KR102356456B1 - 초박막 무기물 반도체 제조방법 및 이를 이용한 3차원 반도체 소자 제조방법 - Google Patents
초박막 무기물 반도체 제조방법 및 이를 이용한 3차원 반도체 소자 제조방법 Download PDFInfo
- Publication number
- KR102356456B1 KR102356456B1 KR1020150069367A KR20150069367A KR102356456B1 KR 102356456 B1 KR102356456 B1 KR 102356456B1 KR 1020150069367 A KR1020150069367 A KR 1020150069367A KR 20150069367 A KR20150069367 A KR 20150069367A KR 102356456 B1 KR102356456 B1 KR 102356456B1
- Authority
- KR
- South Korea
- Prior art keywords
- inorganic semiconductor
- forming
- substrate
- thin film
- thin
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 146
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 51
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 96
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 84
- 239000000758 substrate Substances 0.000 claims abstract description 74
- 238000000034 method Methods 0.000 claims abstract description 61
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 55
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 47
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000010409 thin film Substances 0.000 claims abstract description 36
- 239000007789 gas Substances 0.000 claims description 28
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 21
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 238000002161 passivation Methods 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 5
- 238000009832 plasma treatment Methods 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 239000010453 quartz Substances 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 103
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 48
- 239000010703 silicon Substances 0.000 description 48
- 238000012546 transfer Methods 0.000 description 10
- 230000005669 field effect Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 238000001237 Raman spectrum Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001493 electron microscopy Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/02444—Carbon, e.g. diamond-like carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/0245—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02502—Layer structure consisting of two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02592—Microstructure amorphous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02595—Microstructure polycrystalline
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/7806—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0688—Integrated circuits having a three-dimensional layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1259—Multistep manufacturing methods
- H01L27/1262—Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
- H01L27/1266—Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1606—Graphene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66083—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
- H01L29/6609—Diodes
- H01L29/66136—PN junction diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78684—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
Abstract
초박막 무기 반도체 제조방법 및 이를 이용한 3차원 반도체 소자의 제조방법이 개시된다. 개시된 초박막 무기 반도체 제조방법은 게르마늄(Ge) 기판을 준비하는 단계; 상기 게르마늄 기판 상에 비정질 그래핀층을 형성하는 단계; 상기 비정질 그래핀층 상에 초박막 무기 반도체를 형성하는 단계; 목표 기판 상에 상기 초박막 무기 반도체를 전사하는 단계;를 포함한다. 상기 무기물 반도체 박막은 Si 또는 Ge 박막이며, 50㎛ 이하의 두께를 가진다.
Description
비정질 그래핀층을 이용하여 초박막 무기물 반도체를 제조하는 방법 및 3차원 반도체 소자의 제조방법에 관한 것이다.
실리콘 기반 전자소자는 단위 소자의 집적도(integration)를 지속적으로 향상시키면서 발전하였다. 최근, 10 나노미터 수준의 횡적 수축(lateral shrinkage)은 물리적 한계에 접근하였다. 이에 따라 3차원 칩으로 집적도를 더욱 향상시키고 있다. 3차원 칩 제조를 위해 고품질 및 가격 경쟁력이 있는 초박막 무기 반도체에 대한 니즈가 점차 커지고 있다.
플렉서블 소자 분야에서는 유기 반도체 소재를 기반으로 우선적으로 개발이 진행되어 왔으나, 낮은 전하 이동도 및 외부 환경(열, 산소, 수분)에 취약한 문제가 있다. 따라서 플렉서블 소자에서도 전기적/광학적/물성적 특성이 우수한 실리콘 등의 무기 반도체를 적용하려는 시도가 점차 증가되고 있다.
초박막 실리콘을 제조하기 위해서는 SOI (silicon on insulator) 웨이퍼를 사용하는 것이 가장 일반적이나, SOI 기판이 상당히 고가이기 때문에 사용에 한계가 있다. 다른 방법으로, 초박막 실리콘을 제조하기 위해 KOH 용액을 이용하여 실리콘 웨이퍼의 하부면을 에칭하는 방법이 있으나, 균일한 두께의 초박막 실리콘을 얻기가 어렵다.
초박막 무기물 반도체 제조방법 및 이를 이용한 3차원 반도체 소자 제조방법을 제공한다.
실시예에 따른 초박막 무기물 반도체 제조방법은:
게르마늄(Ge) 기판을 준비하는 단계;
상기 게르마늄 기판 상에 비정질 그래핀층을 형성하는 단계;
상기 비정질 그래핀층 상에 초박막 무기 반도체를 형성하는 단계; 및
목표 기판 상에 상기 초박막 무기 반도체를 전사하는 단계;를 포함한다.
상기 게르마늄 기판 준비 단계는, 제1기판 상에 상기 게르마늄 기판을 형성하는 단계를 포함하며, 상기 제1기판은 Si, Ge, SiGe, GaAs, 석영, 알루미나를 포함할 수 있다.
상기 게르마늄 기판 준비 단계는, Si 또는 SiGe로 이루어진 상기 제1기판 상에 Ge층을 50nm~1㎛ 두께로 에피 성장하는 단계를 포함할 수 있다.
상기 비정질 그래핀층은 1층의 그래핀으로 이루어질 수 있다.
상기 비정질 그래핀 형성단계는:
상기 게르마늄 기판 상으로 탄소함유 개스와 수소 개스를 공급하되, 상기 수소 개스를 상기 탄소함유 개스와 비교하여 5~20배 부피 비로 공급하며, 공정압력을 1~10 Torr로 유지하는 단계를 포함할 수 있다.
상기 비정질 그래핀 형성단계는900~930℃ 의 공정온도를 유지하는 단계에서 수행될 수 있다.
상기 비정질 그래핀 형성단계는, 상기 게르마늄 기판 상으로 상기 수소를 공급하여 상기 게르마늄 기판의 표면에 수소 패시베이션을 형성하는 단계를 더 포함할 수 있다.
상기 무기물 반도체 박막은 Si 또는 Ge 박막이며, 50㎛ 이하의 두께를 가질 수 있다.
상기 초박막 무기 반도체 형성단계는, 상기 초박막 무기 반도체 소스와 수소 개스를 대략 1:20 부피비로 공급하는 단계를 포함할 수 있다.
상기 초박막 무기 반도체를 어닐링하여 상기 초박막 무기 반도체를 다결정 물질로 만드는 단계를 더 포함할 수 있다.
상기 제조방법은 상기 비정질 그래핀 형성 이전에 상기 게르마늄 기판 상으로 절연층을 형성하는 단계를 더 포함할 수 있으며, 상기 비정질 그래핀 형성단계는 상기 절연층 상으로 상기 비정질 그래핀을 형성하는 단계일 수 있다.
상기 초박막 무기 반도체 전사단계는, 상기 초박막 무기 반도체 상으로 지지부재를 부착하고 상기 지지부재를 이용하여 전사하거나 또는 진공에 의한 압력을 이용하여 상기 목표기판 상으로 상기 초박막 무기 반도체를 전사할 수 있다.
상기 목표 기판 상에 상기 초박막 무기 반도체를 전사하기 이전에, 상기 비정질 그래핀층을 산소 플라즈마 처리로 제거하는 단계를 더 포함할 수 있다.
상기 초박막 무기 반도체 형성단계는, 상기 초박막 무기 반도체를 이용하여 상기 초박막 무기 반도체 상에 적어도 하나의 반도체 소자를 형성하는 단계를 포함하며, 상기 전사 단계는 상기 적어도 하나의 반도체 소자를 전사하는 단계일 수 있다.
상기 목표기판은 플렉서블 기판일 수 있다.
다른 실시예에 따른 초박막 무기 반도체를 이용한 3차원 반도체 소자의 제조방법은: 게르마늄(Ge) 기판을 준비하는 단계;
상기 게르마늄 기판 상에 비정질 그래핀층을 형성하는 단계;
상기 비정질 그래핀층 상에 초박막 무기 반도체를 형성하는 단계;
상기 초박막 무기 반도체를 이용하여 복수의 제1 반도체 소자를 형성하는 단계;
목표 기판 상에 상기 복수의 제1 반도체 소자를 전사하는 단계; 및
상기 복수의 제1 반도체 소자의 제조방법과 동일한 방법으로 복수의 제2 반도체 소자를 제조하고 상기 복수의 제1 반도체 소자 상으로 상기 복수의 제2 반도체 소자를 전사하는 단계;를 포함하며,
상기 제2 반도체 소자의 제조 및 전사단계를 적어도 1회 이상 반복한다.
실시예에 의한 초박막 무기 반도체 제조방법에 따르면, 균일한 두께의 플렉서블한 초박막 무기 반도체를 제조할 수 있으며, 이 초박막 무기 반도체를 이용한 반도체 소자는 기존의 플렉서블 소자에 사용되는 유기 반도체에 비해서 전하 이동도가 높고 외부 환경(열, 산소, 수분)에 강하다.
또한, 초박막 무기 반도체를 이용한 반도체 소자를 플렉서블 기판에 전사하여 에피더멀 소자를 포함하는 웨어러블 소자의 제조에 적용할 수 있다.
실시예에 의한 초박막 무기 반도체를 이용한 3차원 반도체 소자의 제조방법에 따르면, 스택 구조의 3차원 칩의 제조가 용이해 진다. 또한, 초박막 반도체를 이용하므로, 얇은 두께를 가진 스택 구조의 3차원 칩을 제조할 수 있다.
도 1a 내지 도 1e는 실시예에 따른 초박막 무기 반도체의 제조방법을 단계적으로 설명하는 단면도다.
도 2는 비정질 그래핀층 위에 성장된 초박막 실리콘의 표면의 secondary electron microscopy (SEM) 이미지다.
도 3은 비정질 그래핀층 위에 실리콘을 300 ~ 400 nm 정도 성장시킨 후 수직 단면을 관찰한 SEM 이미지다.
도 4는 결정질 그래핀층 위에 실리콘을 성장한 비교예의 SEM 이미지다.
도 5는 성장된 초박막 실리콘과, 어닐링된 초박막 실리콘의 라만 스펙트럼 결과를 보여주는 그래프다.
도 6은 실시예에 따라 제조된 PN 다이오드 반도체 소자(600)를 보여주는 단면도다.
도 7은 도 6의 PN 다이오드의 상면으로부터의 물질 분포를 보여주는 secondary ion mass spectrometry (SIMS) 분석 결과 그래프다.
도 8a 내지 도 8c는 초박막 무기 반도체를 이용하여 3차원 반도체 소자를 제조하는 방법을 설명하는 단면도다.
도 2는 비정질 그래핀층 위에 성장된 초박막 실리콘의 표면의 secondary electron microscopy (SEM) 이미지다.
도 3은 비정질 그래핀층 위에 실리콘을 300 ~ 400 nm 정도 성장시킨 후 수직 단면을 관찰한 SEM 이미지다.
도 4는 결정질 그래핀층 위에 실리콘을 성장한 비교예의 SEM 이미지다.
도 5는 성장된 초박막 실리콘과, 어닐링된 초박막 실리콘의 라만 스펙트럼 결과를 보여주는 그래프다.
도 6은 실시예에 따라 제조된 PN 다이오드 반도체 소자(600)를 보여주는 단면도다.
도 7은 도 6의 PN 다이오드의 상면으로부터의 물질 분포를 보여주는 secondary ion mass spectrometry (SIMS) 분석 결과 그래프다.
도 8a 내지 도 8c는 초박막 무기 반도체를 이용하여 3차원 반도체 소자를 제조하는 방법을 설명하는 단면도다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다. 이 과정에서 도면에 도시된 층이나 영역들의 두께는 명세서의 명확성을 위해 과장되게 도시된 것이다. 이하에 설명되는 실시예는 단지 예시적인 것에 불과하며, 이러한 실시예들로부터 다양한 변형이 가능하다.
이하에서, "상부" 나 "상"이라고 기재된 것은 접촉하여 바로 위에 있는 것뿐만 아니라 비접촉으로 위에 있는 것도 포함할 수 있다.
도 1a 내지 도 1e는 실시예에 따른 초박막 무기 반도체의 제조방법을 단계적으로 설명하는 단면도다.
도 1a를 참조하면, 제1기판(110) 상에 게르마늄(Ge)층(120)을 형성한다. Ge층(120) 형성을 위해 반응챔버(미도시) 내에 제1기판(110)을 배치한 상태에서 반응챔버 내로 Ge 소스, 예컨대 GeH4 개스를 공급한다.
제1기판(110)은 Si, Ge, SiGe, GaAs, 석영, 알루미나 등으로 형성될 수 있다. 제1기판(110)이 단결정 기판인 경우 그 위로 Ge층(120)을 에피성장할 수 있다. 예컨대, 제1기판(110)이 단결정 Si으로 이루어진 경우 Ge층(120)을 대략 50nm ~ 1㎛ 두께로 형성한다. Ge층(120) 두께가 50nm 보다 얇은 경우 그 위로 그래핀층이 잘 성장되지 않는다. Ge층(120) 두께를 1㎛ 이상으로 성장시키는 데에는 많은 시간이 소요된다. 제1기판(110)으로 Ge기판을 사용하는 경우, Ge층(120)의 형성은 생략될 수 있다.
제1기판(110)은 반드시 단결정 기판으로 한정되지 않는다. 비정질 또는 다결정 물질로 이루어진 제1기판(110) 상에 Ge층(120)을 성장시키면 비정질 또는 다결정 Ge층(120)이 형성된다.
이하에서는 제1기판(110)이 단결정 실리콘 기판이며, Ge층(120)이 에피성장된 단결정 층인 예를 가지고 설명한다.
도 1b를 참조하면, Ge층(120) 상으로 비정질 그래핀층(130)을 형성한다. 비정질 그래핀층(130)은 싱글 그래핀층일 수 있다. 비정질 그래핀층(130) 형성을 위해 low pressure chemical vapor deposition (LPCVD) 방법으로 900 ~ 930℃의 온도 에서 탄소포함 개스와 수소개스를 함께 상기 반응챔버 내로 공급한다. 탄소포함 개스로는 예컨대, CH4, C2H2, C2H4, CO 등을 사용할 수 있다. 이하에서는 탄소포함 개스로 CH4 개스를 사용한 예를 가지고 설명한다.
CH4 개스와 H2 개스를 공급하는 상기 반응챔버의 공정 압력은 1 ~ 10 Torr 이며, CH4/H2 개스는 대략 1/5 ~ 1/20 부피비로 공급된다. 이 과정에서 비정질 그래핀층(130) 하부의 Ge층(120)의 표면에는 수소 패시베이션(122)이 형성된다. 수소 패시베이션(122)은 Ge층(120)의 최상층 표면에 존재하는 댕글링 본드와 수소가 결합하여 Ge층(120)의 표면에 형성된다. 수소 패시베이션(122)의 형성으로 Ge층(120)과 비정질 그래핀층(130) 사이의 점착력이 매우 낮으며, 따라서, 비정질 그래핀층(130)을 Ge층(120)으로부터 용이하게 떼어낼 수 있다.
도 1c를 참조하면, 비정질 그래핀층(130) 상으로 초박막 무기 반도체(140)를 형성한다. 초박막 무기 반도체(140)는 실리콘 또는 게르마늄으로 이루어질 수 있다. 초박막 무기 반도체(140)이 초박막 실리콘(140)인 예를 가지고 설명한다. 초박막 실리콘(140)은 대략 50㎛ 이하의 두께를 가질 수 있다. 이러한 두께를 가지는 초박막 실리콘(140)은 플렉서블한 상태가 된다. 따라서, 에피더멀 소자(epidermal device)와 같은 웨어러블 디바이스를 포함하는 플렉서블 소자를 제조하는 데 이용될 수 있다.
초박막 실리콘(140)을 형성하기 위해서, 10 Torr 공정 압력에서 상기 공정챔버로 SiH4 개스와 H2 gas를 1/20 부피비로 혼합하여 주입하고, 500 ~ 700℃ 공정 온도를 유지하였다. 성장된 초박막 실리콘(140)은 비정질 실리콘일 수 있다. SiH4 개스는 He 개스에 5% 부피비로 혼합된 상태로 공급될 수 있다.
도 2는 비정질 그래핀층 위에 성장된 초박막 실리콘의 표면의 secondary electron microscopy (SEM) 이미지다. 도 2를 참조하면, 전 영역에 걸쳐서 실리콘이 균일하게 성장된 것을 알 수 있다.
비정질 그래핀층은 싱글 그래핀층일 수 있으며 탄소들이 6개로 균일하게 고리를 형성하는 결정질 그래핀층과 달리 5~7개로 불균일하게 고리를 형성한다. 결정질 그래핀에서는 표면에 댕글링 본드들이 존재하지 않으므로 상부에 바막을 형성하는데 어려움이 있다. 특히, 결정질 그래핀의 경우 전체 면적이 표면 에너지가 매우 낮아서 다른 물질들이 흡착하기 어려우며, 이는 화학적 증착/성장 에서 박막을 성장시키기 위한 시드를 형성하지 못하게 하는 원인이 된다. 반면 비정질 그래핀의 경우, 댕글링 본드가 존재하지 않지만 공간적으로 일정하지 않은 탄소링들(5각형, 6각형, 7각형)의 분포로 인해 표면에너지의 편차가 발생하게 되고, 비교적 표면 에너지가 높은 부분에서 흡착이 용이하게 발생하게 된다. 이는 화학적 증착/성장시 시드 형성을 원활하게 한다. 이러한 시드로 이루어진 층으로부터 초박막 실리콘이 성장된다. 비정질 그래핀층 위에 형성된 초박막 실리콘은 일정한 두께로 형성될 수 있다.
도 3은 비정질 그래핀층 위에 실리콘을 300 ~ 400 nm 정도 성장시킨 후 수직 단면을 관찰한 SEM 이미지다. 두께가 일정하게 실리콘이 성장한 것을 알 수 있다. 측단면 측정을 위해서 실리콘 및 Ge층을 절단시 비정질 그래핀층과 Ge층 사이에 일부 균열이 발생한 것을 볼 수 있다. 즉, 비정질 그래핀층의 상면에 형성된 수소 패시베이션으로 비정질 그래핀층이 Ge층으로부터 용이하게 이격되는 것을 알 수 있다.
도 4는 결정질 그래핀층 위에 실리콘을 성장한 비교예의 SEM 이미지다. Ge층 상에 결정질 그래핀층을 형성하기 위해서 900 ~ 930℃의 온도 영역에서 탄소포함 개스와 수소개스를 함께 Ge층(120)이 배치된 반응챔버 내로 공급하였다. 탄소포함 개스로는 CH4 개스를 사용하였으며, CH4 개스와 H2 개스를 공급하는 상기 반응챔버의 공정 압력은 70-100 Torr 이었으며, CH4/H2 개스는 대략 1/50 ~ 1/200 부피비로 공급된다. 이 과정에서 결정질 그래핀층이 Ge층 상에 형성되었다.
도 4를 참조하면, 실리콘 시드가 주로 그래핀의 결함, 예컨대 그래핀의 그레인 바운더리를 따라서 형성된 것을 볼 수 있다. 실리콘 시드들은 그래핀층 상에 균일하게 성장하지 않았다. 이는 결정질 그래핀 표면의 포텐셜이 균일하여 시드로 작용하는 사이트가 없어서 실리콘의 시드 형성이 어렵기 때문인 것으로 해석된다.
도 1c를 참조하면, 성장된 초박막 실리콘(140)을 어닐링한다. 어닐링된 초박막 실리콘(142)은 다결정 실리콘이 될 수 있다. 어닐링은 고온의 열처리, 예컨대 성장된 초박막 실리콘(140)을 고온 퍼니스(미도시)에 넣고 온도 850~900℃, 1~5시간 열처리를 할 수 있다.
도 5는 성장된 초박막 실리콘과, 어닐링된 초박막 실리콘의 라만 스펙트럼 결과를 보여주는 그래프다. 참고로, 싱글 실리콘의 라만 스퍽트럼도 함께 도시하였다.
도 5를 참조하면, 성장된 초박막 실리콘(a-Si)은 520 cm- 1 의 실리콘 피크가 거의 없으며 이는 성장된 초박막 실리콘이 비정질 상태인 것을 보여준다. 어닐링된 초박막 실리콘(poly-Si)은 실리콘 피크를 가지고 있으나, 실리콘 피크 강도는 단결정 실리콘 (cristal Si) 보다 낮으며, 이는 어닐링된 초박막 실리콘이 다결정 상태임을 보여준다.
도 1d를 참조하면, 어닐링된 초박막 실리콘(142)을 이용하여 그래핀층(130) 상으로 복수의 반도체 소자(150)를 형성할 수 있다. 예컨대, 초박막 실리콘(142)을 패터닝하여 전계효과 트랜지스터(150)의 채널층(142)으로 사용할 수 있다. 전계효과 트랜지스터(150)는 채널층의 양측에 연결된 소스 전극(151) 및 드레인 전극(152), 채널층(142) 상에 순차적으로 형성된 게이트 절연층(153) 및 게이트 전극(154)를 포함한다.
도 1d는 그래핀층(130) 상으로 복수의 전계효과 트랜지스터(150)가 형성된 것을 보여준다. 실시예는 이에 한정되지 않는다. 초박막 실리콘(142)을 이용하여 PN 다이오드, 메모리, 포토다이오드 등을 형성할 수도 있다.
도 1e를 참조하면, 미리 플렉서블 기판(170)을 준비한다. 플렉서블 기판(170)은 폴리머, 얇은 반도체 등으로 형성될 수 있다. 이어서, 도 1d에서 보듯이 특정 반도체 소자(150) 상에 지지부재(160), 예컨대 thermal release tape를 사용하여 상기 특정 반도체 소자(150)를 픽업한다. 이 과정에서 그래핀층(130)과 Ge층(120) 사이의 결합력이 낮고, 그래핀층(130)이 싱글층이기 때문에 그래핀층(130)이 쉽게 찢어지며 따라서 지지부재(160)에 상기 특정 반도체 소자(150)가 접착된다.
그래핀층(130)을 산소 플라즈마 처리하여 제거할 수 있다. 특히, 그래핀층(130)의 산소 플라즈마 처리로 특정 반도체 소자(150) 내에서 그래핀층(130)에 의한 소스전극(151) 및 드레인 전극(152)의 전기적 연결을 방지할 수 있다. 특정 반도체 소자(150)가 포토 다이오드, PN 다이오드 등일 경우, 특정 반도체 소자 하부의 그래핀층은 전극(미도시)에 연결되므로 그래핀층(130)을 제거하지 않을 수 있다.
이어서, 픽업된 특정 반도체 소자(150)를 플렉서블 기판(170) 위로 전사할 수 있다.
전사공정이 끝난 후 지지부재(160)를 제거한다. 예컨대, 지지부재(160)로 thermal release tape를 사용한 경우, 대략 200℃에서 10~60초 열을 가하면 thermal release tape의 점착력이 약해지며, 따라서 thermal release tape를 특정 반도체 소자(150)로부터 제거할 수 있다. 지지부재(160)의 제거방법은 지지부재(160)로 사용하는 물질에 따라서 달라질 수 있다.
실시예에서는 하나의 특정 반도체 소자를 전사하는 것을 설명하였으나, 실시예는 이에 한정되지 않는다. 예컨대, 복수의 반도체 소자를 동시에 전사할 수 있다. 즉, 웨이퍼 스케일로 전사할 수도 있다.
도 1e에서는 지지부재(160)를 사용하여 전사하는 방법을 설명하였으나, 실시예는 이에 한정되지 않는다. 예컨대, 진공펌프에 연결된 부재(파이프 및 접촉 부재)로 상기 전사과정을 수행할 수도 있다. 진공펌프를 사용하여 전사를 하는 경우, 지지부재의 부착공정 및 제거공정이 생략된다.
실시예에서는 특정 반도체 소자(150)의 전사과정에서 산소 플라즈마 처리로 비정질 그래핀층(130)을 제거하였으나, 비정질 그래핀층(130)을 제거하지 않을 수도 있다. 예컨대, 비정질 그래핀층(130)을 형성한 후 그 위로 절연층을 형성한다. 이어서, 상기 절연층 위로 초박막 무기 반도체(140)을 형성한다. 이후의 공정은 상술한 실시예로부터 잘 알 수 있다. 상기 절연층은 실리콘 옥사이드, 실리콘 나이트라이드로 이루어질 수 있다. 절연층은 비정질 실리콘층과 특정 반도체 소자(150) 사이의 전기적 연결을 방지한다.
도 6은 실시예에 따라 제조된 PN 다이오드 반도체 소자(600)를 보여주는 단면도다.
도 6을 참조하면, Ge 기판(610) 상에 비정질 그래핀층(630), B-doped Si층(640), P-doped Si층(650)이 순차적으로 형성되어 있다.
도 7은 도 6의 PN 다이오드의 상면으로부터의 물질 분포를 보여주는 secondary ion mass spectrometry (SIMS) 분석 결과 그래프다.
도 7을 참조하면, 초박막 실리콘의 형성시 불순물 도핑을 할 수 있다는 것을 알 수 있으며, 이에 따라 PN 다이오드의 제조가 가능한 것을 확인할 수 있다.
실시예에 따르면, 균일한 두께의 플렉서블한 초박막 무기 반도체를 제조할 수 있으며, 이 초박막 무기 반도체를 이용한 반도체 소자는 기존의 플렉서블 소자에 사용되는 유기 반도체에 비해서 전하 이동도가 높고 외부 환경(열, 산소, 수분)에 강하다.
또한, 초박막 무기 반도체를 이용한 반도체 소자를 플렉서블 기판에 전사하여 에피더멀 소자를 포함하는 웨어러블 소자의 제조에 적용할 수 있다.
상술한 실시예에서는 초박막 실리콘을 제조하는 방법을 설명하였다. 이하에서는 초박막 게르마늄을 제조하는 방법을 도 1a ~ 도 1c를 참조하여 설명한다. 동일하거나 유사한 부재에는 동일한 참조번호를 사용한다.
제1기판(110) 상에 게르마늄층(120), 비정질 그래핀층(130)을 형성하는 과정은 상술한 실시예와 동일할 수 있으므로 생략한다.
도 1c를 참조하면, 비정질 그래핀층(130) 상으로 초박막 게르마늄(140)을 형성한다. 초박막 게르마늄(140)은 대략 50nm 이하의 두께를 가질 수 있다. 이러한 두께를 가지는 초박막 게르마늄은 플렉서블한 상태가 된다. 따라서, 에피더멀 소자(epidermal device)와 같은 웨어러블 디바이스를 포함하는 플렉서블 소자를 제조하는 데 이용될 수 있다.
초박막 게르마늄(140)을 형성하기 위해서, 10 Torr 공정 압력에서 상기 공정챔버로 GeH4 개스와 H2 개스를 1/20 부피비로 공급하고, 400 ~ 600℃ 공정 온도를 유지한다. 성장된 초박막 게르마늄(140)은 비정질 게르마늄일 수 있다. SiH4 개스는 He 개스에 5% 부피비로 혼합된 상태로 공급될 수 있다.
이하의 초박막 게르마늄(140)의 어닐링 공정 및 초박막 게르마늄을 이용한 반도체 소자의 전사공정은 상술한 실시예로부터 잘 알 수 있으므로, 상세한 설명은 생략한다.
도 8a 내지 도 8c는 초박막 무기 반도체를 이용하여 3차원 반도체 소자를 제조하는 방법을 설명하는 단면도다. 3차원 반도체 소자는 메모리, 로직 회로, CIS 센서 등일 수 있다.
도 1a~도 1c의 제조방법과 실질적으로 동일한 방법으로 제1기판(110) 상에 Ge층(120), 비정질 그래핀층(130), 초박막 무기 반도체(140)를 형성한다.
도 8a를 참조하면, 초박막 무기 반도체(140)를 이용하여 비정질 그래핀층(130) 상으로 복수의 제1 반도체 소자(840)를 형성한다. 예컨대, 초박막 무기 반도체(140)를 이용하여 복수의 전계효과 트랜지스터, 복수의 포토 다이오드, 복수의 PN 다이오드 등을 형성할 수 있다.
도 8b를 참조하면, 목표 기판(870)을 마련한다. 목표 기판(870)은 플렉서블 기판 또는 단단한 기판일 수 있다.
목표 기판(870) 상으로 제1 반도체 소자들(840)을 웨이퍼 스케일로 전사한다. 진공펌프에 연결된 부재(파이프 및 접촉 부재)로 상기 전사를 수행할 수 있다. 또한, 상술한 실시예의 지지부재를 사용하여 전사를 수행할 수도 있다. 지지부재를 이용하는 경우 지지부재의 제거공정이 필요하다.
도 8c를 참조하면, 제1 반도체 소자들(840) 위로 패시베이션층(850)을 형성한다. 패시베이션층(850)은 절연층일 수 있다.
이어서, 도 1a ~ 도 1c의 방법으로 초박막 무기 반도체(140)를 제조하고, 초박막 무기 반도체(140)를 이용하여 비정질 그래핀층(130) 상으로 복수의 제2 반도체 소자(860 참조)를 형성한다. 예컨대, 초박막 무기 반도체(140)를 이용하여 복수의 전계효과 트랜지스터, 복수의 포토 다이오드, 복수의 PN 다이오드 등을 형성할 수 있다. 제2 반도체 소자(860)는 제1 반도체 소자(840)와 동일하거나 다른 소자일 수 있다.
이어서, 제2 반도체 소자들(860) 위에 지지부재를 점착시키거나 또는 진공펌프(미도시)를 이용하여 제2 반도체 소자들(860)을 패시베이션층(860) 상으로 전사한다.
제1 반도체 소자들(840)이 복수의 독출회로 집적회로(Readout integrated circuit: ROIC)이고, 제2 반도체 소자들(860)이 복수의 포토다이오드인 경우, 제조된 적층소자는 back-illumination CMOS image sensor (CIS)일 수 있다. 이 경우 패시베이션층(850)은 생략될 수 있다.
실시예는 이에 한정되지 않는다. 제2 반도체 소자들(860)을 제조하고 전사하는 방법을 반복하면 3층 이상으로 적층된 3차원 반도체 소자를 만들 수 있다. 예컨대 복층 구조의 NAND 메모리 소자를 제조할 수 있다.
실시예에 따르면, 스택 구조의 3차원 칩의 제조가 용이해 진다. 또한, 초박막 반도체를 이용하므로, 얇은 두께를 가진 스택 구조의 3차원 칩을 제조할 수 있다.
이상에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들은 예시적인 것에 불과하며, 당해 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능함을 이해할 수 있을 것이다. 따라서 본 사상의 진정한 보호범위는 첨부된 특허청구범위에 의해서만 정해져야 할 것이다.
110: 제1기판 120: 게르마늄 층
130: 비정질 그래핀층 142: 초박막 실리콘
150: 반도체 소자 160: 지지부재
130: 비정질 그래핀층 142: 초박막 실리콘
150: 반도체 소자 160: 지지부재
Claims (20)
- 게르마늄(Ge) 기판을 준비하는 단계;
상기 게르마늄 기판 상에 비정질 그래핀층을 형성하는 단계;
상기 비정질 그래핀층 상에 박막 무기 반도체를 형성하는 단계; 및
목표 기판 상에 상기 박막 무기 반도체를 전사하는 단계;를 구비하며,
상기 비정질 그래핀층 형성 단계는 상기 게르마늄 기판 상에 수소가 공급되어 상기 게르마늄 기판의 표면에 수소 패시베이션을 형성하는 단계를 더 포함하는 박막 무기 반도체 제조방법. - 제 1 항에 있어서, 상기 게르마늄 기판 준비 단계는:
제1기판 상에 상기 게르마늄 기판을 형성하는 단계를 포함하며,
상기 제1기판은 Si, Ge, SiGe, GaAs, 석영, 알루미나를 포함하는 박막 무기 반도체 제조방법. - 제 2 항에 있어서, 상기 게르마늄 기판 준비 단계는:
Si 또는 SiGe로 이루어진 상기 제1기판 상에 Ge층을 50nm~1㎛ 두께로 에피 성장하는 단계를 포함하는 박막 무기 반도체 제조방법. - 제 1 항에 있어서,
상기 비정질 그래핀층은 1층의 그래핀으로 이루어진 박막 무기 반도체 제조방법. - 제 4 항에 있어서, 상기 비정질 그래핀층 형성단계는:
상기 게르마늄 기판 상으로 탄소함유 개스와 수소 개스를 공급하되, 상기 수소 개스를 상기 탄소함유 개스와 비교하여 5~20배 부피 비로 공급하며, 공정압력을 1~10 Torr로 유지하는 단계를 포함하는 박막 무기 반도체 제조방법. - 제 5 항에 있어서, 상기 비정질 그래핀층 형성단계는:
900~930℃ 의 공정온도를 유지하는 단계에서 수행되는 박막 무기 반도체 제조방법. - 삭제
- 제 1 항에 있어서,
상기 박막 무기 반도체는 Si 또는 Ge 박막이며, 50㎛ 이하의 두께를 가지는 박막 무기 반도체 제조방법. - 제 1 항에 있어서, 상기 박막 무기 반도체 형성단계는:
상기 박막 무기 반도체 소스와 수소 개스를 1:20 부피비로 공급하는 단계를 포함하는 박막 무기 반도체 제조방법. - 제 1 항에 있어서,
상기 박막 무기 반도체를 어닐링하여 상기 박막 무기 반도체를 다결정 물질로 만드는 단계;를 더 포함하는 박막 무기 반도체 제조방법. - 제 1 항에 있어서,
상기 비정질 그래핀층 형성 이전에 상기 게르마늄 기판 상으로 절연층을 형성하는 단계를 더 포함하며, 상기 비정질 그래핀층 형성단계는 상기 절연층 상으로 상기 비정질 그래핀을 형성하는 단계인 박막 무기 반도체 제조방법. - 제 1 항에 있어서, 상기 박막 무기 반도체 전사단계는:
상기 박막 무기 반도체 상으로 지지부재를 부착하고 상기 지지부재를 이용하여 전사하거나 또는 진공에 의한 압력을 이용하여 상기 목표기판 상으로 상기 박막 무기 반도체를 전사하는 박막 무기 반도체 제조방법. - 제 1 항에 있어서,
상기 목표 기판 상에 상기 박막 무기 반도체를 전사하기 이전에, 상기 비정질 그래핀층을 산소 플라즈마 처리로 제거하는 단계를 더 포함하는 박막 무기 반도체 제조방법. - 제 1 항에 있어서, 상기 박막 무기 반도체 형성단계는:
상기 박막 무기 반도체를 이용하여 상기 박막 무기 반도체 상에 적어도 하나의 반도체 소자를 형성하는 단계를 포함하며,
상기 전사 단계는 상기 적어도 하나의 반도체 소자를 전사하는 단계인 박막 무기 반도체 제조방법. - 제 1 항에 있어서,
상기 목표기판은 플렉서블 기판인 박막 무기 반도체 제조방법. - 게르마늄(Ge) 기판을 준비하는 단계;
상기 게르마늄 기판 상에 비정질 그래핀층을 형성하는 단계;
상기 비정질 그래핀층 상에 박막 무기 반도체를 형성하는 단계;
상기 박막 무기 반도체를 이용하여 복수의 제1 반도체 소자를 형성하는 단계;
목표 기판 상에 상기 복수의 제1 반도체 소자를 전사하는 단계; 및
상기 복수의 제1 반도체 소자의 제조방법과 동일한 방법으로 복수의 제2 반도체 소자를 제조하고 상기 복수의 제1 반도체 소자 상으로 상기 복수의 제2 반도체 소자를 전사하는 단계;를 구비하며,
상기 제2 반도체 소자의 제조 및 전사단계를 적어도 1회 이상 반복하는 박막 무기 반도체를 이용한 3차원 반도체 소자의 제조방법. - 제 16 항에 있어서,
상기 비정질 그래핀층은 1층의 그래핀으로 이루어진 3차원 반도체 소자의 제조방법. - 제 17 항에 있어서, 상기 비정질 그래핀층 형성단계는:
상기 게르마늄 기판 상으로 탄소함유 개스와 수소 개스를 공급하되, 상기 수소 개스를 상기 탄소함유 개스와 비교하여 5~20배 부피 비로 공급하며, 공정압력을 1~10 Torr로 유지하는 단계를 포함하는 3차원 반도체 소자의 제조방법. - 제 16 항에 있어서, 상기 비정질 그래핀층 형성단계는:
상기 게르마늄 기판 상으로 상기 수소를 공급하여 상기 게르마늄 기판의 표면에 수소 패시베이션을 형성하는 단계를 더 포함하는 3차원 반도체 소자의 제조방법. - 제 16 항에 있어서,
상기 박막 무기 반도체는 Si 또는 Ge 박막이며, 50㎛ 이하의 두께를 가지는 3차원 반도체 소자의 제조방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150069367A KR102356456B1 (ko) | 2015-05-19 | 2015-05-19 | 초박막 무기물 반도체 제조방법 및 이를 이용한 3차원 반도체 소자 제조방법 |
US14/925,284 US9396935B1 (en) | 2015-05-19 | 2015-10-28 | Method of fabricating ultra-thin inorganic semiconductor film and method of fabricating three-dimensional semiconductor device using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150069367A KR102356456B1 (ko) | 2015-05-19 | 2015-05-19 | 초박막 무기물 반도체 제조방법 및 이를 이용한 3차원 반도체 소자 제조방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160135919A KR20160135919A (ko) | 2016-11-29 |
KR102356456B1 true KR102356456B1 (ko) | 2022-01-27 |
Family
ID=56381717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150069367A KR102356456B1 (ko) | 2015-05-19 | 2015-05-19 | 초박막 무기물 반도체 제조방법 및 이를 이용한 3차원 반도체 소자 제조방법 |
Country Status (2)
Country | Link |
---|---|
US (1) | US9396935B1 (ko) |
KR (1) | KR102356456B1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9859494B1 (en) | 2016-06-29 | 2018-01-02 | International Business Machines Corporation | Nanoparticle with plural functionalities, and method of forming the nanoparticle |
CN110004488B (zh) * | 2019-04-23 | 2020-04-03 | 中国科学院上海微系统与信息技术研究所 | 一种石墨烯/Mn5Ge3/锗(110)异质结及其制备方法 |
CN112687799B (zh) * | 2020-12-19 | 2022-10-11 | 复旦大学 | 一种高结晶度半导体膜转移制造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0139741B1 (ko) * | 1994-10-11 | 1998-07-15 | 이헌조 | 박막트랜지스터 제조방법 |
KR100833757B1 (ko) | 2007-01-15 | 2008-05-29 | 삼성에스디아이 주식회사 | 유기 전계 발광 표시 장치 및 영상 보정 방법 |
US8493514B2 (en) | 2007-07-16 | 2013-07-23 | Lg Electronics Inc. | Apparatus for controlling color temperature |
KR101030393B1 (ko) | 2009-02-20 | 2011-04-20 | 인하대학교 산학협력단 | 디지털 영상의 화이트 밸런스 조정 장치 및 방법 |
WO2010096646A2 (en) * | 2009-02-20 | 2010-08-26 | University Of Florida Research Foundation, Inc. | Graphene processing for device and sensor applications |
KR101758649B1 (ko) * | 2010-03-31 | 2017-07-18 | 삼성전자주식회사 | 게르마늄층을 이용한 그래핀 제조방법 |
KR101813176B1 (ko) * | 2011-04-07 | 2017-12-29 | 삼성전자주식회사 | 그래핀 전자 소자 및 제조방법 |
KR101448078B1 (ko) | 2012-02-02 | 2014-10-08 | 세종대학교산학협력단 | 그래핀 적층체의 제조 방법 및 그에 의한 그래핀 적층체 |
KR101984695B1 (ko) * | 2012-08-29 | 2019-09-03 | 삼성전자주식회사 | 그래핀 소자 및 그 제조방법 |
KR101920720B1 (ko) * | 2012-12-27 | 2018-11-21 | 삼성전자주식회사 | 그래핀 전사 방법 및 이를 이용한 소자의 제조방법 |
US9431487B2 (en) * | 2013-01-11 | 2016-08-30 | International Business Machines Corporation | Graphene layer transfer |
US9337274B2 (en) * | 2013-05-15 | 2016-05-10 | Globalfoundries Inc. | Formation of large scale single crystalline graphene |
-
2015
- 2015-05-19 KR KR1020150069367A patent/KR102356456B1/ko active IP Right Grant
- 2015-10-28 US US14/925,284 patent/US9396935B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
US9396935B1 (en) | 2016-07-19 |
KR20160135919A (ko) | 2016-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100625944B1 (ko) | 씨모스 이미지 센서의 포토다이오드 및 그의 제조 방법 | |
KR100940863B1 (ko) | 반도체 장치 형성 방법 및 반도체 장치 | |
US7553717B2 (en) | Recess etch for epitaxial SiGe | |
US8574979B2 (en) | Method for integrating silicon germanium and carbon doped silicon with source/drain regions in a strained CMOS process flow | |
US9583392B2 (en) | Carbon layer and method of manufacture | |
US8946063B2 (en) | Semiconductor device having SSOI substrate with relaxed tensile stress | |
CN109844184A (zh) | 用于功率应用和射频应用的工程化衬底结构 | |
US20080283926A1 (en) | Method for integrating silicon germanium and carbon doped silicon within a strained cmos flow | |
US20060006412A1 (en) | Semiconductor substrate, method of manufacturing the same and semiconductor device | |
US20110207273A1 (en) | Methods of Manufacturing Transistors | |
KR20140082839A (ko) | 실리콘 카바이드 에피택시 | |
JPH06507274A (ja) | 準安定第15族合金の酸化物および窒化物および第15族元素の窒化物およびそれらから形成された半導体装置 | |
US9576793B2 (en) | Semiconductor wafer and method for manufacturing the same | |
KR101810301B1 (ko) | 반도체 구조물 및 그 제조 방법 | |
CN107634099B (zh) | 一种二维晶体材料场效应管及其制备方法 | |
KR102356456B1 (ko) | 초박막 무기물 반도체 제조방법 및 이를 이용한 3차원 반도체 소자 제조방법 | |
JP6525554B2 (ja) | 基板構造体を含むcmos素子 | |
KR20100075364A (ko) | 반도체 기판의 제조방법 및 반도체 기판 | |
US20140070277A1 (en) | Epitaxial growth of smooth and highly strained germanium | |
JP2007515790A (ja) | MOSFET構造体内に歪みSiチャネルを形成する方法 | |
US20180261684A1 (en) | Semiconductor structure and fabrication method thereof | |
TWI226679B (en) | Method for fabricating strained multi-layer structure | |
TW202040750A (zh) | 形成rf絕緣體上覆矽元件之方法 | |
TWI231043B (en) | Method for fabricating strained multi-layer structure | |
EP2096683A1 (en) | Method for fabricating a semiconductor substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |