KR102456983B1 - 전자선 장치 - Google Patents

전자선 장치 Download PDF

Info

Publication number
KR102456983B1
KR102456983B1 KR1020217005181A KR20217005181A KR102456983B1 KR 102456983 B1 KR102456983 B1 KR 102456983B1 KR 1020217005181 A KR1020217005181 A KR 1020217005181A KR 20217005181 A KR20217005181 A KR 20217005181A KR 102456983 B1 KR102456983 B1 KR 102456983B1
Authority
KR
South Korea
Prior art keywords
irradiation
electron beam
light
light pulse
image
Prior art date
Application number
KR1020217005181A
Other languages
English (en)
Other versions
KR20210033515A (ko
Inventor
미나미 쇼우지
나츠키 츠노
도시히데 아게무라
Original Assignee
주식회사 히타치하이테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 히타치하이테크 filed Critical 주식회사 히타치하이테크
Publication of KR20210033515A publication Critical patent/KR20210033515A/ko
Application granted granted Critical
Publication of KR102456983B1 publication Critical patent/KR102456983B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/226Optical arrangements for illuminating the object; optical arrangements for collecting light from the object
    • H01J37/228Optical arrangements for illuminating the object; optical arrangements for collecting light from the object whereby illumination and light collection take place in the same area of the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/226Optical arrangements for illuminating the object; optical arrangements for collecting light from the object
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2448Secondary particle detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24495Signal processing, e.g. mixing of two or more signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2803Scanning microscopes characterised by the imaging method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application

Abstract

시료의 전자 상태를 반영한 콘트라스트를 높은 감도로 얻는 것이 가능한 전자선 장치를 제공한다. 전자선 장치(1)는, 전자선을 시료에 조사하고, 시료로부터 방출된 방출 전자를 검출하는 전자 광학계와, 시료에 광 펄스를 조사하는 광 펄스 조사계와, 전자 광학계에 있어서, 전자선의 편향 신호와 동기(同期)하여, 방출 전자의 검출 샘플링을 행하게 하는 동기 처리부(17)와, 전자 광학계가 검출한 방출 전자에 의거하여 출력되는 검출 신호로부터 화상을 형성하는 화상 신호 처리부(18)와, 전자 광학계의 제어 조건을 설정하는 장치 제어부(19)를 갖고, 장치 제어부는, 화상의 1 화소에 상당하는 시료의 영역을 전자선이 주사되는데 요하는 시간을 단위 화소 시간 tpixel로 하면, 방출 전자의 검출 샘플링을 행하는 샘플링 주파수 fpixel samp를, 단위 화소 시간당의 광 펄스의 조사 수 Nshot을 단위 화소 시간에 의해 나눈 값보다도 커지도록 설정한다.

