은 줌 데이터를 제공하고, 표 11은 비구면 데이터를 제공하고, 표 12는 렌즈 또는 그룹 초점 거리를 mm로 제공한다.
렌즈(114''')에서, 렌즈 요소(L1-L8)는 3 개의 그룹, 즉 렌즈 요소(L1 및 L2)를 포함하는 제 1 그룹(G1), 렌즈 요소(L3 및 L4)를 포함하는 제 2 그룹(G2) 및 렌즈 요소(L5-L8)를 포함하는 제 3 그룹으로 그룹화된다.
제 3 예시적인 사용("예 3")에서, 카메라는 그룹(G2)를 정지 상태로 유지하면서, 주어진 범위에서 이미지 센서에 대해 그룹(G1 및 G3)을 이동시킴으로써, 2 개의 줌 상태로 된다. 이동 범위는 예를 들어 5-10mm일 수 있다. G1은 포커싱을 위해 추가적으로 이동 가능하다. 예 3에서, G1 및 G3은 카메라가 도 4a에 도시된 제 1 줌 상태[여기서, EFLT = EFLTmin = 15mm, F#Tmin = 2.74 및 TTLT = TTLTmin = 16.78mm이다] 및 도 4b에 도시된 제 2 줌 상태[여기서, EFLT = EFLTmax = 30mm, F# = F#Tmax = 4 및 TTLT = TTLTmax = 26.958mm이다]로 되도록, G2(및 이미지 센서)에 대해 상대적으로 이동된다. 제 1 상태에서, G1은 거리 d4(15mm EFL의 경우, 표 10에서 S4와 S5 사이의 거리, 즉 초점 거리에 따라 0.199-0.870mm)만큼 G2로부터 이격되고, G2는 거리 d8(15mm EFL의 경우, 표 10에서 S8과 S9 사이의 거리, 즉 6.050mm)만큼 G3로부터 이격되고, G3은 거리 d16(15mm EFL의 경우, 표 10에서 S16과 S17 사이의 거리, 즉 0.650 mm)만큼 윈도우(130)로부터 이격된다. 제 2 상태에서, G1은 거리 d4(30mm EFL의 경우, 표 10에서 S4와 S5 사이의 거리, 즉 초점 거리에 따라 10.377-11.031mm)만큼 G2로부터 이격되고, G2는 거리 d8(30mm EFL의 경우, 표 10에서 S8과 S9 사이의 거리, 즉 0.06 mm)만큼 G3로부터 이격되고, G3은 거리 d16(30mm EFL의 경우, 표 10에서 S16과 S17 사이의 거리, 즉 6.64mm)만큼 윈도우(130)로부터 이격된다.
[표 9]
[표 10]
[표 11]
[표 12]
도 4c는 제 1 줌 상태에서의 카메라(103)와 같은 폴디드 텔레 카메라의 제 4 예시적인 광학 설계의 렌즈 요소의 세부 사항을 도시한 반면, 도 4d는 제 2 줌 상태에서의 제 4 광학 설계의 렌즈 요소의 세부 사항을 도시한다. 도면은 렌즈(114''''), 이미지 센서(118) 및 선택적인 창(130)을 도시한다. 제 4 광학 설계는 표 13-16에 의해 표현되고, 프리즘을 향하는 객체 측에서 L1로 시작하여 이미지 센서를 향하는 이미지 측에서 L8로 끝나는 L1 내지 L8로 표시된 8 개의 렌즈 요소를 포함한다. 표 13은 광학 데이터를 제공하고, 표 14는 줌 데이터를 제공하고, 표 15는 비구면 데이터를 제공하고, 표 16은 렌즈 또는 그룹의 초점 거리를 mm로 제공한다.
제 4 예("예 4")에서, 렌즈(114'''')에는, 렌즈 요소(L1-L8)가 3 개의 그룹, 즉 렌즈 요소(L1 및 L2)를 포함하는 제 1 그룹(G1), 렌즈 요소(L3-L5)를 포함하는 제 2 그룹(G2), 및 렌즈 요소(L6-L8)을 포함하는 제 3 그룹으로 그룹화된다.
예 4에서, 카메라는 그룹(G2)가 줌 프로세스에서 이미지 센서에 대해 정지된 상태에 있으면서, 주어진 범위(R1,3)에서 그룹(G1 및 G3)를 이미지 센서에 대해 함께(하나의 유닛으로) 이동시킴으로써, 2 개의 줌 상태로 된다. 실시 예 5에서, R1,3 = 7.065mm이다. 줌 상태를 변경할 때 그룹(G2)가 이동하지 않지만, 그룹(G2)는 카메라(106)의 초점 거리를 무한대에서 1 미터로 변경하기 위하여 범위 RAF에서 임의의 줌 상태에서 이미지 센서 및 그룹(G1 및 G3)에 대해 이동 가능하다. RAF는 줌 상태에 따라 최대 730μm일 수 있다. 도 4c는 제 1 줌 상태[여기서, EFLT = EFLTmin = 15mm, F#= F#Tmin = 2 및 TTLT = TTLTmin = 17.865mm이다]의 실시 예 4를 도시한다. 도 4d는 제 2 줌 상태[여기서, EFLT = EFLTmax = 30mm, F# = F#Tmax = 4 및 TTLT = TTLTmax = 24.93mm이다]의 실시 예 4를 도시한다.
제 1 상태에서, G1은 거리 d4(15mm EFL의 경우, 표 14에서 S4와 S5 사이의 거리)만큼 G2와 이격되고, G2는 거리 d10(15mm EFL의 경우, 표 14에서 S10과 S11 사이의 거리)만큼 G3으로부터 이격되고, G3은 거리 d16(15mm EFL의 경우, 표 14에서 S16과 S17 사이의 거리)만큼 윈도우(130)로부터 이격된다. 제 2 상태에서, G1은 거리 d4'(30mm EFL의 경우, 표 14에서 S4와 S5 사이의 거리)만큼 G2로부터 이격되고, G2는 거리 d10'(30mm EFL의 경우, 표 14에서 S10과 S11 사이의 거리)만큼 G3로부터 이격되고, G3은 거리(d16')(30mm EFL의 경우, 표 14에서 S16과 S17 사이의 거리)만큼 윈도우(130)로부터 이격된다.
[표 13]
[표 14]
[표 15]
[표 16]
도 4e는 제 1 줌 상태에서의 카메라(103)와 같은 폴디드 텔레 카메라의 제 5 예시적인 광학 설계의 렌즈 요소의 세부 사항을 도시한 반면, 도 4f는 제 2 줌 상태에서의 제 5 광학 설계의 렌즈 요소의 세부 사항을 도시한다. 도면은 렌즈(114'''''), 이미지 센서(118) 및 선택적인 창(130)을 도시한다. 제 5 광학 설계는 표 17-20으로 표현되고, 프리즘을 향한 객체 측에서 L1로 시작하여 이미지 센서를 향한 이미지 측에서 L8로 끝나는 L1-L8로 표시된 8 개의 렌즈 요소를 포함한다. 표 17은 광학 데이터를 제공하고, 표 18은 줌 데이터를 제공하고, 표 19는 비구면 데이터를 제공하고, 표 20은 렌즈 또는 그룹 초점 거리를 mm로 제공한다.
제 5 예("실시 예 5")에서, 렌즈(114''''')에는, 렌즈 요소(L1-L8)가 3 개의 그룹, 즉 렌즈 요소(L1 및 L2)를 포함하는 제 1 그룹(G1), 렌즈 요소(L3-L5)를 포함하는 제 2 그룹(G2), 및 렌즈 요소(L6-L8)을 포함하는 제 3 그룹으로 그룹화된다.
예 5에서, 그룹(G2)가 이미지 센서에 대해 정지된 상태에 있으면서, 주어진 범위(R1,3)에서 그룹(G1 및 G3)를 이미지 센서에 대해 그룹(G1 및 G3)과 함께(하나의 유닛으로) 이동시킴으로써, 2 개의 줌 상태로 된다. 실시 예 5에서, R1,3 = 7.697mm이다. 그룹(G1 + G3)은 카메라(106)의 초점 거리를 무한대로부터 2 미터로 변경하기 위해 RAF 범위에서 임의의 줌 상태에서 이미지 센서 및 그룹(G2)에 대해 추가적으로 함께 이동 가능하다. RAF는 줌 상태에 따라 최대 1.8mm일 수 있다. 도 4e는 제 1 줌 상태[여기서, EFLT = EFLTmin = 15mm, F# = F#Tmin = 2 및 TTLT = TTLTmin = 18.1mm이다]의 실시 예 5를 도시한다. 도 4F는 제 2 줌 상태[여기서, EFLT = EFLTmax = 30mm, F#= F#Tmax = 4 및 TTLT = TTLTmax = 25.8mm이다]의 실시 예 5를 도시한다.
제 1 상태에서, G1은 거리 d4(15mm EFL인 경우, 표 18에서 S4와 S5 사이의 거리)만큼 G2로부터 이격되고, G2는 거리 d10(15mm EFL의 경우, 표 18에서 S10과 S11 사이의 거리)만큼 G3로부터 이격되고, G3은 거리 d16(15mm EFL의 경우, 표 18에서 S16과 S17 사이의 거리)만큼 윈도우(130)로부터 이격된다. 제 2 상태에서, G1은 거리 d4'(30mm EFL의 경우, 표 18에서 S4와 S5 사이의 거리)만큼 G2로부터 이격되고, G2는 거리 d10'(30mm EFL의 경우, 표 18에서 S10과 S11 사이의 거리)만큼 G3으로부터 이격되고, G3은 거리 d16'(30mm EFL의 경우, 표 17에서 S16과 S17 사이의 거리)만큼 윈도우(130)로부터 이격된다.
[표 17]
[표 18]
[표 19]
[표 20]
도 4g는 제 1 줌 상태에서의 카메라(103)와 같은 폴디드 텔레 카메라의 예시적인 광학 설계의 제 6 실시 예의 렌즈 요소의 세부 사항을 도시한 반면, 도 4h는 제 2 줌 상태에서의 제 6 광학 설계의 렌즈 요소의 세부 사항을 도시한다. 도면들은 렌즈(114''''''), 이미지 센서(118) 및 선택적인 창(130)을 도시한다. 제 6 광학 설계는 표 21 내지 24에 의해 표현되고, 프리즘을 향한 객체 측에서 L1로 시작하여 이미지 센서를 향한 이미지 측에서 L8로 끝나는 L1-L8로 표시된 8 개의 렌즈 요소를 포함한다. 표 21은 광학 데이터를 제공하고, 표 22는 줌 데이터를 제공하고, 표 23은 비구면 데이터를 제공하고, 표 24는 렌즈 또는 그룹 초점 거리를 mm로 제공한다.
렌즈(114'''''')에서, 렌즈 요소(L1-L8)가 3 개의 그룹, 즉 렌즈 요소(L1, L2 및 L3)을 포함하는 제 1 그룹(G1), 렌즈 요소(L4, L5 및 L6)을 포함하는 제 2 그룹(G2) 및 렌즈 요소(L7 및 L8)를 포함하는 제 3 그룹으로 그룹화된다.
예 6에서, 카메라는 그룹(G2)가 이미지 센서에 대해 범위(R2)내에서 이동하는 동안, 주어진 범위(R1,3)에서 그룹(G1 및 G3)를 이미지 센서에 대해 함께(하나의 유닛으로) 이동시킴으로써, 2 개의 줌 상태로 되는데, R2 < R1,3이다. 예 6에서, R1,3 = 5.641mm 및 R2 = 0.718이다. 그룹(G1 + G2 + G3)은 카메라(106)의 초점 거리를 무한대로부터 1 미터로 또는 2 미터로 변경하기 위한 RAF 범위에서 이미지 센서에 대하여 임의의 줌 상태에서 함께 추가적으로 이동 가능하다. RAF는 줌 상태에 따라 최대 0.4mm이다.
도 4g는 제 1 줌 상태[여기서, EFLT = EFLTmin = 13mm, F#= F#Tmin = 1.8 및 TTLT = TTLTmin = 19.84mm이다]의 실시 예 6을 도시한다. 도 4h는 제 2 줌 상태[여기서, EFLT = EFLTmax = 26mm, F# = F#Tmax = 2.88, 및 TTLT = TTLTmax = 25.85mm이다]의 실시 예 6을 도시한다.
제 1 상태에서, G1은 거리 d7(13mm EFL의 경우, 표 22에서 S7과 S8 사이의 거리)만큼 G2로부터 이격되고, G2는 거리 d13(13mm EFL의 경우, 표 22에서 S13와 S14 사이의 거리)만큼 G3로부터 이격되고, G3은 거리 d17(13mm EFL의 경우, 표 22에서 S17과 S18 사이의 거리)만큼 윈도우(130)로부터 이격된다. 제 2 상태에서, G1은 거리 d7'(26mm EFL의 경우, 표 22에서 S7과 S8 사이의 거리)만큼 G2로부터 이격되고, G2는 거리 d13'(26mm EFL의 경우, 표 22에서 S13과 S14 사이의 거리)만큼 G3으로부터 이격되고, G3은 거리 d17'(26mm EFL의 경우, 표 21에서 S17과 S18 사이의 거리)만큼 윈도우(130)로부터 이격된다.
[표 21]
[표 22]
[표 23]
[표 24]
도 5a 내지 도 5e는 텔레 렌즈 및 센서 모듈(또는 간단히 "모듈")(500)에 대한 예를 개략적으로 도시한다. 도면의 설명은 도 5a 내지 도 5e뿐만 아니라 다수의 다른 도면에 도시된 좌표계 XYZ를 참조하여 계속된다. 예 에서, 모듈(500)은 제 2 예의 광학 설계를 갖는다. 모듈(500)에서, 렌즈(114', 114'' 및 114''')의 줌 상태와 포커스 상태 사이를 변경하는데 필요한 작동 방법에 대한 예가 제공된다. 도 5a는 EFLTmin 상태의 모듈(500)을 상부 사시도로 개략적으로 도시하고, 도 5b는 EFLTmin 상태의 모듈(500)을 또 다른 상부 사시도로 개략적으로 도시한다. 도 5c는 EFLTmax 상태의 모듈(500)을 상부 사시도로 개략적으로 도시한다. 도 5d는 EFLTmax 상태의 모듈(500)을 또 다른 상부 사시도로 개략적으로 도시한다. 도 5e는 모듈(500)의 분해도를 도시한다. 모듈(500)은 G1 + G3 렌즈 서브-어셈블리(502), G2 렌즈 서브-어셈블리(504), 센서 서브-어셈블리(506), 전자기(EM) 서브-어셈블리(508), 베이스 서브-어셈블리(510), 제 1 자석(512), 제 1 코일(514), 제 2 자석(516), 제 1 세트(예시적으로 4) 볼(520) 및 제 2 세트(예시적으로 4) 볼(522)를 포함한다. 렌즈 서브-어셈블리(502 및 504)는 렌즈 광축(116)을 공유한다.
제 1 코일(514)은 제 1 자석(512) 옆에 위치되고, 베이스 서브-어셈블리(510)에 견고하게 결합된다(베이스 서브-어셈블리에 대해 움직이지 않음). 제 1 코일(514)은 PCB(822)(도 8)와 같은 PCB에 납땜되거나 동작에 필요한 전력 및 전자 신호 모두를 전달하는 입력 및 출력 전류를 제 1 코일(514)에 전송할 수 있게 하는 외부 회로(도시되지 않음)에 라우팅될 수 있다. 코일(514)은 예시적으로 직사각형 형상을 가지며, 10-30 옴의 전형적인 저항을 갖는 수십 개의 코일 권선(즉, 50-250의 비-제한적 범위)을 일반적으로 포함한다. 제 1 자석(512)은 분할 자석으로서, 중간의 분할 라인(512a)은 그것을 2 쪽으로 분리하는데, 분할 라인(512a)의 일측에서, 자석(512)은 양의 X 방향을 향하는 북쪽 자극을 가지며, 분할 라인(512a)의 타측에서, 자석(512)은 양의 X 방향을 향하는 남쪽 자극을 갖는다. 제 1 코일(514)에서 전류를 인가할 때, 제 1 로렌츠 힘이 제 1 자석(512) 상에 생성된다. 예를 들어, 시계 방향으로 제 1 코일(514)을 통하는 전류 흐름은 제 1 자석(512) 상에 양의 Z 방향으로 제 1 로렌츠 힘을 유도하는 반면, 반 시계 방향으로 제 1 코일(512)을 통하는 전류 흐름은 제 1 자석(512) 상에 음의 Z 방향으로 로렌츠 힘을 유도할 것이다. 예에서, 제 1 로렌츠 힘은 개방 루프 제어에서 하부 작동식 서브-어셈블리(560)를 제 1 줌 상태로부터 제 2 줌 상태로 그리고 그 반대로 이동시키는데, 즉 하부 작동식 서브-어셈블리(560)를 스톱부(720a-b 및 722a-b)(하기 참조) 사이에서 작동시키는데 사용될 수 있다.
도 6a 및 6b는 EFLTmin 상태에서의 상부 작동식 서브-어셈블리(550) 및 하부 작동식 서브-어셈블리(560)를 도시한, 모듈(500)의 작동 부품의 2 개의 하부 사시도를 제공한다. 도 6c는 상부 작동식 서브-어셈블리(550)를 하부 사시도로 도시한다. 상부 작동식 서브-어셈블리(550)는 G2 렌즈 서브-어셈블리(504), 제 2 자석(516) 및 복수의 스테핑 자석(626)을 포함한다. 하부 작동식 서브-어셈블리(560)는 G1 + G3 렌즈 서브-어셈블리(502), 제 1 자석(512), 스테핑 자석(628), 및 4 개의 요크[(602a-b)(도 6b) 및 604a-b(도 6a)]를 포함한다. 도 7은 가이딩 레일(710a 및 710b) 및 풀-스톱 자석(702a-b 및 704a-b)을 포함하는 베이스 서브-어셈블리(510)의 세부 사항을 도시한다. 도 7에서, 풀-스톱 자석(702a-b 및 704a-b)은 도시 목적으로 스톱부(720a-b 및 722a-b)로부터 분리된다. 화살표는 스톱부(720a-b 및 722a-b)에서의 풀-스톱 자석(702a-b 및 704a-b)의 접착 위치를 나타낸다. 요크(602a-b)는 풀-스톱 자석(702a-b)에 대해 당겨지고, 요크(604a-b)는 풀-스톱 자석(704a-b)에 대해 당겨진다. 가이딩 레일(710a-b) 각각은 각각의 그루브(712a-b)을 포함한다. 베이스 서브-어셈블리(510)는 가이딩 레일(710b)에 예시적으로 연결된 2 개의 기계적 스톱부(706, 708)를 더 포함한다. 기계적 스톱부(706 및 708)는 상부 작동식 서브-어셈블리(550)의 스트로크를 제한한다. 도 8은 PCB(822)상에서의 EM 서브-어셈블리(508)의 세부 사항을 도시한다.
일 예에서, 모듈(500)은 렌즈 광축(116)을 따른 방향으로 렌즈 서브-어셈블리(502 및 504)의 상대적 운동을 가능하게 한다. 모듈(500)은 3-40 mm 범위의 예시적인 길이/폭/높이 치수를 가지며, 즉 모듈(500)은 크기가 3x3x3 mm³로부터 40x40x40 mm³인 상자내에 수용될 수 있다. 일 예에서, 모듈(500)은 렌즈 요소(L1… .LN)의 최대 클리어 애퍼처 + 각 렌즈 서브-어셈블리(502 및 504)의 플라스틱 두께(플라스틱 두께는 예를 들어 0.5-1.5mm 범위이다) + 실드(107) 두께(실드 두께는 예를 들어 0.1-0.3mm 범위이다) + 각 렌즈 서브-어셈블리(502 및 504)와 실드(107) 사이의 2 개의 에어 갭 두께(각각의 에어 갭 두께는 예를 들어 0.05-0.15mm 범위이다)에 의해 제한되는 높이(Y 축을 따라)를 갖는다. 렌즈 요소(L1....LN)의 클리어 애퍼처는 후술되는 바와 같이, 원형 또는 절단-렌즈 클리어 애퍼처일 수 있다.
모듈(500)에서, 3 개의 렌즈 그룹(G1, G2 및 G3)은 2 개의 렌즈 서브-어셈블리, 즉 렌즈 그룹(G1 + G3)을 수용하는 렌즈 서브-어셈블리(502) 및 렌즈 그룹(G2)를 수용하는 렌즈 서브-어셈블리(504)내에 수용된다. 렌즈 서브-어셈블리(502 및 504)는 전형적으로 플라스틱으로 만들어진다. 일부 실시 예에서, 렌즈 서브-어셈블리(502) 및 렌즈 그룹(G1 + G3)은 단일 부품일 수 있다(그리고, 유사하게 렌즈 서브-어셈블리(504) 및 G2는 단일 부품일 수 있다). 일부 실시 예에서, 이들은 별도의 부품일 수 있다. 렌즈 서브-어셈블리(502 및 504)는 예를 들어 플라스틱 성형에 의해 또는 대안적으로 다른 방법에 의해 제조될 수 있다. 제 1 및 제 2 자석(512 및 516)은 렌즈 광축(116)(X 방향)을 가로 질러 2 개의 대향 측면으로부터 각각 렌즈 서브-어셈블리(502 및 504)에 고정 부착(예를 들어, 접착)된다.
렌즈 서브-어셈블리(502)는 기계적 볼 가이드 메커니즘을 형성하는 몇몇 그루브를 포함하여, 줌 요구에 대하여 선형 레일에서의 작동을 가능하게 한다. 이 예에서, 6 개의 그루브가 기재되지만, 또 다른 수의 그루브가 사용될 수 있다. 여기서, 6 개의 그루브는 Z 방향을 따라 렌즈 서브-어셈블리(502)의 상부 표면상에 형성된 2 개의 그루브(542a-b)(도 5e) 및 마찬가지로 Z 방향을 따라 렌즈 서브-어셈블리(502)의 하부 표면에 형성된 4 개의 그루브(624a-d)(도 6a)이다. 렌즈 서브-어셈블리(504)는 렌즈 서브-어셈블리(502)의 그루브 중 일부와 정합하는 몇몇 그루브를 포함한다. 도시된 실시 예에서, 렌즈 서브-어셈블리(504)는 4 개의 그루브(642a-d)를 포함하고, 그 중 3 개만이 도 6c에 도시되어 있다. 그루브들(642a-d)은 서로 평행하고, Z-축(광축)을 따르며, Z 방향을 따라 상부 작동식 서브-어셈블리(550)를 가이드하는데 사용된다.
상부 작동식 서브-어셈블리(550)는 그루브[(642a-b(642c-d)]가 그루브[(542a(542b)] 바로 위에 평행하게 되도록, 하부 작동식 서브-어셈블리(560)의 상부에 위치된다.
도시된 실시 예에서, 4 개의 볼(520)은 볼(520)이 렌즈 서브-어셈블리(502)와 렌즈 서브-어셈블리(504)를 분리하여, 2 개의 부품이 서로 접촉하는 것을 방지하도록, 그루브(542a-b)(각 그루브의 상부에 2 개의 볼)의 상부 및 그루브(642a-d)(도 6c)의 하부에 위치된다. 다른 실시 예에서, 모듈(500)은 렌즈 서브-어셈블리(502 및 504) 사이에 4 개 초과의 볼, 예를 들어 측면 당 최대 7 개의 볼 또는 통틀어 최대 14 개의 볼을 가질 수 있다. 볼(520)은 산화 알루미늄 또는 다른 세라믹 재료, 금속 또는 플라스틱 재료로 제조될 수 있다. 전형적인 볼 직경은 0.3-1mm의 비-제한적 범위일 수 있다. 공동 소유의 국제 PCT 특허 출원 PCT/IB2017/052383 [명칭: "회전 볼 가이드 보이스 코일 모터"]에서와 같이, 다른 볼 크기 및 포지셔닝 고려 사항이 있을 수 있다.
렌즈 서브-어셈블리(502 및 504)는 예시적으로 플라스틱 성형되어 있기 때문에, 부품 치수에 허용되는 공차가 있으며, 일반적으로 각 치수에 대해 수십 미크론 이하이다. 이 공차는 인접한(대향하는) 그루브들(542a-b 및 642a-d) 사이의 위치 정렬불량을 야기할 수 있다. 그루브를 보다 잘 정렬시키기 위해, 일부 그루브(예를 들어, 542a-b 및 642c-d)는 V-자형, 즉 볼 포지셔닝을 보장하기 위해 V 단면 형상을 가질 수 있는 반면, 그루브(642a-b)는 더 넓은 사다리꼴 단면을 가질 수 있다. 그루브들(542b 및 642c-d)은 조립 동안 정렬되는 반면, 그루브들(542a 및 642a-b)의 정렬은 후자의 그루브들의 사다리꼴 단면으로 인해 작은 간극을 갖는다. 사다리꼴 그루브 단면은 단지 예시적인 것이며, 한 쌍의 그루브가 그루브 형상에 의해 잘 정렬되고 다른 한 쌍의 그루브가 정렬 간극을 갖도록, 다른 그루브 단면 형상이 사용될 수 있다(예를 들어, 직사각형, 평면 등).
본 명세서에 제시된 설계는 3 개의 렌즈 요소 그룹의 정확한 정렬을 가능하게 할 수 있다. G1과 G3은 기계적으로 동일한 부품에 고정되어 있기 때문에, 서로 잘 정렬되고, 제품 수명주기 동안 정렬을 유지할 수 있다. 일부 실시 예에서, 렌즈 서브-어셈블리(504)는 하나의 부품으로 성형되고, G1 내지 G3의 정렬은 플라스틱 성형 공차에 기초한다. 일부 실시 예에서, 렌즈 서브-어셈블리(504)는 능동 또는 수동 정렬 절차를 사용하여 공장에서 접착되는 여러 부품으로 성형된다. G2는 단일 그루브 쌍(542b 및 642c 및/또는 642d)을 사용하여 G1 및 G3에 정렬된다. 즉, 렌즈 서브-어셈블리(502 및 504)는 중간 부품없이 서로 정렬된다.
4 개의 볼(522)은 볼(522)이 베이스 서브-어셈블리(510)로부터 렌즈 서브-어셈블리(502)를 분리하고 2 개의 부품이 서로 접촉하는 것을 방지하도록, 그루브(712a-b)의 상부(각 그루브의 상부에 2 개의 볼) 및 그루브(624a-d) 하부에 위치된다. 다른 실시 예에서, 모듈(500)은 4 개 초과의 볼, 예를 들어 측면 당 최대 7 개의 볼 또는 총 14 개의 볼을 가질 수 있다. 볼(522)과 관련된 크기, 재료 및 다른 고려 사항은 볼(520)의 고려 사항과 유사하다. 그루브(712a-b 및 624a-d)에 관한 다른 고려 사항은 전술한 바와 같이 그루브(542a-b 및 642a-d)의 것과 유사하다.
모듈(500)은 각각의 요크가 3 개의 스테핑 자석(626 및 628) 아래에(Y 방향을 따라) 위치되도록, 베이스 서브-어셈블리(510)에 고정 부착된(예를 들어, 접착된) 여러 강자성 요크(716)(도 7)를 더 포함한다. 다른 실시 예에서, 강자성 요크(716)는 실드(107)의 고정 부분일 수 있다. 또 다른 실시 예에서, 실드(107) 자체는 요크(들)이 실드의 일부가 되도록, 강자성 재료로 만들어 질 수 있거나, 또는 실드(107)의 하부 부분이 강자성 재료로 만들어질 수 있다. 각각의 강자성 요크(716)는 자력에 의해 일부 스테핑 자석(626 또는 628)을 음의 Y 방향으로 끌어 당기고, 따라서 모든 요크는 상부 작동식 서브-어셈블리(550) 및 하부 작동식 서브-어셈블리(560)가 서로로부터 그리고 베이스(510) 및 실드(107)로부터 분리되는 것을 방지한다. 볼(520)은 상부 작동식 서브-어셈블리(550)가 하부 작동식 서브-어셈블리(560)와 접촉하는 것을 방지하고, 볼(522)은 하부 작동식 서브-어셈블리(560)가 베이스 서브-어셈블리(510)와 접촉하는 것을 방지한다. 따라서, 상부 작동식 서브-어셈블리(550) 및 하부 작동식 서브-어셈블리(560) 모두는 Y-축을 따라 제한되고(confined), Y 방향으로 이동하지 않는다. 그루브 및 볼 구조는 상부 작동식 서브-어셈블리(550) 및 하부 작동식 서브-어셈블리(560)가 렌즈 광축(116)(Z-축)을 따라서만 이동하도록 더 제한한다.
도 7은 모듈(500)의 베이스 서브-어셈블리(510) 및 고정 레일의 세부 사항을 도시한다. Z 방향을 따라, 상부 작동식 서브-어셈블리(550)는 기계적 스톱부(706 및 708) 사이에서, 그들 사이에 필요한 G2 스트로크와 동일한 거리(약 1-3mm)로 이동하도록 제한된다. 또한, Z 방향을 따라, 하부 작동식 서브-어셈블리(560)는 기계적 스톱부(720a-b 및 722a-b) 및/또는 풀-스톱 자석(702a-b 및 704a-b) 사이에서 이동하도록 제한된다.
도 8은 모듈(500)의 EM 서브-어셈블리(508)의 세부 사항을 도시한다. EM 서브-어셈블리(508)는 제 2 코일(818), 2 개의 홀 바 요소("홀 센서")(834a 및 834b) 및 PCB(822)를 포함한다. 제 2 코일(818) 및 홀 바 요소(834a-b)는 PCB(822)에(각각 개별적으로) 납땜될 수 있다. 제 2 코일(818)은 예시적으로 직사각형 형상을 가지며, 10-40 옴의 전형적인 저항을 갖는 수십 개의 코일 권선(예를 들어, 50-250의 비-제한적 범위)을 일반적으로 포함한다. PCB(822)는 동작에 필요한 전력 및 전자 신호를 모두 전달하는 입력 및 출력 전류를 제 2 코일(818) 및 홀 바 요소(834a-b)로 전송할 수 있다. PCB(822)는 와이어(도시되지 않음)에 의해 외부 카메라에 전자적으로 연결될 수 있다. 예(도 5e)에서, EM 서브-어셈블리(508)는 제 2 자석(516) 옆에 위치된다. 제 2 자석(516)은 분할 라인(516a)에 의해 중간에서 2 개의 측면으로 분리된 분할 자석이다: 분할 라인(516a)의 일측에서, 자석(516)은 양의 X 방향을 향하는 북쪽 자극을 가지며, 분할 라인(516a)의 타측에서, 자석(516)은 양의 X 방향을 향하는 남쪽 자극을 갖는다. 제 2 코일(818)에서 전류를 인가할 때, 로렌츠 힘이 제 2 자석(516) 상에 생성된다. 예를 들어, 시계 방향으로 제 2 코일(818)을 통하는 전류 흐름은 제 2 자석(516) 상에 양의 Z 방향으로 로렌츠 힘을 유도하는 반면, 반 시계 방향으로 제 2 코일(818)을 통하는 전류 흐름은 제 2 자석(516) 상에서 음의 Z 방향으로 로렌츠 힘을 유도할 것이다.
홀 바 요소(834a-b)는 각 홀 바 요소의 중심에서 X 방향으로의 자기장(강도 및 부호)을 측정하도록 설계된다. 홀 바 요소(834a-b)는 제 2 자석(516)의 자기장의 세기 및 방향을 감지할 수 있다. 일 예에서, PCB(822) 상의 홀 바 요소(834a)의 포지셔닝은 다음과 같다:
1. X 방향에서, 홀 바 요소(834a, 834b)는 거리(예를 들어, 0.1-0.5mm)만큼 자석(516)으로부터 분리되고, 자석(516)이 줌 또는 포커스 요구를 위해 이동하는 동안 상기 거리는 일정하다.
2. 시스템이 제 1 줌 상태(EFLT = 15mm)에 있을 때, 홀 바 요소(834a)는 Z 방향을 따라 분할 라인(516a)에 가깝다. 예를 들어, 제 1 상태 줌에서의 모든 초점 위치(무한대에서 1 미터 매크로까지 연속적으로)에 대해, 홀 요소(834a)는 Z 방향을 따라 분할 라인(516a)으로부터 RAF만큼 이격된다.
3. 시스템이 제 2 줌 상태(EFLT = 30mm)에 있을 때, 홀 바 요소(834b)는 Z 방향을 따라 분할 라인(516a)에 가깝다. 예를 들어, 제 1 상태 줌에서의 모든 초점 위치(무한대에서 1 미터 매크로까지 연속적으로)에 대해, 홀 요소(834b)는 Z 방향을 따라 분할 라인(516a)으로부터 RAF만큼 이격된다.
이러한 포지셔닝 방식에서, 홀 바 요소(834a)는 시스템이 제 1 줌 상태에 있을 때, Z 방향을 따라 제 2 자석(516)의 각각의 위치를 측정할 수 있는데, 이는 제 1 줌 상태에서, X 방향 자기장이 무한대에서 1 미터 초점의 초점 위치들 사이의 RAF를 따른 궤적인, 홀 바(834b) 상에서의 측정 가능한 구배를 갖고, X 방향 자기장이 위치와 상관될 수 있기 때문이다. 또한, 홀 바 요소(834b)는 시스템이 제 2 줌 상태에 있을 때, Z 방향을 따라 제 2 자석(516)의 각각의 위치를 측정할 수 있는데, 이는 제 2 줌 상태에서, X 방향 자기장이 무한대에서 1 미터 초점의 초점 위치 사이의 RAF를 따른 궤적인, 홀 바(834b) 상에서의 측정 가능한 구배를 갖고, X 방향 자기장이 위치와 상관될 수 있기 때문이다. 제어 회로(도시되지 않음)는 줌 상태 중 어느 하나에서 작동하는 동안 EM 서브-어셈블리(508)(및 EM 서브-어셈블리(508)가 견고하게 결합되는 베이스 서브-어셈블리(510))에 대하여 제 2 자석(516)의 위치를 폐쇄 루프로 제어하고, 줌 상태 사이에서 이동하는 동안 개방 루프로 제어하도록(도 10 및 이하의 설명 참조), 집적 회로(IC)내에 구현될 수 있다. 일부 경우에, IC는 하나 또는 둘 모두의 홀 요소(834a-b)와 결합될 수 있다. 다른 경우에, IC는 모듈(500)의 외부 또는 내부에 위치될 수 있는 별도의 칩일 수 있다(도시되지 않음). 예시적인 실시 예에서, 모듈(500)에 의해 요구되는 모든 전기 연결부는 베이스 서브-어셈블리(510) 및 외부 세계에 대해 고정된 EM 서브-어셈블리(508)에 연결된다. 따라서, 전류를 임의의 이동 부(moving part)에 전달할 필요가 없다.
모듈(500)의 자기-전기 설계는 폴디드 텔레 카메라(103)를 동작시키기 위한 다음의 동작 방법을 가능하게 한다. 도 10은 이러한 예시적인 방법을 흐름도로 도시한다. 단계(1002)에서, 텔레 카메라(103)는 하나의(예컨대, 제 1) 줌 상태에서 렌즈(114)와 함께 위치 설정된다. 텔레 렌즈(114)의 초점을 다시 맞추기 위한(사용자 또는 알고리즘에 의한) 결정은 단계(1004)에서 이루어지고, G2 렌즈 서브-어셈블리(504)는 단계(1006)에서 홀 바(Hall bar)로부터의 입력을 사용하여, 폐쇄 루프 제어하에(제어기에 의해-도시되지 않음) 이동되어, 텔레 카메라(103)를 제 1 줌 상태에서 다른 초점 위치로 되게 한다. 카메라(103) 렌즈(114)의 줌 상태를 다른(예컨대, 제 2) 줌 상태로 변경하기 위한(사용자 또는 알고리즘에 의한) 결정이 단계(1008)에서 이루어지고, G1 + G3 렌즈 서브-어셈블리(502)는 단계(1010)에서 개방 루프 제어 하에서 기계적 스톱부(720)로 이동되고, 이어서 단계(1012)에서 개방 루프 제어 하에서 G2 렌즈 서브-어셈블리(504)가 기계적 스톱부(706)로 이동된다. 그 다음, G2 렌즈 서브-어셈블리(504)는 단계(1014)에서 홀 바 요소(834b)로부터의 입력을 사용하여 폐쇄 루프 제어 하에서 이동되어, 렌즈 폴디드 카메라(103)를 단계(1016)에서 또 다른 초점 위치의 제 2 줌 상태로 되게 한다. 단계(1018)에서 렌즈(114)의 초점을 재조정하는 결정이 이루어진다. 제 2 줌 상태에서 렌즈(114)의 재초점 맞춤(refocusing)은 홀 바 요소(834b)로부터의 입력을 사용하여 폐쇄 루프 제어 하에서 G2 렌즈 서브-어셈블리를 이동시킴으로써, 수행된다. 카메라(103) 렌즈(114)의 제 2 줌 상태를 제 1 줌 상태로 변경하기 위한(사용자 또는 알고리즘에 의한) 결정이 단계(1020)에서 이루어지고, G1 + G3 렌즈 서브-어셈블리(502)는 단계(1022)에서 개방 루프 제어 하에서 기계적 스톱부(722)로 이동되고, 이어서 단계(1024)에서 개방 루프 제어 하에서 G2 렌즈 서브-어셈블리(504)가 기계적 스톱부(708)로 이동된다.
일부 실시 예에서, 임의의 렌즈 요소(Li)의 2 개의 표면(S2i-1, S2i)은 2 개의 절단(면)을 포함하는 2 개의 애퍼처를 가질 수 있다. 이러한 경우에, 렌즈 요소(Li)는 "절단 렌즈 요소"로 지칭된다. 절단부는 렌즈 어셈블리가 더 낮거나 짧을 수 있게 한다. 예를 들어, 도 9a는 축 대칭 및 높이(H902)를 갖는 렌즈 요소(902)를 도시하고, 도 9b는 2 개의 절단부(906 및 908) 및 높이(H904)를 갖는 절단 렌즈 요소(904)를 도시한다. 렌즈 요소(902 및 904)는 동일한 직경(D)을 갖는다. 분명히, H904 < H902 이다. 도 5에 도시된 예에서, 처음 2 개의 렌즈 요소(L1 및 L2)는 절단 렌즈 요소이다.
아래에 설명된 바와 같이, 클리어 높이 값(CH(Sk))은 1 ≤ k ≤ 2N에 대하여 각각의 표면(Sk)에 대해 정의될 수 있고, 클리어 애퍼처 값(CA(Sk))은 1 ≤ k ≤ 2N에 대하여 각각의 표면(Sk)에 대해 정의될 수 있다. CA(Sk) 및 CH(Sk)는 각 렌즈 요소의 각 표면(Sk)의 광학 특성을 정의한다.
도 11a, 11b 및 12에 도시된 바와 같이,(1≤k≤2N에 대하여) 표면(Sk)를 통과하는 각각의 광선은 충돌점(IP)에서 표면에 부딪힌다. 광선은 표면(S1)으로부터 렌즈 모듈(예를 들어, 114', 114'', 114''')로 입사하여, 표면(S2) 내지 표면(S2N)을 연속적으로 통과한다. 일부 광선은 임의의 표면(Sk)에 부딪힐 수 있지만, 이미지 센서(118)에 도달할 수 없다. 소정의 표면(Sk)에 대해, 이미지 센서(118) 상에 이미지를 형성할 수 있는 광선만이 복수의 충돌점(IP)를 형성하는 것으로 간주된다. CH(Sk)는 가장 근접한 2 개의 평행선 사이의 거리로 정의된다(렌즈 요소의 광축에 직교하는 평면(P) 상에 위치하는 도 12의 라인(1200 및 1202) 참조(도 11a 및 11b에서, 평면(P)은 평면(X-Y)에 평행하고 광축(116)에 직교한다). 따라서, 평면(P)상의 모든 충돌점(IP)의 직교 투영(IPorth)은 2 개의 평행선 사이에 위치된다. CH(Sk)는 각각의 표면(Sk)(전면 및 후면, 1 ≤ k ≤ 2N)에 대해 정의될 수 있다.
CH(Sk)의 정의는 이미지 센서에 이미지를 "형성할 수 있는" 광선을 참조하기 때문에, 현재 이미지화되는 객체에 의존하지 않는다. 따라서, 현재 이미지화된 객체가 빛을 생성하지 않는 검정 배경에 위치하더라도, 상기 정의는 이미지 센서에 도달하여 이미지를 형성할 수 있는 광선(예를 들어, 검정 배경과 달리 빛을 방출하는 배경에서 방출되는 광선)을 의미하기 때문에, 이 검정 배경을 의미하지 않는다.
예를 들어, 도 11a는 광축(116)에 직교하는 평면(P)상의 2 개의 충돌점들(IP1 및 IP2)의 직교 투영들(IPorth,1, IPorth,2)을 도시한다. 예를 들면, 도 11a에서, 표면(Sk)는 볼록하다.
도 11b는 평면(P)상의 2 개의 충돌점(IP3 및 IP4)의 직교 투영(IPorth,3, IPorth,4)를 도시한다. 예를 들면, 도 3b에서, 표면(Sk)는 오목하다.
도 12에서, 평면(P)상의 표면(Sk)의 모든 충돌점(IP)의 직교 투영(IPorth)은 평행선(1200 및 1202) 사이에 위치한다. 따라서, CH(Sk)는 라인(1200 및 1202) 사이의 거리이다.
도 13에 주의가 집중된다. 현재 개시된 주제에 따르면, 클리어 애퍼처(CA(Sk))은 각각의 주어진 표면(Sk)(1≤k≤2N)에 대해 원의 직경으로 정의되며, 여기서 원은 광축(116)에 직교하는 평면(P)내에 위치하며 평면(P)상의 모든 충돌점의 모든 직교 투영(IPorth)를 둘러싸는 가장 작은 가능한 원이다. CH(Sk)와 관련하여 전술한 바와 같이, CA(Sk)의 정의는 또한 현재 이미지화되는 객체에 의존하지 않는다.
도 13에 도시된 바와 같이, 평면(P)상의 모든 충돌점(IP)의 외접하는(circumscribed) 직교 투영(IPorth)은 원(1300)이다. 이 원(1300)의 직경은 CA(Sk)를 정의한다.
결론적으로, 여기에 개시된 줌 카메라는 다음과 같은 특정 광학 문제를 극복하도록 설계되었다.
- EFLTmax > 1.8 x EFLTmin 또는 EFLTmax > 1.5 x EFLTmin이 기계 줌에 대한 상당한 사용자 경험 효과를 보장하는 렌즈 설계.
- 일부 실시 예에서(예를 들어, 실시 예 1), TTLTmax < EFLTmax. 일부 실시 예에서(예를 들어, 실시 예 2 및 3), TTLTmax < 0.9 x EFLTmax. 이러한 렌즈 설계는(Z 축을 따라) 카메라 길이를 감소시킬 수 있다.
- 일부 실시 예(실시 예 1-3)에서, 제 1 렌즈 요소는 다른 모든 렌즈 요소 클리어 애퍼처보다 큰 클리어 애퍼처(S1의 직경)를 갖는다. 일부 실시 예(모듈 500)에서, 제 1 렌즈는 절단 렌즈 요소인 제 1 렌즈를 갖는다(도 9 참조). 유리하게는, 이러한 렌즈 설계는 작은 카메라 높이를 달성하는 데 도움이 된다.
- 줌 상태의 변화는 렌즈 그룹 이동의 단지 2 개의 실제 양에 의해 야기된다. 즉, 줌 상태를 변경하기 위해, 일부 렌즈 요소 그룹은 제 1 이동 범위에서 함께 이동하고, 나머지 렌즈 그룹 요소 중 일부는 제 2 이동 범위에서 함께 이동하고, 모든 다른 렌즈 요소 그룹은 이동하지 않는다. 단지 2 개의 기계적 요소만 이동 및 제어할 필요가 있기 때문에, 액추에이터 제어 및 설계가 간소화된다.
- 일부 예에서, F#Tmin < 1.5 x F#Tmax x EFLTmin/EFLTmax. 일부 예에서, F#Tmin < 1.2 x F#Tmax x EFLTmin/EFLmax. 이러한 렌즈 설계는 제 1 상태에 대해 낮은 F#을 달성할 수 있다.
- 일부 예에서, 임의의 렌즈 요소 그룹에 대해, 제 1 줌 상태로부터 제 2 줌 상태로의 이동은 0.75 x(EFLTmax - EFLTmin)보다 작은 스트로크를 갖는다. 일부 예에서, 임의의 렌즈 요소 그룹에 대해, 제 1 줌 상태로부터 제 2 줌 상태로의 이동은 0.6 x(EFLTmax - EFLTmin)보다 작은 스트로크를 갖는다. 이러한 렌즈 설계는 렌즈 요소의 움직임을 제한하고 및/또는 작동을 단순화할 수 있다.
- 줌 상태 변경을 위해 함께 이동하는 렌즈 요소 그룹 중 하나를 추가로 이동하여 포커싱을 수행할 수 있어서, 액추에이터 설계가 간소화되고 제어가 향상된다.
본 명세서에 개시된 렌즈의 특성 측면에서:
- 3 개의 렌즈 그룹을 가진 렌즈 설계는 렌즈 복잡성을 최소화한다.
-(객체 측에서 시작하여) 양의, 양의 및 음의 배율(power)을 갖는 렌즈 그룹을 갖는 렌즈 설계는 줌 상태 변화를 위한 작은 렌즈 그룹 이동에 기여할 수 있다.
- 줌 상태를 변경하는 프로세스의 일례(예 1)에서, 제 1 렌즈 요소 그룹(G1)은 제 1 양만큼 이동하고, 제 3 렌즈 요소 그룹(G3)은 제 2 양만큼 이동하지만, 제 2 렌즈 요소 그룹(G2)은 이동하지 않는다. G3의 추가 이동이 포커싱을 위해 사용될 수 있다.
- 줌 상태를 변경하는 프로세스의 다른 예(예 2)에서, G3과 함께 G1은 제 1 양만큼 이동하고, G2는 제 2 양만큼 이동한다. G2의 추가 이동이 포커싱을 위해 사용될 수 있다.
- 줌 상태를 변경하는 프로세스의 또 다른 예(예 3)에서, G1은 제 1 양만큼 이동하고, G3은 제 2 양만큼 이동하고, G2는 이동하지 않는다. G1의 추가 이동이 포커싱을 위해 사용될 수 있다.
- 줌 상태를 변경하는 프로세스의 또 다른 예(예 4)에서, G3과 함께 G1은 이동하고, G2는 이동하지 않는다. G2의 추가 이동이 포커싱을 위해 사용될 수 있다.
- 줌 상태를 변경하는 프로세스의 또 다른 예(예 5)에서, G3과 함께 G1은 이동하고, G2는 이동하지 않는다. G3와 함께 G1의 추가 이동이 포커싱을 위해 사용될 수 있다.
- 줌 상태를 변경하는 프로세스의 또 다른 예(예 6)에서, G3과 함께 G1은 제 1 양만큼 이동하고, G2는 제 2 양만큼 이동한다. G1 및 G2 및 G3가 함께 이동하는 3 개의 모든 렌즈 그룹의 추가 이동이 포커싱을 위해 사용될 수 있다.
표 25는 각 예에서의 이동을 예시적인 이동 범위와 함께 요약한다.
[표 25]
하나 이상의 렌즈 그룹이 포커싱을 위해 이동하는 것으로 나타내어진 표 25에 제시된 예는 표에 정의된 렌즈 그룹이 포커싱을 위하여 하나의 유닛으로 함께 이동하는 설계를 지칭할 수 있다. 일부 실시 예(예를 들어, 예 5 및 6)에서, 여러 렌즈 그룹을 함께 이동시키는 것은 각각의 렌즈 그룹을 강하게 결합함으로써 용이해질 수 있다.
G1 범위, G2 범위 및 G3 범위에 주어진 값은 이미지 센서에 대하여 렌즈 그룹의 전체 이동의 최대 범위를 나타낸다.
"AF 최대 범위"행에 주어진 값은 상기 표 2, 6, 10, 14, 18, 22의 각각의 관련 표에 따라, 무한대와 1 미터 또는 2 미터 사이에서의 포커싱을 위해 필요한 "포커싱을 위해 이동하는 그룹"에 정의된, 렌즈 그룹의 이미지 센서에 대한 최대 이동 범위를 나타낸다. 대부분의 실시 예에서, AF 최대 범위는 더 높은 줌 상태, 즉 EFLTmax를 갖는 상태에 대한 렌즈 그룹 이동에 의해 주어진다.
일부 실시 예들에서, G1 및 G3은 정지 상태에 있을 수 있는데, 즉 G1 및 G3는 움직이지 않는 반면, G2는 줌 상태를 변경하기 위해 이동될 수 있다.
도 14는 본 명세서에 개시된 적어도 하나의 멀티-줌 상태 카메라를 갖는 멀티-애퍼처 카메라를 포함하는 전자 장치(1400)의 실시 예를 개략적으로 도시한다. 전자 장치(1400)는 OPFE(1412)를 포함하는 제 1 카메라 모듈(1410), 및 제 1 이미지 센서(1416)에 의해 기록된 제 1 이미지를 형성하는 제 1 렌즈 모듈(1414)을 포함한다. 제 1 렌즈 액추에이터(1418)는 포커싱 및/또는 광학 이미지 안정화(OIS)를 위해 및/또는 2 개의 상이한 줌 상태 사이에 변경하기 위해 렌즈 모듈(1414)을 이동할 수 있다. 일부 실시 예에서, 전자 장치(1400)는 애플리케이션 프로세서(AP)(1440)를 더 포함할 수 있다. 일부 실시 예에서, 제 1 캘리브레이션 데이터는 카메라 모듈의 제 1 메모리(1422), 예를 들어 EEPROM(전기적으로 지울 수 있는 프로그램 가능 읽기 전용 메모리)에 저장될 수 있다. 다른 실시 예들에서, 제 1 캘리브레이션 데이터는 전자 디바이스(1400)의 NVM(비-휘발성 메모리)과 같은 제 3 메모리(1450)에 저장될 수 있다. 제 1 캘리브레이션 데이터는 캘리브레이션 데이터의 하나 이상의 서브 세트, 예를 들어 제 1 줌 상태에서의 와이드 및 텔레 카메라의 센서들 사이의 캘리브레이션 데이터를 포함하는 제 1 서브 세트, 및/또는 제 2 줌 상태에서의 와이드 및 텔레 카메라의 센서들 사이의 캘리브레이션 데이터를 포함하는 제 2 서브 세트, 및/또는 제 1 줌 상태에서의 텔레 카메라의 센서와 제 2 줌 상태에서의 동일한 센서 사이의 캘리브레이션 데이터를 포함하는 제 3 서브 세트를 포함할 수 있다. 전자 장치(1400)는 제 2 이미지 센서(1434)에 의해 기록된 이미지를 형성하는 제 2 렌즈 모듈(1428)을 포함하는 제 2 카메라 모듈(1430)을 더 포함한다. 제 2 렌즈 액추에이터(1436)는 포커싱 및/또는 OIS를 위해 및/또는 2 개의 상이한 줌 상태 사이의 변경을 위해 렌즈 모듈(1428)을 이동할 수 있다. 일부 실시 예에서, 제 2 캘리브레이션 데이터는 카메라 모듈의 제 2 메모리(1438)에 저장될 수 있다. 다른 실시 예들에서, 제 2 캘리브레이션 데이터는 전자 디바이스(1400)의 제 3 메모리(1450)에 저장될 수 있다. 제 2 캘리브레이션 데이터는 예를 들어 상술한 바와 같이 캘리브레이션 데이터의 하나 이상의 서브 세트를 포함할 수 있다.
사용시에, AP(1440)와 같은 처리 유닛은 카메라 모듈(1410 및 1430)로부터 각각의 제 1 및 제 2 이미지 데이터를 수신하고, 카메라 제어 신호를 카메라 모듈(1410 및 1430)에 공급할 수 있다. 일부 실시 예에서, AP(1440)는 제 3 메모리(1450)로부터 캘리브레이션 데이터를 수신할 수 있다. 다른 실시 예에서, AP(1440)는 카메라 모듈(1410)에 위치한 제 1 메모리 및 카메라 모듈(1430)에 위치한 제 2 메모리에 각각 저장된 캘리브레이션 데이터를 수신할 수 있다. 또 다른 실시 예에서, AP(1440)는 전자 장치(1400)의 제 3 메모리(1450)뿐만 아니라, 카메라 모듈(1410)에 위치한 제 1 메모리 및 카메라 모듈(1430)에 위치한 제 2 메모리에 각각 저장된 캘리브레이션 데이터를 수신할 수 있다. 일부 실시 예에서, 장치(1400)와 같은 전자 장치는 폴디드 렌즈 설계로 실현되며 OPFE를 구비한 하나 이상의 카메라 모듈을 포함할 수 있다. 다른 실시 예들에서, 2 개 이상의 카메라 모듈들은 OPFE없는 폴디드 렌즈 설계 구조가 아니라 다른 렌즈 설계 구조로 실현될 수 있다. AP(1440)는 제 3 메모리(1450)에 저장된 데이터에 액세스할 수 있다. 이 데이터는 제 3 캘리브레이션 데이터를 포함할 수 있다. 이미지 생성기(1444)는 캘리브레이션 데이터 및 이미지 데이터에 기초하여 이미지를 출력하도록 구성된 프로세서일 수 있다. 이미지 생성기(1444)는 출력 이미지를 출력하기 위해 캘리브레이션 데이터 및 영상 데이터를 처리할 수 있다.
카메라 캘리브레이션 데이터는 다음을 포함할 수 있다:
- 특히 다른 렌즈 및 다른 렌즈 줌 상태, 예를 들어 텔레 카메라의 2 개의 다른 줌 상태의 모든 가능한 조합에 대한 카메라 모듈(1410 및 1430) 사이의 스테레오 캘리브레이션 데이터. 스테레오 캘리브레이션 데이터는 6 자유도, 예를 들어 피치, 요 및 롤 각도 및 x, y, z 축에서의 디센터(decenter)를 포함할 수 있다.
- 특히 다른 줌 상태, 예를 들어 텔레 카메라의 2 개의 다른 줌 상태의 모든 가능한 조합에 대한 카메라 모듈(1410 및 1430) 사이의 스테레오 캘리브레이션 데이터. 이 데이터는 6 자유도를 포함할 수 있다.
- 각각의 카메라 모듈 및 각각의 다른 줌 상태, 예를 들어 텔레 카메라의 2 개의 다른 줌 상태에 대한 초점 길이 및 왜곡 프로파일과 같은 고유한 카메라 파라미터.
- 각각의 다른 줌 상태(예를 들어, 무한대, 1m 및 가장 가까운 초점)에서 다른 초점 위치에 대응하는 홀-센서 위치 값.
- 각각 다른 줌 상태에 대한 렌즈 모듈의 렌즈 쉐이딩 프로파일.
도 15a는 오토-포커스(AF)를 갖는 듀얼-애퍼처 줌 카메라(1500)의 실시 예를 일반적인 사시도와 절개된 사시도로 개략적으로 도시한다. 카메라(1500)는 2 개의 서브-카메라(1502 및 1504)를 포함하며, 각각의 서브-카메라는 자체 광학기기를 갖는다. 따라서, 서브-카메라(1502)는 센서(1512)뿐만 아니라, 애퍼처(1508) 및 광학 렌즈 모듈(1510)을 갖는 광학 블록(1506)을 포함한다. 유사하게, 서브-카메라(1504)는 센서(1520)뿐만 아니라, 애퍼처(1516) 및 광학 렌즈 모듈(1518)을 갖는 광학 블록(1514)을 포함한다. 각각의 광학 렌즈 모듈은 적외선(IR) 필터(1522a 및 1522b)뿐만 아니라, 여러 렌즈 요소를 포함할 수 있다. 선택적으로, 상이한 애퍼처에 속하는 렌즈 요소의 일부 또는 전부가 동일한 기판 상에 형성될 수 있다. 2 개의 서브-카메라는 2 개의 애퍼처(1508, 1516)의 중심 사이에 기준선(1524)을 가지면서, 서로 나란히 위치된다. 각각의 서브-카메라는 AF 메커니즘(1526) 및/또는 광학 이미지 안정화(OIS)를 위한 메커니즘(1528)을 더 포함할 수 있고, 이는 제어기(도시되지 않음)에 의해 제어된다.
도 15b는 XYZ 좌표계와 관련된 절개 사시도에서 폴디드 텔레 렌즈를 갖는 줌 및 오토-포커스 듀얼-애퍼처 카메라(1530)의 실시 예를 개략적으로 도시한다. 카메라(1530)는 2 개의 서브-카메라, 즉 와이드 서브-카메라(1532) 및 텔레(텔레) 서브-카메라(1534)를 포함한다. 와이드 카메라(1532)는 와이드 이미지 센서(1544)뿐만 아니라, Y-방향으로의 대칭(및 광학)축(1542)을 갖는 렌즈 모듈 및 각각의 애퍼처(1538)을 구비한 와이드 광학 블록을 포함한다. 텔레 카메라(1534)는 텔레 센서(1554)뿐만 아니라, 텔레 렌즈 대칭(및 광학) 축(1552a)을 가진 광학 렌즈 모듈(1550) 및 각각의 애퍼처(1548)를 갖는 텔레 블록을 포함한다. 카메라(1530)는 OPFE(1556)를 더 포함한다. 텔레 광학 경로는 텔레 렌즈를 통해 객체(도시되지 않음)로부터 텔레 센서로 연장되고, 화살표(1552b 및 1552a)로 표시된다. 다양한 카메라 요소가 여기에 도시된 기판(1562), 예를 들어 인쇄 회로 기판(PCB), 또는 상이한 기판(도시되지 않음) 상에 장착될 수 있다.
도 15c는 하나의 폴디드 텔레 서브-카메라(1534)를 갖는 줌 및 오토-포커스 트리플-애퍼처 카메라(1570)의 일 실시 예를 일반적인 사시도로 개략적으로 도시한다. 카메라(1570)는 예를 들어 카메라(1530)의 요소 및 기능을 포함한다. 즉, 카메라(1570)는 와이드 서브-카메라(1532), OPFE(1556)를 갖는 텔레 서브-카메라(1534)를 포함한다. 카메라(1570)는 울트라-와이드 렌즈(1574) 및 이미지 센서(1578)를 갖는 울트라-와이드 카메라일 수 있는 제 3 서브-카메라(1572)를 더 포함한다. 다른 실시 예에서, 제 3 서브-카메라(1572)는 EFLM 및 FOVM을 와이드 및 텔레 서브-카메라의 그것들 중간으로 가질 수 있다. 제 3 서브-카메라의 대칭(및 광학) 축(1576)은 서브-카메라(1542)의 축(1542)과 실질적으로 평행하다. 제 1 및 제 3 서브-카메라는(제 3 서브-카메라(1572)가 텔레 서브-카메라(1534)에 더 가까운) 특정한 배열로 도시되어 있지만, 이 순서는 와이드 및 울트라-와이드 서브-카메라가 위치를 바꿀 수 있도록, 변경될 수 있다.
도 16a 내지 도 16h는 본 명세서에 개시되며 참조번호가 1600인 텔레 센서 및 센서 모듈의 제2 실시예를 개략적으로 도시한다. 모듈(1600)은 표 25의 예 6의 광학 설계를 갖는다. 모듈(1600)은 렌즈(114', 114'', 114''', 114'''', 114''''' 및 114'''''')의 줌 상태간 변환("EFL 스위칭"이라고도 함)를 위한 액추에이터(1610)를 포함한다. 도 16a는 최소 EFL(EFLTmin) 상태에서의 모듈(1600)을 상부 사시도로 개략적으로 도시하고, 도 16b는 최대 EFL(EFLTmax) 상태에서의 모듈(1600)을 상부 사시도로 개략적으로 도시한다. 도 16c는 EFLTmin 상태에서의 모듈(1600)의 일부를 상부 사시도로 개략적으로 도시하고, 도 16d는 EFLTmax 상태에서의 모듈(1600)의 일부를 상부 사시도로 개략적으로 도시한다. 도 16e는 EFLTmin 상태에서의 모듈(1600)의 일부를 측면도로 개략적으로 도시하고, 도 16f는 EFLTmax 상태에서의 모듈(1600)의 부분들을 측면도로 개략적으로 도시한다. 도 16g 및 도 16h는 EFLTmin 상태에서의 모듈(1600)의 일부를 상부 사시도로 개략적으로 도시한다.
모듈(1600)은 G1G3 어셈블리(502), G2 어셈블리(504), 센서 어셈블리(506), 모듈 하우징(1612), 렌즈 프레임(1618), 2 쌍으로 배열된 4 개의 형상 기억 합금(SMA) 스프링(1602a 및 1602b), 2 개의 기계적(일반) 스프링(1604a,b), G2 스톱부(1614a, 1614b 및 1616a, 1616b) 및 AF 작동 메커니즘(1620)을 포함한다. G2 렌즈 스톱부(1614a, b 및 1616a, b)는 모듈(1616)의 객체(이미지 센서(506)) 측을 향한 렌즈 그룹(G2)의 변위를 제한할 수 있다. 액추에이터(1610)는 SMA 스프링(1602) 및 기계적(일반) 스프링(1604)을 포함한다. SMA 스프링(1602)의 치수에 대한 예시적인 값은 0.5mm의 스프링 직경, 0.05mm의 와이어 직경 및 수십 번의 코일 회전(turns)을 포함한다. 그러한 스프링이 생성할 수 있는 힘은 몇 그램 정도이다. 모듈(1600)을 평면도(예컨대, 도 16c 및 도 16d)에서 고려하면, 한 쌍의 SMA 스프링(1602a)과 하나의 기계적 스프링(1604a)이 렌즈 어셈블리의 오른쪽에 위치하며, 한 쌍의 SMA 스프링(1602b)과 하나의 기계적 스프링(1604b)이 렌즈의 왼쪽에 위치한다. 스프링(1602a(1604a) 및 1602b(1604b))은 광축(116)에 대해 대칭 방식으로 모듈의 양측에 위치한다. 스프링(1602a(1604a) 및 1602b(1604b))은 동일한 특성을 가질 수 있다. G1G3 어셈블리(502) 및 G3(504)는 렌즈 광축(116)을 공유한다. 모듈(1600)은 가시성을 이유로 여기에 도시되지 않은 상부 커버를 포함할 수 있다.
G1G3 어셈블리의 2 개의 렌즈 그룹은 2 개의 핀 또는 로드(1606)(도 16b)를 통해 서로 견고하게 연결되어, 광축(116)을 따라 그들 사이의 거리가 일정하다. G1, G3 및 로드(1606)를 포함하는 어셈블리는 본 명세서에서 "G13 어셈블리"로 지칭된다. 로드(1608)는 광축(116)에 평행하며, 전체 렌즈 프레임(1618)을 따라 배치된다. 로드(1608)는 로드(1608) 상에서 슬라이딩함으로써 이동하는 렌즈 그룹(G1+G3 및 G2)의 이동을 가이드한다. G2는 모듈(1600)의 일 측면 상의 G2 스톱부(1614a 및 1616a)와 모듈(1600)의 타 측면 상의 G2 스톱부(1614b 및 1616b) 사이에서 로드(1608) 상에서 "플로팅(float)"할 수 있다. G13 어셈블리는 모듈 하우징(1612) 및 이미지 센서(506)에 대해 이동 가능하여, 2 개의 유효 초점 길이(EFLTmin 및 EFLTmax)를 제공한다. 이미지 센서(506)를 향하며 이미지 센서로부터 멀어지는 광축(116)을 따른 G13 어셈블리의 변위는 SMA 및 기계적 스프링을 통해 수행된다. 각 스프링 쌍(1602)에서의 2 개의 SMA 스프링은 서로에 대해 그리고 광축(116)에 평행할 수 있고, 그들의 일측 단부가 G3에 고정되고 타측 단부가 렌즈 프레임(1618)에 고정되도록 연결될 수 있다. (광축(116)에도 평행한) 기계적 스프링(1604)의 일측 단부는 G1에 고정될 수 있고, 타측 단부는 렌즈 프레임(1618)에 고정될 수 있다.
공지된 SMA 특성 및 효과에 기초하여, 이미지 센서(506)를 향하며 이미지 센서(506)로부터 멀어지는 G13 어셈블리의 변위는 다음과 같은 방식으로 유도될 수 있다: 가열될 때, SMA 스프링(1602)은 수축하고 내부 응력이 크게 증가하여, 높은 압축력을 초래한다. 반대로, 냉각되면, 내부 응력이 크게 감소하여, 낮은 압축력을 초래한다. 따라서, SMA 스프링(1602)을 가열할 때, 예를 들어 이들을 통해 전류를 공급함으로써, 이들의 압축력이 기계적 스프링(1604)의 카운터 압축력을 극복하기 위해 제어될 수 있으며, 결과적으로 G13 어셈블리가 이미지 센서(506)로부터 멀어지게 하는 변위를 초래한다. 반대로는, 전형적으로 전류 공급을 차단함으로써 환경 온도(예를 들어, 60℃)로 되돌아가 SMA 스프링을 이완시킬 때, 기계적 스프링(1604)의 압축력은 SMA 스프링(1602)의 힘을 극복하고, 결과적으로 G13 어셈블리가 이미지 센서(506) 쪽으로 향하는 변위를 초래한다.
도 16g 및 도 16h는 AF 작동 메커니즘(1620)의 세부사항을 도시한다. 메커니즘(1620)은 카메라(103)와 같은 카메라를 포커싱하기 위해 사용되며, 2 개의 코일(1622a, 1622b), 프레임(1618)에 견고하게 결합된 자석 어셈블리(1624) 및 PCB에 납땜될 수 있는(도 16g 및 도 16h에는 도시되지 않음) 홀 센서(1626)를 포함한다. 코일은 실질적으로 Y-Z 평면에 놓인 평평한 하부 및 상부 표면을 가지며, 이러한 코일은 서로에 대해 (렌즈 광축 및 G1, G2 및 G3의 이동 방향에 평행한) Z 방향을 따라 배열된다. 커플링은 입력 및 출력 전류를 코일(1622a 및 1622b)에 보낼 수 있게 하며, 전류는 작동에 필요한 전력 및 전자 신호를 모두 전달한다. 홀 센서(1626)는 모듈 하우징(1612)에 견고하게 결합될 수 있고(후자는 도 16g 및 도 16h에 도시되지 않음), 모듈 하우징(1612) 및 이미지 센서(506)에 대한 렌즈 프레임(1618)의 위치를 결정하는데 사용된다. 자석 어셈블리(1624)는 각각 2 개의 극성을 갖는 2 개의 분할 자석(1624a, 1624b)을 포함하고, 여기서 극성은 서로 직교하고, 자석 표면에 대해 법선(normal)(반-법선) 방향이다. 자석 어셈블리(1624)에서와 같이 분할 자석(및 VCM에서의 기능)에 대한 세부사항은 도 5a 내지 도 5e의 자석(512)에 대해 위에서 설명되었다. 극성은 각각 1624a 및 1624b의 해당 영역의 해칭으로 표시된다. 포커싱은 코일(1622a, 1622b)을 통해 전류를 구동함으로써 달성된다.
도 17a 내지 도 17d는 본 명세서에 개시되고 번호가 1700인 텔레 렌즈 및 센서 모듈의 제3 실시예를 개략적으로 도시한다. 모듈(1600)과 마찬가지로, 모듈(1700)은 표 25의 예 6의 광학 설계를 갖는다. 도 17a는 EFLTmin 상태에서의 모듈(1700)을 상부 사시도로 개략적으로 도시하고, 도 17b는 EFLTmax 상태에서의 모듈(1700)을 상부 사시도로 개략적으로 도시한다. 도 17c는 EFLTmax 상태에서의 모듈(1700)의 일부를 상부 사시도로 개략적으로 도시한다. 도 17d는 모듈(1700)의 부분들을 개략적으로 도시한다.
모듈(1700)은 렌즈(114', 114'', 114''', 114'''', 114''''' 및 114'''''')의 줌 상태와 포커스 상태 사이를 변경하기 위한 VCM 메커니즘(1710)을 포함한다. 모듈(1700)은 G1G3 어셈블리(502), G2 어셈블리(504), 센서 어셈블리(506), 모듈 하우징(1612) 및 렌즈 프레임(1706)을 더 포함한다. VCM 메커니즘(1710)은 모듈의 각 측면에 2 개의 VCM(1710a 및 1710b)과 2 개의 G2 렌즈 스톱부(1702 및 1704)를 포함한다. 렌즈 스톱부(1702 및 1704)는 모듈(1700)의 객체(이미지 센서(506)) 측을 향한 G2의 변위를 제한할 수 있다. 모듈(1700)을 평면도에서 고려하면(예를 들어, 2 개의 대향 측면에서 도 17c 및 도 17d에 도시됨), VCM(1710a 및 1710b)는 동일한 구조와 속성을 가질 수 있다. 렌즈 어셈블리(502, 504)는 렌즈 광축(116)을 공유한다. 모듈(1700)은 가시성을 이유로 여기에 도시되지 않은 상부 커버를 포함할 수 있다.
VCM 메커니즘(1710)은 각각 VCM(1710a, 1710b)의 구성요소인 2 개의 코일 어셈블리(1730a, 1730b)와 2 개의 자석 어셈블리(1720a, 1720b)를 포함한다. 코일 어셈블리 및 자석 어셈블리(1720a, 1720b)는 광축(116)을 기준로 대칭적으로 모듈의 양측에 위치한다. 그러나, VCM(1710a, 1710b)은 아래에 설명된 바와 같이, 홀 센서의 수와 위치에 있어서 서로 상이하다. 예시적으로, 도 17a 내지 도 17d에 도시된 실시예에서, 코일 어셈블리(1730a, 1730b)는 각각 4개의 코일(1730c, 1730d, 1730e, 1730f)(도 17c 참조)을 포함하고, 자석 어셈블리(1720a, 1720b)는 각각 2 개의 자석(1720c, d) 포함하는 반면, 각각의 자석은 2 개의 극성을 갖는다(도 17d 참조). 자석 어셈블리(1720a)는 모듈의 일 측면(예를 들어, 관찰자로부터 멀어지는 측면)에 위치하는 반면, 자석 어셈블리(1720b)는 모듈의 타 측면(즉, 관찰자를 향한 측면)에 위치한다.
도 17a 및 도 17b에서, VCM 메커니즘(1710)을 덮을 하우징(1612)의 특정 부분(즉, 외벽)은 명확성과 가시성을 이유로 도시되지 않았다. 도 17c는 VCM 메커니즘(1710)을 강조하기 위해 하우징(1612)이 없는 모듈(1700)을 도시한다. 도 17d는 VCM 메커니즘(1710)의 자석 어셈블리(1720)를 강조하기 위해 하우징(1612) 및 코일 어셈블리(1730)가 없는 모듈(1700)을 도시한다. 코일 어셈블리(1730)는 PCB(도 17c에 도시되지 않음)에 고정(예컨대, 납땜)될 수 있는데, 이는 코일 어셈블리(1730)의 코일에 입력 및 출력 전류를 보낼 수 있으며, 그 전류들은 작동에 필요한 전력 및 전자 신호 모두를 전달한다. PCB는 하우징(1612)에 견고하게 결합(예를 들어, 접착)될 수 있고, 자석 어셈블리(1720)는 렌즈 프레임(1706)에 견고하게 결합된다.
도 17e는 자석 어셈블리(1720)를 도시한다. 자석 어셈블리(1720)는 상이한 방향의 화살표에 의해 지시된 4개의 교번(alternating) 극성을 갖는 단일 자석을 포함할 수 있는데, 상기 극성은 자석의 표면에 법선(또는 역-법선) 방향으로 지향된다. 대안적으로, 예를 들어 제조 복잡성을 줄이기 위해, 4개의 극성을 갖는 단일 자석은 화살표로 표시된 바와 같이, 2 개의 극성을 갖는 2 개의 자석을 포함하는 자석 서브-어셈블리(1720')로 대체될 수 있다.
도 17f는 EFLTmin 상태와 EFLTmax 상태 사이에서 VCM(1710a, 1710b)에 의한 작동 방법을 개략적으로 도시한다. 도 17e에 도시된 바와 같이 자석 내의 서브-영역의 자화는 해칭으로 표시된다. VCM(1710a 및 1710b)은 공지되고 미리 정의된 순서로 상이한 코일을 통해 전류를 구동함으로써 동작한다. 예를 들어, z축을 따라 (더 큰 z 값 방향으로) 자석을 전파하기 위해 다음 시퀀스가 실행될 수 있다(코일 번호 표기법 1-4에 대해서는 도 17f 참조).
VCM(1710a 및 1710b)은 큰(large)-스트로크 VCM을 나타낸다. 스트로크의 크기(표 25 참조)는 코일 수에 따라 결정되지만, 자석의 크기는 동일하게 유지된다. 또한, 스트로크 크기에는 상한이 없다. 즉, 스트로크를 늘리기 위해 자석의 크기를 늘려야 하는 현재의 VCM 구성과 달리, 주어진 자석의 경우, VCM에 더 많은 코일을 추가하기만 하면 더 큰 스트로크를 얻을 수 있다. 이론적으로, 무한의 코일 수를 추가함으로써 무한 스트로크를 얻을 수 있다.
VCM에서, 일반적으로 자석은 동적 메커니즘의 일부인 반면, 코일은 정적이다. 일반적으로, 자석은 메커니즘 질량의 주요 부분을 구성한다. 결과적으로, 빠른 안정화(settling) 시간을 달성하고 낮은 자석 볼륨을 유지하는 것이 매우 중요하다. 따라서, 도 17a 내지 도 17j에 도시된 VCM 구성은 큰 스트로크를 도입하면서 낮은 자석 질량을 유지하는 솔루션을 제시한다. 예를 들어, 이러한 구성을 사용하면, ~11mm 길이의 자석 하나를 사용하여 ~7mm의 스트로크를 얻을 수 있다. 비교를 위해, 하나의 자석과 하나의 코일을 사용하여(본 명세서에서와 같이 4개가 아님) 7mm의 스트로크를 달성하려면, 자석의 길이가 ~17mm여야 한다.
도 17g 및 도 17h는 각각 EFLTmin 및 EFLTmax 상태에서 VCM(1710a 및 1710b)의 줌 상태 스위칭을 수행하기 위한 작동 방법을 측면도로 도시한다. (액츄에이터(1710)를 노출시키기 위해 여기에서 부분적으로 제거된) 모듈 하우징(1612)에 견고하게 결합된 홀 센서(1708)는 EFLTmin 및 EFLTmax 상태들 간의 제어된 스위칭을 위해, 모듈 하우징(1612)에 대한 모듈 프레임(1706)의 위치를 결정한다.
도 17i 및 도 17j는 각각 EFLTmin 및 EFLTmax 상태에서 VCM(1710a, 1710b)의 액츄에이터 모드를 도 17g 및 도 17h와 반대인 측면도로 도시한다. 홀 센서(1712, 1714)는 모듈 하우징(1612)에 견고하게 결합되고, 카메라(103)를 포커싱하기 위해 모듈 하우징(1612)에 대한 모듈 프레임(1706)의 위치를 결정한다. 도 17i에 도시된 바와 같은 EFLTmin 상태에서, 모듈 하우징(1612)에 대한 모듈 프레임(1706)의 위치는 홀 센서(1714)에 의해 결정된다. 도 17j에 도시된 바와 같은 EFLTmax 상태에서, 모듈 하우징(1612)에 대한 모듈 프레임(1706)의 위치는 홀 센서(1712)에 의해 결정된다.
줌 상태 스위칭을 위한 스트로크를 제어하기 위해, 하우징의 일 측면에 하나의 홀 센서를 사용할 수 있다(도 17g 및 17h 참조). 포커싱을 위한 스트로크를 제어하기 위해, EFLTmin 상태에 있을 때 홀 센서(1714)를, 그리고 EFLTmax 상태에 있을 때 홀 센서(1712)를 사용할 수 있다(도 17i 및 17j).
도 18a 및 도 18b는 EFLTmin를 갖는 줌 상태에서 G2를 G1에 부착(자기적으로 결합)하기 위한 부착 서브-시스템(1810)의 실시예를 사시도로 도시한다. 부착 서브-시스템(1810)은 4개의 요크(1814a, 1814b, 1814c, 1814d)와 4개의 자석(1816a, 1816b, 1816c, 1816d)을 포함할 수 있다. 지정된 액추에이터, 예를 들어 VCM 없이, 단지 부착 서브-시스템(1810)에 의해 G2를 G1에 부착하는 것이 달성된다.
도 18c 및 도 18d는 EFLTmax를 갖는 줌 상태에서 G2를 G3에 부착하기 위한 부착 서브-시스템(1820)의 다른 실시예를 사시도로 도시한다. 부착 서브-시스템(1820)은 4개의 요크(1824a, 1824b, 1824c, 1824d)와 4개의 자석(1826a, 1826b, 1826c, 1826d)을 포함할 수 있다. 지정된 액추에이터, 예를 들어 VCM 없이, 단지 부착 서브-시스템(1820)에 의해 G2를 G3에 부착하는 것이 달성된다.
부착 서브-시스템(1810 및 1820)은 자석과 요크 사이의 인력를 기반으로 하므로, 오토-포커싱을 수행하는 데 필요할 수 있는, G2의 위치를 결정하기 위한 전용 VCM 및 센서 시스템을 불필요하게(redundant) 한다.
도 19a 내지 도 19d는 G2 스톱 제거 메커니즘(1900)을 도시한다. G2 제거 메커니즘은 위에서 설명된 바와 같이, 매크로 촬영 모드(또는 "매크로 모드")를 가능하게 하기 위해 모듈(1600) 또는 모듈(1700)에 포함될 수 있다. G2 스톱 제거 메커니즘(1900)은 G2 스톱부(1906), 기계적 스프링(1902b)과 SMA 스프링(1904b), 기계적 스프링(1902a)(여기서 보이지 않음)과 SMA 스프링(1904a)(여기서 보이지 않음)을 포함한다. 스프링(1904a(1902a) 및 1904b(1902b))은 광축(116)에 대해 대칭되는 방식으로 모듈의 양측에 위치한다.
도 19a는 EFLTmax 상태에서 G2 스톱부(1906)가 작동되는 G2 스톱 제거 메커니즘(1900)를 사시도로 도시한다. "작동됨"은 기계적 요소 또는 부재(1908)(이하, "텅(tongue)"이라고도 함, 아래 참조)가 (다음에 설명되는 스프링 구성에 의해) 결합되어, G2가 G1 또는 G3과 함께 이동하는 것을 방지함을 의미한다. G2 어셈블리(504)는 G2가 G3에 자기적으로 결합된 채, G1-G3 어셈블리(502)에 자기적으로 결합된다. 이러한 구성은 텔레 촬영을 가능하게 할 수 있다.
도 19b는 매크로 모드 상태에서 비-작동된 G2 스톱부(1906)를 갖는 G2 스톱 제거 메커니즘(1900)을 사시도로 도시한다. "비-작동됨"은 기계적 요소 또는 부재가 분리되어, G2 이동을 방해하지 않음을 의미한다. 여기서, G2 어셈블리(504)는 G2가 G1에 자기적으로 결합된 채, G1G3 어셈블리(502)에 자기적으로 결합된다. 이 상태는 매크로 촬영에 사용될 수 있다. G2 스톱부를 비-작동시키기 위해, SMA 스프링(1904a 및 1904b)을 통해 전류가 구동되어, 가열 및 압축된다. 압축력이 기계적 스프링(1902a, 1902b)의 수축력보다 높기 때문에, G2 스톱부(1906)는 SMA 스프링(1904a, 1904b)의 측면에서 하우징(1612)으로부터 멀어지는(제거된) 이동을 실행한다.
도 19c는 EFLTmin 또는 EFLTmax 상태에서 스톱부(1906)가 작동되는 상태에서의 G2 스톱 제거 메커니즘(1900)의 일부를 도시한다. 도 19d는 G2 스톱부(1906)가 비-작동되는 상태에서의 G2 스톱 제거 메커니즘(1900)의 일부를 도시한다. 어셈블리(504)의 일부인 텅(1908)은 G2 스톱부(1906)가 작동되는 경우 G2 어셈블리(504)의 이동을 스톱시키기고, 따라서 EFLTmin 상태로부터 EFLTmax 상태로의 줌 상태 스위칭의 경우, G2가 G1로부터 연결 해제되고, 예를 들어 도 18a 내지 도 18d에 설명된 자석 기반 메커니즘을 통해 줌 스위칭 프로세스의 종료 무렵에 G3에 연결된다. G2 스톱부(1906)가 작동되면, 텅(1908)은 G2의 이동을 정지시키지 않으므로, G2는 G1에 연결된 상태를 유지한다. 추가적인 전류가 SMA 스프링(1904a, 1904b)을 통해 공급되지 않으면, G2 스톱부(1906)가 다시 작동된다.
다른 예에서, 모듈(1600) 또는 모듈(1700) 또는 모듈(1900)은 표 25의 예 6의 광학 설계를 가질 수 있고, 매크로 모드에서 매크로 촬영에 사용될 수 있다. 매크로 모드로 들어가려면, 렌즈(114', 114'', 114''', 114'''', 114''''' 및 114'''''')가 EFLTmin 상태에 있어야 한다. 매크로 모드에 들어갈 때, 렌즈는 G2 스톱부(1906)가 비작동된 EFLTmin 상태에 있어야 하며, 렌즈는 G2 스톱부(1906)가 비작동된 채, EFLTmax로 스위칭된다. 도 19b에 도시된 바와 같이, G2 렌즈 스톱부의 제거로 인해, G2는 G1에 부착된 상태로 유지된다.
표 25의 예 6의 광학 설계에 의하면, 예를 들어 M = 0.44의 최대 매크로 모드 배율(M)이 달성되며, 여기서 M은 이미지 센서 평면 상의 피사체 이미지 크기와 실제 피사체 크기의 비율을 의미한다.
이것은 얇은 렌즈 근사에 따라,
EFL = 13mm 및 렌즈-이미지 거리 v = 19mm에 대해, 객체-렌즈 거리가 u = 42mm이고, 따라서 M = 19/43 = 0.44의 배율이 된다. 이 최대 배율은 도 19b에 도시된 바와 같은 렌즈 구성으로 달성되고, 여기서 G1+G2+G3은 객체를 향해(즉, 센서로부터 멀어지게) 가능한 멀리 함께 이동한다.
(무한대의 객체에 대해) 0 배율까지의 더 작은 배율(M)이 연속적으로 선택될 수 있다. 더 작은 배율의 경우, 렌즈 그룹은 매크로 모드 구성(G2가 G1에 부착된 것으로 정의됨)에 있어야 하고, G1+G2+G3은 이미지 센서 쪽으로 함께 이동되어야 한다.
예를 들어, 배율 M = 0.23이 바람직할 수 있다. Mmax 상태로부터 M = 0.23으로 스위칭하려면, 렌즈들은 매크로 모드 구성에 있어야 하고, G1+G2+G3은 함께 이미지 센서 쪽으로 3mm 이동되어야 한다. 상기 얇은 렌즈 근사에 따르면, EFL = 13mm 및 렌즈-이미지 거리 v = 16mm는 u = 69mm의 객체-렌즈 거리가 되고, 따라서 M = 16/69 = 0.23의 배율이 된다.
Mmax 상태로부터 제로 배율(즉, M = 0)을 갖는 Mmin 상태로 스위칭하려면, 매크로 모드 구성에서 G1+G2+G3은 함께 이미지 센서 쪽으로 6mm 이동되어야 하고, 따라서 EFL = 13mm 및 렌즈-이미지 거리 v = 13mm는 M = 0으로 변환된다.
본 개시사항은 제한된 수의 실시 예들을 설명하지만, 그러한 실시 예들의 많은 변형, 수정 및 다른 응용이 이루어질 수 있음을 이해할 것이다. 일반적으로, 본 개시사항은 여기에 설명된 특정 실시 예들에 의해 제한되지 않고, 첨부된 청구 범위에 의해서만 제한되는 것으로 이해되어야 한다.
본 명세서에 언급된 모든 참고 문헌은 각각의 개별 참조가 본원에 참고로 포함되는 것으로 구체적이고 개별적으로 지시된 것과 동일한 정도로, 본 명세서에 참고로 전체적으로 포함된다. 또한, 본 출원서에서 임의의 참고 문헌의 인용 또는 식별은 이러한 참고 문헌이 본 출원의 선행 기술로서 이용 가능하다는 인정으로 해석되어서는 안된다.

Claims (13)

  1. 보이스 코일 모터(VCM)로서,
    복수의 극성을 갖는 자석을 포함하는 적어도 하나의 자석 어셈블리; 및
    2개의 코일을 각각 포함하는 2개의 코일 어셈블리를 포함하고,
    상기 2개의 코일 어셈블리는 자석 변위의 시퀀스에서 주어진 방향을 따라 주어진 스트로크로 상기 자석을 이동시키도록 작동 가능하며,
    상기 자석은 폴디드 카메라의 렌즈에 고정적으로 부착되고, 상기 렌즈는 렌즈 광축을 가지며;
    상기 보이스 코일 모터(VCM)는 상기 폴디드 카메라의 렌즈를 포커싱 및/또는 주밍시키도록 작동 가능한 보이스 코일 모터(VCM).
  2. 제1항에 있어서, 상기 복수의 극성은 4개의 극성을 포함하는 보이스 코일 모터(VCM).
  3. 제1항에 있어서, 상기 적어도 하나의 자석은 2개의 자석을 포함하고, 상기 복수의 극성은 2개의 극성을 포함하는 보이스 코일 모터(VCM).
  4. 제1항에 있어서, 4개의 코일은 코일에 대한 적어도 하나의 자석의 이동을 제공하도록, 각각의 구동 전류에 의해 구동되고, 상기 구동 전류는 적어도 하나의 자석에 대한 코일의 위치에 의존하는 보이스 코일 모터(VCM).
  5. 제1항에 있어서, 적어도 하나의 자석에 대한 4개의 코일의 위치는 위치 감지를 위한 적어도 2개의 홀 바 센서에 의해 측정되는 보이스 코일 모터(VCM).
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 폴디드 카메라는 서로 직교하며 상기 렌즈 광축에 직교하는 각각의 높이 및 폭 방향으로 카메라 높이 및 카메라 폭을 가지며, 4개의 코일은 폭 방향으로 카메라의 일측에 배열되는 보이스 코일 모터(VCM).
  7. 제6항에 있어서, 상기 폴디드 카메라는 이미지 센서를 포함하고, 상기 렌즈는 렌즈 광축을 따라 렌즈 요소 그룹(G1), 렌즈 요소 그룹(G2) 및 렌즈 요소 그룹(G3)을 포함하고, 상기 보이스 코일 모터(VCM)는 상기 렌즈를 2개의 줌 상태로 만들기 위해 상기 렌즈 광축에 평행한 방향으로 상기 이미지 센서에 대해 G1 및 G3을 함께 이동시키도록 작동 가능하고, G1 및 G3은 서로 고정적으로 부착되어 있는 보이스 코일 모터(VCM).
  8. 제7항에 있어서, G1과 G3 사이의 고정된 부착은 G1과 G3을 연결하는 복수의 로드에 의해 가능하고, G2는 복수의 로드에 의해 가이드되며, 상기 복수의 로드에 대해 렌즈 축에 평행한 방향을 따라 이동할 수 있는 보이스 코일 모터(VCM).
  9. 제7항에 있어서, G1 또는 G3에 대한 G2의 부착은 자력에 의한 것인 보이스 코일 모터(VCM).
  10. 제7항에 있어서, 함께 G1 및 G3의 이동은 2mm보다 크며 20mm보다 작은 스트로크에 걸쳐 있고, 2 개의 스톱부 사이의 G2 이동의 스트로크는 G1 및 G3의 스트로크의 절반보다 작은 보이스 코일 모터(VCM).
  11. 제7항에 있어서, 상기 렌즈는 유효 초점 길이(EFL)를 갖고, 상기 EFL은 제1 줌 상태에서의 최소값(EFL,min)으로부터 제2 줌 상태에서의 최대값(EFLmax)으로 변경되고, 비율(EFLmax/ EFL,min)은 >1.5인 보이스 코일 모터(VCM).
  12. 제7항에 있어서, 상기 렌즈의 포커싱은 G1+G2+G3를 함께 이동시킴으로써 수행되는 보이스 코일 모터(VCM).
  13. 제12항에 있어서, 상기 렌즈는 제1 G2 스톱부 및 제2 G2 스톱부를 갖는 G2 스톱 메커니즘을 또한 포함하는 렌즈 및 센서 모듈에 포함되고, 제1 또는 제2 G2 스톱부 중 하나는 매크로 촬영을 위해 G1+G2+G3의 이동이 2mm 이상의 큰 스트로크에 걸쳐 있을 수 있도록, 제거 가능한 보이스 코일 모터(VCM).
KR1020227024832A 2019-02-25 2020-02-19 적어도 하나의 2 상태 줌 카메라를 갖는 멀티-애퍼처 카메라 KR102606345B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237039764A KR102655458B1 (ko) 2019-02-25 2020-02-19 적어도 하나의 2 상태 줌 카메라를 갖는 멀티-애퍼처 카메라

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962809871P 2019-02-25 2019-02-25
US62/809,871 2019-02-25
PCT/IB2020/051405 WO2020174325A2 (en) 2019-02-25 2020-02-19 Multi-aperture cameras with at least one two state zoom camera
KR1020217025186A KR102424008B1 (ko) 2019-02-25 2020-02-19 적어도 하나의 2 상태 줌 카메라를 갖는 멀티-애퍼처 카메라

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020217025186A Division KR102424008B1 (ko) 2019-02-25 2020-02-19 적어도 하나의 2 상태 줌 카메라를 갖는 멀티-애퍼처 카메라

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020237039764A Division KR102655458B1 (ko) 2019-02-25 2020-02-19 적어도 하나의 2 상태 줌 카메라를 갖는 멀티-애퍼처 카메라

Publications (2)

Publication Number Publication Date
KR20220107312A KR20220107312A (ko) 2022-08-02
KR102606345B1 true KR102606345B1 (ko) 2023-11-23

Family

ID=72239258

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020247011030A KR20240046652A (ko) 2019-02-25 2020-02-19 적어도 하나의 2 상태 줌 카메라를 갖는 멀티-애퍼처 카메라
KR1020227024832A KR102606345B1 (ko) 2019-02-25 2020-02-19 적어도 하나의 2 상태 줌 카메라를 갖는 멀티-애퍼처 카메라
KR1020217025186A KR102424008B1 (ko) 2019-02-25 2020-02-19 적어도 하나의 2 상태 줌 카메라를 갖는 멀티-애퍼처 카메라
KR1020237039764A KR102655458B1 (ko) 2019-02-25 2020-02-19 적어도 하나의 2 상태 줌 카메라를 갖는 멀티-애퍼처 카메라

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020247011030A KR20240046652A (ko) 2019-02-25 2020-02-19 적어도 하나의 2 상태 줌 카메라를 갖는 멀티-애퍼처 카메라

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020217025186A KR102424008B1 (ko) 2019-02-25 2020-02-19 적어도 하나의 2 상태 줌 카메라를 갖는 멀티-애퍼처 카메라
KR1020237039764A KR102655458B1 (ko) 2019-02-25 2020-02-19 적어도 하나의 2 상태 줌 카메라를 갖는 멀티-애퍼처 카메라

Country Status (6)

Country Link
US (1) US11310405B2 (ko)
JP (2) JP2022508453A (ko)
KR (4) KR20240046652A (ko)
CN (4) CN116990927A (ko)
TW (3) TWI807555B (ko)
WO (1) WO2020174325A2 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9857568B2 (en) 2013-07-04 2018-01-02 Corephotonics Ltd. Miniature telephoto lens assembly
EP3779564B1 (en) 2013-07-04 2024-04-10 Corephotonics Ltd. Miniature telephoto lens assembly
US9392188B2 (en) 2014-08-10 2016-07-12 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US11336830B2 (en) 2019-01-03 2022-05-17 Corephotonics Ltd. Multi-aperture cameras with at least one two state zoom camera
CN111830669A (zh) * 2019-04-17 2020-10-27 浙江舜宇光学有限公司 电子成像装置
KR102331696B1 (ko) 2019-09-10 2021-11-26 자화전자(주) 카메라 액추에이터 및 이를 포함하는 소형 카메라
US11656538B2 (en) 2019-11-25 2023-05-23 Corephotonics Ltd. Folded zoom camera module with adaptive aperture
KR102617779B1 (ko) 2020-05-30 2023-12-22 코어포토닉스 리미티드 슈퍼 매크로 이미지를 얻기 위한 시스템 및 방법
EP4065934A4 (en) 2020-07-31 2023-07-26 Corephotonics Ltd. LARGE STROKE LINEAR POSITION DETECTION HALL EFFECT SENSOR MAGNET GEOMETRY
US11709347B2 (en) * 2020-09-24 2023-07-25 Apple Inc. Folded camera with autofocus and optical image stabilization systems
CN114488459A (zh) * 2020-11-13 2022-05-13 华为技术有限公司 音圈马达、摄像模组及电子设备
EP4066036A4 (en) * 2020-12-01 2023-01-25 Corephotonics Ltd. FOLDED CAMERA WITH CONTINUOUSLY ADAPTIVE ZOOM FACTOR
KR20220080477A (ko) * 2020-12-07 2022-06-14 삼성전자주식회사 광학식 줌을 지원하는 카메라 모듈 및 이를 포함하는 전자 장치
US11886036B2 (en) 2021-01-25 2024-01-30 Hand Held Products, Inc. Variable focus assemblies and apparatuses having crossed bearing balls
CN117376688A (zh) * 2021-01-25 2024-01-09 核心光电有限公司 用于紧凑型数码相机的镜头系统
TWI772185B (zh) * 2021-09-17 2022-07-21 大陽科技股份有限公司 成像鏡頭驅動模組與電子裝置
US20230288684A1 (en) * 2022-03-11 2023-09-14 Hand Held Products, Inc. Variable focusing lens apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057546A (ja) 2001-08-20 2003-02-26 Pentax Corp ズームレンズ系
JP2008530954A (ja) * 2005-02-18 2008-08-07 イーストマン コダック カンパニー 複数レンズを使用するデジタルカメラ

Family Cites Families (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2106752A (en) 1934-12-03 1938-02-01 Sheet Polarizer Company Inc Field divider
US2354503A (en) 1941-12-01 1944-07-25 Taylor Taylor & Hobson Ltd Optical objective of the telephoto type
US2378170A (en) 1943-06-25 1945-06-12 Eastman Kodak Co Telephoto lens
US2441093A (en) 1946-07-22 1948-05-04 Eastman Kodak Co Telephoto lens
US3388956A (en) 1963-04-10 1968-06-18 Voigtlaender Ag Photographic telephoto lenses of high telephoto power
DE1447278A1 (de) 1964-06-20 1968-12-19 Voigtlaender Ag Tele-Anastigmat mittlerer Lichtstaerke mit grossem Telephoto-Effekt
US3558218A (en) 1967-12-01 1971-01-26 Polaroid Corp Three-element telephoto objective lens
JPS5116135B2 (ko) 1972-05-10 1976-05-21
US3942876A (en) 1972-09-07 1976-03-09 Ponder & Best, Inc. Telephoto lens
JPS5327421A (en) 1976-08-26 1978-03-14 Asahi Optical Co Ltd Small telephotographic lens
JPS55163510A (en) 1979-06-06 1980-12-19 Nippon Kogaku Kk <Nikon> Telephoto lens
JPS5740220A (en) * 1980-08-22 1982-03-05 Nippon Kogaku Kk <Nikon> Zoom lens composed of 3 groups
JPS5850509A (ja) 1981-09-21 1983-03-25 Ricoh Co Ltd 小型望遠レンズ
US5000551A (en) 1989-06-05 1991-03-19 Nikon Corporation Zoom lens
JP3245452B2 (ja) * 1991-07-24 2002-01-15 オリンパス光学工業株式会社 小型の3群ズームレンズ
JP3358639B2 (ja) * 1994-05-31 2002-12-24 京セラ株式会社 カメラのフォーカス制御方式
JP3676524B2 (ja) 1996-10-25 2005-07-27 ペンタックス株式会社 プリズム
JPH1195105A (ja) * 1997-07-22 1999-04-09 Nikon Corp 変倍光学系の合焦方式
JPH11223771A (ja) * 1998-02-06 1999-08-17 Nikon Corp 可変焦点距離レンズ系
US6147702A (en) 1998-04-17 2000-11-14 Intel Corporation Calibration of digital cameras
US6195209B1 (en) 1999-05-04 2001-02-27 U.S. Precision Lens Incorporated Projection lenses having reduced lateral color for use with pixelized panels
JP4278879B2 (ja) 2001-02-27 2009-06-17 株式会社オートネットワーク技術研究所 車両周辺視認装置
JP3503941B2 (ja) 2002-02-04 2004-03-08 富士写真光機株式会社 3群ズームレンズ
JP4262439B2 (ja) * 2002-05-14 2009-05-13 オリンパス株式会社 ズームレンズ及びそれを有する電子撮像装置
JP2004334185A (ja) * 2003-04-18 2004-11-25 Canon Inc ズームレンズ
US6924948B2 (en) 2003-08-21 2005-08-02 Arc Design, Inc. Multifocal lens system for digital cameras
JP4276914B2 (ja) 2003-09-18 2009-06-10 オリンパス株式会社 振動波リニアモータ及びその駆動方法
JP2005134486A (ja) 2003-10-28 2005-05-26 Ricoh Co Ltd カラー画像読取レンズ、カラー画像読取レンズユニット、カラー画像読取装置および画像形成装置
JP2005173191A (ja) 2003-12-11 2005-06-30 Olympus Corp 光路折り曲げ光学系
JP2005215473A (ja) 2004-01-30 2005-08-11 Sekinosu Kk 投影レンズ装置
US6980379B1 (en) 2004-07-19 2005-12-27 Microalign Technologies, Inc. Flat wide-angle objective
JP4684597B2 (ja) 2004-08-13 2011-05-18 Hoya株式会社 レンズ制御装置
JP4652007B2 (ja) * 2004-09-30 2011-03-16 日本電産コパル株式会社 レンズ駆動装置
US9155483B2 (en) 2004-12-03 2015-10-13 The Invention Science Fund I, Llc Vision modification with reflected image
JP4794912B2 (ja) 2005-06-02 2011-10-19 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2007025641A (ja) * 2005-06-17 2007-02-01 Matsushita Electric Ind Co Ltd ズームレンズ系及びそれを備えたレンズ鏡筒
JP2007164065A (ja) * 2005-12-16 2007-06-28 Konica Minolta Opto Inc レンズユニット及び撮像装置
JP2007219199A (ja) * 2006-02-17 2007-08-30 Konica Minolta Opto Inc レンズユニット、撮像装置及びレンズの製造方法
JP2007219409A (ja) * 2006-02-20 2007-08-30 Mitsubishi Electric Corp レンズユニット及びその製造方法
JP4905653B2 (ja) 2006-03-28 2012-03-28 ペンタックスリコーイメージング株式会社 中望遠レンズ系
CN101056360A (zh) * 2006-04-13 2007-10-17 普立尔科技股份有限公司 手持行动装置的可变焦照相模块
KR100900486B1 (ko) 2006-09-04 2009-06-03 삼성테크윈 주식회사 촬상 장치용 광학 모듈 및 이를 구비한 촬상 장치
JP4956343B2 (ja) 2006-09-25 2012-06-20 富士フイルム株式会社 2焦点撮像光学系および撮像機器
JP2008102427A (ja) * 2006-10-20 2008-05-01 Tamron Co Ltd 光学装置および撮像装置
TWI332584B (en) 2007-04-25 2010-11-01 Largan Precision Co Ltd Optical lens system for taking image
US7918398B2 (en) 2007-06-04 2011-04-05 Hand Held Products, Inc. Indicia reading terminal having multiple setting imaging lens
JP2008304708A (ja) 2007-06-07 2008-12-18 Konica Minolta Opto Inc ズームレンズ及び撮像装置
TWI351530B (en) 2007-07-05 2011-11-01 Largan Precision Co Ltd Inverse telephoto with correction lenses
TWI354820B (en) 2007-08-14 2011-12-21 Largan Precision Co Ltd Optical lens system for taking image
JP4947423B2 (ja) 2007-08-29 2012-06-06 コニカミノルタオプト株式会社 撮像レンズ
US7710665B2 (en) 2007-11-08 2010-05-04 Samsung Electro-Mechanics Co., Ltd. Imaging optical system
TWI361914B (en) 2007-11-16 2012-04-11 Largan Precision Co Ltd Optical lens system for taking image
JP2009134175A (ja) 2007-11-30 2009-06-18 Olympus Imaging Corp 結像光学系
KR101537123B1 (ko) 2007-12-04 2015-07-16 블랙아이 옵틱스, 엘엘씨 줌 렌즈 시스템 및 이를 구비한 카메라 시스템
TWI354821B (en) 2007-12-18 2011-12-21 Largan Precision Co Ltd Optical lens system for taking image
WO2009084192A1 (ja) 2007-12-28 2009-07-09 Panasonic Corporation レンズ鏡筒およびレンズ支持構造
TWI361915B (en) 2008-02-18 2012-04-11 Largan Precision Co Ltd Optical lens system for taking image
TWI361913B (en) 2008-02-27 2012-04-11 Largan Precision Co Ltd Optical lens system for taking image
TWI361903B (en) 2008-02-27 2012-04-11 Largan Precision Co Ltd Optical lens system for taking image
JP2009216941A (ja) 2008-03-10 2009-09-24 Tamron Co Ltd 屈曲変倍光学系
JP2009258286A (ja) 2008-04-15 2009-11-05 Konica Minolta Opto Inc 撮像レンズ、撮像ユニット及び携帯端末
TWI395992B (zh) 2008-07-25 2013-05-11 Largan Precision Co 四片式攝影光學鏡組
JP5304117B2 (ja) 2008-09-05 2013-10-02 コニカミノルタ株式会社 撮像レンズ及び撮像装置並びに携帯端末
US8049979B2 (en) * 2008-09-08 2011-11-01 Panasonic Corporation Lens barrel and imaging device
TWI384254B (zh) 2008-10-16 2013-02-01 Largan Precision Co Ltd 取像透鏡組
TWI379102B (en) 2008-11-20 2012-12-11 Largan Precision Co Ltd Optical lens system for taking image
TWI388878B (zh) 2008-12-01 2013-03-11 Largan Precision Co Ltd 取像光學鏡片組
TWI382199B (zh) 2008-12-16 2013-01-11 Largan Precision Co Ltd 攝像用透鏡組
JP5300467B2 (ja) 2008-12-26 2013-09-25 キヤノン株式会社 光学系及びそれを有する光学機器
US7826149B2 (en) 2008-12-27 2010-11-02 Largan Precision Co., Ltd. Optical lens system for taking image
JP2010164841A (ja) * 2009-01-16 2010-07-29 Sharp Corp 撮像モジュール、撮像装置及び光学機器
TWI394979B (zh) 2009-01-22 2013-05-01 Largan Precision Co Ltd 薄型攝影光學鏡組
TWI406004B (zh) 2009-02-19 2013-08-21 Largan Precision Co Ltd 成像光學透鏡組
TWI406005B (zh) 2009-02-24 2013-08-21 Asia Optical Co Inc 小型化變焦鏡頭及影像擷取裝置
JP2010277067A (ja) * 2009-04-28 2010-12-09 Mitsumi Electric Co Ltd レンズ駆動装置
TWI395990B (zh) 2009-05-11 2013-05-11 Largan Precision Co Ltd 攝影用透鏡組
TWI404972B (zh) 2009-06-19 2013-08-11 Largan Precision Co 成像光學鏡組
TWI401466B (zh) 2009-06-19 2013-07-11 Largan Precision Co 二片式攝影光學鏡組
KR20110002630A (ko) 2009-07-02 2011-01-10 삼성전자주식회사 휴대 단말기의 카메라 운용 방법 및 장치
TWI421557B (zh) 2009-07-14 2014-01-01 Largan Precision Co Ltd 攝像透鏡系統
DE102009028861B4 (de) 2009-08-25 2015-03-05 Trimble Jena Gmbh Messvorrichtung mit verringertem Anteil an Störlicht und Herstellungsverfahren für diese
US8559118B2 (en) 2009-11-18 2013-10-15 DigitalOptics Corporation Europe Limited Fixed focal length optical lens architecture providing a customized depth of focus optical system
JP2011128445A (ja) 2009-12-18 2011-06-30 Sony Corp ズームレンズ及び撮像装置
JP2011138047A (ja) 2009-12-28 2011-07-14 Olympus Imaging Corp 光路反射型のズームレンズを備えた撮像装置
JP2011141396A (ja) 2010-01-06 2011-07-21 Tamron Co Ltd 撮影レンズ、カメラモジュール、および撮像装置
TWI406027B (zh) 2010-04-08 2013-08-21 Largan Precision Co Ltd 取像用光學鏡頭
JP5498259B2 (ja) 2010-05-24 2014-05-21 株式会社タムロン 高変倍率ズームレンズ
TWI401485B (zh) 2010-06-10 2013-07-11 Largan Precision Co Ltd 成像光學鏡片組
TWI434096B (zh) 2010-09-16 2014-04-11 Largan Precision Co Ltd 光學攝像透鏡組
JP2012068510A (ja) 2010-09-24 2012-04-05 Hoya Corp 撮影光学系、及び撮影装置
US20120075518A1 (en) 2010-09-29 2012-03-29 Hoya Corporation Imaging unit
TWI435135B (zh) 2010-10-06 2014-04-21 Largan Precision Co Ltd 光學透鏡系統
US8339714B2 (en) 2010-10-13 2012-12-25 Olympus Imaging Corp. Zoom lens and imaging apparatus incorporating the same
JP5804878B2 (ja) 2010-11-01 2015-11-04 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
TWI418877B (zh) 2010-12-15 2013-12-11 Largan Precision Co 成像用光學系統
JP5802401B2 (ja) 2011-02-22 2015-10-28 オリンパス株式会社 レンズ鏡枠およびレンズ組立体
US8976466B2 (en) 2011-03-11 2015-03-10 Olympus Corporation Imaging optical system and imaging apparatus using the same
TWI429979B (zh) 2011-04-13 2014-03-11 Largan Precision Co Ltd 光學影像透鏡組
KR101224790B1 (ko) * 2011-06-14 2013-01-21 삼성전기주식회사 영상 촬상 장치
CN103502868B (zh) 2011-07-25 2016-01-20 富士胶片株式会社 摄像透镜和设置有该摄像透镜的摄像装置
KR20130025137A (ko) 2011-09-01 2013-03-11 삼성전자주식회사 파노라마 촬상 렌즈 및 이를 이용한 파노라마 촬상 시스템
KR101301314B1 (ko) 2011-10-10 2013-08-29 삼성전기주식회사 촬상렌즈 유닛
JP5809936B2 (ja) * 2011-11-08 2015-11-11 オリンパス株式会社 撮像装置
CN103105660A (zh) * 2011-11-09 2013-05-15 华晶科技股份有限公司 镜头致动装置及其镜头致动方法
KR101932717B1 (ko) 2012-02-13 2018-12-26 삼성전자주식회사 결상렌즈 시스템
KR101964297B1 (ko) 2012-02-16 2019-04-01 엘지이노텍 주식회사 촬상 렌즈
TWI460465B (zh) 2012-04-20 2014-11-11 Largan Precision Co Ltd 光學影像鏡頭系統組
JP2013238848A (ja) 2012-04-20 2013-11-28 Hoya Corp 撮像装置
KR101422910B1 (ko) 2012-04-30 2014-07-23 삼성전기주식회사 카메라용 광학계
KR101941248B1 (ko) 2012-07-23 2019-04-10 삼성전자주식회사 줌 렌즈 및 이를 구비한 촬상장치
JP5808311B2 (ja) 2012-11-28 2015-11-10 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
KR101452084B1 (ko) 2013-01-22 2014-10-16 삼성전기주식회사 초소형 광학계 및 이를 구비하는 휴대용 기기
TWI476435B (zh) 2013-03-20 2015-03-11 Largan Precision Co Ltd 結像鏡頭系統組
JP5904623B2 (ja) 2013-03-25 2016-04-13 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
JP5886230B2 (ja) 2013-03-29 2016-03-16 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
JP2014209163A (ja) 2013-03-29 2014-11-06 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
JP6000179B2 (ja) 2013-03-29 2016-09-28 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
TWI461779B (zh) 2013-04-25 2014-11-21 Largan Precision Co Ltd 結像鏡組
JP6100089B2 (ja) 2013-05-17 2017-03-22 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
JP6136588B2 (ja) 2013-05-31 2017-05-31 ソニー株式会社 ズームレンズ及び撮像装置
US10168882B2 (en) 2013-06-09 2019-01-01 Apple Inc. Device, method, and graphical user interface for switching between camera interfaces
EP3008890A4 (en) 2013-06-13 2016-05-04 Corephotonics Ltd ZOOM OF A DIGITAL CAMERA WITH DUAL IRIS
EP3779564B1 (en) 2013-07-04 2024-04-10 Corephotonics Ltd. Miniature telephoto lens assembly
JP2016541151A (ja) * 2013-10-18 2016-12-28 ザ ライト・コ インコーポレイテッド カメラデバイスを実施および/または使用するための方法および装置
US9223118B2 (en) 2013-10-31 2015-12-29 Apple Inc. Small form factor telephoto camera
CN103698876B (zh) * 2013-12-17 2016-02-03 中山联合光电科技有限公司 一种手机镜头
US9557627B2 (en) 2014-03-07 2017-01-31 Apple Inc. Folded camera lens systems
US9316810B2 (en) 2014-03-07 2016-04-19 Apple Inc. Folded telephoto camera lens system
US9383550B2 (en) 2014-04-04 2016-07-05 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US9549107B2 (en) 2014-06-20 2017-01-17 Qualcomm Incorporated Autofocus for folded optic array cameras
US9386222B2 (en) 2014-06-20 2016-07-05 Qualcomm Incorporated Multi-camera system using folded optics free from parallax artifacts
US9392188B2 (en) * 2014-08-10 2016-07-12 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
TWI518360B (zh) 2014-08-26 2016-01-21 大立光電股份有限公司 取像光學透鏡組、取像裝置以及電子裝置
JP2016057468A (ja) 2014-09-10 2016-04-21 Hoya株式会社 屈曲撮像装置
KR101544792B1 (ko) 2014-12-30 2015-08-18 주식회사 세코닉스 홍채 인식 렌즈 시스템
EP3492958B1 (en) * 2015-04-02 2022-03-30 Corephotonics Ltd. Dual voice coil motor structure in a dual-optical module camera
ES2907810T3 (es) * 2015-04-16 2022-04-26 Corephotonics Ltd Enfoque automático y estabilización de imagen óptica en una cámara compacta de plegado
JP6401103B2 (ja) 2015-04-20 2018-10-03 富士フイルム株式会社 内視鏡用対物レンズおよび内視鏡
US9817213B2 (en) 2015-04-23 2017-11-14 Apple Inc. Camera lens system with five lens components
TWI585485B (zh) 2015-05-19 2017-06-01 先進光電科技股份有限公司 光學成像系統
WO2016207754A1 (en) 2015-06-24 2016-12-29 Corephotonics Ltd. Low profile tri-axis actuator for folded lens camera
KR102494776B1 (ko) 2015-08-04 2023-02-02 엘지이노텍 주식회사 촬상렌즈
KR102143730B1 (ko) * 2015-09-06 2020-08-12 코어포토닉스 리미티드 소형의 접이식 카메라의 롤 보정에 의한 자동 초점 및 광학식 손떨림 방지
KR101813329B1 (ko) 2015-10-13 2017-12-28 삼성전기주식회사 촬상 광학계
US10185123B2 (en) 2015-10-22 2019-01-22 Apple Inc. Lens system
KR102570101B1 (ko) 2015-12-04 2023-08-23 삼성전자주식회사 렌즈 어셈블리 및 그를 포함하는 전자 장치
CN107357026A (zh) * 2016-05-10 2017-11-17 台湾东电化股份有限公司 镜头系统
CN106526788B (zh) 2016-08-25 2020-05-01 玉晶光电(厦门)有限公司 光学成像镜头
KR20180032058A (ko) * 2016-09-21 2018-03-29 삼성전자주식회사 옵티칼 렌즈 어셈블리 및 이를 포함한 전자 장치
EP3789810B1 (en) * 2017-01-12 2022-09-28 Corephotonics Ltd. Compact folded camera
KR101963547B1 (ko) * 2017-02-23 2019-03-28 코어포토닉스 리미티드 폴디드 카메라 렌즈 설계
CN110582724B (zh) * 2017-03-15 2022-01-04 核心光电有限公司 具有全景扫描范围的照相装置
EP3821287A1 (en) * 2018-07-11 2021-05-19 Qioptiq Photonics GmbH & Co. KG Focus and zoom objective and method for operating a focus and zoom objective

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057546A (ja) 2001-08-20 2003-02-26 Pentax Corp ズームレンズ系
JP2008530954A (ja) * 2005-02-18 2008-08-07 イーストマン コダック カンパニー 複数レンズを使用するデジタルカメラ

Also Published As

Publication number Publication date
CN116990927A (zh) 2023-11-03
KR20210113318A (ko) 2021-09-15
WO2020174325A3 (en) 2021-04-22
TWI754229B (zh) 2022-02-01
CN113167986B (zh) 2023-09-01
US11310405B2 (en) 2022-04-19
US20220046151A1 (en) 2022-02-10
KR20240046652A (ko) 2024-04-09
TW202034016A (zh) 2020-09-16
JP2022508453A (ja) 2022-01-19
KR20220107312A (ko) 2022-08-02
KR102424008B1 (ko) 2022-07-22
TW202340788A (zh) 2023-10-16
TW202215098A (zh) 2022-04-16
WO2020174325A2 (en) 2020-09-03
CN117008281A (zh) 2023-11-07
KR20230162997A (ko) 2023-11-29
CN116990928A (zh) 2023-11-03
KR102655458B1 (ko) 2024-04-08
JP2024060620A (ja) 2024-05-02
CN113167986A (zh) 2021-07-23
TWI807555B (zh) 2023-07-01

Similar Documents

Publication Publication Date Title
KR102606345B1 (ko) 적어도 하나의 2 상태 줌 카메라를 갖는 멀티-애퍼처 카메라
KR102346005B1 (ko) 적어도 하나의 2 상태 줌 카메라를 갖는 멀티-애퍼처 카메라
US10976567B2 (en) Reduced height penalty for folded camera

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant