KR102323341B1 - 규소산화물 제조장치 및 제조방법, 규소산화물 음극재 - Google Patents
규소산화물 제조장치 및 제조방법, 규소산화물 음극재 Download PDFInfo
- Publication number
- KR102323341B1 KR102323341B1 KR1020200045802A KR20200045802A KR102323341B1 KR 102323341 B1 KR102323341 B1 KR 102323341B1 KR 1020200045802 A KR1020200045802 A KR 1020200045802A KR 20200045802 A KR20200045802 A KR 20200045802A KR 102323341 B1 KR102323341 B1 KR 102323341B1
- Authority
- KR
- South Korea
- Prior art keywords
- gas
- silicon oxide
- metal
- silicon
- unit
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Silicon Compounds (AREA)
Abstract
본 발명은 규소산화물 제조장치 및 제조방법, 규소산화물 음극재에 관한 것으로써, 보다 상세하게는, 하나 이상의 도가니에서 액상 규소와 고상 이산화규소가 반응하여 규소산화물이 제조되며, 규소산화물에 금속가스를 공급해 금속-규소산화물을 연속 제조할 수 있는 규소산화물 제조장치 및 제조방법, 규소산화물 음극재에 관한 것이다.
Description
본 발명은 규소산화물 제조장치 및 제조방법, 규소산화물 음극재에 관한 것으로써, 보다 상세하게는, 하나 이상의 도가니에서 액상 규소와 고상 이산화규소가 반응하여 규소산화물이 제조되며, 규소산화물에 금속가스를 공급해 금속-규소산화물을 연속 제조할 수 있는 규소산화물 제조장치 및 제조방법, 규소산화물 음극재에 관한 것이다.
모바일(IT) 기기와 같은 소형 전자기기부터 전기자동차(EVs), 에너지저장장치(ESS)와 같이 중대형 장치에 이르기까지 전력저장장치의 수요가 급증하고 있다. 특히, 리튬이차전지에 대한 기술개발과 수요가 급격히 증가하고 있으며, 종래보다 더 높은 에너지 밀도를 갖는 리튬이차전지가 요구되고 있다. 에너지 밀도를 높이기 위하여 양극재 및 음극재의 고용량화, 전극판의 고밀도화, 분리막의 박막화 및 충방전 전압을 높이는 등의 연구개발이 진행되고 있으며, 최근에는 양극재 및 음극재의 용량을 높이는 방향으로 연구개발이 집중되고 있다.
리튬이차전지의 음극재는 충전 시 전자와 리튬이온을 받아들이고, 방전 시 전자와 리튬이온을 양극으로 내보낸다. 음극재로 사용되기 위해서는 안정성, 전기 전도성, 낮은 화학적 반응성, 가격 및 저장용량이 우수해야 한다. 음극재로 사용하는 소재로 천연 흑연, 인조 흑연, 금속계, 탄소계, 규소계가 사용되고 있으며, 고용량화에 가장 유리한 규소계 소재에 대한 개발이 활발히 진행되고 있다. 규소계 소재는 흑연계 음극재가 가지고 있는 이론용량인 372 mAh/g보다 수배 이상 높은 4,200 mAh/g의 이론용량을 가져 기존의 음극재를 대체할 차세대 소재로 주목 받고 있다. 그러나, 규소계 소재는 충전 시에 리튬 이온이 삽입됨에 따라 결정 구조가 변하게 되고, 리튬이 삽입되기 전에 비해 약 4배 정도의 부피팽창을 수반한다. 따라서, 규소계 소재는 충방전을 반복함에 따라 부피변화를 견디지 못해 결정 내부에 균열이 생기고 입자가 파괴되며, 인접한 입자들끼리의 전기적 연결이 저하되어 수명특성이 열화되는 결과가 나타난다.
이러한 단점을 개선하기 위해 규소산화물(SiOx)을 사용하여 수명특성을 개선하고 부피팽창을 완화시키려는 연구가 진행되었지만, 규소산화물은 충·방전 시 리튬이 삽입되면서 비가역 생성물을 형성하기 때문에 리튬을 고갈시켜 초기가역효율(I.C.E.)이 낮아지는 문제점이 있다.
본 발명은 상술된 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 액상 규소와 고상 이산화규소의 반응으로 규소산화물을 연속적으로 제조할 수 있어, 규소산화물의 생산량을 향상시킬 수 있는 규소산화물 제조장치 및 제조방법을 제공하는 것이다.
또한, 본 발명의 목적은 규소산화물에 금속을 추가 도핑하여 균일한 조성의 금속-규소산화물을 연속적으로 제조할 수 있는 규소산화물 제조장치 및 제조방법을 제공하는 것이다.
또한, 본 발명의 목적은 리튬이차전지의 초기가역효율과 용량을 향상시킬 수 있는 규소산화물 음극재를 연속적으로 제공하는 것이다.
본 발명에 따른 규소산화물 제조장치는 원료가 위치하는 하나 이상의 도가니; 내부에 상기 도가니가 위치되는 반응부; 상기 반응부를 가열하는 히터; 및 상기 반응부에서 생성되는 가스를 포집하는 포집부;를 포함하고, 상기 원료는 고상 규소 및 고상 이산화규소이되, 가열에 의해 상기 고상 규소가 액상 규소로 상전이되며, 상기 액상 규소와 상기 고상 이산화규소의 반응에 의해 규소산화물가스가 생성되는 것을 특징으로 한다.
또한, 상기 규소산화물가스가 상기 포집부에 포집되기 전에 금속가스를 공급해주는 금속가스공급부; 및 상기 규소산화물가스와 상기 금속가스를 혼합하여 금속-규소산화물가스를 생성하는 가스혼합부;를 더 포함하는 것을 특징으로 한다.
또한, 상기 금속가스공급부는, 상기 금속가스가 배출되는 금속가스분사구;가 형성된 금속가스주입관;을 포함하고, 상기 금속가스분사구의 개수 및 직경을 조정함으로써 상기 금속-규소산화물가스의 상기 금속가스 함량을 제어할 수 있는 것을 특징으로 한다.
또한, 상기 금속가스는 알루미늄가스, 칼슘가스, 칼륨가스, 리튬가스, 마그네슘가스, 지르코늄가스, 니켈가스, 망간가스, 아연가스 및 나트륨가스 중 하나 이상을 포함하는 것을 특징으로 한다.
또한, 상기 가스혼합부는, 상기 금속-규소산화물가스의 유동 길이를 증가시키는 블레이드; 및 버플; 중에서 어느 하나가 선택되고, 상기 금속-규소산화물가스를 가열하는 가스혼합부히터; 및 상기 금속-규소산화물가스를 상기 포집부로 유도시키고, 혼합을 향상시키는 모터;를 포함하는 것을 특징으로 한다.
또한, 상기 도가니는, 수직 방향으로 다단 적층된 것을 특징으로 한다.
또한, 상기 규소산화물 제조장치는, 상기 도가니에 상기 원료를 주입하는 주입부; 및 상기 규소산화물가스를 상기 포집부로 배출하는 배출부;를 포함하는 것을 특징으로 한다.
또한, 상기 주입부는, 상기 도가니 마다 각각 하나가 구비되는 것을 특징으로 한다.
또한, 상기 주입부는, 원료가 배출되는 주입관;을 포함하고, 상기 주입관은 상기 도가니 마다 각각 하나가 구비되는 것을 특징으로 한다.
또한, 상기 포집부는, 상기 규소산화물가스를 규소산화물로 포집하는 하나 이상의 포집대;를 포함하고, 상기 포집대는 상기 규소산화물을 집진시키는 필터; 및 상기 필터 내부에 위치하여 탄성에 의해 상기 규소산화물을 상기 필터에서 분리시키는 스프링;을 포함하는 것을 특징으로 한다.
본 발명에 따른 규소산화물 제조방법은 (a) 반응부 내부의 도가니에 액상 규소를 준비하는 준비단계; (b) 직경 0.5mm 내지 100mm의 고상 이산화규소가 상기 도가니에 공급되는 반응물공급단계; (c) 상기 액상 규소와 상기 고상 이산화규소가 액상-고상 반응하여 규소산화물가스가 생성되는 반응단계; 및 (d) 상기 규소산화물가스가 포집부에 포집되는 포집단계;를 포함하는 것을 특징으로 한다.
본 발명에 따른 규소산화물 제조방법은 (a) 반응부 내부의 도가니에 액상 규소를 준비하는 준비단계; (b) 직경 0.5mm 내지 100mm의 고상 이산화규소가 상기 도가니에 공급되는 반응물공급단계; (c) 상기 액상 규소와 상기 고상 이산화규소가 액상-고상 반응하여 규소산화물가스가 생성되는 반응단계; (c-1) 상기 규소산화물가스에 금속가스인 알루미늄가스, 칼슘가스, 칼륨가스, 리튬가스, 마그네슘가스, 지르코늄가스, 니켈가스, 망간가스, 아연가스 및 나트륨가스 중 어느 하나 이상을 금속가스공급부를 통해 공급하는 금속가스공급단계; (c-2) 상기 규소산화물가스와 상기 금속가스가 가스혼합기에서 혼합되어 금속-규소산화물가스가 생성되는 혼합단계; 및 (d) 상기 규소산화물가스가 포집부에 포집되는 포집단계;를 포함하는 것을 특징으로 한다.
또한, 상기 (a) 단계는, 1,400℃ 내지 2,000℃의 온도에서 준비되는 것을 특징으로 한다.
또한, 상기 (b) 단계는, 비표면적 300m2/g 내지 1,000m2/g의 상기 고상 이산화규소가 공급되는 것을 특징으로
또한, 상기 규소산화물가스는, SiOx(단, x는 0.6 내지 1.1)인 것을 특징으로 한다.
또한, 상기 금속-규소산화물가스는, MaSibOc(단M은 Al, Ca, K, Li, Mg, Zr, Ni, Mn, Zn 및 Na로 구성되는 군으로부터 선택되는 하나의 원소이고, 화학양론비를 정수화하였을 때 a는 1 내지 6, b는 1 내지 2, c는 3 내지 13)로 표기되는 3성분계 화합물을 포함하는 것을 특징으로 한다.
또한, 상기 금속-규소산화물가스는, MaM'a'SibOc(단, M은 Al, Ca, K, Li, Mg, Zr, Ni, Mn, Zn 및 Na로 구성되는 군으로부터 선택되는 하나의 원소이고, M'은 M에서 선택되지 않은 나머지 원소 중 하나의 원소이고, 화학양론비를 정수화하였을 때 a+a'는 1 내지 8, b는 1 내지 4, c는 3 내지 20)로 표기되는 4성분계 화합물을 포함하는 것을 특징으로 한다.
본 발명에 따른 규소산화물 음극재는 규소산화물 제조방법에 따라 제조된 상기 규소산화물을 포함하는 것을 특징으로 한다.
또한, 상기 규소산화물 음극재는, 리튬이차전지의 초기가역효율을 75% 이상 구현하는 것을 특징으로 한다.
또한, 상기 규소산화물 음극재는, 리튬이차전지의 용량을 1,250mAh/g 내지 2,350mAh/g을 구현하는 것을 특징으로 한다.
본 발명에 따르면, 액상 규소와 고상 이산화규소의 반응으로 규소산화물을 연속적으로 제조할 수 있어, 규소산화물의 생산량을 향상시킬 수 있는 규소산화물 제조장치 및 제조방법을 제공하는 효과가 발생한다.
또한, 규소산화물에 금속을 추가 도핑하여 균일한 조성의 금속-규소산화물을 연속적으로 제조할 수 있는 규소산화물 제조장치 및 제조방법을 제공하는 효과가 발생한다.
또한, 리튬이차전지의 초기가역효율과 용량을 향상시킬 수 있는 규소산화물 음극재를 제공하는 효과가 발생한다.
도 1은 본 발명의 일 실시예에 따른 규소산화물 제조장치(100)의 단면도이다.
도 2는 본 발명의 다른 실시예에 따른 규소산화물 제조장치(100')의 단면도이다.
도 3은 본 발명에 따른 포집대(31)에서 규소산화물을 포집하는 방법을 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 금속가스공급부(40)와 가스혼합부(50)가 포함된 규소산화물 제조장치(100)의 단면도이다.
도 5는 본 발명의 다른 실시예에 따른 금속가스공급부(40)와 가스혼합부(50)가 포함된 규소산화물 제조장치(100')의 단면도이다.
도 6은 본 발명의 일 실시예에 따른 규소산화물 제조방법의 순서도이다.
도 7은 본 발명의 다른 실시예에 따른 규소산화물 제조방법의 순서도이다.
도 2는 본 발명의 다른 실시예에 따른 규소산화물 제조장치(100')의 단면도이다.
도 3은 본 발명에 따른 포집대(31)에서 규소산화물을 포집하는 방법을 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 금속가스공급부(40)와 가스혼합부(50)가 포함된 규소산화물 제조장치(100)의 단면도이다.
도 5는 본 발명의 다른 실시예에 따른 금속가스공급부(40)와 가스혼합부(50)가 포함된 규소산화물 제조장치(100')의 단면도이다.
도 6은 본 발명의 일 실시예에 따른 규소산화물 제조방법의 순서도이다.
도 7은 본 발명의 다른 실시예에 따른 규소산화물 제조방법의 순서도이다.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서 요소들의 형상 및 크기 등은 보다 명확한 설명을 위하여 과장될 수 있다.
명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 용이하게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
<규소산화물 제조장치>
도 1 및 도 2는 본 발명에 따른 규소산화물 제조장치(100, 100')의 단면도이다. 도 1 및 도 2를 참고하면, 본 발명에 따른 규소산화물 제조장치(100, 100')는 도가니(10), 반응부(20), 히터(30) 및 포집부(40)를 포함할 수 있다.
본 발명에 따른 도가니(10)는 원료인 고상 규소와 고상 이산화규소가 수용되는 공간을 제공할 수 있다. 도가니(10)는 하나 이상 존재하며, 도가니(10)의 높이를 낮게 설정하여 수직 방향으로 다단 적층시킬 수 있다. 도가니(10)를 다단 적층하면, 원료가 수용되는 공간이 넓어져 반응면적이 증가되므로, 규소산화물 생산량이 향상될 수 있다. 도가니(10)는 흑연, 석영 등의 재질을 사용할 수 있고 특별한 재질의 제한은 없으나, 바람직하게는 흑연 재질의 도가니(10)를 사용할 수 있다.
본 발명에 따른 반응부(20)에는 내부에 도가니(10)가 위치될 수 있다. 반응부(20) 내부에서 원료의 반응에 의해 규소산화물가스가 생성될 수 있고, 후술되는 포집부(40)에 규소산화물가스를 포집하기 전에 임시 수용 가능한 공간을 제공해줄 수 있다.
본 발명에 따른 히터(30)는 반응부(20) 내부에 형성되어, 반응부(20)를 가열할 수 있다. 이 때, 히터(30)의 온도를 규소의 용융점 이상으로 설정하여 증가시키면, 원료 중에서 고상 규소만 액상 규소로 상전이되고, 고상 이산화규소는 상전이되지 않는다. 따라서, 액상 규소와 고상 이산화규소가 반응에 참여하여 규소산화물가스를 생성한다. 액상 규소와 고상 이산화규소는 액상-고상 반응을 하므로 규소의 입도와 상관없이 모든 규소를 원료로 사용할 수 있다. 또한, 액상-고상 반응은 액상 규소와 고상 이산화규소 간의 반응접점이 지속적으로 유지되며, 계면에서만 반응이 이루어지기 때문에 높이가 낮은 도가니(10)를 다단 적층하여 반응면적을 증가시킴으로써 규소산화물가스의 생산량을 향상시킬 수 있다.
본 발명에 따른 포집부(40)는 규소산화물가스를 포집할 수 있고, 하나 이상의 포집대(41)를 포함할 수 있다. 도 3은 본 발명에 따른 포집대(41)에서 규소산화물을 포집하는 방법을 도시한 도면이다.
포집대(41)는 포집부(40) 내부에서 하나 이상이 형성되고, 규소산화물가스를 규소산화물로 포집할 수 있다. 포집대(41)는 필터(42)와 스프링(43)을 포함하고, 필터(32)에 집진된 규소산화물을 스프링(43)의 탄성으로 분리시켜 포집할 수 있다. 도 3(a)를 참고하면, 필터(42)에 규소산화물이 집진되어 있고, 필터(42) 내부에 스프링(43)이 위치하고 있다. 도 3(b)를 참고하면, 스프링(43)이 압축됨에 따라 필터(42)도 압축되는 것을 확인할 수 있다. 도 3(c)를 참고하면, 스프링(43)이 원래의 형태로 복원됨에 따라 필터(42)도 원래의 형태로 복원되는 것을 확인할 수 있다. 이 때, 스프링(43)의 탄성력에 의해 필터(42)에 집진된 규소산화물이 자유낙하하며 분리돼 포집부(40) 하부에서 규소산화물을 포집할 수 있다.
본 발명에 따른 주입부(50, 50')는 도가니(10) 상에 원료인 고상 규소 및 고상 이산화규소를 연속적으로 주입할 수 있다. 고상 규소와 고상 이산화규소는 주입 순서와 관계 없이 주입할 수 있으며, 고상 규소와 고상 이산화규소를 혼합하여 주입할 수도 있다.
본 발명의 일 실시예에 따른 주입부(50)는 각각의 도가니(10) 마다 하나씩 구비되어 원료를 주입해줄 수 있다. 도 1을 참고하면, 본 발명의 일 실시예에 따른 규소산화물 제조장치(100)는 수직 방향으로 적층된 두 개의 도가니(10a, 10b)가 존재하고, 각각의 도가니(10a, 10b) 상으로 직접 원료를 주입할 수 있도록 직접 대응되는 주입부(50a, 50b)가 도가니(10a, 10b) 개수에 따라 두 개 구비되었다. 다시 말하면, 도가니(10a, 10b) 하나 당 대응되는 주입부(50a, 50b) 하나가 구비됨으로써, 각각의 도가니(10a, 10b) 상으로 원료를 동시에 주입해줄 수 있고, 설치가 용이해지는 효과가 발생할 수 있다.
본 발명의 다른 실시예에 따른 주입부(50')는 원료가 배출되는 다수의 주입관(51')이 형성될 수 있다. 주입관(51')은 각각의 도가니(10) 마다 하나씩 구비되어 원료를 직접 주입해줄 수 있다. 도 2를 참고하면, 본 발명의 다른 실시예에 따른 규소산화물 제조장치(100')는 수직 방향으로 적층된 세 개의 도가니(10)가 존재하고, 주입부(50') 상에 세 개의 주입관(51')이 형성되어 각각의 도가니(10)에 구비되었다. 다시 말하면, 주입관(51')은 하나의 주입부(50')에서 갈라지는 가지형태로 형성되기 때문에, 주입부(50')를 하나만 구비하여도 모든 도가니(10)에 원료를 주입할 수 있다. 따라서, 주입부(50') 설치 공간이 절약되어 도가니(10)의 크기를 더 넓게 형성할 수 있다. 이로 인해 원료의 투입량을 증가시킬 수 있고, 이에 따라 반응면적이 넓어져 생산량이 향상되는 효과가 발생할 수 있다.
본 발명에 따른 배출부(60)는 반응부(20) 일측에 형성되어 생성된 규소산화물가스를 포집부(40)로 배출할 수 있다.
도 4 및 도 5는 본 발명에 따른 금속가스공급부(40)와 가스혼합부(50)가 포함된 규소산화물 제조장치(100, 100')의 단면도이다. 도 4 및 도 5를 참고하면, 본 발명에 따른 규소산화물 제조장치(100, 100')는 금속가스공급부(70) 및 가스혼합부(80)를 더 포함할 수 있다.
본 발명에 따른 금속가스공급부(70)는 금속가스주입관(71)을 포함할 수 있다.
금속가스공급부(70)는 금속이 함유된 금속가스를 생성하고, 배출부(60)에서 배출된 규소산화물가스에 금속가스를 공급해줄 수 있다. 금속가스는 알루미늄가스, 칼슘가스, 칼륨가스, 리튬가스, 마그네슘가스, 지르코늄가스, 니켈가스, 망간가스, 아연가스 및 나트륨가스 중 어느 하나 이상을 포함할 수 있다. 규소산화물가스는 금속가스를 공급받아 금속-규소산화물가스가 생성될 수 있다. 금속-규소산화물가스를 리튬이차전지의 음극재로 사용하면 리튬이차전지의 초기 충방전 효율, 성능, 충방전 용량 및 용량 유지율을 향상시킬 수 있다.
금속가스는 금속가스주입관(71)에 형성된 금속가스분사구(미도시)에서 배출될 수 있고, 금속가스분사구의 개수 및 직경에 따라 금속가스의 함량을 조절할 수 있다. 금속가스분사구의 개수가 많아지고 직경이 커지면, 공급하는 금속가스 양이 증가하여 규소산화물가스에 금속가스 함량을 증가시킬 수 있다. 금속가스분사구의 개수가 적어지고 직경이 감소하면, 공급하는 금속가스의 양이 감소하여 규소산화물가스에 금속가스 함량이 감소될 수 있다.
본 발명에 따른 가스혼합부(80)는 규소산화물가스와 금속가스를 혼합하여 금속-규소산화물가스를 생성할 수 있다.
가스혼합부(80)는 내부에 블레이드(81) 또는 버플(미도시) 중 어느 하나가 선택되고, 가스혼합부히터(미도시) 및 모터(미도시)를 포함할 수 있다.
본 발명에 따른 블레이드(81) 또는 버플은 가스혼합부(80) 내부에서 금속-규소산화물가스의 유동 길이를 증가시킬 수 있다.
본 발명에 따른 가스혼합부히터는 금속-규소산화물가스를 생성하기 위해 가스혼합부(80)를 일정 온도 이상 가열시켜, 규소산화물가스와 금속가스의 도핑 반응을 위한 혼합 효율을 상승시킬 수 있다.
본 발명에 따른 모터는 혼합된 금속-규소산화물가스를 포집부(40)로 유도시킬 수 있다.
<규소산화물 제조방법>
도 6은 본 발명의 일 실시예에 따른 규소산화물 제조방법의 순서도이다.
본 발명의 일 실시예에 따른 규소산화물 제조방법은 (a), (b), (c) 및 (d) 단계를 포함할 수 있다.
본 발명의 일 실시예에 따른 (a) 단계는 반응부(20) 내부의 도가니(10)에 고상 규소를 공급해줄 수 있으며, 고상 규소를 액상 규소로 상전이시킬 수 있다. 고상 규소는 가열에 의해 액상 규소로 상전이 되고, 반응부(20) 내부에 형성된 히터(30)를 통해 가열 온도를 설정할 수 있다. 이 때, 가열 온도는 규소 용융점 이상의 온도인 1,400℃ 내지 2,000℃의 온도로 가열하여, 액상 규소로 상전이시킨다. 온도가 1,400℃ 미만일 경우 고상 규소가 용융되지 않아 액상 규소가 형성되지 않고, 온도가 2,000℃ 초과일 경우 높은 단열효과로 인해 목표온도까지 도달 및 유지되는 승온시간과 공정종료까지 도달하는 냉각시간이 매우 길어지는 문제가 발생할 수 있다.
삭제
삭제
본 발명의 일 실시예에 따른 (b) 단계는 고상 이산화규소를 도가니(20)에 공급해줄 수 있다. 고상 이산화규소는 직경 0.5mm 내지 100mm 및 비표면적 300m2/g 내지 1,000m2/g인 것을 공급한다. 고상 이산화규소의 직경이 0.5mm 미만이거나, 비표면적이 1,000m2/g을 초과할 경우 원료 투입 시 비산 문제가 발생할 수 있다. 반면에 고상 이산화규소의 직경이 100mm 초과인 경우 규소 용탕이 비산될 수 있고, 주입부(50)의 관경 확장이 필요하여 반응부(20)의 공간 활용성이 저해될 수 있다. 또한, 비표면적이 300m2/g 미만이면 반응면적이 감소하여 생산량이 감소될 수 있다.
본 발명의 일 실시예에 따른 (c) 단계는 액상 규소와 고상 이산화규소가 반응하여 규소산화물가스가 생성될 수 있다. 액상 규소와 고상 이산화규소는 하기의 화학식 1과 같이 반응하여 규소산화물가스를 생성한다.
[화학식 1] Si(l) + SiO2(s) → 2SiO(g)
액상 규소와 고상 이산화규소는 액상-고상 반응을 하며, 액상 규소와 고상 이산화규소 간의 반응접점을 지속적으로 유지할 수 있다. 또한, 액상 규소와 고상 이산화규소의 계면에서만 반응이 이루어지기 때문에 높이가 낮은 도가니(10)를 다단 적층하여 반응면적을 증가시킴으로써 규소산화물가스의 생산량을 향상시킬 수 있다. 또한, 액상-고상 반응은 공정 온도와 압력 제어가 자유로워 규소가 갖는 증기압을 이용하여 규소산화물(SiOx)의 산화값(x값)을 1.0 이하로 제조하는 것이 가능하다.
(c) 단계를 통해 생성된 규소산화물(SiOx)의 x값은 XPS(X-ray Photoelectron Spectroscopy) 분석 및 SEM(scanning Electron Microscope) 장치의 EDXS(Energy Dispersive X-ray Spectroscopy) 분석을 통해 측정한 결과, x값이 0.6 내지 1.1을 만족한다. x값이 0.6 미만이면, 부피팽창이 매우 커지는 문제가 발생할 수 있고, 1.1 초과면 리튬이차전지의 초기가역효율이 낮아지는 문제가 발생할 수 있다.
(c) 단계에서 반응이 지속됨에 따라 액상 규소와 고상 이산화규소가 고갈되면, 고상 규소 또는 액상 규소와 고상 이산화규소를 도가니(10)에 각각 혹은 혼합하여 연속으로 주입시켜, 반응이 지속적으로 유지될 수 있다.
본 발명에 따른 (d) 단계는 규소산화물가스가 포집부(40)에 포집될 수 있다. 반응부(20)에서 생성된 규소산화물가스는 배출부(60)를 통해 배출되어 포집부(40) 내부에 형성된 하나 이상의 포집대(41)에서 포집될 수 있다. 포집대(41)는 규소산화물가스를 규소산화물로 포집할 수 있고, 필터(42) 및 스프링(43)으로 구성될 수 있다. 규소산화물이 필터(42)에 집진되면, 이를 포집하기 위해 스프링(43)을 압축하여 필터(42)를 압축시킨다. 그리고 나서 스프링(43)을 원래의 형태로 복원하면, 필터(42)도 원래의 형태로 복원된다. 이에 따라, 필터(42)에 집진되어 있던 규소산화물이 탄성에 의해 자유낙하하며 분리되고, 포집부(40) 하부의 임의의 공간에 포집될 수 있다.
도 8은 본 발명의 다른 실시예에 따른 규소산화물 제조방법의 순서도이다. 본 발명의 다른 실시예에 따른 규소산화물 제조방법은 (a), (b), (c), (c-1), (c-2) 및 (d) 단계를 포함할 수 있다.
본 발명의 다른 실시예에 따른 (a), (b) 및 (c) 단계는 상기 일 실시예에 따른 (a), (b) 및 (c) 단계와 동일한 방법으로 설명은 생략하기로 한다.
본 발명의 다른 실시예에 따른 (c-1) 단계는 생성된 규소산화물가스에 금속가스인 알루미늄가스, 칼슘가스, 칼륨가스, 리튬가스, 마그네슘가스, 지르코늄가스, 니켈가스, 망간가스, 아연가스 및 나트륨가스 중 어느 하나 이상을 더 공급해 줄 수 있다. 금속가스는 금속가스공급부(70)에 포함된 금속가스주입관(71)을 통해 제공될 수 있다. 금속가스주입관(71)은 금속가스를 배출하기 위해 금속가스분사구(미도시)가 형성되어 금속가스를 배출하고, 금속가스분사구의 개수 및 직경에 따라 금속가스의 함량을 조절할 수 있다. 금속가스분사구의 개수가 많아지고 직경이 커지면, 공급하는 금속가스 양이 증가하여 규소산화물가스에 금속가스 함량을 증가시킬 수 있다. 금속가스분사구의 개수가 적어지고 직경이 감소하면, 공급하는 금속가스의 양이 감소하여 규소산화물가스에 금속가스 함량을 감소시킬 수 있다.
본 발명의 다른 실시예에 따른 (c-2) 단계는 규소산화물가스와 금속가스가 가스혼합부(80)에서 혼합되어 금속-규소산화물가스가 생성될 수 있다. 가스혼합부(80)는 블레이드(81) 또는 버플(미도시)을 통해 금속-규소산화물가스의 유동 길이를 증가시키고, 가스혼합부히터(미도시)를 통해 일정 온도 이상 가열시켜, 규소산화물가스와 금속가스의 도핑 반응을 위한 혼합 효율을 상승시킬 수 있다. 생성된 금속-규소산화물가스는 가스혼합부(80)에 형성된 모터(미도시)를 통해 포집부(40)로 유도되어 포집될 수 있다.
(c-2) 단계에서 생성된 금속-규소산화물가스는 실리케이트 화합물이며, MaSibOc로 표기되는 3성분계 화합물을 포함할 수 있다. M은 규소산화물과 결합했을 때 용량이 높고, 규소산화물(SiOx)을 환원시킬 수 있는 금속 원소인 Ca, K, Li, Mg, Zr, Ni, Mn, Zn 및 Na 등에서 선택될 수 있다. 이 때, 화학양론비를 정수화하였을 때 a는 1 내지 6, b는 1 내지 2, c는 3 내지 13이다. a가 1 미만이면 이온전도도 및 전기전도도가 크게 향상되지 않고, 6 초과면 결정화가 저하될 수 있다. b가 1 미만이면 리튬이차전지의 용량이 크게 증가되지 않고, 2 초과면 이온전도도 및 전기전도도가 감소할 수 있다. c가 3 미만이면 MaSibOc의 결정화가 저하될 수 있고, 13 초과면 리튬이온의 저장 능력이 감소될 수 있다.
또한, 금속-규소산화물가스는 MaM'a'SibOc로 표기되는 4성분계 화합물을 포함할 수 있다. M과 M'은 규소산화물과 결합했을 때 용량이 높고, 규소산화물(SiOx)을 환원시킬 수 있는 금속 원소인 Ca, K, Li, Mg, Zr, Ni, Mn, Zn 및 Na 등에서 선택될 수 있다. 이 때, a 또는 a+a'는 1 내지 8, b는 1 내지 4, c는 3 내지 20이다. a 또는 a+a'가 1 미만이면 이온전도도 및 전기전도도가 크게 향상되지 않고, 8 초과면 결정화가 저하될 수 있다. b가 1 미만이면 리튬이차전지의 용량이 크게 증가되지 않고, 4 초과면 이온전도도 및 전기전도도가 감소할 수 있다. c가 3 미만이면 MaM'a'SibOc의 결정화가 저하될 수 있고, 20 초과면 리튬이온의 저장 능력이 감소될 수 있다.
본 발명의 다른 실시예에 따른 (d) 단계는 금속-규소산화물가스가 포집부(40)에 포집될 수 있다.
<규소산화물 음극재>
본 발명에 따른 규소산화물 음극재는 규소산화물 제조방법에 따라 제조된 규소산화물을 포함할 수 있다.
액상-고상 제조방법을 통해 제조된 규소산화물을 리튬이차전지의 음극에 적용하면 다음과 같이 전기화학적 특성이 구현된다.
규소산화물 음극재를 리튬 금속을 대극으로 하여 0.005 V까지 정전류 및 정전압으로 리튬 합금화를 진행한 용량(C)과 1.5 V까지 정전류로 리튬 탈합금화를 진행한 용량(D)의 비(D/C)인 초기가역효율이 75% 이상 구현된다.
또한, 규소산화물 음극재를 리튬 금속을 대극으로 하여 0.005 V까지 정전류 및 정전압으로 리튬 합금화를 진행한 후 1.5 V까지 정전류로 리튬 탈합금화를 진행한 용량이 1,250 mAh/g 내지 2,350 mAh/g을 구현된다.
상기 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 당 업계의 통상의 지식을 가진 자라면 이하의 특허 청구범위에 기재된 본 발명의 사상 및 영역을 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
100, 100': 규소산화물 제조장치
10: 도가니
20: 반응부
30: 히터
40: 포집부
41: 포집대
42: 필터
43: 스프링
50, 50': 주입부
51': 주입관
60: 배출부
70: 금속가스공급부
71: 금속가스주입관
80: 가스혼합부
81: 블레이드
10: 도가니
20: 반응부
30: 히터
40: 포집부
41: 포집대
42: 필터
43: 스프링
50, 50': 주입부
51': 주입관
60: 배출부
70: 금속가스공급부
71: 금속가스주입관
80: 가스혼합부
81: 블레이드
Claims (20)
- 원료가 위치하는 하나 이상의 도가니;
내부에 상기 도가니가 위치되는 반응부;
상기 반응부를 가열하는 히터; 및
상기 반응부에서 생성되는 가스를 포집하는 포집부;를 포함하고,
상기 원료는 액상 규소 및 고상 이산화규소이며, 그리고 상기 액상 규소와 상기 고상 이산화규소의 액상-고상 반응에 의해 규소산화물가스가 생성되되, 여기서 상기 고상 이산화규소의 직경은 0.5mm 내지 100mm인 것을 특징으로 하는,
규소산화물 제조장치.
- 제 1항에 있어서,
상기 규소산화물가스가 상기 포집부에 포집되기 전에 금속가스를 공급해주는 금속가스공급부; 및
상기 규소산화물가스와 상기 금속가스를 혼합하여 금속-규소산화물가스를 생성하는 가스혼합부;를 더 포함하는 것을 특징으로 하는,
규소산화물 제조장치.
- 제 2항에 있어서,
상기 금속가스공급부는,
상기 금속가스가 배출되는 금속가스분사구;가 형성된 금속가스주입관;을 포함하고,
상기 금속가스분사구의 개수 및 직경을 조정함으로써 상기 금속-규소산화물가스의 상기 금속가스 함량을 제어할 수 있는 것을 특징으로 하는,
규소산화물 제조장치.
- 제 2항에 있어서,
상기 금속가스는,
알루미늄가스, 칼슘가스, 칼륨가스, 리튬가스, 마그네슘가스, 지르코늄가스, 니켈가스, 망간가스, 아연가스 및 나트륨가스 중 어느 하나 이상을 포함하는 것을 특징으로 하는,
규소산화물 제조장치.
- 제 2항에 있어서,
상기 가스혼합부는,
상기 금속-규소산화물가스의 유동 길이를 증가시키는 블레이드; 및 버플; 중에서 어느 하나가 선택되고,
상기 금속-규소산화물가스를 가열하는 가스혼합부히터; 및
상기 금속-규소산화물가스를 상기 포집부로 유도시키고, 혼합을 향상시키는 모터;를 포함하는 것을 특징으로 하는,
규소산화물 제조장치.
- 제 1항에 있어서,
상기 도가니는,
수직 방향으로 다단 적층된 것을 특징으로 하는,
규소산화물 제조장치.
- 제 1항에 있어서,
상기 규소산화물 제조장치는,
상기 도가니에 상기 원료를 주입하는 주입부; 및
상기 규소산화물가스를 상기 포집부로 배출하는 배출부;를 포함하는 것을 특징으로 하는,
규소산화물 제조장치.
- 제 7항에 있어서,
상기 주입부는,
상기 도가니 마다 각각 하나가 구비되는 것을 특징으로 하는,
규소산화물 제조장치.
- 제 7항에 있어서,
상기 주입부는,
원료가 배출되는 주입관;을 포함하고,
상기 주입관은 상기 도가니 마다 각각 하나가 구비되는 것을 특징으로 하는,
규소산화물 제조장치.
- 제 1항에 있어서,
상기 포집부는,
상기 규소산화물가스를 규소산화물로 포집하는 하나 이상의 포집대;를 포함하고,
상기 포집대는 상기 규소산화물을 집진시키는 필터; 및
상기 필터 내부에 위치하여 탄성에 의해 상기 규소산화물을 상기 필터에서 분리시키는 스프링;을 포함하는 것을 특징으로 하는,
규소산화물 제조장치.
- (a) 반응부 내부의 도가니에 액상 규소를 준비하는 준비단계;
(b) 직경 0.5mm 내지 100mm의 고상 이산화규소가 상기 도가니에 공급되는 반응물공급단계;
(c) 상기 액상 규소와 상기 고상 이산화규소가 액상-고상 반응하여 규소산화물가스가 생성되는 반응단계; 및
(d) 상기 규소산화물가스가 포집부에 포집되는 포집단계;를 포함하는 것을 특징으로 하는,
규소산화물 제조방법.
- (a) 반응부 내부의 도가니에 액상 규소를 준비하는 준비단계;
(b) 직경 0.5mm 내지 100mm의 고상 이산화규소가 상기 도가니에 공급되는 반응물공급단계;
(c) 상기 액상 규소와 상기 고상 이산화규소가 액상-고상 반응하여 규소산화물가스가 생성되는 반응단계;
(c-1) 상기 규소산화물가스에 금속가스인 알루미늄가스, 칼슘가스, 칼륨가스, 리튬가스, 마그네슘가스, 지르코늄가스, 니켈가스, 망간가스, 아연가스 및 나트륨가스 중 어느 하나 이상을 금속가스공급부를 통해 공급하는 금속가스공급단계;
(c-2) 상기 규소산화물가스와 상기 금속가스가 가스혼합기에서 혼합되어 금속-규소산화물가스가 생성되는 혼합단계; 및
(d) 상기 규소산화물가스가 포집부에 포집되는 포집단계;를 포함하는 것을 특징으로 하는,
규소산화물 제조방법.
- 제 11항 또는 제 12항에 있어서,
상기 (a) 단계는,
1,400℃ 내지 2,000℃의 온도에서 준비되는 것을 특징으로 하는,
규소산화물 제조방법.
- 제 11항 또는 제 12항에 있어서,
상기 (b) 단계는,
비표면적 300m2/g 내지 1,000m2/g의 상기 고상 이산화규소가 공급되는 것을 특징으로 하는,
규소산화물 제조방법.
- 제 11항에 있어서,
상기 규소산화물가스는,
SiOx(단, x는 0.6 내지 1.1)인 것을 특징으로 하는,
규소산화물 제조방법.
- 제 12항에 있어서,
상기 금속-규소산화물가스는,
MaSibOc(단, M은 Al, Ca, K, Li, Mg, Zr, Ni, Mn, Zn 및 Na로 구성되는 군으로부터 선택되는 하나의 원소이고, 화학양론비를 정수화하였을 때 a는 1 내지 6, b는 1 내지 2, c는 3 내지 13)로 표기되는 3성분계 화합물을 포함하는 것을 특징으로 하는,
규소산화물 제조방법.
- 제 12항에 있어서,
상기 금속-규소산화물가스는,
MaM'a'SibOc(단, M은 Al, Ca, K, Li, Mg, Zr, Ni, Mn, Zn 및 Na로 구성되는 군으로부터 선택되는 하나의 원소이고, M'은 M에서 선택되지 않은 나머지 원소 중 하나의 원소이고, 화학양론비를 정수화하였을 때 a+a'는 1 내지 8, b는 1 내지 4, c는 3 내지 20)로 표기되는 4성분계 화합물을 포함하는 것을 특징으로 하는,
규소산화물 제조방법.
- 제 11항 또는 제 12항에 따른 규소산화물 제조방법에 따라 제조된 상기 규소산화물을 포함하는 것을 특징으로 하는,
규소산화물 음극재.
- 제 18항에 있어서,
상기 규소산화물 음극재는,
리튬이차전지의 초기가역효율을 75% 이상 구현하는 것을 특징으로 하는,
규소산화물 음극재.
- 제 18항에 있어서,
상기 규소산화물 음극재는,
리튬이차전지의 용량을 1,250mAh/g 내지 2,350mAh/g을 구현하는 것을 특징으로 하는,
규소산화물 음극재.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200045802A KR102323341B1 (ko) | 2020-04-16 | 2020-04-16 | 규소산화물 제조장치 및 제조방법, 규소산화물 음극재 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200045802A KR102323341B1 (ko) | 2020-04-16 | 2020-04-16 | 규소산화물 제조장치 및 제조방법, 규소산화물 음극재 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210128094A KR20210128094A (ko) | 2021-10-26 |
KR102323341B1 true KR102323341B1 (ko) | 2021-11-08 |
Family
ID=78268589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200045802A KR102323341B1 (ko) | 2020-04-16 | 2020-04-16 | 규소산화물 제조장치 및 제조방법, 규소산화물 음극재 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102323341B1 (ko) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003192327A (ja) * | 2001-12-26 | 2003-07-09 | Shin Etsu Chem Co Ltd | 金属元素ドープ酸化珪素粉末の製造方法及び製造装置 |
JP2008049306A (ja) | 2006-08-28 | 2008-03-06 | Hitachi Ltd | ガス混合装置 |
KR102095275B1 (ko) | 2019-08-22 | 2020-03-31 | 주식회사 퀀타머티리얼스 | 실리콘 산화물(SiOx) 나노분말 제조장치 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5801775B2 (ja) | 2012-08-03 | 2015-10-28 | 信越化学工業株式会社 | 珪素含有粒子、これを用いた非水電解質二次電池用負極材、非水電解質二次電池、及び珪素含有粒子の製造方法 |
JP6496672B2 (ja) * | 2016-01-21 | 2019-04-03 | 信越化学工業株式会社 | 負極活物質の製造方法及び非水電解質二次電池の製造方法 |
KR102181280B1 (ko) * | 2018-08-30 | 2020-11-20 | 고등기술연구원연구조합 | 브리징 방지 집진 장치 |
KR101999191B1 (ko) | 2019-03-15 | 2019-07-11 | 대주전자재료 주식회사 | 리튬 이차전지 음극재용 실리콘 복합산화물 및 이의 제조방법 |
-
2020
- 2020-04-16 KR KR1020200045802A patent/KR102323341B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003192327A (ja) * | 2001-12-26 | 2003-07-09 | Shin Etsu Chem Co Ltd | 金属元素ドープ酸化珪素粉末の製造方法及び製造装置 |
JP2008049306A (ja) | 2006-08-28 | 2008-03-06 | Hitachi Ltd | ガス混合装置 |
KR102095275B1 (ko) | 2019-08-22 | 2020-03-31 | 주식회사 퀀타머티리얼스 | 실리콘 산화물(SiOx) 나노분말 제조장치 |
Also Published As
Publication number | Publication date |
---|---|
KR20210128094A (ko) | 2021-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111146413B (zh) | 用于可再充电锂电池的正极活性材料、其制备方法和包括其的可再充电锂电池 | |
US9627681B2 (en) | Silicon-based composite and production method thereof | |
JP5015173B2 (ja) | リチウム電池の陰極に利用可能なカーボンナノチューブ及びシリコンベースの材料 | |
KR102571127B1 (ko) | 규소·산화규소-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬 이차전지용 음극 활물질 | |
KR20130071070A (ko) | 실리콘-기공성 탄소 복합 나노입자를 포함하는 리튬이차전지 음극 활물질 제조방법, 이에 의하여 제조된 리튬이차전지 음극 활물질 및 이를 포함하는 리튬이차전지 | |
CN111146437B (zh) | 用于可再充电锂电池的正极活性材料、其制备方法及包括其的可再充电锂电池 | |
CN107636867A (zh) | 锂二次电池用负极活性材料及其制备方法 | |
KR101775539B1 (ko) | 리튬 이차 전지용 음극 활물질, 및 이를 포함하는 음극 및 리튬 이차 전지 | |
KR102128796B1 (ko) | 규소 산화물 입자 및 그 제조방법, 부극, 및 리튬 이온 2차 전지 및 전기화학 커패시터 | |
KR20150077053A (ko) | 음극 활물질, 이를 포함하는 이차 전지 및 음극 활물질의 제조 방법 | |
US10084183B2 (en) | Silicon oxide-carbon composite and method of manufacturing the same | |
CN105684196A (zh) | 用于锂铁电池的使用微粒的硅-金属混成阳极 | |
CN108172791A (zh) | 复合物负极材料及其制备方法、锂离子电池 | |
KR102299178B1 (ko) | 규소산화물 제조장치 및 제조방법, 규소산화물 음극재 | |
KR20230153813A (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지 | |
CN112028075B (zh) | 一种可用作锂离子电池负极材料的纳米SiC的制备方法及利用该负极材料制备的锂离子电池 | |
KR102323341B1 (ko) | 규소산화물 제조장치 및 제조방법, 규소산화물 음극재 | |
EP4258381A1 (en) | Anode for lithium secondary battery, and lithium secondary battery comprising same | |
US20210135222A1 (en) | Device and method of preparing siox, and siox anode material | |
CN115663176A (zh) | 一种磷酸铁锂正极材料、制备方法及其应用 | |
KR20120100740A (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지 | |
JP5132293B2 (ja) | 非水系二次電池用負極材料の製造方法 | |
KR102171230B1 (ko) | 금속복합 산화실리콘 제조 장치 | |
US20140106221A1 (en) | Silicon oxide for anode active material of secondary battery | |
KR102314085B1 (ko) | 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GRNT | Written decision to grant |