Description

전자선 장치
본 발명은, 전자선을 이용하여 시료를 관찰하는 전자선 장치에 관한 것으로, 특히 시료에의 광 조사에 의해 콘트라스트를 제어한 화상에 의해 시료를 관찰, 검사, 계측하는 기술에 관한 것이다.
시료의 확대 관찰 가능한 현미경으로서 전자선을 이용한 전자 현미경이 있으며, 나노 레벨의 미세한 형상 관찰이나 조성 해석에 이용되고 있다. 특히, 주사형 전자 현미경(이하, SEM(Scanning Electron Microscope)이라고 약칭함)은, 시료 사이즈에 제한되지 않고 밀리 오더의 저배율로부터 나노 오더의 고배율까지 해석할 수 있는 특징을 갖고 있으며, 재료의 형상, 조성 해석으로부터, 반도체 디바이스의 미세 패턴의 계측 검사 등에 널리 이용되고 있다.
전자 디바이스나 환경 재료의 성능 지표에는, 전기 특성, 광화학 반응, 열전도성 등이 있지만, 본 성능을 결정짓고 있는 물성이 전자 물성이다. 이들 전자 디바이스나 환경 재료의 고성능화에 있어서, 나노, 마이크로 스케일의 구조가 초래하는 전자 물성의 해석 및 전자 상태의 과도 해석이 중요해진다. 전자 물성에는 에너지 밴드 구조, 캐리어 밀도, 접합 상태 등을 포함한다. 또한 전자 상태의 과도 변화에는, 캐리어 여기(勵起)에 의한 에너지 밴드 구조의 변화나 캐리어 수명, 캐리어 이동 등을 포함한다.
대표적인 전자 물성의 분석법으로 광전자 분광법이 있다. 본 방법은, 전자와 광의 상호작용을 이용한 분석법이며, 내장 전위나 에너지 밴드 구조 등의 전자 상태를 고감도이며 정량적으로 분석할 수 있다. 또한 펄스 레이저를 이용한 펌프 프로브 분광법에 의한 전자 상태의 시간 분해 해석법이 제안되어 있다. 그러나, 이들 분광법은, 광을 이용한 분석 방법이기 때문에, 나노 영역에서의 해석은 매우 곤란하다.
한편, SEM은, 전자원에 인가(印加)된 전압에 의해 가속된 전자선(1차 전자라고도 함)을 전자 렌즈로 수 나노미터 이하로 집속(集束)하기 때문에, 높은 공간 분해능을 갖는다. 그리고, 시료 상에 집속한 전자선에 의해 시료로부터 방출되는 방출 전자(2차 전자나 반사 전자)를 검출기로 검출하고, 그 검출 신호에 의거하여 화상을 형성한다. 2차 전자나 반사 전자의 방출량은, 시료의 형상이나 조성뿐만 아니라, 전자 상태를 반영한 표면 전위나 내장 전위에 의존한다. 이 표면 전위나 내장 전위에 의존한 화상의 콘트라스트는, 각각 전위 콘트라스트와 도펀트 콘트라스트라고 불리고 있다.
특허문헌 1에는, 웨이퍼 상의 결함의 위치나 종류를 검사하는 검사 장치가 개시되고, 전자선 조사 중에 자외광이나 레이저광을 조사하여, 웨이퍼 내의 접합부에서 전자 정공(正孔)쌍을 발생시킴으로써, 전자 디바이스의 결함을 검사하는 방법이 제안되어 있다.
일본국 특개2003-151483호 공보
시료에의 광 조사에 의해, 시료에는 광자 수에 따라 캐리어가 여기되어, 전자 상태가 변화한다. 후술하는 바와 같이, 발명자들은, 여기된 캐리어의 밀도에 따라, 시료로부터의 2차 전자의 방출량이 변화하는 것을 찾아냈다. 광에 의해 전자 상태를 변화시킬 경우, 광의 파장이나, 조사 강도, 조사 시간에 따라 전자 상태가 변화해 버린다. 이 때문에, 광의 조사 조건을 제어하는 것은 물론, 소정의 광의 조사 조건에 따라 생긴 전자 상태의 변화를 정밀도 좋게 검출하기 위해, 시료로부터 방출되는 방출 전자를 검출하는 검출 샘플링까지 제어할 필요가 있는 것을 찾아냈다.
본 발명의 일 실시형태인 전자선 장치는, 전자선을 시료에 조사하고, 시료로부터 방출된 방출 전자를 검출하는 전자 광학계와, 시료에 광 펄스를 조사하는 광 펄스 조사계와, 전자 광학계에 있어서, 전자선의 편향 신호와 동기(同期)하여, 방출 전자의 검출 샘플링을 행하게 하는 동기 처리부와, 전자 광학계가 검출한 방출 전자에 의거하여 출력되는 검출 신호로부터 화상을 형성하는 화상 신호 처리부와, 전자 광학계의 제어 조건을 설정하는 장치 제어부를 갖고, 장치 제어부는, 화상의 1 화소에 상당하는 시료의 영역을 전자선이 주사되는데 요하는 시간을 단위 화소 시간으로 하면, 방출 전자의 검출 샘플링을 행하는 샘플링 주파수를, 단위 화소 시간당의 광 펄스의 조사 수를 단위 화소 시간에 의해 나눈 값보다 커지도록 설정한다.
또한, 본 발명의 일 실시형태인 전자선 장치는, 전자선을 시료에 조사하고, 시료로부터 방출된 방출 전자를 검출하는 전자 광학계와, 시료에 광 펄스를 조사하는 광 펄스 조사계와, 전자 광학계에 있어서, 전자선의 편향 신호와 동기하여, 광 펄스의 조사 및 방출 전자의 검출 샘플링을 행하게 하는 동기 제어부와, 전자 광학계가 검출한 방출 전자에 의거하여 출력되는 검출 신호로부터 화상을 형성하는 화상 신호 처리부와, 전자 광학계 및 광 펄스 조사계의 제어 조건을 설정하는 장치 제어부를 갖고, 장치 제어부는, 방출 전자의 검출 샘플링을 행하는 샘플링 주파수와 광 펄스의 조사 주파수를 동등하게 설정함과 함께, 광 펄스의 조사 타이밍과 방출 전자의 검출 샘플링 타이밍과의 간격 시간을 복수 설정하고, 화상 신호 처리부는, 광 펄스를 시료에 조사하여, 장치 제어부에 의해 설정된 복수의 간격 시간마다 전자 광학계가 검출한 방출 전자에 의거하여 출력되는 검출 신호로부터 복수의 화상을 형성한다.
광 조사에 의해 변화한 전자 상태를 전자선으로 고감도이며 또한 정량적으로 검출할 수 있다.
그 밖의 과제와 신규한 특징은, 본 명세서의 기술 및 첨부 도면으로부터 분명해질 것이다.
도 1은 전자선 장치의 구성예.
도 2는 전자선 장치의 하우징의 변형예.
도 3은 광 펄스의 강도 및 파장의 조정 방법을 설명하는 도면.
도 4는 실시예 1의 제어 타임 차트의 일례를 나타내는 도면.
도 5는 실시예 1에 있어서의 광 펄스 조사 조건마다의 SEM 화상(모식도)을 나타내는 도면.
도 6은 실시예 2의 제어 타임 차트의 일례를 나타내는 도면.
도 7은 차화상(差畵像)을 취득하는 플로우 차트의 일례를 나타내는 도면.
도 8은 실시예 2의 GUI의 일례를 나타내는 도면.
도 9는 전자선 장치의 구성예를 나타내는 도면.
도 10은 실시예 3의 제어 타임 차트의 일례를 나타내는 도면.
도 11은 실시예 3의 GUI의 일례를 나타내는 도면.
도 12는 실시예 3의 시간 분해 관찰법에 의한 과도 변화 화상(SEM 화상(모식도))을 나타내는 도면.
도 13은 실시예 4의 GUI의 일례를 나타내는 도면.
도 14는 SiC 기판의 시정수 측정 결과를 나타내는 도면.
도 15는 실시예 5에 따른 관찰 결과의 일례를 나타내는 도면.
이하, 도면을 이용하여, 본 발명의 실시형태를 설명한다.
상술한 바와 같이, 시료에의 광 조사에 의해, 시료에는 광자 수에 따라 캐리어가 여기되어, 전자 상태가 변화한다. 발명자들은, 여기된 캐리어의 밀도에 따라, 시료로부터의 2차 전자의 방출량이 변화하는 것을 찾아냈다.
1 광자당의 에너지 Eph[J]는 (수식 1)로 표현된다.
[수식 1]
Figure 112021020939099-pct00001
여기에서, h는 플랑크 정수(6.63×10-34[Js])이며, c는 광속도(3.00×108[m/s]), λ은 광의 파장이다. 캐리어의 여기광에 펄스 레이저를 사용할 경우, 1광 펄스당의 에너지량 Epulse는 (수식 2)로 주어진다.
[수식 2]
Figure 112021020939099-pct00002
여기에서, Wave는 펄스 레이저의 평균 출력, fpulse는 펄스 레이저의 조사 주파수이다. 그러므로, 1광 펄스당의 광자의 수 Npulse ph은 (수식 3)으로 주어진다.
[수식 3]
Figure 112021020939099-pct00003
한편, 전자선이 조사되는 단위 화소 시간당 여기되는 캐리어 밀도 Dpixel carrier는 (수식 4)로 표현된다.
[수식 4]
Figure 112021020939099-pct00004
여기에서, α(λ)는 캐리어의 생성 효율, ti는 광 펄스 조사간의 간격 시간, τ은 캐리어 수명, Nshot은 단위 화소 시간당 조사되는 광 펄스 조사 수, S는 펄스 레이저의 조사 면적이다. 캐리어 생성 효율 α(λ)는 재료에 따라 다른 값을 취한다.
또한, 2차 전자와의 상호작용을 고려하면, 단위 화소당 방출되는 2차 전자의 방출량 SEpixel elec는 (수식 5)로 표현된다.
[수식 5]
Figure 112021020939099-pct00005
여기에서, β(E)는 2차 전자와의 상호작용 계수로, 전자선의 가속 전압 EPE에 의존하는 값이다. σ는 2차 전자 방출률, Ip는 전자선의 조사 전류, tpixel는 단위 화소 시간이다. 단위 화소 시간 tpixel는, SEM 화상의 1 화소에 상당하는 시료의 영역을 전자선이 주사되는데 요하는 시간으로서 정의된다.
이와 같이, 펄스 레이저의 조사에 의해 여기되는 캐리어 밀도 Dpixel carrier는 재료에 따라 다르고, 또한, 전자선의 조사에 의해 방출되는 2차 전자의 방출량 SEpixel elec는 캐리어 밀도 Dpixel carrier에 의존하여 변화한다. 따라서, 재료에 따른 광 조사에 의한 전자 상태의 변화의 차이를, 전자선으로 고감도이며 정량적으로 검출함으로써, 재료의 차이를 화상의 콘트라스트로서 가시화할 수 있다. 이를 위해서는, 단위 시간당 전자선과 상호작용하는 광자 수 및 광여기 하에 있어서의 2차 전자의 방출량의 변화를 포착하는 검출 샘플링의 제어가 중요해진다. 광여기 하에 있어서의 2차 전자의 방출량의 변화를 포착하는 호적(好適)한 검출 샘플링 주파수 fpixel samp는, (수식 6)으로 주어진다.
[수식 6]
Figure 112021020939099-pct00006
여기에서, Nshot은 단위 화소 시간 tpixel당의 광 펄스 조사 수이다.
또한, (수식 4)로서 나타낸 캐리어 밀도 Dpixel carrir에는 캐리어 수명 τ가 포함되어 있으며, 광 펄스 조사간의 간격 시간 ti를 제어 변수로 한 2차 전자의 방출량 SEpixel elec(ti)를 해석함으로써, 전자 상태의 과도 특성을 해석할 수 있다.
실시예 1
본 실시예에서는, 단속적으로 조사되는 광 펄스의 조사를 제어함으로써, 전자선 조사에 의한 시료로부터의 2차 전자의 방출량을 제어하고, 고(高)콘트라스트의 화상 취득을 가능하게 하는 전자선 장치에 대해서 설명한다.
실시예 1의 전자선 장치의 구성예를 도 1에 나타낸다. 전자선 장치(1)는, 그 주요한 구성으로서, 전자 광학계와, 스테이지 기구계와, 전자선 제어계와, 광 펄스 조사계와, 화상 처리계와, 입출력계를 갖는다. 전자 광학계는, 전자총(2)과, 편향기(3)와, 전자 렌즈(4)와, 검출기(5)를 포함한다. 스테이지 기구계는 XYZ 스테이지(6)와, 시료(8)가 재치(載置)되는 시료 홀더(7)를 포함한다. 전자선 제어계는 전자총 제어부(9)와, 편향기 제어부(10)와, 검출 제어부(11)와, 전자 렌즈 제어부(12)를 포함한다. 광 펄스 조사계는, 펄스 광원(13)과, 광 펄스 제어부(14)와, 광 펄스 조사 조정부(15)와, 광 펄스 조사 설정부(21)를 포함한다. 메인 콘솔(16)은 화상 형성계와 입출력계를 갖는다. 화상 형성계는, 편향기(3)를 제어하는 편향 신호와 동기한 검출 샘플링 기능을 구비한 동기 처리부(17)와, 화상 신호 처리부(18)를 포함한다. 화상 신호 처리부(18)는, 검출기(5)가 방출 전자를 검출함으로써 출력되는 검출 신호로부터 SEM 화상을 형성한다. 입출력계는, 제어 조건 등을 설정하는 장치 제어부(19)와, 화상 표시부(20)를 포함한다.
전자총(2)으로부터 방출된 전자선(30)은, 전자 렌즈(4)에 의해 집속되어, 시료(8)에 조사된다. 시료 상의 조사 위치는, 편향기(3)에 의해 제어된다. 시료로부터 방출되는 방출 전자는 검출기(5)에서 검출된다. 장치 제어부(19)에서, 전자 광학계의 제어 조건, 구체적으로는, 가속 전압, 조사 전류, 편향 조건, 검출 샘플링 조건, 전자 렌즈 조건 등을 설정한다.
광 펄스는, 펄스 광원(13)으로부터 조사된다. 펄스 광원(13)으로서, 펄스 폭 1μsec 이하, 조사 클록 1㎑ 이상으로 구동되고, 출력 파장이 자외선으로부터 근적외까지의 영역에서 단파장 혹은 다파장이 출력 가능한 레이저를 사용한다. 펄스 광원(13)은, 광 펄스 제어부(14) 및 광 펄스 조사 조정부(15)에서 제어되고, 그 제어 내용은, 광 펄스 조사 설정부(21)에서 설정된다. 구체적으로는, 광 펄스 제어부(14)는, 광 펄스 조사 시간 폭, 광 펄스 조사 간격 시간을 제어한다. 또, 광 펄스 조사 간격 시간으로서, 광 펄스 조사 주파수, 혹은 단위 시간당의 광 펄스 조사 수를 제어해도 된다. 광 펄스 조사 조정부(15)는, 조사하는 광 펄스의 강도 및 파장을 조정한다.
펄스 광원(13)으로부터 출력된 광은, 하우징(23)에 설치된 포트(22)를 통해, 하우징(23)의 진공 공간 중에 재치된 시료(8)에 조사된다. 본 도면에는 나타내고 있지 않지만, 전자선과 동일 위치에 조사 가능하게 하기 위한 광로의 조정 미러를 하우징(23)의 외측(대기압 공간)에 설치해도 된다. 또한, 도 2에 나타내는 바와 같이 펄스 광원(13)을 하우징(23)에 직접 설치하는 구성으로 해도 된다. 일반적으로, 포트(22)는 석영 유리에 의해 형성된다. 이 때문에, 석영 유리에 흡수되는 파장 영역에 대해서는 광 조사가 곤란해진다. 펄스 광원(13)을 하우징(23)에 직접 설치함으로써, 조사하는 광의 파장의 제약을 해소할 수 있다.
도 3을 이용하여, 광 펄스 제어부(14) 및 광 펄스 조사 조정부(15)에 의해, 펄스 광원(13)이 조사하는 광 펄스의 강도 및 파장을 조정하는 방법을 설명한다. 펄스 광원(13)은 광원부(13a)와 광로 전환부(13b)를 갖는다. 광원부(13a)는 각각 파장이 다른 광 펄스를 발광하는 광원(34), 광원(35) 및 광원(36)을 갖고, 광 펄스 제어부(14)에 의해 원하는 파장의 광원이 선택된다. 광로 전환부(13b)는, 조정 미러(31)에 의해 광원(34), 광원(35) 및 광원(36)으로부터의 광 펄스의 광로(37), 광로(38) 및 광로(39)를 형성하고 있으며, 광 펄스 조사 조정부(15)에 의해 어느 광로가 선택된다. 구체적으로는, 본 예에서는, 광로(38)와 광로(39)의 일부에 설치 각도 변경 가능한 플리퍼 미러(32)를 이용함으로써, 자(自)광원으로부터의 광 펄스에 대해서는 소정의 설치 각도로 반사시켜 자광로를 형성하는 한편, 타(他)광원으로부터의 광 펄스에 대해서는 설치 각도를 변경하여, 그 광로의 장해가 되지 않도록 한다. 또한, 광로(37), 광로(38) 및 광로(39)는 일부의 광로를 공유하고 있으며, 공유하는 광로 부분 상에 광량 가변 필터(33)가 설치되어 있다. 광 펄스 조사 조정부(15)는 광량 가변 필터(33)에 의해 조사하는 광 펄스의 강도 조정을 행한다. 또, 도 3의 구성은 일례이며, 다파장으로 발진 가능한 레이저를 이용하여 광학 필터에 의해 선택해도 된다. 또한, 광 펄스의 강도 조정도, 광로 중에 집광 렌즈를 설치하고, 이에 따라 광 펄스의 강도 밀도를 가변으로 해도 된다.
도 4에, 편향 신호(편향기 제어부(10)의 출력), 광 펄스(펄스 광원(13)의 출력), 검출 샘플링 제어(동기 처리부(17)에 의한 검출 제어부(11)의 제어)의 타임 차트를 나타낸다. 또, 이들 동작 개시점의 제어 신호는, 도 4에는 표기하고 있지않지만, 시스템 로크에 동기하여 제어된다. 지정한 펄스 폭 tpulse에서, 단위 화소 시간 tpixel당 Nshot회의 광 펄스가 조사된다. 이때, 광 펄스의 조사 주파수는 fpulse이다. 광 펄스의 조사 주파수가 fpulse일 경우의 광 펄스 조사 간격 시간은 ti이며, 어느 쪽을 제어해도 상관없다. 상술한 바와 같이, 광 펄스에 의한 방출 전자의 신호 증가는 (수식 5)로 주어지고, (수식 6)과 같이 과도 변화에 따른 검출 샘플링 제어를 행할 필요가 있다. 도 4의 타임 차트에서는, 이 검출 샘플링 제어를 검출 샘플링 주파수 fpixel samp, 혹은 단위 화소 시간 tpixel당의 검출 샘플링점 수 Nsamp으로 제어한다. 검출 샘플링 주파수 fpixel samp를, 광 펄스의 조사 주파수 fpulse보다 충분히 높은 주파수로 제어함으로써, 광 펄스에 의한 방출 전자의 방출량 변화를 검출할 수 있다. 설정한 fpixel samp에서 검출된 검출 신호는, 1 화소마다 평균화되어, 화상 신호 처리부(18)에 송신된다.
도 5에 실시예 1의 전자선 장치에 의해, 광 펄스 조사 조건(광 펄스 조사 간격 시간 ti)을 바꿔, 방출 전자의 방출량의 변화를 검출한 SEM 화상(모식도)을 나타낸다. 시료는 반사 방지막(41) 위에 레지스트(42)가 도포되어, 라인 패턴을 형성한 것이다. 전자선 조건은, 가속 전압 0.5kV, 조사 전류 10pA, 주사 속도 TV 레이트로 공통이며, 광 펄스 조사 조건은, (a) 광 펄스 조사 없음, (b) 광 펄스 조사 간격 시간 ti=100ns, (c) 광 펄스 조사 간격 시간 ti=1000ns의 3가지로 했다. 또, 검출 샘플링 주파수 fpixel samp도 10㎓로 공통이다. 여기에서, 사용한 광 펄스의 파장은 375㎚이며, 레지스트(42)에서는 광 펄스는 흡수되지 않고, 반사 방지막(41)에서는 흡수된다. 이에 따라, SEM 화상은, 레지스트부(42a), 레지스트부(42b) 및 레지스트부(42c)에 대해서는 어느 경우도 그다지 변함은 없지만, 반사 방지막부(41b) 및 반사 방지막부(41c)는 광 펄스를 조사한 것에 의해, 반사 방지막부(41a)보다도 밝아져, 보다 높은 콘트라스트가 얻어지고 있다. 또한, 조사 조건(b)와 조사 조건(c)를 비교하면, 광 펄스 조사 간격 시간 ti의 짧은 조사 조건(b) 쪽이, 검출 신호의 평균값이 높아짐으로써, 보다 높은 콘트라스트를 가지는 상이 얻어지고 있다.
이와 같이, 광 펄스의 파장으로서 재료에 따른 소정의 파장을 선택하고, 광 펄스 조사 간격 시간, 검출 샘플링 주파수를 제어함으로써, 광 펄스 조사에 의해 재료 선택적으로 방출 전자의 방출량을 변화시켜, SEM 콘트라스트를 향상시킬 수 있다.
실시예 2
본 실시예에서는, 2개 이상의 서로 다른 광 펄스 조사 간격 시간 ti에서 검출한 방출 전자에 의한 검출 신호의 차분값으로부터 차신호 혹은 차화상을 형성하고, 차신호 혹은 차화상으로부터 시료의 특징량을 추출함으로써 고감도의 결함 검출을 가능하게 하는 전자선 장치에 대해서 설명한다. 실시예 2의 전자선 장치도 도 1과 마찬가지이다.
도 6에, 편향 신호(편향기 제어부(10)의 출력), 광 펄스(펄스 광원(13)의 출력), 검출 샘플링 제어(동기 처리부(17)에 의한 검출 제어부(11)의 제어)의 타임 차트를 나타낸다. 또, 이들 동작 개시점의 제어 신호는, 도 6에는 표기하고 있지 않지만, 시스템 로크에 동기하여 제어된다. 광 펄스 조사 설정부(21)에서 설정한 서로 다른 광 펄스 조사 조건(도 6에 있어서의 광 조사 조건 A와 B)에서의 검출이 종료되면, 화상 신호 처리부(18)에 있어서, 서로 다른 광 펄스 조사 조건에서의 방출 전자의 검출 신호의 차분을 산출하여, 2차원 표시함으로써 차분 화상을 형성한다. 혹은, 서로 다른 광 펄스 조사 조건마다 SEM 화상을 형성하고, SEM 화상간에서 차분 처리를 해도 된다.
도 7에 차화상의 취득 플로우를 나타낸다. 우선, 스테이지 기구계에 의해, 시료의 관찰 장소로 이동한다(S1). 기본적인 관찰 조건인 전자선의 가속 전압과, 조사 전류와, 주사 시간을 설정한다(S2). 다음으로, 시료에 대하여 조사하는 광 펄스 조사 조건(구체적으로는, 광 펄스의 조사 주파수 fpulse) A와 B를 설정한다(S3). 물론 2개 이상의 조사 조건을 설정하는 것도 무방하다. 다음으로, 광 펄스의 조정 조건(구체적으로는, 광 펄스의 파장 및 강도)을 설정한다(S4). 다음으로, 검출 샘플링 주파수 fpixel samp를 설정한다(S5). 이때, 설정되는 검출 샘플링 주파수 fpixel samp는, 어느 광 펄스 조사 조건에 대해서도 (수식 6)으로서 나타낸 조건을 충족시키고 있을 필요가 있다. 계속해서, 광 펄스 조사 조건 A, B에서 설정한 광 펄스의 조사 주파수 fpulse로 광 펄스를 조사하면서, 시료의 관찰을 실시하고, 검출 신호를 취득한다(S6). 광 펄스 조사 조건 A에서의 검출 신호와 광 펄스 조사 조건 B에서의 검출 신호와의 차신호를 산출하고(S7), 산출된 검출 신호의 차분값에 의거하여 화상을 형성하고, 화상 표시부(20)에 표시한다(S8).
도 8에 화상 표시부(20)에 표시되는 GUI의 예를 나타낸다. 도 1의 전자선 장치에 있어서, 장치 제어부(19)로부터, 광 펄스 조사 설정부(21)의 제어 내용을 설정 가능하게 함으로써, SEM 화상 취득 조건 설정부(206)로부터, 기본적인 관찰 조건인 전자선의 가속 전압과, 조사 전류와, 주사 속도에 더해, 광 펄스의 조사 파장, 광 펄스의 조사 강도, 검출 샘플링 주기 등이 설정 가능하게 되어 있다. 이 중, 광 펄스 조사 조건 설정부(207)에서는, 복수의 광 펄스의 조사 주파수 fpulse(204, 205)가 설정 가능하게 되어 있다. SEM 화상 취득 조건 설정부(206)에서 설정된 SEM 화상을, 복수의 광 펄스의 조사 주파 fpulse의 조건마다 표시부(201A) 및 표시부(201B)에 표시함과 함께, 차화상을 차화상 표시부(202)에 표시한다. 또한, 현 관찰 조건에서의 SEM상이 관찰 상태 표시부(203)에 표시된다.
이 예에서는, 관찰 상태 표시부(203)에 전자선 장치(1)로 관찰 중인 SiC의 결정 결함부의 SEM 화상(모식도)이 나타나 있다. 예를 들면, 전자선의 가속 전압 1.0kV, 조사 전류 300pA, 단위 화소당의 주사 시간 300ns, 광 펄스의 파장 375㎚, 광 펄스의 조사 강도 1000μW로 한다. 광 조사 조건 A의 광 펄스의 조사 주파수 fpulse는 10㎒이며, 광 조사 조건 B의 광 펄스의 조사 주파수 fpulse는 1㎒이다. 검출 샘플링 주파수는 100㎒로 했다. 관찰 상태 표시부(203)에서 원하는 시야를 설정하여, 개시 버튼(208)을 압하(押下)하여 화상의 취득을 실행한다.
관찰 상태 표시부(203)에 나타나는 바와 같이, 시료에는 결정 결함부(401)와정상부(402)가 있다. 이 예에서의 결정 결함은 적층 결함이며, 삼각 형상의 영역을 가진다. 광 조사 조건 A의 경우, 결정 결함부(401)와 정상부(402)와의 계면(403)의 방출 전자량이 증가하여, 밝아진 것에 대하여, 광 펄스의 조사 주파수가 낮은 광 조사 조건 B의 경우, 광 조사 조건 A에서 취득한 방출 전자상과 비교하여, 결정 결함 계면(403)의 콘트라스트가 저하했다. 이 때문에, 광 조사 조건 A와 광 조사 조건 B에서 얻어진 차화상에서는 계면(403)이 추출되어 있다. 적층 결함의 계면과 같은 광 캐리어를 트랩하는 영역은 전자 디바이스 응용에 있어서 결함이 될 수 있는 개소이다. 이와 같이, 본 실시예에 의해, 2개 이상의 서로 다른 광 펄스의 조사 조건으로 취득한 방출 전자의 차화상으로부터, 고감도의 결함의 특징량 추출의 검출이 가능해진다. 적용예로서 차화상에 의해 결정 결함 계면을 추출하는 예를 나타냈지만, 실시예 1에 나타낸 재료의 차이를 추출하는 것도 가능하다.
실시예 3
본 실시예에서는, 광 펄스의 조사와 방출 전자의 검출 샘플링을 동기하여, 광 펄스 조사 타이밍과 검출 샘플링 타이밍과의 간격 시간 ti(det)를 제어하는 시간 분해 관찰법에 대해서 설명한다.
시간 분해 관찰법을 실행하는 전자선 장치를 도 9에 나타낸다. 또, 도 1과 동등한 기능을 갖는 구성 및 기능 블록에 대해서는, 같은 부호를 부여하여, 중복되는 설명에 대해서는 생략하는 것으로 한다. 실시예 3의 전자선 장치에 있어서는, 광 펄스 조사계의 제어도 메인 콘솔(16)로 가능하게 하고, 광 펄스 조사 설정부(21)는 장치 제어부(19)에 의해 그 제어 내용이 설정 가능하게 되어 있다. 전자선 장치(1')는, 전자선의 편향 신호와 방출 전자의 검출 샘플링의 동기에 더해, 광 펄스의 조사를 동기 제어하는 동기 제어부(61)를 갖고 있다. 동기 제어부(61)는, 광 펄스의 조사 타이밍과 방출 전자의 검출 샘플링 타이밍을 동기시킴과 함께, 광 펄스 조사 타이밍과 검출 샘플링 타이밍과의 간격 시간 ti(det)를 제어할 수 있다. 동기 제어부(61)는, 편향기 제어부(10)와, 검출 제어부(11)와, 광 펄스 제어부(14)에 타이밍 신호를 송신한다.
도 10에, 편향 신호(편향기 제어부(10)의 출력), 광 펄스(펄스 광원(13)의 출력), 검출 샘플링 제어(동기 제어부(61)에 의한 검출 제어부(11)의 제어)의 타임 차트를 나타낸다. 간격 시간 ti(det)가 0ns일 경우, 광 펄스의 발진과 같은 타이밍에 검출 샘플링의 트리거가 걸린다. 이 예에서는, 단위 화소 시간 tpixel당의 검출 샘플링점 수는 1점으로 되어 있지만, 복수 회 샘플링해도 된다. 본 실시예에서는, 광 펄스 조사 주파수 fpulse가 설정 가능하며, 이에 따라 검출 샘플링 주파수 fpixel samp가 (fpixel samp=fpulse) 설정되는 구성으로 되어 있다. 간격 시간 ti(det)는, 검출 샘플링 주기보다도 짧아지도록 설정한다. 이에 따라, 광 펄스 조사로부터, 설정한 간격 시간 ti(det) 후에 검출 샘플링되어, 검출 신호가 얻어진다.
이들 검출 신호는 편향 신호에 의거하는 위치 정보를 이용하여 화상화되고, 간격 시간 ti(det)마다의 SEM상을 형성한다. 서로 다른 간격 시간 ti(det)에서의 SEM 화상을 취득함으로써, 일련의 과도 변화 화상을 얻을 수 있다. 또, 동기 제어부(61)는, 상술한 바와 같이 SEM 화상마다 다른 간격 시간 ti(det)를 설정하여 1회의 광 펄스 조사에 대하여 1회의 샘플링을 실시하여 일련의 과도 변화 화상을 얻어도 되고, 혹은 동기 제어부(61)는, 1회의 광 펄스 조사에 대하여 간격 시간 ti(det)가 서로 다른 샘플링을 복수 회 실시함으로써, 일련의 과도 변화 화상을 동시에 작성해도 된다.
도 11에 화상 표시부(20)에 표시되는 GUI의 예를 나타낸다. SEM 화상 취득 조건 설정부(206)에는, 기본적인 관찰 조건인 전자선의 가속 전압과, 조사 전류와, 주사 속도에 더해, 광 펄스의 조사 조건으로서, 광 펄스 조사 간격 시간 ti와 광 펄스 조사 강도가 설정 가능하게 되어 있다. 또한, 검출 샘플링의 제어 조건으로서, 간격 시간 ti(det)의 설정 단위 시간이 설정 가능하게 되어 있다. 도 11의 예에서는, 간격 시간 ti(det)를 10ns 단위로 설정하는 것이 가능하다. 또, 검출 샘플링 주파수 fpixel samp는, 광 펄스 조사 주파수 fpulse와 동일해지기 때문에, 검출 샘플링 주파수 또는 검출 샘플링 주기에 관한 설정 화면은 마련되어 있지 않다.
또한, 과도 해석 조건 설정부(302)에는, 시간 분해의 개시 시간(303)과 종료 시간(304)과 시간 스텝(305)이 설정 가능하게 되어 있다. 개시 시간(303) 및 종료 시간(304)은 광 펄스의 발진 타이밍을 기준으로 하고, 시간 스텝(305)은 SEM 화상 취득 조건 설정부(206)에서 설정되는 간격 시간 ti(det)의 설정 단위 시간의 정수배의 값이 설정 가능하다.
과도 해석 조건 설정부(302)에의 설정값에 의거하여, 간격 시간 ti(det)가 개시 시간(303)으로부터 종료 시간(304)까지 시간 스텝(305)으로 제어되고(즉, 도 11의 예에서는, 간격 시간 ti(det)=0, 10, 20, … 190, 200nsec), 간격 시간 ti(det)마다의 SEM상이 취득된다. 취득한 SEM상은 일련의 과도 변화 화상으로서 모여져, 툴바 형식의 표시부(306)에서 과도 변화를 확인할 수 있다. 표시부(306)에 표시되는 SEM 화상의 간격 시간 ti(det)는, 툴바의 슬라이더를 움직임으로써 변경할 수 있다. 또, 표시하는 SEM 화상의 간격 시간 ti(det)를 지정하는 지정부는 툴바의 형태에는 한정되지 않는다.
관찰 상태 표시부(203)에 전자선 장치(1')에서 관찰 중인 화상(모식도)이 표시되고, 관찰 상태 표시부(203)에서 소망의 시야를 설정하고, 개시 버튼(208)을 압하하여 화상의 취득을 실행한다.
도 12에 본 실시예의 시간 분해 관찰법에 의해 해석한 산화티탄 결정의 과도 변화의 SEM 화상(모식도)을 나타낸다. 전자선의 가속 전압 0.3kV, 조사 전류 50pA, 주사 속도 200ns, 광 펄스의 조사 간격 시간 ti 200ns, 광 펄스의 조사 파장 450㎚, 광 펄스의 조사 강도 500μW이다. 간격 시간 ti(det)의 설정 단위 시간은 10ns이고, 시간 분해의 시작 시간 0ns, 종료 시간 200ns, 시간 스텝 10ns로 했다. 도 12에는 간격 시간 ti(det)=0, 10, 100, 200ns에서의 SEM 화상을 나타내고 있으며, 시료 A는 결정립이 수 100㎚ 사이즈이며, 시료 B는 결정립이 수 10㎚ 사이즈이다. 광 펄스를 조사함으로써, 시료 A, B 모두 결정립이 밝아지고, 결정립 영역에서 캐리어가 생성된다(307a, 308a). 간격 시간 ti(det)가 200ns일 경우, 시료 A의 결정립의 밝기 307d는, 간격 시간 ti(det)가 0ns나 100ns일 경우와 비교하여 거의 변화하고 있지 않는 것에 비해, 시료 B의 결정립 308d는 어두워지고 있다. 즉, 본 결과는, 시료 A와 시료 B는 같은 캐리어의 생성능을 나타내는 한편, 캐리어의 수명은 결정립의 사이즈가 작을수록, 짧아지고 있는 것을 나타내고, 결정립이 수 100㎚의 소위 메소스케일 구조가 전자 상태의 제어에 기여하고 있는 것을 알 수 있다. 예를 들면, 고효율 광촉매 디바이스 재료에서는, 재료의 전자 상태의 캐리어 수명을 길게 하는 것이 요구되고 있다. 이러한 재료의 탐색에는, 나노, 마이크로 스케일의 구조 해석과 여기 캐리어 과도 해석이 유효하다.
본 실시예에 의해, 광 펄스 조사 타이밍과 검출 샘플링 타이밍과의 간격 시간 ti(det)를 제어하고, 간격 시간 ti(det)를 변화시킨 SEM 화상에 의해, 전자 상태나 여기 캐리어의 과도 변화 화상을 취득할 수 있다.
실시예 4
본 실시예에서는, 광 펄스 조사 간격 시간 ti(광 펄스 조사 주파수 fpulse의 역수)를 변화시켜 검출 신호를 취득하고, 각 조사 간격 시간 ti에서 얻어진 검출 신호를 플롯함으로써, 시료의 시정수를 산출하는 전자선 장치에 대해서 설명한다. 본 실시예의 전자선 장치의 구성은 실시예 1 또는 실시예 2와 같으며, 편향 신호, 광 펄스, 검출 샘플링 제어의 타임 차트도 도 6과 마찬가지이다.
도 13에 화상 표시부(20)에 표시되는 GUI의 예를 나타낸다. SEM 화상 취득 조건 설정부(206)에는, 기본적인 관찰 조건인 전자선의 가속 전압과, 조사 전류와, 주사 속도에 더해, 광 펄스의 조사 파장과, 광 펄스의 조사 강도가 설정 가능하다. 또한, 검출 샘플링의 제어 조건으로서, 검출 샘플링 주기가 설정 가능하게 되어 있다.
본 실시예에서는, 시정수 계측 대상에 시료의 과도 과정을 자동 계측한다. 구체적으로는, 광 펄스 조사에 의한 전자 상태의 과도 과정을 해석하기 위해, 광 펄스 조사에 의한 방출 전자의 방출량의 광 펄스 조사 간격 시간 ti 의존성을 취득한다. 그 때문에, 광 펄스 조사 간격 시간 ti의 설정을 행한다. 과도 과정의 검출 시간 범위를 최단 시간(501)과 최장 시간(502)으로 설정한다. 본 설정값에 의거하여, 광 펄스 조사 간격 시간 ti를 최단 시간(501)으로부터 최장 시간(502)까지 변화시킨다. 또한, 그동안의 시간 간격 스텝(503)을 설정할 수 있다. 본 설정값에 의거하여, 광 펄스 조사 간격 시간 ti가 최단 시간(501)과 최장 시간(502)까지를 시간 간격 스텝(503)으로 제어되고(즉, 도 13의 예에서는, 광 펄스 조사 간격 시간 ti=0, 100, 200, … 1900, 2000nsec), 동기 제어부(61)에서 생성된 타이밍에, 편향 신호 제어와, 광 펄스 조사와, 검출 샘플링 제어가 행해진다. 각 광 펄스 조사 간격 시간 ti에서 취득한 검출 신호량은, 시정수 그래프 표시부(504)에 플롯된다. 구체적으로는, 광 펄스 조사 간격 시간 ti마다 취득한 신호로부터 SEM 화상을 취득하고, SEM 화상 명도의 변화로부터, 검출 신호량을 플롯한다. 혹은, 시료 상의 1점 또는 복수점을 지정하고, 지정점에서의 검출 신호량을 얻을 수도 있다. 또, 이 광 펄스 조사에 의한 방출 전자의 방출량의 광 펄스 조사 간격 시간 ti 의존성을 취득하는 플로우에는, 도 7의 플로우 차트의 스텝 S1∼S6의 검출 신호 취득 플로우 차트를 적용한다(단, 광 펄스 조사 조건 A, B로 있는 것을 각 광 펄스 조사 간격 시간 ti로 바꿔 읽는다).
각 광 펄스 조사 간격 시간 ti에서 검출한 방출 전자의 신호량이, 최대 검출 신호량으로부터 68% 저하했을 때의 광 펄스 조사 간격 시간 ti가 시료의 시정수가 되므로, 장치 제어부(19)는, 시정수 그래프로부터 시료의 시정수를 구하고, 시정수 표시부(505)에 표시된다. 또한, 시정수 계측은, 자동 측정 버튼(209)을 압하함으로써 개시되고, 현 관찰 조건에서의 SEM상이 관찰 상태 표시부(203)에 표시된다.
도 14에, 본 실시예를 이용하여 해석한 SiC 에피막 두께가 서로 다른 SiC 기판에 대한 시정수 측정 결과를 나타낸다. 시료로서 에피막 두께가 서로 다른 2종류의 SiC 기판을 이용하고, 시료 1은 에피막 두께가 60㎛, 시료 2는 에피막 두께가 20㎛이다. 관찰 조건은, 전자선의 가속 전압 0.8kV, 조사 전류 15pA, 주사 속도 TV Scan, 광 펄스 조사 강도 100μW, 광 펄스 파장 300㎚, 검출 샘플링 주기 10ns이다. 또한, 시정수 계측을 위한 광 펄스 조사 간격 시간 ti는 최단 시간 0ns, 최장 시간 2000ns, 시간 간격 스텝 100ns로 했다. 도 14에 나타내는 바와 같이, 에피막 두께가 60㎛인 시료 1은 시정수가 1.0μs인 것에 대하여, 에피막 두께가 20㎛인 시료 2에서는 시정수가 0.5μs가 되었다. 이와 같이, 에피막 두께의 차이에 따라 시정수가 변화하는 것을 알 수 있었다.
본 실시예에 의해, 광 펄스 조사 간격 시간 ti가 서로 다른 복수의 광 펄스 조사 조건으로 취득한 방출 전자를, 각 펄스 조사 간격 시간 ti에서 플롯함으로써, 시료 구조를 반영한 시정수 계측이 가능해진다.
실시예 5
본 실시예에서는, 서로 다른 파장의 광 펄스를 조사했을 때에 방출되는 방출 전자를 검출하고, 각 파장에서의 검출 신호의 차분을 취득하고, 차분값으로 형성한 차화상으로부터 시료의 특징량 추출을 실시하는 고감도 결함 검출 검사법에 대해서 설명한다. 고감도 결함 검출 검사법을 실행하는 전자선 장치의 기본 구성은 실시예 1, 실시예 2 또는 실시예 4와 같으며, 편향 신호, 광 펄스, 검출 샘플링 제어의 타임 차트도 도 4와 마찬가지이다. 광 펄스 조사 조정부(15)에서 조사하는 파장을 제어한다. 또한, 각 파장에서의 검출 신호는, 화상 신호 처리부(18)에 송신되고, 화상 신호 처리부(18)에서, 각 파장 조건에서의 방출 전자의 검출 신호 차분을 산출하고, 2차원 표시함으로써 차분 화상을 형성한다. 혹은, 각 파장 조건에서의 SEM 화상을 형성하고, SEM 화상간에서 차분 처리를 해도 된다. 또, 차화상을 취득하는 플로우는 도 7의 플로우 차트와 같게 한다(단, 광 펄스 조사 조건 A, B로 있는 것이, 파장이 서로 다른 광 펄스 조사 조건이 된다).
도 15를 이용하여, 본 실시예의 고감도 결함 검출 검사법을 설명한다. 관찰 조건은, 전자선의 가속 전압 1.5kV, 조사 전류 15pA, 주사 속도 TV Scan, 광 펄스 조사 강도 1000μW, 광 펄스 조사 간격 시간 160ns, 검출 샘플링 주기 5ns이다. 광 펄스 조사 조정부(15)에서 광 파장 A와 광 파장 B를 설정하고, 각 파장에서의 방출 전자량을 검출하고, 화상을 형성했다. 도 15에, 광 펄스 조사 없음 SEM 화상, 파장 A의 광 펄스 조사한 SEM 화상, 파장 B의 광 펄스 조사 SEM 화상, 및 파장 A의 광 펄스 조사 SEM 화상과 파장 B의 광 펄스 조사 SEM 화상과의 차화상을 나타낸다. 관찰 장소는 동일 위치이다. 파장 A의 광 펄스 또는 파장 B의 광 펄스를 조사함으로써 패드부의 방출 신호가 증가하고, 광 펄스 조사 없음 SEM 화상에 비해 높은 콘트라스트가 얻어지고 있다. 또한, 차화상을 해석한 결과, 제1 패드(506)는, 파장 A, B에서 같은 밝기가 되어 차화상이 어두워지는 것에 대하여, 제2 패드(507)는, 파장 A의 경우만 밝아져, 높은 콘트라스트를 가지는 차화상이 얻어졌다. 이와 같이, 동일 시료 중에도, 광 펄스의 조사에 의한 신호 변화에 파장 의존성이 있는 것을 알 수 있다. 본 실시예에서 사용한, 파장 A의 광 펄스는 단파장의 광 펄스이며, 산화막 이외의 재료에 의해 흡수되는 것에 대하여, 파장 B의 광 펄스는 폴리실리콘이나 유기막을 투과하는 파장이며, 재료에 있어서의 흡수 계수의 차이에 따라 방출 전자량이 변화한 것으로 추정된다. 그러므로, 광 펄스의 조사 파장을 적절하게 선택함으로써, 시료 표면 혹은 시료 하층의 재료 정보나 구조 정보에 의거하는 방출 전자의 차를 가시화할 수 있다.
본 실시예에 의해, 각 파장에 대한 흡수 계수의 값을 반영한 화상을 취득할 수 있고, 또한, 반도체 패턴에 서로 다른 파장의 광을 조사함으로써, 선택적으로 SEM상의 콘트라스트를 향상시킬 수 있다.
이상, 본 발명을 실시형태에 의거하여 구체적으로 설명했지만, 본 발명은 상기 실시형태에 한정되는 것이 아니고, 그 요지를 일탈하지 않는 범위에서 각종 변경 가능한 것이다. 예를 들면, 실시예 1∼2, 4∼5는 도 1에 나타낸 전자선 장치로 실시하도록 설명했지만, 도 9에 나타낸 전자선 장치로 실시하는 것도 가능하다.
1,1': 전자선 장치 2: 전자총
3: 편향기 4: 전자 렌즈
5: 검출기 6: XYZ 스테이지
7: 시료 홀더 8: 시료
9: 전자총 제어부 10: 편향기 제어부
11: 검출 제어부 12: 전자 렌즈 제어부
13: 펄스 광원 14: 광 펄스 제어부
15: 광 펄스 조사 조정부 16: 메인 콘솔
17: 동기 처리부 18: 화상 신호 처리부
19: 장치 제어부 20: 화상 표시부
21: 광 펄스 조사 설정부 22: 포트
23: 하우징 30: 전자선
31: 조정 미러 32: 플리퍼 미러
33: 광량 가변 필터 34, 35, 36: 광원
41: 반사 방지막 42: 레지스트
61: 동기 제어부 201: 표시부
202: 차화상 표시부 203: 관찰 상태 표시부
206: SEM 화상 취득 조건 설정부 302: 과도 해석 조건 설정부
504: 시정수 그래프 표시부

Claims (15)

  1. 전자선을 시료에 조사하고, 시료로부터 방출된 방출 전자를 검출하는 전자 광학계와,
    상기 시료에 광 펄스를 조사하는 광 펄스 조사계와,
    상기 전자 광학계에 있어서, 상기 전자선의 편향 신호와 동기(同期)하여, 상기 방출 전자의 검출 샘플링을 행하게 하는 동기 처리부와,
    상기 전자 광학계가 검출한 상기 방출 전자에 의거하여 출력되는 검출 신호로부터 화상을 형성하는 화상 신호 처리부와,
    상기 전자 광학계의 제어 조건을 설정하는 장치 제어부를 갖고,
    상기 장치 제어부는, 상기 화상의 1 화소에 상당하는 상기 시료의 영역을 상기 전자선이 주사되는데 요하는 시간을 단위 화소 시간으로 하면, 상기 방출 전자의 검출 샘플링을 행하는 샘플링 주파수를, 상기 단위 화소 시간당의 상기 광 펄스의 조사 수를 상기 단위 화소 시간에 의해 나눈 값보다도 커지도록 설정하는 전자선 장치.
  2. 제1항에 있어서,
    상기 장치 제어부에 의해 설정된 샘플링 주파수로, 상기 전자 광학계가 검출한 상기 방출 전자에 의거하여 출력되는 상기 검출 신호를 1 화소마다 평균화하여, 상기 화상 신호 처리부에 있어서 상기 화상을 형성하는 전자선 장치.
  3. 제1항에 있어서,
    상기 광 펄스 조사계의 제어 조건을 설정하는 광 펄스 조사 설정부를 갖고,
    상기 광 펄스 조사계의 제어 조건으로서, 상기 광 펄스의 파장, 강도, 조사 시간 폭 및 조사 간격 시간을 포함하는 전자선 장치.
  4. 제3항에 있어서,
    상기 광 펄스 조사 설정부는, 제1 광 조사 조건과, 상기 제1 광 조사 조건과 다른 제2 광 조사 조건을 설정하고,
    상기 화상 신호 처리부는, 상기 제1 광 조사 조건으로 상기 광 펄스를 상기 시료에 조사하여 상기 전자 광학계가 검출한 상기 방출 전자에 의거하여 출력되는 제1 검출 신호와, 상기 제2 광 조사 조건으로 상기 광 펄스를 상기 시료에 조사하여 상기 전자 광학계가 검출한 상기 방출 전자에 의거하여 출력되는 제2 검출 신호와의 차화상(差畵像)을 형성하는 전자선 장치.
  5. 제4항에 있어서,
    상기 화상 신호 처리부는, 상기 제1 검출 신호와 상기 제2 검출 신호와의 차분값에 의거하여 상기 차화상을 형성하거나, 또는 상기 제1 검출 신호로부터 형성된 제1 화상과 상기 제2 검출 신호로부터 형성된 제2 화상과의 차분 처리를 행하여 상기 차화상을 형성하는 전자선 장치.
  6. 제4항에 있어서,
    상기 장치 제어부에 의해 설정된 상기 방출 전자의 검출 샘플링을 행하는 샘플링 주파수는, 상기 제1 광 조사 조건 및 상기 제2 광 조사 조건의 어느 것을 취해도, 상기 단위 화소 시간당의 상기 광 펄스의 조사 수를 상기 단위 화소 시간에 의해 나눈 값보다도 큰 전자선 장치.
  7. 제4항에 있어서,
    화상 표시부를 갖고,
    상기 장치 제어부는, 상기 화상 표시부에 상기 차화상을 표시하는 전자선 장치.
  8. 제4항에 있어서,
    상기 광 펄스 조사 설정부는, 상기 제1 광 조사 조건과, 상기 제1 광 조사 조건과 상기 광 펄스의 조사 간격 시간이 서로 다른 상기 제2 광 조사 조건을 설정하는 전자선 장치.
  9. 제4항에 있어서,
    상기 광 펄스 조사 설정부는, 상기 제1 광 조사 조건과, 상기 제1 광 조사 조건과 상기 광 펄스의 파장이 서로 다른 상기 제2 광 조사 조건을 설정하는 전자선 장치.
  10. 제3항에 있어서,
    상기 광 펄스 조사 설정부는, 상기 광 펄스의 조사 간격 시간이 서로 다른 복수의 광 조사 조건을 설정하고,
    상기 장치 제어부는, 상기 복수의 광 조사 조건으로 상기 광 펄스를 상기 시료에 조사하여 상기 전자 광학계가 검출한 상기 방출 전자에 의거하여 출력되는 상기 검출 신호의 신호량의 변화에 의거하여, 상기 시료의 시정수를 구하는 전자선 장치.
  11. 제10항에 있어서,
    상기 화상 신호 처리부는, 상기 복수의 광 조사 조건마다 상기 광 펄스를 상기 시료에 조사하여 상기 전자 광학계가 검출한 상기 방출 전자에 의거하여 출력되는 상기 검출 신호로부터 복수의 화상을 형성하고,
    상기 장치 제어부는, 상기 복수의 화상의 명도의 변화로부터, 상기 검출 신호의 신호량의 변화를 구하는 전자선 장치.
  12. 전자선을 시료에 조사하고, 시료로부터 방출된 방출 전자를 검출하는 전자 광학계와,
    상기 시료에 광 펄스를 조사하는 광 펄스 조사계와,
    상기 전자 광학계에 있어서, 상기 전자선의 편향 신호와 동기하여, 상기 광 펄스의 조사 및 상기 방출 전자의 검출 샘플링을 행하게 하는 동기 제어부와,
    상기 전자 광학계가 검출한 상기 방출 전자에 의거하여 출력되는 검출 신호로부터 화상을 형성하는 화상 신호 처리부와,
    상기 전자 광학계 및 상기 광 펄스 조사계의 제어 조건을 설정하는 장치 제어부를 갖고,
    상기 장치 제어부는, 상기 방출 전자의 검출 샘플링을 행하는 샘플링 주파수와 상기 광 펄스의 조사 주파수를 동등하게 설정함과 함께, 상기 광 펄스의 조사 타이밍과 상기 방출 전자의 검출 샘플링 타이밍과의 간격 시간을 복수 설정하고,
    상기 화상 신호 처리부는, 상기 광 펄스를 상기 시료에 조사하여, 상기 장치 제어부에 의해 설정된 복수의 간격 시간마다 상기 전자 광학계가 검출한 상기 방출 전자에 의거하여 출력되는 상기 검출 신호로부터 복수의 화상을 형성하는 전자선 장치.
  13. 제12항에 있어서,
    화상 표시부를 갖고,
    상기 장치 제어부는, 상기 화상 표시부에 상기 복수의 화상을 표시하는 전자선 장치.
  14. 제13항에 있어서,
    상기 화상 표시부는, 상기 간격 시간을 지정하는 지정부를 표시하고, 상기 복수의 화상 중, 상기 지정부에 의해 지정된 간격 시간에 따른 화상을 표시하는 전자선 장치.
  15. 제12항에 있어서,
    상기 동기 제어부는, 1회의 상기 광 펄스의 조사에 대하여 상기 간격 시간이 서로 다른 상기 방출 전자의 검출 샘플링을 복수 회 행하는 전자선 장치.
KR1020217005181A 2018-09-11 2018-09-11 전자선 장치 KR102456983B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033669 WO2020053967A1 (ja) 2018-09-11 2018-09-11 電子線装置

Publications (2)

Publication Number Publication Date
KR20210033515A KR20210033515A (ko) 2021-03-26
KR102456983B1 true KR102456983B1 (ko) 2022-10-21

Family

ID=69777677

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217005181A KR102456983B1 (ko) 2018-09-11 2018-09-11 전자선 장치

Country Status (6)

Country Link
US (1) US11393657B2 (ko)
JP (1) JP6998469B2 (ko)
KR (1) KR102456983B1 (ko)
CN (1) CN112602164A (ko)
DE (1) DE112018007852T5 (ko)
WO (1) WO2020053967A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059171A1 (ja) * 2020-09-18 2022-03-24 株式会社日立ハイテク 荷電粒子線装置および試料観察方法
US20230274909A1 (en) 2020-09-28 2023-08-31 Hitachi High-Tech Corporation Charged Particle Beam Device
WO2022091180A1 (ja) * 2020-10-26 2022-05-05 株式会社日立ハイテク 荷電粒子線装置
KR20230148236A (ko) 2021-03-26 2023-10-24 주식회사 히타치하이테크 하전 입자빔 시스템
CN113984821B (zh) * 2021-12-29 2022-03-11 中国科学院地质与地球物理研究所 纳米结构三维成像系统与方法
US11658001B1 (en) * 2022-12-07 2023-05-23 Institute Of Geology And Geophysics, Chinese Academy Of Sciences Ion beam cutting calibration system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036273A (ja) 1998-05-15 2000-02-02 Hitachi Ltd 荷電粒子検出方法およびその装置並びに荷電粒子ビ―ムによる処理方法およびその装置
JP2001273865A (ja) 2000-03-24 2001-10-05 Fujitsu Ltd 走査型電子顕微鏡装置とその制御方法
JP2016085917A (ja) 2014-10-28 2016-05-19 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び情報処理装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476387B1 (en) 1998-05-15 2002-11-05 Hitachi, Ltd. Method and apparatus for observing or processing and analyzing using a charged beam
JP3749107B2 (ja) * 1999-11-05 2006-02-22 ファブソリューション株式会社 半導体デバイス検査装置
JP2003151483A (ja) 2001-11-19 2003-05-23 Hitachi Ltd 荷電粒子線を用いた回路パターン用基板検査装置および基板検査方法
JP4512471B2 (ja) * 2004-11-10 2010-07-28 株式会社日立ハイテクノロジーズ 走査型電子顕微鏡及び半導体検査システム
US7477711B2 (en) * 2005-05-19 2009-01-13 Mks Instruments, Inc. Synchronous undersampling for high-frequency voltage and current measurements
CN1769876B (zh) * 2005-10-28 2010-05-05 清华大学 大动态范围能谱的能量稳定接收方法与其装置
JP4528317B2 (ja) * 2007-07-25 2010-08-18 株式会社日立ハイテクノロジーズ 走査電子顕微鏡を備えた外観検査装置及び走査電子顕微鏡を用いた画像生成方法
JP5380206B2 (ja) * 2009-08-27 2014-01-08 株式会社日立ハイテクノロジーズ 走査型電子顕微鏡装置及びそれを用いた試料の検査方法
EP2722865A1 (en) * 2012-10-22 2014-04-23 Fei Company Beam pulsing device for use in charged-particle microscopy
CN103809197B (zh) * 2012-11-13 2016-01-06 中芯国际集成电路制造(上海)有限公司 扫描电镜的电子束的检测方法、微细图形的检测方法
JP5901549B2 (ja) * 2013-01-18 2016-04-13 株式会社日立ハイテクノロジーズ 計測検査装置
JP6267529B2 (ja) * 2014-02-04 2018-01-24 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び画像生成方法
US9200950B2 (en) * 2014-02-25 2015-12-01 Applied Materials, Inc. Pulsed plasma monitoring using optical sensor and a signal analyzer forming a mean waveform
EP3016130A1 (en) * 2014-10-28 2016-05-04 Fei Company Composite scan path in a charged particle microscope
JP6571045B2 (ja) * 2016-06-17 2019-09-04 株式会社日立ハイテクノロジーズ 荷電粒子ビーム装置及び荷電粒子ビーム装置を用いた画像の生成方法
US10777383B2 (en) * 2017-07-10 2020-09-15 Fei Company Method for alignment of a light beam to a charged particle beam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036273A (ja) 1998-05-15 2000-02-02 Hitachi Ltd 荷電粒子検出方法およびその装置並びに荷電粒子ビ―ムによる処理方法およびその装置
JP2001273865A (ja) 2000-03-24 2001-10-05 Fujitsu Ltd 走査型電子顕微鏡装置とその制御方法
JP2016085917A (ja) 2014-10-28 2016-05-19 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び情報処理装置

Also Published As

Publication number Publication date
WO2020053967A1 (ja) 2020-03-19
US20220059317A1 (en) 2022-02-24
DE112018007852T5 (de) 2021-04-29
US11393657B2 (en) 2022-07-19
JP6998469B2 (ja) 2022-01-18
CN112602164A (zh) 2021-04-02
JPWO2020053967A1 (ja) 2021-08-30
KR20210033515A (ko) 2021-03-26

Similar Documents

Publication Publication Date Title
KR102456983B1 (ko) 전자선 장치
US11183362B2 (en) Charged particle beam apparatus and sample observation method using the same
CN109765206B (zh) 表征二维材料缺陷的方法及其应用
KR20050047054A (ko) 패턴결함 검사방법 및 검사장치
Trichard et al. Evaluation of a compact VUV spectrometer for elemental imaging by laser-induced breakdown spectroscopy: application to mine core characterization
CN112161946B (zh) 一种频域发光寿命成像系统
JPS6224737B2 (ko)
KR101835815B1 (ko) 형광수명 측정장치 및 측정방법
JP3830461B2 (ja) 固体中の欠陥測定方法および欠陥測定装置
JPH085471A (ja) 応力測定方法および応力測定装置
JP4111908B2 (ja) 走査電子顕微鏡
CN115219480A (zh) 一种锁相微光显微成像方法及装置
Garming et al. Ultrafast scanning electron microscopy with sub-micrometer optical pump resolution
JP2007316044A (ja) フォトキャパシタンス法を用いたテラヘルツ光センシングシステム
JP2004531869A (ja) エネルギーフィルタマルチプレクシング
WO2022018641A1 (en) Time-resolved cathodoluminescence sample probing
US20120193552A1 (en) Fluorescence lifetime imaging
JP2525893B2 (ja) 螢光特性検査装置
JP2006133019A (ja) 透過電子顕微鏡又は走査型透過電子顕微鏡を用いた試料の分析方法及び分析装置
Aiello et al. Cathodoluminescence-based nanoscopic thermometry in a lanthanide-doped phosphor
JP5262937B2 (ja) 走査型プローブ光電子収量分光顕微法および走査型プローブ光電子収量分光顕微鏡
RU2454657C2 (ru) Устройство для исследования люминесцентных свойств материала с пространственным микро- или наномасштабным разрешением (варианты)
JP2001141673A (ja) 時間分解型表面分析装置
Camarda et al. Micro-scale 2D mapping of cadmium-zinc telluride strip detectors
Pérez-Tijerina et al. Multi-wavelength images detector for micro-cathodoluminescence analysis

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant