TWI231043B - Method for fabricating strained multi-layer structure - Google Patents

Method for fabricating strained multi-layer structure Download PDF

Info

Publication number
TWI231043B
TWI231043B TW92128509A TW92128509A TWI231043B TW I231043 B TWI231043 B TW I231043B TW 92128509 A TW92128509 A TW 92128509A TW 92128509 A TW92128509 A TW 92128509A TW I231043 B TWI231043 B TW I231043B
Authority
TW
Taiwan
Prior art keywords
layer
strained
patent application
item
silicon
Prior art date
Application number
TW92128509A
Other languages
Chinese (zh)
Other versions
TW200514254A (en
Inventor
Kuen-Chyr Lee
Liang-Gi Yao
Shin-Chang Chen
Mong-Song Liang
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW92128509A priority Critical patent/TWI231043B/en
Application granted granted Critical
Publication of TWI231043B publication Critical patent/TWI231043B/en
Publication of TW200514254A publication Critical patent/TW200514254A/en

Links

Abstract

A method for fabricating a strained multi-layer structure. A step-graded silicon germanium (Si1-xGex) buffer layer and a silicon germanium capping layer are successively deposited overlying a substrate by reduced pressure chemical vapor deposition (RPCVD) using disilane or trisilane as a first reacting gas. Subsequently, a single crystalline silicon layer is deposited on the silicon germanium capping layer by RPCVD using silane or dichlorosilane as a second reacting gas to form a strained layer. A field effect transistor (FET) having a strained layer is also disclosed.

Description

12310431231043

發明所屬之領域·· 本發明係有關於一種半導體裝置之製造方法,特 有關於一種製造具應變的多層結構及具有應變層之埸#是 晶體之方法。 致電 先前技術: 為了配合積體電路之積集度增加以提升元件之 需求,半導體元件尺寸必須不斷地縮小化。然而,=的 言,在積體電路常用的半導體元件中,如金氧半;;而 體(M0SFET),要使其能在低操作電壓下’具有高晶 流和高速的效能是相當困難的。因此,許多人在努 電 改善金氧半場效電晶體元件之效能的/方法。 尋求 •目刖有人提出利用應力所引發的能帶結構變 載子的遷移率,以增加場效電晶體的驅動電流, 效電晶體元件之效能’且此種方法已被應用於各 中。這些元件的矽通道係處於應變的情況。 型來增加 可改善場 種元件 傳統上,係藉由在鬆弛(relaxed)的矽鍺(^丨以) 層或基底上磊晶成長矽通道層,以製備應變的矽層。在成 長應變的矽通道層之前,通常需於矽基上成長晶格逐漸變 形的SUe,層’其中鍺的比例x係自〇逐漸增加至〇. 2,此 處稱作漸進(step-graded)矽鍺緩衝層。再接著於漸進 矽鍺緩衝層上成長一層鬆弛的矽鍺(Sink")上蓋層。 上述這些矽鍺層及應變矽層係以磊晶(epitaxy)方 式來製備’其中又以低壓化學氣相沉積法最為常見。一般FIELD OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a multilayer structure having strain and a method in which a strained layer is a crystal. Call the prior art: In order to meet the increase in the integration of integrated circuits to increase the demand for components, the size of semiconductor components must be continuously reduced. However, the word of =, in the semiconductor components commonly used in integrated circuits, such as metal oxide; and the body (M0SFET), it is very difficult to make it have a high crystal current and high speed performance at low operating voltage . Therefore, many people are working on ways to improve the performance of metal-oxide-semiconductor half-field-effect transistor devices. Seeking • Some people have proposed to use the mobility of the band structure-induced carriers induced by stress to increase the driving current of field effect transistors and the effectiveness of the effect transistor elements', and this method has been used in various fields. The silicon channel system of these devices is under strain. Types can be added to improve field components. Traditionally, a strained silicon layer is prepared by epitaxial growth of a silicon channel layer on a relaxed silicon germanium layer or substrate. Before growing a strained silicon channel layer, it is usually necessary to grow a SUe with a gradually deformed lattice on the silicon substrate. The ratio of the germanium x in the layer gradually increases from 0 to 0.2, which is referred to as step-graded here. Silicon germanium buffer layer. Then, a slack silicon germanium (Sink ") cap layer is grown on the progressive silicon germanium buffer layer. These silicon germanium layers and strained silicon layers are prepared by an epitaxy method, among which the low pressure chemical vapor deposition method is the most common. general

12310431231043

五、發明說明(2) 而言’所使用之反應氣體(製程前驅物)為四氣化石夕 (SiCl4 )、二氣矽烷(SiH2cl2 )、三氣矽烷(SiHci 矽烷(Si Η4 )等。其成長機制可由成長速率及溫度3 曲線得知。通常,上述四種氣體之關係曲線斜率在 f (800 °C以上)較小,而在低溫區較大,之間具有一轉夏品 點。在斜率小的區域,成長速率較不受溫度影響,主要 反應氣體至基底的質傳速率成正比,此區域稱作質傳控制 S (mass transfer controlled region )。另一方面, 在斜率大的區域,成長速率與表面反應速率有關,與溫度 成指數關係,此區域稱作表面反應控制區(surface級又 reaction control led region )。在質傳控制區(高溫時 (surface reaction controlled region),但是由於使 用,反應氣體所需之成長溫度較高而不利於整合應變薄膜 至半導體製程中,因此現行之半導體製程中,磊晶成長多 於表面反應控制區進行。 )所形成的蠢晶薄膜均勻性較優於表面反應控制區V. Description of the invention (2) As far as the reaction gas (process precursor) used is SiCl4, SiH2cl2, SiHci (SiΗ4), etc. The mechanism can be known from the growth rate and temperature 3 curves. Generally, the slope of the relationship curve of the above four gases is small at f (above 800 ° C), and it is larger in the low temperature region, with a turn of summer point between them. At the slope In a small area, the growth rate is relatively unaffected by temperature. The mass transfer rate from the main reaction gas to the substrate is directly proportional. This area is called mass transfer controlled region (S). On the other hand, in a region with a large slope, growth The rate is related to the surface reaction rate and has an exponential relationship with temperature. This region is called the surface reaction control region (surface level and reaction control led region). In the mass transfer control region (at high temperature (surface reaction controlled region), but due to the use, The high growth temperature required for the reaction gas is not conducive to the integration of the strained film into the semiconductor process. Therefore, in the current semiconductor process, the epitaxial growth is more than the surface reaction. Control zone.) Stupid uniformity of the formed polycrystalline thin film is superior than the control surface of the reaction zone

•然而’在低溫(例如,700 °C以下)下的磊晶薄膜之 製備相當耗時’特別是使用上述之反應氣體時。舉例而 。’藉由低壓化學軋相沉積(l〇w pressure CVD,LPCVD )蠢晶成長’每片晶圓在製作具應變的多層結構上,至少 需花費一小時以上。再者,若採用超真空化學氣相沉積 ^ultra-high vacuum CVD, UHVCVD ),每片晶圓至少需 化費十小時以上。亦即,因耗費過長的製造時間而嚴重影 響到產能及製造成本。• However, 'the preparation of an epitaxial film at a low temperature (for example, below 700 ° C) is quite time-consuming', especially when using the above-mentioned reaction gas. For example. ‘Stand-by growth of low-pressure chemical rolling phase deposition (LPWCVD)’ It takes at least an hour for each wafer to produce a strained multilayer structure. Furthermore, if ultra-high vacuum CVD (UHVCVD) is used, each wafer will cost at least ten hours or more. That is, it takes a long time to manufacture and seriously affects production capacity and manufacturing costs.

1231043 五、發明說明(3) 美國專利US 5, 951,757號揭示一種矽鍺層之方法,其 藉由氫氣鈍化一藍寶石基底表面後,再利用矽烷及鍺烷作 為製程前驅物來形成矽鍺層。再者,美國專利 US6, 410, 371號揭示一種具有矽/矽鍺/矽層主動層之矽 絕緣層(SO I )之製造方法,其藉由製作一具有二氧化矽 層之石夕基底及一具有二氧化石夕/石夕/石夕鍺層之>6夕基底後, 在將兩矽基底之二氧化矽層經由高溫黏合(bonding )技 術結合而成該具有矽/矽鍺/矽層主動層之矽絕緣層基 底。再者’美國專利U S 6,51 5,3 3 5揭示一種在矽絕緣層基 底上製作鬆弛的矽鍺層之方法,其先藉由在一矽絕緣層基 底上形成一濕濶層(wetting layer),之後藉由分子束 磊晶(MBE)或CVD依序形成矽鍺島狀物及全面覆蓋島狀物 之矽鍺上蓋層,接著經由一回火程序使濕潤層、矽鍺島狀 物、及矽鍺上蓋層發生交互反應而形成一單晶矽鍺層,最 後再在其上形成一應變的磊晶矽層。上述這些方法中,不 是仍使用矽烷作為製程前驅物就是製程過於 有效提升元件製作之產能^ 發明内容:1231043 V. Description of the invention (3) US Patent No. 5,951,757 discloses a method of silicon germanium layer, which uses silicon to passivate the surface of a sapphire substrate, and then uses silane and germane as process precursors to form silicon germanium. Floor. Furthermore, U.S. Patent No. 6,410,371 discloses a method for manufacturing a silicon insulating layer (SO I) having a silicon / silicon germanium / silicon layer active layer, by fabricating a silicon dioxide substrate with a silicon dioxide layer and A silicon dioxide / silicon germanium / silicon germanium / silicon germanium / silicon germanium / silicon germanium / silicon germanium / silicon germanium / silicon germanium / silicon germanium / silicon germanium layer Active silicon substrate. Furthermore, US Patent No. 6,51 5,3 3 5 discloses a method for fabricating a relaxed silicon germanium layer on a silicon insulating layer substrate. First, a wetting layer is formed on a silicon insulating layer substrate. ), Followed by molecular beam epitaxy (MBE) or CVD in order to form silicon germanium islands and a silicon germanium cap layer covering the islands in order, and then through a tempering process to make the wet layer, silicon germanium islands, And the silicon germanium cap layer interacts to form a single crystal silicon germanium layer, and finally a strained epitaxial silicon layer is formed thereon. Among the above methods, either the silane is still used as the precursor of the process or the process is too effective to increase the production capacity of the components ^ Summary of the invention:

有鑑於此,本發明之目的A 多層缺mm庙 的在於k供一種製造具應變的 及具有應變層之場效電晶體 多種作為化學氣相沉積製葙夕义1 丹精由抹用 ,^ w束程之刚驅物以取代僂絲之罝一制 程刖驅物,藉以同時維持庫 、、單製 產能。 乍孖應變層之性質並增加元件製作之 第8頁 丨· 0503-976nW(Nl);TSMC2002.1389;Spin.ptd 1231043In view of this, the purpose of the present invention is to provide a multi-layered field-effect transistor with a strained layer for producing a variety of field-effect transistors with a strained layer for chemical vapor deposition. Cheng Zhigang has replaced the first-generation process dredger of Filigree to maintain the stock and single production capacity at the same time. Check the properties of the strain layer and increase the production of components Page 8 丨 · 0503-976nW (Nl); TSMC2002.1389; Spin.ptd 1231043

根據上述之目的’本發明提供一種製造具應變的 、·。構之方法。首先’提供一基底。接著,#由二矽:: 三梦丙炫作為-第-反應氣體,在基底依序上沉積 梦鍺(Si,_xGex )緩衝層及石夕鍺上蓋層,其中χ隨漸 緩衝層厚度增加而由〇漸增至〇 . 3。之後,藉由石夕产 錯 矽烷作為一第二反應氣體,在矽鍺上蓋層;沉積二^氣 層以形成一應變層。 平日日矽 者’上述基底可為一矽基底,且更包含一矽緩 成於基底與漸進矽鍺緩衝層之間,其厚度在〇丨 的範圍。 ·According to the above-mentioned object, the present invention provides a strainable manufacturing device.结构 的 方法。 Construction method. First, a substrate is provided. Next, # by two silicon :: Sanmeng Bingxuan as the -th-reaction gas, the dream germanium (Si, _xGex) buffer layer and the Shixi germanium cap layer are sequentially deposited on the substrate, where χ increases with the thickness of the buffer layer. Gradually increased from 0 to 0.3. After that, the silicon silicate is used as a second reactive gas to cover the silicon germanium by Shi Xi; a second gas layer is deposited to form a strained layer. The silicon substrate on weekdays may be a silicon substrate, and further includes a silicon buffer between the substrate and the progressive silicon germanium buffer layer, and the thickness is in the range of 丨. ·

再者,漸進矽鍺緩衝層之厚度在2到5微米的範圍。 鍺上蓋層之厚度在〇· 5到1微米的範圍。 / 在100到300埃的範圍。 ,屑之厚度 再者,漸進矽鍺緩衝層、矽鍺上蓋層及單晶矽 別藉由減壓化學氣相沉積(RPCVD )形成之。其中,減壓77 化學氣相沉積之製程溫度在600 I到8〇〇 〇c的範圍,且 壓力在50Torr到760Torr的範圍。Furthermore, the thickness of the progressive SiGe buffer layer is in the range of 2 to 5 microns. The thickness of the germanium cap layer is in the range of 0.5 to 1 micrometer. / In the range of 100 to 300 Angstroms. In addition, the thickness of the chip is further formed by a progressive silicon-germanium buffer layer, a silicon-germanium cap layer, and single crystal silicon by reduced pressure chemical vapor deposition (RPCVD). The process temperature of the reduced pressure 77 chemical vapor deposition is in the range of 600 I to 800 c, and the pressure is in the range of 50 Torr to 760 Torr.

又根據上述之目的,本發明提供一種製造具有應 之場效電晶體之方法。首先,提供一基底。接著,藉由二 三石夕^作為—第一反應、氣體,在基底依‘上= 積一漸進矽鍺(SU')緩衝層及矽鍺上蓋層,其中又隨 漸進矽鍺緩衝層厚度增加而由0漸增至0·3。之後,、藉由矽 烷〈二氣矽烷作為一第二反應氣體,在矽鍺上蓋層丄沉 一單晶矽層以作為一應變通道層。最後,在應變通道層上According to the above object, the present invention provides a method for manufacturing a field effect transistor. First, a substrate is provided. Then, using Ersanshiyu as the first reaction and gas, the substrate is formed with a progressive silicon-germanium (SU ') buffer layer and a silicon-germanium cap layer, which increases with the thickness of the progressive silicon-germanium buffer layer. And gradually increased from 0 to 0.3. After that, a single crystal silicon layer was deposited on the silicon germanium cap layer as a strained channel layer by using silane <2 gas silane as a second reaction gas. Finally, on the strain channel layer

0503-976nW(Nl);TSMC2002.1389;Spin.ptd 第9頁 1231043 五、發明說明(5) :U極結構以及在閘極結構外側之應變通道芦中形 成一源極/汲極區。 %逼層中心 再者,更包含一矽緩衝層形成於矽基底 衝層之間,其厚度在01到0 9微米的範圍。_進矽鍺緩 再者,漸進矽鍺緩衝層之厚度在2到5微米固 鍺上蓋層之厚度在〇· 5到1微米的範圍。單晶矽&amp; ° 在100到300埃的範圍。 增之厚度 再者,漸進矽鍺緩衝層、矽鍺上蓋層及單晶 別藉由減壓化學氣相沉積(RPCVD)形成之。其中 力 化學氣相沉積之製程溫度在60(rc到80(rc的範圍,’减 壓力在50Torr到760Torr的範圍。 再者,閘極結構包含一閘極介電層、一閘極電極、及 一閘極間隙壁。其中,閘極介電層設置於應變通道層上 方,閘極電極設置於閘極介電層上方,且閘極間隙^設置 於閘極電極側壁。 為讓本發明之上述目的、特徵和優點能更明顯易懂, 下文特舉較佳實施例,並配合所附圖式,作詳細說明如 下: 實施方式: 以下配合第1 A到1C圖及第2圖說明本發明實施例之製 造具有應變層之場效電晶體之方法。 首先,請參照第1 A圖,提供一基底1 〇,此基底丨〇可為 一單晶石夕基底、石夕絕緣層基底(silicon 〇n insulator,0503-976nW (Nl); TSMC2002.1389; Spin.ptd Page 9 1231043 V. Description of the invention (5): A U-pole structure and a strain channel outside the gate structure form a source / drain region. The center of the forced layer further comprises a silicon buffer layer formed between the silicon substrate and the punching layer, and its thickness is in the range of 01 to 0.9 micrometers. Further, the thickness of the progressive silicon germanium buffer layer is in the range of 2 to 5 micrometers, and the thickness of the capping layer of germanium is in the range of 0.5 to 1 micrometer. Monocrystalline &amp; ° is in the range of 100 to 300 angstroms. Increasing thickness Further, the progressive silicon germanium buffer layer, the silicon germanium cap layer and the single crystal are formed by reduced pressure chemical vapor deposition (RPCVD). The process temperature of the chemical chemical vapor deposition is in the range of 60 (rc to 80 (rc), and the decompression pressure is in the range of 50 Torr to 760 Torr. Furthermore, the gate structure includes a gate dielectric layer, a gate electrode, and A gate gap wall, wherein the gate dielectric layer is disposed above the strain channel layer, the gate electrode is disposed above the gate dielectric layer, and the gate gap ^ is disposed on a side wall of the gate electrode. The purpose, features, and advantages can be more clearly understood. The preferred embodiments are described below in detail with the accompanying drawings as follows: Implementation: The following describes the implementation of the present invention with Figures 1 A to 1C and Figure 2 For example, a method for manufacturing a field effect transistor with a strain layer. First, please refer to FIG. 1A, and provide a substrate 10, which can be a single crystal substrate, a silicon substrate (silicon 〇) n insulator,

0503-9761TWF(Nl);TSMC2002-1389;Spin.ptd 第 10 頁 12310430503-9761TWF (Nl); TSMC2002-1389; Spin.ptd Page 10 1231043

五、發明說明(6) ------L son 、或其他半導體基底。此處,係以一結晶方向為 (100)之單晶矽基底作為範例,接著’可選擇性地在基 底10上方形成一矽緩衝層12,其用以作為後續沉積矽鍺緩 衝1之晶種層(seed layer )。本實施例中,矽緩衝層12 可藉由磊晶的方式形成於基底】0之上,例如,使用二 烷(SiH2Cl2)、矽烷(SiH4)、二矽乙烷(Si2H6) 了或三 矽丙烷(ShH8 )作為反應氣體,進行化學氣相沉積(cvd )。形成的矽緩衝層12厚度在0· 1到〇. 9微米(u/彳μ ^ 圍,而較佳的厚度約在0.5… 之後,在矽緩衝層1 2上沉積一矽鍺層。在本實施例 中’此石夕錯層包含上下兩個部分。下部分為一漸進 (setp-graded)矽鍺(sue,)緩衝層14,而上部分為 一鬆他(relaxed)的矽鍺上蓋層16 (如第1B圖所示)〔 漸進矽鍺緩衝層14中鍺的原子比例X係隨漸進矽鍺緩衝層 14厚度增加而由〇漸增至0.3。亦即,漸進矽鍺緩衝層i4S與 矽緩衝層12之界面處,鍺的含量約為0,而漸進矽鍺緩衝、 層14的頂部表面處’鍺的含量約為〇.3,其增加的速率約 在 0·06/ //m 到 0.15///m 的藏圍。。 在本實施例中,漸進石夕鍺緩衝層1 4可藉由磊晶方式形 成之。其方法可為,使用二矽乙烷或三矽丙烷作為矽來源 之反應氣體,並使用鍺烷(germane, Gel )作為錯來源之 反應氣體,進行減壓化學氣相沉積(RPCVD )。其中,/沉 積之製程溫度在60 0 °C到800 °C的範圍。再者,製程壓力1在 50T〇rr到760T〇rr的範圍。形成的漸進矽鍺緩衝層14之厚V. Description of the invention (6) --- L son or other semiconductor substrate. Here, a single crystal silicon substrate with a crystal orientation of (100) is taken as an example, and then a silicon buffer layer 12 can be selectively formed over the substrate 10, which is used as a seed for the subsequent deposition of silicon germanium buffer 1. Layer (seed layer). In this embodiment, the silicon buffer layer 12 can be formed on the substrate by epitaxial method. For example, dioxane (SiH2Cl2), silane (SiH4), disiloxane (Si2H6), or trisilicon is used. (ShH8) was used as a reaction gas to perform chemical vapor deposition (cvd). The silicon buffer layer 12 is formed to a thickness of 0.1 to 0.9 micrometers (u / 彳 μ ^, and a preferred thickness is about 0.5 ...), and then a silicon germanium layer is deposited on the silicon buffer layer 12. In the embodiment, 'this Shi Xi fault layer includes two parts, the lower part is a setp-graded silicon germanium (sue) buffer layer 14, and the upper part is a relaxed silicon germanium cap layer. 16 (as shown in FIG. 1B) [The atomic ratio of germanium in the progressive silicon germanium buffer layer 14 is gradually increased from 0 to 0.3 as the thickness of the progressive silicon germanium buffer layer 14 increases. That is, the progressive silicon germanium buffer layer i4S and At the interface of the silicon buffer layer 12, the content of germanium is about 0, while in the progressive silicon-germanium buffer, the content of germanium at the top surface of the layer 14 is about 0.3, and the increase rate is about 0 · 06 / // m To a perimeter of 0.15 /// m ... In this embodiment, the progressive stone germanium buffer layer 14 can be formed by an epitaxial method. The method may be to use disilane or trisilane as the silicon. Source reaction gas, and using germane (Germane, Gel) as the reaction source of the wrong source to perform reduced pressure chemical vapor deposition (RPCVD). In the temperature range of 60 0 ° C to to 800 ° C. Furthermore, a progressive SiGe process pressure in the range from 1 to 760T〇rr 50T〇rr the formed buffer layer with a thickness of 14

1231043 五、發明說明(7) 度在2到5#m的範圍,而較佳的厚度約在21 。 接下來叫參照第1 B圖,同樣地,藉由磊晶的方式在 :進矽鍺緩衝層14上沉積一鬆弛的矽鍺(SiiyGey)上蓋層 不同於漸進梦鍺緩衝層14 ,石夕鍺上蓋層16中的鍺原子 比例y為一常數,例如y在〇· 25到〇· 3的範圍。在本實施例 中’矽鍺上蓋層1 6,同樣地,使用二矽乙烷或三矽丙烷作 為矽來源之反應氣體,並使用鍺烷作為鍺來源之反應氣 體,進行減壓化學氣相沉積。其中,沉積之製程溫度在 600 °C到80(TC的範圍。再者,二矽乙烷/三矽丙烷的流量 在50到20〇Sccm的範圍,而鍺烷的流量在5(^j2〇〇sccin的範 圍。再者,製程壓力在5〇Torr到760Torr的範圍。形成的 石夕鍺上蓋層16之厚度在〇·5到lem的範圍,而較佳的厚度 約在〇· 9 /zm。此處,矽鍺層中的漸進矽鍺緩衝層14係用以 聚集及縮減其中的晶格缺陷_差排(threading dislocation )’而矽錯上蓋層1 6則提供後續形成應變層 之用。 在形成漸進矽鍺緩衝層14及矽鍺上蓋層16之後,接著 在其上沉積一單晶矽層丨8,以形成一應變矽層,用以作為 後續電晶體製作之應變通道層。在本實施例中,單晶矽層 1 8亦可採用磊晶的方式形成。然而,此處係使用矽烷或二 氣石夕烧作為矽來源之反應氣體來進行減壓化學氣相沉積而 不使用二矽乙烷或三矽丙烷,此乃為了減少單晶矽層丨8内 的氫含量而利於作為應變通道層之單晶矽層18中載子遷移 速率之提升。其中,沉積之製程溫度在600 °C到800 °C的範1231043 V. Description of the invention (7) The degree is in the range of 2 to 5 # m, and the preferred thickness is about 21. Next, refer to FIG. 1B. Similarly, the epitaxial method is used to deposit a slack silicon germanium (SiiyGey) capping layer on the silicon germanium buffer layer 14, which is different from the progressive dream germanium buffer layer 14. The germanium atom ratio y in the cap layer 16 is a constant, for example, y is in a range of 0.25 to 0.3. In this embodiment, the silicon-germanium cap layer 16 is similarly subjected to reduced-pressure chemical vapor deposition using disilane or trisilpropane as a reaction gas derived from silicon, and using germane as a reaction gas derived from germanium. . Among them, the deposition process temperature is in the range of 600 ° C to 80 ° C. In addition, the flow rate of disilane / trisilpropane is in the range of 50 to 20 Sccm, and the flow rate of germane is 5 (^ j2. 〇sccin range. In addition, the process pressure is in the range of 50 Torr to 760 Torr. The thickness of the formed Si Xi Ge cap layer 16 is in the range of 0.5 to lem, and the preferred thickness is about 0.9 / zm. Here, the progressive silicon germanium buffer layer 14 in the silicon germanium layer is used to gather and reduce the lattice defects_threading dislocation 'therein, and the silicon cap layer 16 is provided for the subsequent formation of a strain layer. After the progressive silicon germanium buffer layer 14 and the silicon germanium cap layer 16 are formed, a single crystal silicon layer 8 is then deposited thereon to form a strained silicon layer for use as a strained channel layer for subsequent transistor production. In the embodiment, the monocrystalline silicon layer 18 can also be formed by epitaxial method. However, here, silane or digasite firing is used as the reaction source for the silicon source to perform vacuum chemical vapor deposition without using Silane or trisilane, this is to reduce the hydrogen content in the monocrystalline silicon layer Fan facilitate lifting the carrier mobility as the strain rate of the single crystal silicon layer of the channel layer 18 in which, in the deposition process temperature to 600 ° C to 800 ° C

I1H 0503-9761BfF(Nl);TSMC2002-1389;Spin.ptd 第12頁 1231043 五、發明說明(8) ,。再者’製程壓力在50T〇rr到76〇T〇rr的範圍。形成的 單晶矽層18之厚度在1〇〇到3〇〇埃(A )的範圍,而較佳的 厚度約在135 A。如此一來,便完成本發明之具應變的多 層結構。 最後’請參照第1C圖,在應變矽層丨8上方形成一閘極 結構25。其包含一閘極介電層20、一閘極電極22、及一閘 極電極24。閘極介電層2 〇係設置於作為通道層之應變矽層 18上方。再者,閘極電極22則設置於閘極介電層2〇上方。 另外’閘極間隙壁24設置於閘極電極側壁。 此處,形成閘極結構25的方法如下:首先,可藉由埶 氧化法在應變矽層18上方形成一氧化矽層(未繪示)其中 氧化的溫度係低於800。。。接著,可藉由習知沉積技術, 例如化學氣相沉積,在氧化矽層上方形成一複晶矽層(未 ^ = i,並利用f知微影及#刻技術,定義出由氧化石夕層 、之閘極;丨電層2 0以及由複晶矽層所構成之閘極電極 。之後,同樣可藉由化學氣相沉積在應變矽 閉極電極側壁與表面順應性沉積一氣化…:繪面及 並接者利用非等向性蝕刻,例如反應離子蝕刻(reactive ^^^^’”㈡’钱刻氣化石夕層’以在閘極電極22^! 2留下。p分的氣切層24,此即供作閘極間隙壁24之用。 完成閘極結構25之製作後,可藉由離子佈植 變通道層18及石夕鍺上蓋層16中形成捧雜區; 之rdc之用。如此一來’便完成具有應變層 之金氧+導體場效電晶體(MOSFET )製作。I1H 0503-9761BfF (Nl); TSMC2002-1389; Spin.ptd Page 12 1231043 V. Description of the invention (8). Furthermore, the process pressure ranges from 50 Torr to 76 Torr. The thickness of the formed single crystal silicon layer 18 is in the range of 100 to 300 Angstroms (A), and the preferred thickness is about 135 A. In this way, the strained multilayer structure of the present invention is completed. Finally, please refer to FIG. 1C, and a gate structure 25 is formed above the strained silicon layer. It includes a gate dielectric layer 20, a gate electrode 22, and a gate electrode 24. The gate dielectric layer 20 is disposed above the strained silicon layer 18 as a channel layer. Furthermore, the gate electrode 22 is disposed above the gate dielectric layer 20. In addition, the gate spacer 24 is provided on the side wall of the gate electrode. Here, the method of forming the gate structure 25 is as follows: First, a silicon oxide layer (not shown) can be formed on the strained silicon layer 18 by a hafnium oxidation method, wherein the oxidation temperature is lower than 800. . . Then, a conventional deposition technique, such as chemical vapor deposition, can be used to form a polycrystalline silicon layer (not ^ = i) on top of the silicon oxide layer. Layer, gate; 丨 electrical layer 20 and gate electrode composed of polycrystalline silicon layer. Afterwards, chemical vapor deposition can also be used to deposit a gasification conformation on the sidewall and surface of the strained silicon closed-electrode ...: The painted surface and the concatenator use anisotropic etching, such as reactive ion etching (reactive ^^^^ '"㈡'qianqi gasification stone layer' to leave at the gate electrode 22 ^! 2. p 分 的 气Cut layer 24, which is used as the gate gap wall 24. After the fabrication of the gate structure 25, an impurity region can be formed in the ion channel layer 18 and the stone germanium cap layer 16; rdc In this way, the fabrication of a metal oxide + conductor field effect transistor (MOSFET) with a strained layer is completed.

1231043 五、發明說明(9) 需注意的是,雖然本發明係以在具 1 作mosfet為範例,然而熟習此技藝者,可根ίίς構i 议汁之需要,將本發明整合於其他半導 兀 如CMOS電晶體。 ▼凡什之製作,例 數,冗ϊ:ί :鮮照第2圖’其繪示出不同反應氣體之對 圖。如先前所述,圖中各個曲線Α、β、e 在高溫時較小,而在低溫較大,之及E之斜率 小的區域,即為質傳控制E, 八 轉折點。斜率 ^ ^ 寻制&amp;而斜率大的區域,即盔主工 :應控制區。再者,A曲線表示以四氣化石夕為表面 應軋體,B曲線表示以三氣矽烷(SiHci〇為反應4為=1231043 V. Description of the invention (9) It should be noted that although the present invention is based on mosfet as an example, those skilled in the art can integrate the present invention with other semiconductors based on the needs of the architecture. It looks like a CMOS transistor. ▼ Fanshi's production, examples, redundant: :: fresh photo 2 ’which shows the pair of different reaction gases. As mentioned earlier, the curves A, β, and e in the figure are smaller at high temperatures, but in areas where the low temperature is larger and the slope of E is small, which is the turning point of mass transfer control E, eight. Slope ^ ^ Seek &amp; the area with a large slope, that is, the helmet master: should control the area. In addition, the curve A indicates that four gasified fossils are used as the surface rolling body, and the curve B indicates that three gas silane (SiHci0 is the reaction 4 is =

曲線表了以二氣石夕院(SiH2Cl2)為 二線一 C 以石夕炫(SiH4 )為反應氣體,E 體D曲線表不 )為反應氣體。 曲線表不以二矽乙烷(Si2H6 為了因應現今低溫(例如在7〇〇它以 限制,必須在表面反應控制區沉積 ea製程之 反應氣體A、B、C、D情形下,j率月顯地,在使用 E »因此,本發明採用反應氣㈣來^低於反應氣體 石夕鍺上蓋層可大幅提升沉積速率 2進石夕錯緩衝層及 而提升元件製作之產能及降低製作J =縮短製程時間’進 再者,如之前所述,為了提升通 層中的氫含量不可過多,因此本發 遷移速率,應變石夕 製備應變石夕層,相較於採用反應二,用反應氣體C或D來 而使元件具有較佳的電特性。另夕’可增加載子速率 扪电们生另外,相較於採用反應氣體 第14頁 0503.976nW(Nl);TSMa〇〇2-1389;Spin.ptd 1231043The curve table uses the second gas Shi Xiyuan (SiH2Cl2) as the second line and one C uses Shi Xixuan (SiH4) as the reaction gas, and the E-body D curve is not shown as the reaction gas. The curve table does not use disilane (Si2H6 in order to cope with the current low temperature (for example, it is limited at 700), and the reaction gas A, B, C, and D of the ea process must be deposited in the surface reaction control zone. The use of E »Therefore, the present invention uses a reactive gas to reduce the deposition rate of the germanium overlying layer below the reactive gas, which can greatly increase the deposition rate. 2 Entering the Shixibu buffer layer and increasing the production capacity of components and reducing the production J = shorten In addition, as described earlier, in order to increase the hydrogen content in the through layer, the strain rate should not be excessive, so the strained stone layer is prepared from the strained stone layer. D to make the device have better electrical characteristics. In addition, 'can increase the carrier rate, electricity generation. In addition, compared with the use of reactive gas page 140503.976nW (Nl); ptd 1231043

A、B,可具有較快的沉積速率而縮短製程 雖然本發明已以較佳二 限定本發明,任何熟習此項 ,T上:然其並非用以 神和範圍内,當可作更動與潤 不脫離本發明之精 當視後附之申請專利範圍所i J去=此本發明之保護範圍 \ &quot;马準。A, B, can have a faster deposition rate and shorten the process. Although the present invention has been limited to the present invention with the better two, anyone familiar with this item, T: However, it is not used within the scope of God and can be changed and moisturized. Without departing from the spirit and scope of the present invention, the scope of the patent application attached hereafter will be equal to the scope of protection of the present invention.

1231043 圖式簡單說明 第1 A到1 C圖係繪示出根據本發明實施例之製造具有應 變層之場效電晶體之流程剖面示意圖。 第2圖係繪示出不同反應氣體之對數沉積速率與反應 溫度之關係曲線圖。 符號說明 10〜基底; 1 2〜矽緩衝層; 1 4〜漸進矽鍺緩衝層; 1 6〜矽鍺上蓋層; 1 8〜單晶矽層; 2 0〜閘極介電層; 2 2〜閘極電極; 24閘極間隙壁; 2 5〜閘極結構; 2 6〜源極/汲極區。1231043 Brief Description of Drawings Figures 1A to 1C are schematic cross-sectional views illustrating a process for manufacturing a field effect transistor having a strain layer according to an embodiment of the present invention. Fig. 2 is a graph showing the relationship between the logarithmic deposition rate of different reaction gases and the reaction temperature. Symbol description 10 ~ substrate; 1 ~ 2 ~ silicon buffer layer; 1 ~ 4 ~ progressive silicon germanium buffer layer; 16 ~ silicon germanium cap layer; 18 ~ monocrystalline silicon layer; 20 ~ gate dielectric layer; 2 ~ 2 ~ Gate electrode; 24 gate gap wall; 2 5 ~ gate structure; 2 6 ~ source / drain region.

0503-9761TWF(Nl);TSMC2002-1389;Spin.ptd 第16頁0503-9761TWF (Nl); TSMC2002-1389; Spin.ptd p. 16

Claims (1)

1231043 六、申請專利範圍 少 1· 一種製造具應變的多層詰構之方法,包括下, 驟: 提供一基底; ,以在 藉由二矽乙烷/三矽丙烷作為一第一反應氣艘〆矽 該基底上方依序形成一漸進矽鍺(Sii-xGex)緩衝廣浙增 鍺上蓋層,其中X隨該漸進矽鍺緩衝層厚度增加而由· 至0·3;以及 严 /该矽 藉由矽烷/二氣矽烷作為一第二反應氣體,以养 鍺上蓋層上沉積一單晶矽層而形成一應變層。 处 Μ 2·如申請專利範圍第1項所述之製造具應變的^曰 構之方法,其中該基底係一矽基底。 3·如申請專利範圍第2項所述之製造具應變的,%錄 構之方法,更包括一矽緩衝層形成於該基底與該漸進梦 緩衝層之間。 4·如申請專利範圍第3項所述之製造具應變的多層錄 構之方法,其中該矽緩衝層之厚度在〇 · 1到〇 · 9微米的範 圍。 5 ·如申請專利範圍第1項所述之製造具應變的多層結 構之方法,其中該第一反應氣體更包括鍺烷。 6 ·如申請專利範圍第1項所述之製造具應變的多層於 ΐ之方法,其中該漸進矽鍺緩衝層之厚度在2到5微米胃的°範 7.如申清專利範圍第丨項所述之製造具應變的多屉姓 構之方法,其中該石夕錯上蓋層之厚度在〇. 5到1微米^1231043 VI. The scope of patent application is less 1. A method for manufacturing a strained multi-layer structure including the following steps: providing a substrate; and using disiloxane / trisilane as a first reaction gas A progressive silicon-germanium (Sii-xGex) buffer germanium cap layer is formed on the silicon substrate in sequence, where X increases from · to 0 · 3 as the thickness of the progressive silicon-germanium buffer layer increases; and Silane / digas silane is used as a second reaction gas to form a strained layer by depositing a single crystal silicon layer on the germanium cap layer. Treatment M2. The method for manufacturing a strained structure as described in item 1 of the scope of the patent application, wherein the substrate is a silicon substrate. 3. The method for manufacturing a strained,% recorded structure as described in item 2 of the scope of the patent application, further comprising forming a silicon buffer layer between the substrate and the progressive dream buffer layer. 4. The method for manufacturing a strained multilayer recording structure as described in item 3 of the scope of the patent application, wherein the thickness of the silicon buffer layer is in the range of 0.1 to 0.9 microns. 5. The method for manufacturing a strained multilayer structure as described in item 1 of the scope of patent application, wherein the first reaction gas further includes germane. 6 · The method for manufacturing a strained multi-layered substrate as described in item 1 of the scope of the patent application, wherein the thickness of the progressive silicon germanium buffer layer is in the range of 2 to 5 microns in the stomach. 7. As stated in the scope of the patent application The method of manufacturing a strained multi-drawer surname structure, wherein the thickness of the overburden layer of Shi Xicuo is from 0.5 to 1 microns ^ 1231043 ---—. 六、申請專利範圍 圍。 8.如申請專利範圍第i項所述之製造具應變的多1結 構之方法,其中該單晶秒層項100到300埃的範 圍。 9 ·如申請專利範圍第i項所述之製造具應紇?夕層2 構之方法,其中藉由減壓化學氟W積(RPCVD)形成該 /斬進妙鍺緩衝層及該石夕錯上蓋層 10·如申請專利範“;斤述之製造具應變的多層結 構之方法,其中該減壓化學氣相沉積之製程溫度在600 C 到80 0 °c的範圍。 U.如&quot;青專利範圍第9項户斤述之製造具應㈣多層結 構之方法,其中該減壓化學氣相沉積之製程壓力在50Τ〇ΓΓ 到760T〇rr的範圍。 12·如申請專利範圍第丨項所述之製造具應變的多層結 構之方法,其中藉由減壓化學氣相沉積(RPCVD )形成該 单晶碎層。 13·如申請專利範圍第12項所述之製造具應變的多層 結構之方法,其中該減壓化學氟相沉積之製程溫度在6 0 〇 °C到8 0 0 °c的範圍。 14·如申請專利範圍第12項所述之製造具應變的多層 結構之方法,其中該減壓化學氣相沉積之製程壓力在 50Torr 到 760Torr 的範圍。 15· —種製造具有應變層之場效電晶體之方法,包括 下列步驟:1231043 -----. 6. The scope of patent application. 8. The method for producing a strained poly 1 structure as described in item i of the patent application range, wherein the single crystal second layer term ranges from 100 to 300 Angstroms. 9 · Should the manufacturing tools described in item i of the patent application be applied? Xi layer 2 structure method, wherein the pressure reduction chemical fluorine W product (RPCVD) is used to form the / chopped into the germanium buffer layer and the Shi Xicuo cap layer 10 · as claimed in the patent application; Multi-layer structure method, wherein the process temperature of the vacuum chemical vapor deposition is in the range of 600 C to 80 0 ° C. U. Such as the method described in item 9 of the "Patent for Green Patent", a method for manufacturing a multi-layer structure Wherein, the process pressure of the vacuum chemical vapor deposition is in a range of 50T0 to 760T0rr. 12. The method of manufacturing a strained multilayer structure as described in item 丨 of the patent application range, wherein Vapor deposition (RPCVD) forms the single crystal fragmentation layer. 13. The method for manufacturing a strained multilayer structure as described in item 12 of the scope of patent application, wherein the process temperature of the vacuum chemical fluorine phase deposition is 600 ° C to 800 ° C. 14. The method for manufacturing a strained multilayer structure as described in item 12 of the patent application range, wherein the process pressure of the reduced pressure chemical vapor deposition is in the range of 50 Torr to 760 Torr. 15 ·-A kind of field effect with strain layer The method of the crystal, comprising the steps of: 0503-976nW(Nl);TSMC2002.1389;Spin.ptd 第18頁 1231043 六、申請專利範圍 提供一矽基底; 藉由二矽乙烧/三矽丙烷作為一第一反應氣體,以在 該基底上方依序形成一漸進矽鍺(Si^Ge,)緩衝層及一石夕 鍺上蓋層,其中X隨該漸進矽鍺緩衝層厚度增加而由〇漸增 至0 · 3 ;以及 藉由矽烷/二氣矽烷作為一第二反應氣體,以在該石夕 錯上蓋層上沉積一单晶石夕層而作為一應變通道層; 在該應變通道層上方形成一閘極結構;以及 在該閘極結構外側之該應變通道層中形成一源極及 極區。 16·如申請專利範圍第15項所述之製造具有應變層之 場效電晶體之方法,其中該基底係一矽基底。 17·如申請專利範圍第16項所述之製造具有應變層之 場效電晶體之方法,更包括一矽緩衝層形成於該基底與該 漸進矽鍺緩衝層之間。 18·如申請專利範圍第17項所述之製造具有應變層之 場效電晶體之方法,其中該矽缓衝層之厚度在0·1到〇·9微 米的範圍。 1 9 ·如申請專利範圍第1 5項所述之製造具有應變層之 場效電晶體之方法,其中該第〆反應氣體更包括鍺烷。 20 ·如申請專利範圍第1 5項所述之製造具有應變層之 場效電晶體之方法,其中該漸進矽錯緩衝層之厚度在2到5 微米的範圍。 2 1 ·如申請專利範圍第1 5項所述之製造具有應變層之0503-976nW (Nl); TSMC2002.1389; Spin.ptd Page 18 1231043 6. The scope of the patent application provides a silicon substrate; using disilane / trisilane as a first reaction gas above the substrate A progressive silicon germanium (Si ^ Ge,) buffer layer and a silicon germanium cap layer are sequentially formed, where X gradually increases from 0 to 0.3 as the thickness of the progressive silicon germanium buffer layer increases; and Silane is used as a second reaction gas to deposit a monocrystalline stone layer on the Shixiu cap layer as a strained channel layer; a gate structure is formed above the strained channel layer; and outside the gate structure A source and a pole region are formed in the strained channel layer. 16. The method for manufacturing a field effect transistor having a strained layer as described in item 15 of the scope of the patent application, wherein the substrate is a silicon substrate. 17. The method for manufacturing a field effect transistor having a strained layer as described in item 16 of the scope of the patent application, further comprising forming a silicon buffer layer between the substrate and the progressive silicon germanium buffer layer. 18. The method for manufacturing a field effect transistor having a strained layer as described in item 17 of the scope of the patent application, wherein the thickness of the silicon buffer layer is in the range of 0.1 to 0.9 micrometers. 19 · The method for manufacturing a field-effect transistor with a strained layer as described in item 15 of the scope of patent application, wherein the thallium reaction gas further includes germane. 20. The method for manufacturing a field effect transistor with a strained layer as described in item 15 of the scope of the patent application, wherein the thickness of the progressive silicon buffer layer is in the range of 2 to 5 microns. 2 1 · Manufacture of a strained layer as described in item 15 of the scope of patent application 0503-976nW(Nl);TSMC2002-1389;Spin.ptd 第 19 真 1231043 六、申請專利範圍 _— --— 場效電晶體之方法,其中該矽鍺上蓋層之厚 微米的範圍。 # · u 田22、如申請專利範圍第15項所述之製造具有應變層之 場效電晶體之方法,其中該單晶矽層之厚度在1〇〇到3〇() 埃的範圍。 田23·如申請專利範圍第15項所述之製造具有應變層之 場效電晶體之方法,其中藉由減壓化學氣相沉積(RpcvD )形成該漸進矽鍺緩衝層及該矽鍺上蓋層。 24·如申請專利範圍第23項所述之製造具有應變層之 場效電晶體之方法,其中該減壓化學氣相沉積之製程溫产 在600。(:到80 0 t的範圍。 Λ &amp; 25 ·如申請專利範圍第2 3項所述之製造具有應變層之 場效電晶體之方法,其中該減壓化學氣相沉積之製程壓力 在50Torr到760Torr的範圍。 26·如申晴專利範圍第15項所述之製造具有應變層之 %效電晶體之方法,其中藉由減壓化學氣相沉積(r p )形成該單晶矽層。 27·如申請專利範圍第26項所述之製造具有應變層之 場效電晶體之方法,其中該減壓化學氣相沉積之製程溫度 在60(TC到80 0 °C的範圍。 皿又 28·如申請專利範圍第26項所述之製造具有應變層之 %效電日日體之方法’其中該減壓化子氣相沉積之製程壓力 在50Torr到7 60Torr的範圍。 29·如申請專利範圍第1 5項所述之製造具有應變層之0503-976nW (Nl); TSMC2002-1389; Spin.ptd 19th true 1231043 VI. Patent Application __ --- Field-effect transistor method, in which the thickness of the SiGe cap layer is in the range of micrometers. # · U Tian 22. The method for manufacturing a field effect transistor having a strained layer as described in item 15 of the scope of the patent application, wherein the thickness of the single crystal silicon layer is in the range of 100 to 30 (A). Tian 23 · The method for manufacturing a field effect transistor with a strained layer as described in item 15 of the scope of patent application, wherein the progressive SiGe buffer layer and the SiGe cap layer are formed by reduced pressure chemical vapor deposition (RpcvD) . 24. The method for manufacturing a field-effect transistor with a strained layer as described in item 23 of the scope of the patent application, wherein the production process of the vacuum chemical vapor deposition is at 600. (: To 80 0 t. Λ &amp; 25 · The method for manufacturing a field effect transistor with a strained layer as described in item 23 of the scope of patent application, wherein the process pressure of the vacuum chemical vapor deposition is 50 Torr The range is from 760 Torr. 26. The method for manufacturing a% -effect electric crystal having a strained layer as described in item 15 of Shen Qing's patent scope, wherein the single crystal silicon layer is formed by reduced pressure chemical vapor deposition (rp). 27 · The method for manufacturing a field effect transistor with a strained layer as described in item 26 of the scope of the patent application, wherein the process temperature of the vacuum chemical vapor deposition is in the range of 60 (TC to 80 0 ° C. 又 28 · The method of manufacturing a% -effect solar cell with a strained layer as described in item 26 of the scope of the patent application, wherein the process pressure of the depressurized vapor phase deposition is in the range of 50 Torr to 7 60 Torr. Fabrication of a strained layer as described in item 15 1231043 六、申請專利範圍 場效電晶體之方法,其中該閘極結構更包括: 一閘極介電層,設置於該應變通道層上方; 一閘極電極,設置於該閘極介電層上方;以及 一閘極間隙壁;設置於該閘極電極側壁。1231043 VI. Patent application method of field-effect transistor, wherein the gate structure further includes: a gate dielectric layer disposed above the strain channel layer; a gate electrode disposed above the gate dielectric layer And a gate gap wall; disposed on a side wall of the gate electrode. 0503-9761TWF(Nl);TSMC2002-1389;Spin.ptd 第21頁0503-9761TWF (Nl); TSMC2002-1389; Spin.ptd p. 21
TW92128509A 2003-10-15 2003-10-15 Method for fabricating strained multi-layer structure TWI231043B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92128509A TWI231043B (en) 2003-10-15 2003-10-15 Method for fabricating strained multi-layer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92128509A TWI231043B (en) 2003-10-15 2003-10-15 Method for fabricating strained multi-layer structure

Publications (2)

Publication Number Publication Date
TWI231043B true TWI231043B (en) 2005-04-11
TW200514254A TW200514254A (en) 2005-04-16

Family

ID=36086367

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92128509A TWI231043B (en) 2003-10-15 2003-10-15 Method for fabricating strained multi-layer structure

Country Status (1)

Country Link
TW (1) TWI231043B (en)

Also Published As

Publication number Publication date
TW200514254A (en) 2005-04-16

Similar Documents

Publication Publication Date Title
US8361852B2 (en) Methods of manufacturing CMOS transistors
TWI331781B (en) Semiconductor fabrication method, method of forming a strained semiconductor structure
CN101233606B (en) Methods for fabricating a stressed MOS device
TWI254355B (en) Strained transistor with hybrid-strain inducing layer
US7141820B2 (en) Structures with planar strained layers
US6787793B2 (en) Strained Si device with first SiGe layer with higher Ge concentration being relaxed to have substantially same lattice constant as second SiGe layer with lower Ge concentration
US6774409B2 (en) Semiconductor device with NMOS including Si:C channel region and/or PMOS including SiGe channel region
TW200539443A (en) Epitaxy layer and method of forming the same
TW200402880A (en) Heterojunction field effect transistors using silicon-germanium and silicon-carbon alloys
US9070617B2 (en) Reduced S/D contact resistance of III-V mosfet using low temperature metal-induced crystallization of n+ Ge
TW200403720A (en) Manufacturing method for semiconductor substrate and manufacturing method for semiconductor device
CN112447771B (en) GeSiOI substrate and preparation method thereof, and GeSiOI device and preparation method thereof
CN101346811A (en) Method and structure for reducing the external resistance of a three-dimensional transistor through use of epitaxial layers
WO2008054967A2 (en) Method for providing a nanoscale, high electron mobility transistor (hemt) on insulator
TWI619252B (en) Apparatus and method for multiple gate transistors
US9881991B2 (en) Capacitor and method of forming a capacitor
CN102104067A (en) Transistor epitaxially growing source/drain region and manufacturing method thereof
US20100148223A1 (en) Semiconductor device and method of manufacturing the same
JP2005079517A (en) Method for manufacturing mos type fet
US8115263B2 (en) Laminated silicon gate electrode
US20070066023A1 (en) Method to form a device on a soi substrate
US20170179127A1 (en) Semiconductor structure having silicon germanium fins and method of fabricating same
TWI231043B (en) Method for fabricating strained multi-layer structure
CN115763256A (en) Preparation method of semiconductor structure and semiconductor structure
JP2004055943A (en) Semiconductor device and manufacturing method therefor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees