KR102566859B1 - 이방성 나노구조를 기재로 하는 자기 가변성 광자 결정 - Google Patents

이방성 나노구조를 기재로 하는 자기 가변성 광자 결정 Download PDF

Info

Publication number
KR102566859B1
KR102566859B1 KR1020177033757A KR20177033757A KR102566859B1 KR 102566859 B1 KR102566859 B1 KR 102566859B1 KR 1020177033757 A KR1020177033757 A KR 1020177033757A KR 20177033757 A KR20177033757 A KR 20177033757A KR 102566859 B1 KR102566859 B1 KR 102566859B1
Authority
KR
South Korea
Prior art keywords
anisotropic
nanoparticles
composite structure
magnetic
delete delete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020177033757A
Other languages
English (en)
Korean (ko)
Other versions
KR20180030466A (ko
Inventor
야둥 인
밍셩 왕
Original Assignee
더 리전트 오브 더 유니버시티 오브 캘리포니아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 더 리전트 오브 더 유니버시티 오브 캘리포니아 filed Critical 더 리전트 오브 더 유니버시티 오브 캘리포니아
Publication of KR20180030466A publication Critical patent/KR20180030466A/ko
Application granted granted Critical
Publication of KR102566859B1 publication Critical patent/KR102566859B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0551Flake form nanoparticles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/017Compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/762Nanowire or quantum wire, i.e. axially elongated structure having two dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/81Of specified metal or metal alloy composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/892Liquid phase deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
    • Y10S977/896Chemical synthesis, e.g. chemical bonding or breaking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/952Display

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Composite Materials (AREA)
  • Compounds Of Iron (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Silicon Compounds (AREA)
  • Hard Magnetic Materials (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
KR1020177033757A 2015-04-27 2016-04-27 이방성 나노구조를 기재로 하는 자기 가변성 광자 결정 Active KR102566859B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562153228P 2015-04-27 2015-04-27
US62/153,228 2015-04-27
PCT/US2016/029461 WO2016176267A1 (en) 2015-04-27 2016-04-27 Magnetically tunable photonic crystals based on anisotropic nanostructures

Publications (2)

Publication Number Publication Date
KR20180030466A KR20180030466A (ko) 2018-03-23
KR102566859B1 true KR102566859B1 (ko) 2023-08-11

Family

ID=57199401

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177033757A Active KR102566859B1 (ko) 2015-04-27 2016-04-27 이방성 나노구조를 기재로 하는 자기 가변성 광자 결정

Country Status (6)

Country Link
US (1) US10796849B2 (enExample)
EP (1) EP3289596A4 (enExample)
JP (1) JP6776267B2 (enExample)
KR (1) KR102566859B1 (enExample)
CN (2) CN111899973B (enExample)
WO (1) WO2016176267A1 (enExample)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108711480B (zh) * 2018-04-03 2020-07-03 复旦大学 一种具有核壳结构磁性介孔二氧化硅纳米链及其制备方法
CN109370263B (zh) * 2018-11-13 2021-03-23 天津科技大学 一种全色可变结构生色材料的制备方法
CN110194457A (zh) * 2019-05-20 2019-09-03 重庆科技学院 一种SiO2中空纳米棒的制备方法和尺寸调控方法
CN110223815A (zh) * 2019-07-01 2019-09-10 苏州善恩纳米功能材料科技有限公司 一种高分散性磁性纳米棒合成的方法
CN110526251B (zh) * 2019-08-28 2023-01-24 贵州大学 一种锂电池二氧化硅负极材料的制备方法
KR20230084215A (ko) * 2020-10-09 2023-06-12 더 리전트 오브 더 유니버시티 오브 캘리포니아 공간-없는 국한 성장에 의해 가능한 나노쉘의 자기적으로 조정가능한 플라즈몬 커플링
CN116106993B (zh) * 2023-04-07 2023-07-18 武汉理工大学 一种磁响应性光子晶体基元的尺寸调控方法及应用
CN117550651B (zh) * 2024-01-10 2024-04-05 武汉理工大学 可组装磁性光子晶体的单分散纳米粒子的制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472024A (zh) * 2003-06-27 2004-02-04 �Ϻ���ͨ��ѧ 高磁化强度、高稳定性、表面包覆SiO2的铁纳米颗粒及其制备方法
US20100224823A1 (en) * 2007-04-27 2010-09-09 Yadong Yin Superparamagnetic colloidal nanocrystal structures
US20140243189A1 (en) * 2011-07-01 2014-08-28 The Regents Of The University Of California Direct assembly of hydrophobic nanoparticles to multifunction structures

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096292A (en) * 1975-01-14 1978-06-20 Montedison S.P.A. Process for preparing ferrimagnetic acicular ferric oxide
US6813064B2 (en) * 2000-07-24 2004-11-02 Sajeev John Electro-actively tunable photonic bandgap materials
US8409463B1 (en) 2007-07-16 2013-04-02 University Of Central Florida Research Foundation, Inc. Aqueous method for making magnetic iron oxide nanoparticles
RU2414417C2 (ru) 2008-12-17 2011-03-20 Учреждение Российской Академии Наук Институт Проблем Химической Физики Ран (Ипхф Ран) Сверхрешетка нанокристаллов со скоррелированными кристаллографическими осями и способ ее изготовления
US9862831B2 (en) 2009-02-23 2018-01-09 The Regents Of The University Of California Assembly of magnetically tunable photonic crystals in nonpolar solvents
KR101368606B1 (ko) * 2009-04-14 2014-02-28 서울대학교산학협력단 컬러 코드화된 자성 구조물
US20130146788A1 (en) 2009-04-14 2013-06-13 The Regents Of The University Of California Method of creating colored materials by fixing ordered structures of magnetite nanoparticles within a solid media
CN102199302B (zh) 2010-03-22 2012-11-14 中国科学院化学研究所 具有各向异性结构的光子晶体薄膜的制备方法
KR101072187B1 (ko) * 2010-03-31 2011-10-10 서울대학교산학협력단 자성 구조물을 자기적으로 제어하는 방법
WO2013112224A2 (en) * 2011-11-09 2013-08-01 The Regents Of The University Of California Superparamagnetic colloids with enhanced charge stability for high quality magnetically tunable photonic structures
KR101466701B1 (ko) * 2012-03-20 2014-11-28 고려대학교 산학협력단 다양한 나노 구조를 갖는 헤마타이트 산화철의 제조방법
CN102628188A (zh) 2012-04-18 2012-08-08 上海应用技术学院 一种磁场导向下形貌各向异性的椭球状介孔二氧化硅光子晶体有序薄膜的组装方法
CN103123836A (zh) 2013-03-01 2013-05-29 东南大学 一种磁性各向异性胶体晶体微球及其制备方法
EP3129828A4 (en) * 2014-04-07 2017-11-29 The Regents of The University of California Highly tunable magnetic liquid crystals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472024A (zh) * 2003-06-27 2004-02-04 �Ϻ���ͨ��ѧ 高磁化强度、高稳定性、表面包覆SiO2的铁纳米颗粒及其制备方法
US20100224823A1 (en) * 2007-04-27 2010-09-09 Yadong Yin Superparamagnetic colloidal nanocrystal structures
US20140243189A1 (en) * 2011-07-01 2014-08-28 The Regents Of The University Of California Direct assembly of hydrophobic nanoparticles to multifunction structures

Also Published As

Publication number Publication date
WO2016176267A1 (en) 2016-11-03
US10796849B2 (en) 2020-10-06
CN111899973A (zh) 2020-11-06
CN107710350B (zh) 2020-09-01
KR20180030466A (ko) 2018-03-23
JP6776267B2 (ja) 2020-10-28
JP2018525234A (ja) 2018-09-06
CN111899973B (zh) 2023-02-28
EP3289596A4 (en) 2018-11-21
US20180114637A1 (en) 2018-04-26
CN107710350A (zh) 2018-02-16
EP3289596A1 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
KR102566859B1 (ko) 이방성 나노구조를 기재로 하는 자기 가변성 광자 결정
Wang et al. Magnetic assembly and field‐tuning of ellipsoidal‐nanoparticle‐based colloidal photonic crystals
Hou et al. Ultrabroadband optical superchirality in a 3D stacked‐patch plasmonic metamaterial designed by two‐step glancing angle deposition
CN105518088B (zh) 具有光谱选择性吸收组分的结构着色材料及其制造方法
Ge et al. Magnetically responsive colloidal photonic crystals
Su et al. Vivid structural colors with low angle dependence from long-range ordered photonic crystal films
Xia et al. Fabrication of three-dimensional photonic crystals for use in the spectral region from ultraviolet to near-infrared
US9180484B2 (en) Magnetically responsive photonic nanochains
Maka et al. Three dimensional photonic crystals in the visible regime
You et al. Facile fabrication of a three-dimensional colloidal crystal film with large-area and robust mechanical properties
Ren et al. Mie resonant structural colors based on ZnO spheres and their application in multi-color Pattern: Especially realization of red color
Han et al. Tunable amorphous photonic materials with pigmentary colloidal nanostructures
Li et al. High‐efficiency alignment of 3D biotemplated helices via rotating magnetic field for terahertz chiral metamaterials
Dong et al. Optical response of a disordered bicontinuous macroporous structure in the longhorn beetle Sphingnotus mirabilis
Chi et al. Magnetically responsive colloidal crystals with angle-independent gradient structural colors in microfluidic droplet arrays
Chen et al. Photonic Crystals with Tunable Lattice Structures Based on Anisotropic Metal–Organic Framework Particles and Their Application in Anticounterfeiting
Kato et al. 2D Photonic Colloidal Liquid Crystals Composed of Self‐Assembled Rod‐Shaped Particles
Ullah et al. Tunable chiroptical response of chiral system composed of a nanorod coupled with a nanosurface
De Sio et al. Broad band tuning of the plasmonic resonance of gold nanoparticles hosted in self-organized soft materials
Zhu et al. A magnetically tunable colloidal crystal film for reflective display
CN115449899A (zh) 一种磁响应光子晶体及其制备方法和观测方法
Huang et al. Controlled gradient colloidal photonic crystals and their optical properties
Jiang et al. Fabrication and optical properties of silica shell photonic crystals
KR101444029B1 (ko) 하이드록실기를 포함하는 안정제를 이용한 크기가 제어된 고분산성 이산화티타늄 나노입자의 제조방법
Qi et al. Structural Color due to Self‐assembly

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20171122

Patent event code: PA01051R01D

Comment text: International Patent Application

PG1501 Laying open of application
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20210422

Comment text: Request for Examination of Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20221228

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20230614

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20230809

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20230809

End annual number: 3

Start annual number: 1

PG1601 Publication of registration