TWI226679B - Method for fabricating strained multi-layer structure - Google Patents

Method for fabricating strained multi-layer structure Download PDF

Info

Publication number
TWI226679B
TWI226679B TW92128512A TW92128512A TWI226679B TW I226679 B TWI226679 B TW I226679B TW 92128512 A TW92128512 A TW 92128512A TW 92128512 A TW92128512 A TW 92128512A TW I226679 B TWI226679 B TW I226679B
Authority
TW
Taiwan
Prior art keywords
layer
strained
silicon
patent application
silicon germanium
Prior art date
Application number
TW92128512A
Other languages
Chinese (zh)
Other versions
TW200514200A (en
Inventor
Kuen-Chyr Lee
Liang-Gi Yao
Shin-Chang Chen
Mong-Song Liang
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW92128512A priority Critical patent/TWI226679B/en
Application granted granted Critical
Publication of TWI226679B publication Critical patent/TWI226679B/en
Publication of TW200514200A publication Critical patent/TW200514200A/en

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A method for fabricating a strained multi-layer structure. First, a step-graded silicon germanium (Si1-xGex) buffer layer is deposited overlying a substrate. Subsequently, a silicon germanium capping layer is deposited on the step-graded silicon germanium buffer layer. Finally, a single crystalline silicon layer is deposited on the silicon germanium capping layer to form a strained layer. The step-graded silicon germanium layer, the silicon germanium buffer layer, and the single crystal silicon layer are formed by reduced pressure chemical vapor deposition (RPCVD) using disilane or trisilane as a process precursor. A field effect transistor (FET) having a strained layer is also disclosed.

Description

1226679 五、發明說明(1) ' " --- 發明所屬之領域 本發明係有關於一種半導體裝置之製造方法,特別是 f關於一種製造具應變的多層結構及具有應變層之場效電 曰日體之方法。 先前技術 ♦為I配合積體電路之積集度增加以提升元件之效能的 “導體元件尺寸必須不斷地縮小化。然而,舉例而 二’在2體電路常用的半導體元件中,如金氧半場效電晶 士 FET ),要使其能在低操作電壓下,具有高驅動電 机和兩^的效能是相當困難的。因此,許多人在努力尋求 改善金氧半場效電晶體元件之效能的方法。 目前有人提出利用應力所引發的能帶結構變型來增加 載子的遷移率,以增加場效電晶體的驅動電流,可改善場 效電晶體元件之效能,且此種方法已被應用於各種元件 中。這些元件的石夕通道係處於應變的情況。 傳統上’係藉由在鬆弛(relaxed)的石夕錯(siGe) 層或基底上蠢晶成長石夕通道層,以製備應變的石夕層。在成 長應變的矽通道層之前,通常需於矽基上成長晶格逐漸變 形的SUex層,其中錯的比例X係自〇逐漸增加至〇· 2,此 處稱作漸進(step-graded)石夕鍺緩衝層。再接著於漸進 矽鍺缓衝層上成長一層鬆弛的矽鍺(SiG7Ge().3)上蓋層。 上述這些碎錯層及應變碎層係以蟲晶(epitaxy)方 式來製備,其中又以低壓化學氣相沉積法最為常見。,般1226679 V. Description of the invention (1) '" --- Field of invention The present invention relates to a method for manufacturing a semiconductor device, in particular, f relates to a method for manufacturing a multilayer structure with strain and a field-effect electric field with a strain layer. Sun body method. The prior art: "The size of the conductor element must be continuously reduced to increase the integration of the integrated circuit to improve the performance of the device. However, for example, the two 'are used in semiconductor devices commonly used in two-body circuits, such as the metal-oxygen half field. It is very difficult for it to have a high drive motor and high efficiency at low operating voltage. Therefore, many people are working hard to improve the performance of metal-oxide-semiconductor half-field-effect transistor devices. At present, it has been proposed to increase the mobility of carriers by using the band structure modification caused by stress to increase the driving current of the field effect transistor, which can improve the performance of the field effect transistor element, and this method has been applied to Among the various elements, the Shi Xi channels of these elements are in a strained condition. Traditionally, the Si Xi channel layers are grown by stupid crystals on a relaxed Si Ge layer or substrate to prepare strained Shi Xi layer. Before growing a strained silicon channel layer, it is usually necessary to grow a SUex layer with a gradually deformed lattice on the silicon substrate, where the ratio X of the error is gradually increased from 0 to 0.2, here It is called a step-graded stone germanium buffer layer. Then a layer of loose silicon germanium (SiG7Ge (). 3) cap is grown on the step-graded silicon germanium buffer layer. Prepared by epitaxy method, of which the low pressure chemical vapor deposition method is the most common.

0503-9762twF(nl);tsmc2002-1390;Spin.ptd 第 7 頁 12266790503-9762twF (nl); tsmc2002-1390; Spin.ptd page 7 1226679

而言,所使用之反應氣體(製程前驅物)為四 (SiCl4)、二氣石夕烧(SiH2Cl2)、三氯石夕烧('siHcf 矽烷(S1 Η* )等。其成長機制可由成長速率及溫产3 曲線得知。通常,i述四種氣體之關係曲 (8〇(TC以上)較小,而在低溫區較大,之間具有—π棘 1區 點。在斜率小的區域,成長速率較不受溫度影響,主 反應氣體至基底的質傳速率成正比,此區域稱^質傳控^ 區(mass transfer controlled regi〇n)。另一方面工 在斜率大的區域,成長速率與表面反應速率有關,與溫产 成指數關係’此區域稱作表面反應控制區( reaction contr〇lled region)。在質傳控制區(高溫時 )所形成的羞晶薄膜均勻性較優於表面反應控制區 (surface reaction controlled regi〇n),但是由於使 用的反應氣體所需之成長溫度較高而不利於整合應變薄膜 至半導體製程中,因此現行之半導體製程中,磊晶成長多 於表面反應控制區進行。 者若採用超真空化學氣相沉積(ultra-high vacuum CVD,UHVCVD ),每片晶圓至少需花費十小時以上。亦 即’因耗費過長的製造時間而嚴重影響到產能及製造成 然而,在低溫(例如,7 〇 〇 °c以下)下的蠢晶薄膜之 f備,當耗時,特別是使用上述之反應氣體時。舉例而 & ,藉由低壓化學氣相沉積(i〇w pressure CVj),LPCVD )磊晶成長,並採用矽烷作為製程前驅物時,每片晶圓在 製作具應變的多層結構上,至少需花費一小時以上。再In terms of the reaction gases (process precursors) used are SiCl4, SiH2Cl2, SiHcf (S1 Η *), etc. The growth mechanism can be determined by the growth rate. The curve of temperature and temperature 3 was obtained. Generally, the relationship curve of the four gases (above 80 (TC) or higher) is small, but it is larger in the low temperature region, with a point of -π spine 1 in the region. In the region with a small slope The growth rate is less affected by temperature. The mass transfer rate from the main reaction gas to the substrate is directly proportional. This area is called the ^ mass transfer controlled region. On the other hand, the growth is in the area with a large slope and grows. The rate is related to the surface reaction rate, and it has an exponential relationship with the temperature production. This region is called the surface reaction control region (reaction controlled region). The uniformity of the crystalline film formed in the mass transfer control region (at high temperature) is better than Surface reaction controlled region (surface reaction controlled region), but the high growth temperature required for the reaction gas used is not conducive to the integration of the strained film into the semiconductor process, so in the current semiconductor process, the epitaxial growth is more than the surface The reaction control zone is performed. If ultra-high vacuum CVD (UHVCVD) is used, each wafer will take at least ten hours or more. That is, the production capacity will be seriously affected due to the excessively long manufacturing time. However, the preparation of stupid thin films at low temperatures (eg, below 700 ° C) is time consuming, especially when using the above-mentioned reaction gases. For example, & Deposition (iow pressure CVj), LPCVD) epitaxial growth and the use of silane as a process precursor, each wafer in the production of strained multilayer structure, it takes at least one hour or more.

0503-9762twF(nl);tsmc2002.1390;Spin.ptd 第8頁 12266790503-9762twF (nl); tsmc2002.1390; Spin.ptd Page 8 1226679

五、發明說明(3) 本° ^美國專利^5,951,757號揭示一種矽鍺声之方半,Α 藉由氫氣鈍化一藍寶石基底表面後 a / '、 為製程前驅物來形成石夕錯層。4,:=烧及錯烧作 US6, 410, 371號揭示一種具有矽/矽鍺S主 絕緣層(SOI )之製造方法,其萨 夕:動層之石夕 ==一具有二氧化石"石"石夕鍺層之石夕基底後, 2兩矽基底之二氧化矽層經由高溫黏合(bonding)技 術、纟^合而成該具有矽/矽鍺/矽層主動層之矽絕緣層基 底。再者’美國專利US6, 5 1 5, 335揭示一種在矽絕緣層基 底上製作鬆弛的矽鍺層之方法,其先藉由在一矽絕緣層基 ,上形成一濕潤層(wetting laye;r),之後藉由分子束 磊晶(MBEJ)或CVD依序形成矽鍺島狀物及全面覆蓋島狀物 之矽鍺上蓋層,接著經由一回火程序使濕潤層、矽鍺島狀 物、及石夕錯上蓋層發生交互反應而形成一單晶矽鍺層,最 後再在其上形成一應變的磊晶矽層。上述這些方法中,不 是仍使用矽烷作為製程前驅物就是製程過於繁複,而無法 有效提升元件製作之產能。 發明内容 有鑑於此,本發明之目的在於提供一種製造具應變的 多層結構及具有應變層之場效電晶體之方法。其藉由採用 二石夕乙烧或三石夕丙院作為化學氣相沉積製程之前驅物以取 代傳統之甲烷或二氣矽烷等前驅物,藉以大幅提升沉積速V. Description of the invention (3) US Patent No. 5,951,757 discloses a half of a silicon germanium sound, A is formed by passivation of a sapphire substrate surface with hydrogen, a / ', as a precursor of the process to form a stone layer. . 4, : = burned and misfired US6, 410, 371 discloses a manufacturing method with a silicon / silicon-germanium S main insulating layer (SOI), its saxi: the stone of the moving layer == one with the dioxide & quot After the stone and silicon substrate of the stone and germanium layer, the silicon dioxide layer of the two silicon substrates is bonded by high temperature bonding technology to form a silicon insulation with a silicon / silicon germanium / silicon layer active layer. Layer substrate. Furthermore, U.S. Patent No. 6,5 1 5, 335 discloses a method for fabricating a relaxed silicon germanium layer on a silicon insulating layer substrate, which first forms a wetting layer (wetting laye; r) on a silicon insulating layer base. ), Followed by molecular beam epitaxy (MBEJ) or CVD in order to form silicon germanium islands and a silicon germanium cap layer covering the islands in order, and then through a tempering process to make the wet layer, silicon germanium islands, The top cover layer of Shi Xicu interacts with each other to form a single crystal silicon germanium layer, and finally a strained epitaxial silicon layer is formed thereon. In these methods, either silane is still used as the precursor of the process or the process is too complicated to effectively increase the production capacity of components. SUMMARY OF THE INVENTION In view of this, an object of the present invention is to provide a method for manufacturing a multilayer structure having a strain and a field effect transistor having a strain layer. It uses Ershixue Yigan or Sanshixue Yuanyuan as precursors of the chemical vapor deposition process to replace traditional methane or two-gas silane precursors, thereby greatly increasing the deposition rate.

1226679 五、發明說明(4) 率進而提升元件製作之產能。 缺構Ξίΐ述之本發明提供一種製造具應變的多層 二V 提供一基底,再在基底上沉積-ί: λ π i /IT ex)緩衝層,其中χ隨漸進矽鍺緩衝層厚声辦 =〇,增至0.3。隨後,在漸進梦錯緩衝;度二 :,,在石夕鍺上蓋層上沉積-單晶石夕層V! 石夕鍺上蓋層及單晶矽 且更包含一矽緩衝層 其厚度在0.1到〇·9微 Ζ ,、中,係藉由二矽乙烷/三矽丙烷作為製程‘ 驅物,以佐总农4、〜、t q表程刖 斤形成漸進矽鍺緩衝層 層。 ' 再者,上述基底可為一矽基底 形成於基底與漸進矽鍺緩衝層之間 米的範圍。 鍺上Ϊί之=錯緩衝層之厚度在2到5微米的範圍。石夕 鍺息層之厗度在0. 5到1微米的範圍。單晶 在100到300埃的範圍。 平日日矽層之;度 ,者,漸進矽鍺緩衝層、矽鍺上蓋層及單晶矽層可 由減壓化學氣相沉積(RPCVD )形成之。其中, 曰 在50T〇rr到760TOrr·的範圍。 袈ί I力 h又根據上述之目的,本發明提供—種製造具有應變声 之~效電晶體之方法。首先,提_一$其 曰 卜、、7Γ籍一卷W. · 夕基底,再在矽基底 緩衝#,声辦士錯(Sll.xGex)緩衝層,其中χ隨漸進石夕鍺 ,衝層居度增加而由G漸增至0.3。隨後, 層上沉積-石夕錯上蓋層。接著,在石夕錯上蓋層::積一二1226679 V. Description of the invention (4) The rate will further increase the production capacity of components. The lack of structure is described in the present invention, which provides a substrate with multiple strains. A substrate is provided, and then deposited on the substrate.-: Λ π i / IT ex) buffer layer, where χ is thickened with the progressive silicon germanium buffer layer = 〇, increased to 0.3. Subsequently, in the progressive dream error buffer; degree two :, deposited on the Shi Xi germanium overlying layer-single crystal Shi Xi layer V! Shi Xi germanium overlying layer and single crystal silicon and further includes a silicon buffer layer with a thickness of 0.1 to The 0.99 micro-Z, Zn, and Zn are formed by using disiloxane / trisilane propane as the process driver, and the total silicon buffer layer is formed by Zuo Zongnong 4, ~, tq schedule. In addition, the above substrate may be a silicon substrate formed in a range of a meter between the substrate and the progressive silicon germanium buffer layer. The thickness of the germanium buffer layer is in the range of 2 to 5 microns. Shi Xi The degree of germanium interest layer ranges from 0.5 to 1 micron. Single crystals are in the range of 100 to 300 Angstroms. On weekdays, the silicon layer, the progressive silicon germanium buffer layer, the silicon germanium cap layer, and the single crystal silicon layer can be formed by reduced pressure chemical vapor deposition (RPCVD). Among them, the range is from 50 Torr to 760 TOrr ·. According to the above-mentioned object, the present invention provides a method for manufacturing an effective transistor with a strained sound. First of all, mention _ 一 Qi Qi Bu ,, 7 Γ, and a roll of W. · Xi substrate, and then buffer # in the silicon substrate, the sound layer (Sll.xGex) buffer layer, in which χ with progressive Shi Xi germanium, washed The population increases from G to 0.3. Subsequently, the layer was deposited on top of the layer—Shi Xico. Then, cover the cover layer in Shixicuo ::

第10頁 1226679 五、發明說明(5) 晶石夕層以作為一應蠻雨 成-閘極結構以及在閉二°最後’在應變通道層上方形 源極/汲極區。農中^結構外侧之應變通道層中形成一 程前驅物,以依i开彡志ΐ错由二矽乙烷/三矽丙烷作為製 晶碎層。 再者 衝層之間 再者 y成_進矽鍺緩衝層、矽鍺上蓋層及單 =包a —矽緩衝層形成於矽基底與漸進矽鍺緩 〔、厚度在0· 1到〇· 9微米的範圍。 、 ^ . ^ s ,進矽鍺緩衝層之厚度在2到5微米的範圍。石夕Page 10 1226679 V. Description of the invention (5) The spar layer is used as a sturdy rain-gate structure and at the end of the second degree, a square source / drain region on the strained channel layer. A precursor is formed in the strain channel layer on the outside of the structure in Nongzhong, with the disilane / trisilane propane as the crystalline fragmentation layer. In addition, between the punching layers, y into the silicon germanium buffer layer, silicon germanium cap layer and single = package a — the silicon buffer layer is formed on the silicon substrate and the progressive silicon germanium buffer [, thickness of 0. 1 to 0. 9 Micrometer range. , ^. ^ S, the thickness of the SiGe buffer layer is in the range of 2 to 5 microns. Shi Xi

層之厚度在0·5到1微米的範圍。單晶石夕層之厚产 在100到30 0埃的範圍。 货干I =者,漸進矽鍺緩衝層、矽鍺上蓋層及單晶矽層可藉 f壓化學氣相沉積(rpcvd)形成之。其中,減壓化學 虱相沉積之製程溫度在60〇1到8〇〇1的範圍,且製程壓力 在50Torr到760Torr的範圍。 再者,閘極結構包含一閘極介電層、一閘極電極、及 一閘極間隙壁。其中,閘極介電層設置於應變通道層上 方’閑極電極設置於該閘極介電層上方,且閘極間隙壁設 置於閘極電極側壁。 為讓本發明之上述目的、特徵和優點能更明顯易懂, 下文特舉較佳實施例,並配合所附圖式,作詳細說明如 下: 實施方式 以下配合第1A到1 C圖及第2圖說明本發明實施例之製The thickness of the layer is in the range of 0.5 to 1 micron. The thickness of the monocrystalline stone layer ranges from 100 to 300 Angstroms. For dry goods, the progressive silicon germanium buffer layer, silicon germanium cap layer, and single crystal silicon layer can be formed by f-pressure chemical vapor deposition (rpcvd). Among them, the process temperature of the decompression chemical lice phase deposition ranges from 601 to 801, and the process pressure ranges from 50 Torr to 760 Torr. Furthermore, the gate structure includes a gate dielectric layer, a gate electrode, and a gate spacer. The gate dielectric layer is disposed above the strained channel layer. The idle electrode is disposed above the gate dielectric layer, and the gate gap wall is disposed on the side wall of the gate electrode. In order to make the above-mentioned objects, features, and advantages of the present invention more comprehensible, the preferred embodiments are described below in detail with the accompanying drawings as follows: The embodiments are described below in conjunction with Figures 1A to 1C and Figure 2 Figure illustrates the system of the embodiment of the present invention

1226679 五、發明說明(6) 造具有應變層之場效電晶體之方法。 首先,請參照第1A圖,提供一基底10,此基 一單晶石夕基底、石夕絕緣層基底(silic〇n 〇n in;u^二為 so I )、或其他半導體基底。此處,係以一結晶方向為 ^00 )之單晶石夕基底作為範例。基底1 0上方可包含一石夕 緩衝層1 2,其用以作為後續沉積矽鍺緩衝層之晶種層 (seed 1 ay er )。在本實施例中,石夕緩衝層1 2可藉由磊晶 的方式形成於基底1 〇之上,例如,使用含矽化合物作為 應氣體,進行化學氣相沉積(CVD)。形成的矽緩衝層12 厚度在0 · 1到0 · 9微米(# m )的範圍,而較佳的厚度約 0 · 5 // m 〇 ' 接著,在矽緩衝層1 2上沉積一矽鍺層。在本實施例 中,此矽鍺層包含上下兩個部分。下部分為一漸進 (setp-graded)矽鍺(SiixGex)緩衝層14,而上部分為 一鬆弛(relaxed)的矽鍺上蓋層16 (如第1β圖所示): 在漸進矽鍺緩衝層1 4中,鍺的原子比例乂係隨漸進矽鍺 衝層14厚度增加而由0漸增至〇· 3,增加的速率在〇. 到〇 · 1 5/ // m的範圍。亦即,漸進矽鍺緩衝層丨4與矽緩= 12之界面處,鍺的含量約為〇,而漸進矽鍺緩衝層14的頂θ 部表面處,鍺的含量約為〇.3。 、 、在本實施例中,漸進矽鍺緩衝層1 4可藉由磊晶方式 ,之。其方法可為,使用二矽乙烷(disilane,Si Η ^ 三矽丙烷(trisilane,Si^)作為矽來源之製程^區3 物,並使用鍺烷(germane,GeH4)作為鍺來源之製程前驅1226679 V. Description of the invention (6) Method for making field effect transistor with strain layer. First, referring to FIG. 1A, a substrate 10 is provided. The substrate 10 is a single crystal substrate, a silicon substrate (siliconon in; u ^ 2 is so I), or another semiconductor substrate. Here, a single crystal evening crystalline substrate with a crystal orientation of ^ 00 is used as an example. Above the substrate 10, a stone evening buffer layer 12 may be included, which is used as a seed layer (seed 1 ay er) for the subsequent deposition of the silicon germanium buffer layer. In this embodiment, the Shixi buffer layer 12 may be formed on the substrate 10 by epitaxial method. For example, a silicon-containing compound is used as a reaction gas to perform chemical vapor deposition (CVD). The thickness of the formed silicon buffer layer 12 is in the range of 0. 1 to 0. 9 micrometers (# m), and the preferred thickness is about 0. 5 // m 0 ′. Next, a silicon germanium is deposited on the silicon buffer layer 12 Floor. In this embodiment, the silicon germanium layer includes upper and lower portions. The lower part is a setp-graded silicon germanium (SiixGex) buffer layer 14 and the upper part is a relaxed silicon germanium cap layer 16 (as shown in Figure 1β): In the progressive silicon germanium buffer layer 1 In 4, the atomic ratio of germanium is gradually increased from 0 to 0.3 as the thickness of the progressive silicon germanium layer 14 increases, and the rate of increase is in the range of 0.1 to 0.15 / m. That is, the content of germanium at the interface between the progressive silicon germanium buffer layer 4 and silicon buffer = 12 is about 0, and the content of germanium at the top θ portion of the progressive silicon germanium buffer layer 14 is about 0.3. In this embodiment, the progressive silicon germanium buffer layer 14 can be formed by an epitaxial method. The method can be as follows: using disilane (Si ^ ^ trisilane, Si ^) as the silicon source process region 3, and using germane (GeH4) as the precursor of the process of germanium source

1226679 五、發明說明(7) 進行減壓化學氣相沉積(reduced pressure CVD, CVD)。其中,沉積之製程溫度在600 °C到80 0 °C的範 再者,製程壓力在5〇T〇rr到76 0Torr的範圍。形成的 》進矽鍺緩衝層14之厚度在2到5/zm的範圍,而較佳的厚 度約在2. 1 # m。 接下來,凊苓照第丨B圖,同樣地,藉由磊晶的方式在 1切錯緩衝層14上沉積的補(SiiyGey)上蓋層 比例二於:數進石夕:緩衝層14,矽鍺上蓋層16中的鍺原子 中,石夕録在〇.25到〇·3的範圍。在本實施例 ...^盍層16,同樣地,使用二矽乙烷或三矽丙烷作 驅L來源之製程前驅物,並使用錯烧作為鍺來源之製程前 ::到mt的範圍。再者,二石夕…;石== 圍。再者,制鞋愚Λ, 1在50到2〇〇sccm的範 =上蓋層16之厚度在0.5,η_範圍= 約在0 · 9 // m。此處,矽鈕屜由从心w 竿乂佳的;度 聚隼及缩減1巾Μ胃n θ 、漸進矽鍺緩衝層1 4係用以 二票及H、中的曰曰格缺陷_差排(此㈣ 之用。cat ion) @矽鍺上蓋層16則提供後續形成應變層 在”矽鍺緩衝層“及矽鍺上蓋層a之後 在八上 >儿積一單晶矽層丨8,以形成一 後續電晶體製作之靡戀、S # a 〜變夕層’用以作為 傻只电日日筱I作之應變通道層。在本實施 1 8亦採用磊晶的方式形成。 日日夕曰 j丨便用一矽乙烷或三矽丙 第13頁 0503-9762twF(nl);tsmc2002-1390;Spin.ptd 1226679 五、發明說明(8) 烧作為石夕來源之製程前驅物,進行減壓化學氣相沉積。其 中,沉積之製程溫度在60(pc到800它的範圍。再者,製程 壓力在50Torr到760Torr的範圍。形成的單晶矽層18之厚 度在100到30 0埃(A)的範圍,而較佳的厚度約在135 A。如此一來,便完成本發明之具應變的多層結構。 最後’請參照第丨c圖,在應變矽層丨8上方形成一間極 結構25。其包含一閘極介電層2〇、一閘極電極22、及一閘 極電極2 4閘極介電層2 0係設置於作為通道層之應變矽層 1 8上方再者’閘極電極2 2則設置於閘極介電層2 〇上方。 另外,閘極間隙壁24設置於閘極電極側壁。 -於Ϊ Ϊ *形成閘極結構25的方法如下:首先,可藉由埶 變石夕層18上方形成一氧化石夕層(未繪示)其; ==糸低於80(rc。接著’可藉由習知沉積技術, 二)m,在氧化矽層上方形成-複晶石夕層(未 戶;構成之μr知微影及飯刻㈣,定義出由氧化石夕層 22。之德,由複晶矽層所構成之閘極電極 間極電極側壁與: = = 沉積在應變石夕層18表面及 並利用非等向性_ 離層(未繪示), …―,RIE),㈣氮化:離== = ve ion 下部分的氮化石夕層24,此即供:p/在閘極電極22侧壁留 完成閘極結構25之製作播閉極間隙壁之用。 構2 5外側之應變通道層〗8 2接可猎由離子佈植在閘極結 以供作源極/汲極區 :上f層16中形成摻雜區26 如此一來,便完成具有應變層 0503-9762twF(nl);tsmc2002.i390;Spin. ptd 第14頁 1226679 五、發明說明(9) 之金氧半導體場效電晶體(MOSFET)製作 需注意的是’雖然本發明係以在具應變的多層結構上 ^作MOSFET為範例,然而熟習此技藝者,可根據電路元件 設計之需要,將本發明整合於其他半導體元件之製作,例 如CMOS電晶體。 接下來,凊參照第2圖,其繪示出不同製程前驅物之 對數沉積速率("m/min)肖反應溫度(t)之關係曲線 圖三=先前所述,圖中各個曲線A、B、c、D、及E之斜率 在局溫時較小,而在低溫較大,之間具有一轉折點。斜率 小的區域’即為質傳控制區,而斜率大的區域,即為表面 f j控,區。再者’ A曲線表示以四氯化石夕(s i C丨4 )為製 m’B曲線表三氯⑦院(siHci3)為製程前驅 ^本C_曲線表不以二氯矽烷(SiH2C12)為製程前驅物,卩曲 二r J Γ 了院(S14 )為製程前驅物,E曲線表示以二石夕乙 :物製程前驅物。明顯地,在使用習知的製程前1226679 V. Description of the invention (7) Reduced pressure chemical vapor deposition (CVD). Among them, the deposition process temperature ranges from 600 ° C to 80 0 ° C. Moreover, the process pressure ranges from 50 Torr to 76 0 Torr. The thickness of the formed silicon-germanium buffer layer 14 is in the range of 2 to 5 / zm, and the preferred thickness is about 2.1 #m. Next, Fuling according to FIG. 丨 B, similarly, the SiiyGey cap layer deposited on the wrong-cut buffer layer 14 by epitaxial method is in the ratio of two: Shijin Shixi: buffer layer 14, silicon Among the germanium atoms in the germanium cap layer 16, Shi Xilu is in the range of 0.25 to 0.3. In this embodiment, similarly, using disilane or trisilpropane as the process precursor of the L source and using the misfire as the source of germanium before the process :: to mt. Moreover, Ershi Xi ...; Shi == Wai. Furthermore, the range of shoe making Λ, 1 is in the range of 50 to 200 sccm = the thickness of the upper cover layer 16 is in 0.5, and the range of η_ is about 0 · 9 // m. Here, the silicon button drawer is best from the heart w; the degree of convergence and the reduction of 1 stomach, the stomach n θ, the progressive silicon germanium buffer layer 14 are used for two votes and H, middle and small lattice defects_ Differential row (for this purpose. Cat ion) @SiGe cap layer 16 provides the subsequent formation of a strain layer on the "SiGe buffer layer" and the SiGe cap layer a on the eight > monocrystalline silicon layer 丨8. In order to form a follow-up transistor, the S # a ~ change evening layer 'is used as a strain channel layer made by silly electric day and night. In this embodiment, 18 is also formed by an epitaxial method. Every day and night, I use mono- or tri-silicon. Page 13 0503-9762twF (nl); tsmc2002-1390; Spin.ptd 1226679 V. Description of the invention (8) Burning as a precursor to the process of Shixi source, Decompression chemical vapor deposition was performed. Among them, the deposition process temperature is in the range of 60 (pc to 800). Furthermore, the process pressure is in the range of 50 Torr to 760 Torr. The thickness of the formed single crystal silicon layer 18 is in the range of 100 to 300 Angstroms (A), and The preferred thickness is about 135 A. In this way, the strained multilayer structure of the present invention is completed. Finally, please refer to FIG. 丨 c, and form a pole structure 25 above the strained silicon layer 丨 8. It includes a The gate dielectric layer 20, a gate electrode 22, and a gate electrode 2 4 The gate dielectric layer 20 is disposed above the strained silicon layer 18 as a channel layer, and then the gate electrode 2 2 It is arranged above the gate dielectric layer 20. In addition, the gate gap wall 24 is arranged on the side wall of the gate electrode. -Yu Ϊ * The method of forming the gate structure 25 is as follows: First, the rheological layer 18 A monolithic oxide layer (not shown) is formed above it; == 糸 is less than 80 (rc. Then, 'the conventional deposition technique can be used, b) m to form a polymorphite layer over the silicon oxide layer ( The house is composed of μr lithography and rice carving, which defines the oxide layer 22. The virtue of the gate electrode is composed of a polycrystalline silicon layer. The sidewall of the interelectrode and: = = deposited on the surface of the strained stone layer 18 and using anisotropy _ delamination (not shown),… ,, RIE), hafnium nitride: off == = ve ion lower part Layer 24 of nitrided stone, which is used for: p / on the side wall of the gate electrode 22 to complete the gate structure 25 to make the closed-cell gap wall. Structure 2 5 outside strain channel layer 〖8 2 can be hunted Ion implanted in the gate junction for source / drain region: doped region 26 is formed in the upper f-layer 16. Thus, the strained layer 0503-9762twF (nl); tsmc2002.i390; Spin. ptd Page 14 1226679 V. Description of the invention (9) Fabrication of metal-oxide-semiconductor field-effect transistor (MOSFET) It should be noted that 'Although the present invention is based on a multilayer structure with strain as an example, it is familiar with this The artist can integrate the present invention into the production of other semiconductor devices, such as CMOS transistors, according to the needs of the design of circuit components. Next, referring to FIG. 2, it shows the logarithmic deposition rates of precursors of different processes (" m / min) Shaw reaction temperature (t) curve three = previously described, each in the figure The slopes of the curves A, B, c, D, and E are smaller at the local temperature, but at a low temperature, there is a turning point. The area with a small slope is the mass transfer control area, and the area with a large slope, That is the surface fj control, area. In addition, the A curve indicates that the methylene chloride curve (si C 丨 4) is used as the m'B curve table, and the chloroform (siHci3) is used as the precursor of the manufacturing process. This C_ curve table is not based on Dichlorosilane (SiH2C12) is the precursor of the process, and 卩 曲 二 r J Γ 院 院 (S14) is the precursor of the process, and the E curve shows that it is the precursor of the Ershixi B: material process. Obviously, before using conventional processes

Hi 、C、D)情形下,若要在質傳控制區沉 具2的反應溫度偏高⑻以以上)而不適用於 7;;iL層、然而’若為本發明所使用之製程前驅物 (P曲線E ),則反應溫度可降低至8〇〇 t以下。 _ #另方面,因應現今低溫(例如在7 0 0 °C以下)磊晶 ;:eFwHi, C, D), if the reaction temperature of the sink 2 in the mass transfer control zone is too high (more than ⑻) or higher), it is not suitable for 7; iL layer, but 'if it is the precursor of the process used in the present invention (P curve E), the reaction temperature can be reduced below 800 t. _ #In addition, in view of the current low temperature (eg below 700 ° C) epitaxy: eFw

、、、 ,儿積速率亦南於習知技術(曲線A、β、c、D i升幅提升沉積速率而有效縮短製程時間,進而 挺升兀件製作之產能及降低製作成本。The product rate is also based on the conventional technology (curves A, β, c, and D i increase the deposition rate and effectively shorten the process time, which in turn increases the production capacity of the component and reduces the production cost.

1226679 五、發明說明(ίο) 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此項技藝者,在不脫離本發明之精 神和範圍内,當可作更動與潤飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。1226679 V. Description of the Invention (ίο) Although the present invention has been disclosed in the preferred embodiment as above, it is not intended to limit the present invention. Any person skilled in the art can make the invention without departing from the spirit and scope of the present invention. Changes and retouching, so the scope of protection of the present invention shall be determined by the scope of the attached patent application.

0503-9762twF(nl);tsmc2002-1390;Spin.ptd 第16頁 1226679 圖式簡單說明 第1 A到1 C圖係繪示出根據本發明實施例之製造具有應 變層之場效電晶體之流程剖面示意圖。 第2圖係繪示出不同製程前驅物之對數沉積速率與反 應溫度之關係曲線圖。 符號說明 1 2〜带緩衝層; 1 6〜矽鍺上蓋層; 2 0〜閘極介電層; 24閘極間隙壁; 2 6〜源極/没極區。 1 0〜基底; 1 4〜漸進>5夕鍺緩衝層 18〜單晶矽層; 2 2〜閘極電極; 2 5〜閘極結構;0503-9762twF (nl); tsmc2002-1390; Spin.ptd Page 16 1226679 Brief description of the diagrams 1 A to 1 C are diagrams showing the process of manufacturing a field effect transistor with a strained layer according to an embodiment of the present invention Schematic cross-section. Figure 2 is a graph showing the relationship between the logarithmic deposition rate of precursors in different processes and the reaction temperature. Explanation of symbols 1 2 ~ with buffer layer; 16 ~ silicon germanium cap layer; 20 ~ gate dielectric layer; 24 gate spacer; 2 ~ source / non-electrode area. 1 0 ~ substrate; 1 4 ~ progressive > 5x germanium buffer layer 18 ~ single crystal silicon layer; 2 2 ~ gate electrode; 2 5 ~ gate structure;

0503-9762twF(nl);tsmc2002-1390;Spin.ptd 第17頁0503-9762twF (nl); tsmc2002-1390; Spin.ptd p. 17

Claims (1)

1226679 I ' 申請專利範^" ' " ----«·"-— 1 ·種製造具應變的多層結構之方法,包括下列步 驟· 提供一基底; 左一在該基底上沉積一漸進矽鍺(Sii-xGex )緩衝層,其中 X ^該漸進矽鍺緩衝層厚度增加而由〇漸增至0 · 3 ; 在該漸進矽鍺緩衝層上沉積一矽鍺上蓋層;以及 在該石夕鍺上蓋層上沉積一單晶矽層以形成一應變層; 其中藉由二石夕乙烧/三石夕丙烧作為製程前驅物,以依 序形成該漸進矽鍺緩衝層、該矽鍺上蓋層及該單晶矽層。 2·如申請專利範圍第1項所述之製造具應變的多層結 構之方法,其中該基底係一矽基底。 3 ·如申請專利範圍第2項所述之製造具應變的多層結 構之方法,更包括一矽緩衝層形成於該基底與該漸進矽錯 緩衝層之間。 4·如申請專利範圍第3項所述之製造具應變的多層結 構之方法,其中該矽緩衝声之厚度在〇· 1到〇· 9微米的範 圍。 9 5 ·如申請專利範圍第1項所述之製造具應變的多層結 構之方法,其中該漸進矽鍺缓衡層之厚度在2到5微米的範 圍。 6 ·如申請專利範圍第1項所述之製造具應變的多層結 構之方法,其中該石夕錯上蓋層之厚度在0 · 5到1微米的範 圍。 7·如申請專利範圍第1項所述之製造具應變的多層結1226679 I 'Application for patent application ^ "' " ---- «· " -— 1 · A method for manufacturing a strained multilayer structure, including the following steps: · Provide a substrate; A progressive silicon germanium (Sii-xGex) buffer layer, wherein X ^ the progressive silicon germanium buffer layer increases in thickness from 0 to 0.3; a silicon germanium cap layer is deposited on the progressive silicon germanium buffer layer; and A monocrystalline silicon layer is deposited on the Shixi germanium cap layer to form a strained layer. The progressive silicon germanium buffer layer, the silicon germanium are sequentially formed by using the two stone sintering / three stone sintering as the process precursor. A cap layer and the single crystal silicon layer. 2. The method for manufacturing a strained multilayer structure as described in item 1 of the scope of patent application, wherein the substrate is a silicon substrate. 3. The method of manufacturing a strained multilayer structure as described in item 2 of the scope of the patent application, further comprising forming a silicon buffer layer between the substrate and the progressive silicon buffer layer. 4. The method for manufacturing a strained multilayer structure as described in item 3 of the scope of the patent application, wherein the thickness of the silicon buffer sound is in the range of 0.1 to 0.9 microns. 95. The method of manufacturing a strained multilayer structure as described in item 1 of the scope of the patent application, wherein the thickness of the progressive silicon germanium retardation layer is in the range of 2 to 5 microns. 6. The method for manufacturing a strained multilayer structure as described in item 1 of the scope of the patent application, wherein the thickness of the cap layer on the Shi Xicuo is in the range of 0.5 to 1 micrometer. 7. Manufacture a strained multilayer junction as described in item 1 of the scope of patent application 0503-9762twF(nl);tsmc2002-1390;Spin.ptd 第18頁 1226679 六、申請專利範圍 構之方法,其中該單晶矽層之淨度在1 〇 〇到3 0 〇埃的範 圍。 8·如申請專利範圍第1項所述之製造具應變的多層結 構之方法,其中藉由減壓化學氟相沉積(RPCVD )形成該 漸進矽鍺緩衝層、該矽鍺上蓋廣及該單晶矽層。 9·如申請專利範圍第8項所述之製造具應變的多層結 構之方法,其中該減壓化學氣相沉積之製程溫度在6 〇 〇 〇c 到800 °C的範圍。〃 1 0 ·如申請專利範圍第8項所述之製造具應變的多層結 構之方法’其中該減壓化學氣相沉積之製程壓力在5〇Torr 到760Torr的範圍。 11. 一種製造具有應變層之場效電晶體之方法,包括 下列步驟: 提供一矽基底; 在該碎基底上沉積一漸進矽鍺(Sii_xGex)緩衝層,其 中X隨該漸進矽鍺緩衝層厚度增加而由〇漸增至〇 · 3 ; 在該漸進矽鍺緩衝層上沉積一矽鍺上蓋層; 在該石夕鍺上蓋層上沉積一單晶矽層,以作為一應變通 道層; 在該應變通道層上方形成一閘極結構;以及 在該閘極結構外側之該應變通道層中形成一源極/汲 極區, 其中藉由二矽乙烷/三矽丙烷作為製程前驅物,以依 序形成該漸進矽鍺緩衝層、該矽鍺上蓋層及該單晶矽層。0503-9762twF (nl); tsmc2002-1390; Spin.ptd page 18 1226679 6. Method of patent application structure, wherein the purity of the single crystal silicon layer is in the range of 100 to 300 angstroms. 8. The method for manufacturing a strained multilayer structure as described in item 1 of the scope of the patent application, wherein the progressive silicon germanium buffer layer, the silicon germanium cap and the single crystal are formed by reduced pressure chemical fluorine phase deposition (RPCVD). Silicon layer. 9. The method for manufacturing a strained multilayer structure as described in item 8 of the scope of the patent application, wherein the process temperature of the vacuum chemical vapor deposition is in the range of 600 ° C to 800 ° C. 〃 10 · The method for manufacturing a strained multilayer structure as described in item 8 of the scope of the patent application, wherein the process pressure of the reduced pressure chemical vapor deposition is in a range of 50 Torr to 760 Torr. 11. A method for manufacturing a field effect transistor with a strained layer, comprising the following steps: providing a silicon substrate; depositing a progressive silicon germanium (Sii_xGex) buffer layer on the broken substrate, wherein X varies with the thickness of the progressive silicon germanium buffer layer Increase from 0 to 0.3; deposit a silicon germanium cap layer on the progressive silicon germanium buffer layer; deposit a single crystal silicon layer on the silicon germanium cap layer as a strain channel layer; on the A gate structure is formed above the strained channel layer; and a source / drain region is formed in the strained channel layer outside the gate structure, wherein disiloxane / trisilane is used as a process precursor to The progressive SiGe buffer layer, the SiGe cap layer and the single crystal Si layer are sequentially formed. 0503-9762twF(nl);tsmc2002-1390;Spin.ptd 第19頁 1226679 六、申請專利範園 --- 12.如申請專利範圍第11項所述之製造具有應變層之 %效電體之方法,更包括一石夕緩衝層形成於該石夕基底與 該漸進矽鍺緩衝層之間。 13·如申請專利範圍第12項所述之製邊具有應變層之 場效電晶體之方法,其中該矽缓衝層之雇度在0.1到〇·9微 米的範圍。 1 4 ·如申請專利範圍第1 1項所述之製邊具有應變層之 場效電晶體之方法,其中該漸進矽鍺缓衡層之厚度在2到5 微米的範園。 ’ 1 5 ·如申請專利範圍第1 1項所述之製造具有應變層之 場效電晶體之方法,其中該矽鍺上蓋層之厚度在〇· 5到1 微米的範圍。 16. 如申請專利範圍第11項所述之製造具有應變層之 場效電晶體之方法,其中該單晶矽層之厚度在100到300 埃的範圍。 17. 如申請專利範圍第u項所述之製造具有應變層之 場效電晶體之方法,其中藉由減壓化學氟相沉積(RPCVD )形成該漸進矽鍺緩衝層、該矽鍺上蓋層及該應變矽層。 18. 如申請專利範圍第17項所述之製造具有應變層之 場效電晶體之方法,其中該減壓化學氣相沉積之製程溫度 在6 0 0 C到8 〇 〇它的範圍。 19. 如申請專利範圍第17項所述之製造具有應變層之 場效電晶體之方法,其中該減壓化學氣相沉積之製程壓力 在50Torr到760Torr的範圍。0503-9762twF (nl); tsmc2002-1390; Spin.ptd Page 19 1226679 VI. Patent Application Fanyuan-12. Method of manufacturing a% -effect electrical body with a strain layer as described in item 11 of the scope of patent application Furthermore, a Shixi buffer layer is formed between the Shixi substrate and the progressive SiGe buffer layer. 13. The method of manufacturing a field effect transistor having a strained layer as described in item 12 of the scope of patent application, wherein the employment of the silicon buffer layer is in the range of 0.1 to 0.9 micrometers. 14. The method for forming a field effect transistor with a strained layer as described in item 11 of the scope of the patent application, wherein the thickness of the progressive silicon germanium retardation layer is in the range of 2 to 5 microns. '15. The method for manufacturing a field effect transistor having a strained layer as described in item 11 of the scope of the patent application, wherein the thickness of the silicon germanium cap layer is in the range of 0.5 to 1 micrometer. 16. The method for manufacturing a field effect transistor having a strained layer as described in item 11 of the scope of the patent application, wherein the thickness of the single crystal silicon layer is in a range of 100 to 300 Angstroms. 17. The method for manufacturing a field effect transistor having a strained layer as described in item u of the scope of the patent application, wherein the progressive silicon germanium buffer layer, the silicon germanium cap layer and the silicon germanium cap layer are formed by reduced pressure chemical fluorine phase deposition (RPCVD). The strained silicon layer. 18. The method for manufacturing a field effect transistor having a strained layer as described in item 17 of the scope of the patent application, wherein the process temperature of the vacuum chemical vapor deposition is in a range of 600 ° C. to 800 ° C. 19. The method for manufacturing a field effect transistor with a strained layer as described in item 17 of the scope of the patent application, wherein the process pressure of the vacuum chemical vapor deposition is in a range of 50 Torr to 760 Torr. 0503-9762twF(nl);tsmc2002-1390;Spin.ptd 第 20 頁 1226679 六、申請專利範圍 2 0.如申請專利範圍第11項所述之製造具有應變層之 場效電晶體之方法’其中該閘極結構更包括: 一閘極介電層,設置於該應變通道層上方; 一閘極電極,設置於該閘極介電層上方;以及 一閘極間隙壁;設置於該閘極電極側壁。0503-9762twF (nl); tsmc2002-1390; Spin.ptd page 20 1226679 6. Application for patent scope 2 0. Method for manufacturing field effect transistor with strained layer as described in item 11 of the scope of patent application 'where the The gate structure further includes: a gate dielectric layer disposed above the strain channel layer; a gate electrode disposed above the gate dielectric layer; and a gate gap wall disposed on a side wall of the gate electrode . 0503-9762twF(nl);tsmc2002-1390;Spin.ptd 第21頁0503-9762twF (nl); tsmc2002-1390; Spin.ptd p. 21
TW92128512A 2003-10-15 2003-10-15 Method for fabricating strained multi-layer structure TWI226679B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92128512A TWI226679B (en) 2003-10-15 2003-10-15 Method for fabricating strained multi-layer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92128512A TWI226679B (en) 2003-10-15 2003-10-15 Method for fabricating strained multi-layer structure

Publications (2)

Publication Number Publication Date
TWI226679B true TWI226679B (en) 2005-01-11
TW200514200A TW200514200A (en) 2005-04-16

Family

ID=35634286

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92128512A TWI226679B (en) 2003-10-15 2003-10-15 Method for fabricating strained multi-layer structure

Country Status (1)

Country Link
TW (1) TWI226679B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111549440A (en) * 2020-05-20 2020-08-18 泉州市鼎丰针织机械有限公司 Needle pressing triangle of double-faced rib knitting machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103988308B (en) 2011-12-09 2016-11-16 英特尔公司 Strain compensation in transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111549440A (en) * 2020-05-20 2020-08-18 泉州市鼎丰针织机械有限公司 Needle pressing triangle of double-faced rib knitting machine

Also Published As

Publication number Publication date
TW200514200A (en) 2005-04-16

Similar Documents

Publication Publication Date Title
US7531393B2 (en) Non-planar MOS structure with a strained channel region
US7902008B2 (en) Methods for fabricating a stressed MOS device
US8653599B1 (en) Strained SiGe nanowire having (111)-oriented sidewalls
US7211458B2 (en) Methods of fabricating strained semiconductor-on-insulator field-effect transistors and related devices
US20100109044A1 (en) Optimized Compressive SiGe Channel PMOS Transistor with Engineered Ge Profile and Optimized Silicon Cap Layer
US7550758B2 (en) Method for providing a nanoscale, high electron mobility transistor (HEMT) on insulator
US20150206743A1 (en) Silicon carbide epitaxy
US20110207273A1 (en) Methods of Manufacturing Transistors
WO2006017640A1 (en) Method of forming strained silicon materials with improved thermal conductivity
JP2014512669A (en) Low temperature selective epitaxy method
TW200305205A (en) Method for producing relaxed SiGe substrate
WO2007046150A1 (en) Fin type semiconductor device and method for manufacturing same
EP1709671A1 (en) Method of forming thin sgoi wafers with high relaxation and low stacking fault defect density
US9070617B2 (en) Reduced S/D contact resistance of III-V mosfet using low temperature metal-induced crystallization of n+ Ge
US20070298594A1 (en) Semiconductor device fabrication method
EP1697976A1 (en) Method for forming a strained si-channel in a mosfet structure
US8044471B2 (en) MOSFET having a channel mechanically stressed by an epitaxially grown, high K strain layer
US20170179127A1 (en) Semiconductor structure having silicon germanium fins and method of fabricating same
TWI226679B (en) Method for fabricating strained multi-layer structure
WO2023045952A1 (en) Forming stacked nanosheet semiconductor devices with optimal crystalline orientations around devices
CN115763256A (en) Preparation method of semiconductor structure and semiconductor structure
CN100397574C (en) Method for manufacturing multi-layer structure having strain and field effect transistor having strain layer
TWI231043B (en) Method for fabricating strained multi-layer structure
CN111739788A (en) Method for preparing germanium-silicon semiconductor material layer and germanium-silicon semiconductor material layer
JP4290038B2 (en) Semiconductor device, transistor, and manufacturing method of semiconductor device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees