KR102322796B1 - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
KR102322796B1
KR102322796B1 KR1020200052000A KR20200052000A KR102322796B1 KR 102322796 B1 KR102322796 B1 KR 102322796B1 KR 1020200052000 A KR1020200052000 A KR 1020200052000A KR 20200052000 A KR20200052000 A KR 20200052000A KR 102322796 B1 KR102322796 B1 KR 102322796B1
Authority
KR
South Korea
Prior art keywords
compound
mmol
group
formula
light emitting
Prior art date
Application number
KR1020200052000A
Other languages
English (en)
Other versions
KR20200127886A (ko
Inventor
김민준
정민우
이동훈
서상덕
김서연
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2021513458A priority Critical patent/JP7155477B2/ja
Priority to TW109114400A priority patent/TWI740477B/zh
Priority to PCT/KR2020/005777 priority patent/WO2020222569A1/ko
Priority to US17/269,226 priority patent/US20220109114A1/en
Publication of KR20200127886A publication Critical patent/KR20200127886A/ko
Application granted granted Critical
Publication of KR102322796B1 publication Critical patent/KR102322796B1/ko

Links

Images

Classifications

    • H01L51/0071
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • H01L51/0072
    • H01L51/5012
    • H01L51/5024
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer

Abstract

본 발명은 유기 발광 소자를 제공한다.

Description

유기 발광 소자{ORGANIC LIGHT EMITTING DEVICE}
본 발명은 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
한국특허 공개번호 제10-2000-0051826호
본 발명은 유기 발광 소자를 제공한다.
본 발명은 양극; 상기 양극과 대향하여 구비된 음극; 및 상기 양극과 음극 사이에 구비된 1 층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층은 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다.
[화학식 1]
Figure 112020044230010-pat00001
상기 화학식 1에서,
X1 내지 X3은 각각 독립적으로 N 또는 CR5이되, 적어도 어느 하나는 N이고,
Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴; 혹은 치환 또는 비치환된 O, N, Si 및 S 중 1개 이상을 포함하는 탄소수 2 내지 60의 헤테로아릴이고,
R1 내지 R5는 각각 독립적으로 수소; 중수소; 할로겐; 히드록시; 니트릴; 니트로; 아미노; 치환 또는 비치환된 탄소수 2 내지 60의 알킬; 치환 또는 비치환된 2 내지 60의 알콕시; 치환 또는 비치환된 2 내지 60의 알케닐; 치환 또는 비치환된 6 내지 60의 아릴; 치환 또는 비치환된 O, N, Si 및 S 중 1개 이상을 포함하는 탄소수 2 내지 60의 헤테로아릴이거나, R1 내지 R3은 서로 인접하는 기와 결합하여 축합 고리 형성하고,
A 및 B 중 하나는 하기 화학식 1-1로 표시되는 치환기이고, 나머지 하나는 수소 또는 중수소이고,
[화학식 1-1]
Figure 112020044230010-pat00002
상기 화학식 1-1에서,
R6 내지 R10은 각각 독립적으로 수소; 중수소; 할로겐; 히드록시; 니트릴; 니트로; 아미노; 치환 또는 비치환된 탄소수 2 내지 60의 알킬; 치환 또는 비치환된 2 내지 60의 알콕시; 치환 또는 비치환된 2 내지 60의 알케닐; 치환 또는 비치환된 6 내지 60의 아릴; 치환 또는 비치환된 O, N, Si 및 S 중 1개 이상을 포함하는 탄소수 2 내지 60의 헤테로아릴이거나, R6 내지 R9는 서로 인접하는 기와 결합하여 축합 고리 형성하고,
a는 1 내지 6의 정수이고,
[화학식 2]
Figure 112020044230010-pat00003
상기 화학식 2에서,
Ar3 및 Ar4는 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴; 혹은 치환 또는 비치환된 O, N, Si 및 S 중 1개 이상을 포함하는 탄소수 2 내지 60의 헤테로아릴이고,
L1 및 L2는 각각 독립적으로 단일 결합; 혹은 치환 또는 비치환된 탄소수 6 내지 60의 아릴렌이고,
R11 내지 R14는 각각 독립적으로 수소; 중수소; 할로겐; 히드록시; 니트릴; 니트로; 아미노; 치환 또는 비치환된 탄소수 2 내지 60의 알킬; 치환 또는 비치환된 2 내지 60의 알콕시; 치환 또는 비치환된 2 내지 60의 알케닐; 치환 또는 비치환된 6 내지 60의 아릴; 혹은 치환 또는 비치환된 O, N, Si 및 S 중 1개 이상을 포함하는 탄소수 2 내지 60의 헤테로아릴이고,
b 및 e는 각각 독립적으로 1 내지 4의 정수이고
c 및 d는 각각 독립적으로 1 내지 3의 정수이다.
발광층의 호스트 재료로 상술한 화학식 1로 표시되는 화합물 및 화학식 2로 표시되는 화합물을 사용하여, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(3), 정공저지층(8), 전자 주입 및 수송층(9) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 발명은 양극; 상기 양극과 대향하여 구비된 음극; 및 상기 양극과 음극 사이에 구비되며, 화학식 1로 표시되는 화합물 및 화학식 2로 표시되는 화합물을 포함하는 유기물층을 포함하는 유기 발광 소자를 제공한다.
본 명세서에서,
Figure 112020044230010-pat00004
, 또는
Figure 112020044230010-pat00005
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure 112020044230010-pat00006
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure 112020044230010-pat00007
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure 112020044230010-pat00008
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸,사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure 112020044230010-pat00009
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
본 발명은, 상기 양극과 대향하여 구비된 음극; 및 상기 양극과 음극 사이에 구비된 1 층 이상의 유기물층을 포함하고, 상기 유기물층은 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다.
상기 유기 발광 소자는 발광층의 호스트 재료로 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물을 사용하여, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다.
이하 각 구성 별로 본 발명을 상세히 설명한다.
양극 및 음극
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SNO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
또한, 상기 양극 상에는 정공 주입층이 추가로 포함될 수 있다. 상기 정공 주입층은 정공 주입 물질로 이루어져 있으며, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다.
정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는, 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
발광층
상기 발광층에 포함되는 발광 물질로는 정공조절층과 전자수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있으며, 특히 본 발명에서는 호스트 재료로서, 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물을 포함한다.
상기 화학식 1은 하기 화학식 1-A, 1-B 및 1-C로 표시되는 화합물 중에서 선택되는 어느 하나일 수 있다.
Figure 112020044230010-pat00010
상기 화학식 1-A, 1-B 및 1-C 에서,
X1, X2, X3, Ar1, Ar2, A 및 B에 대한 설명은 앞서 정의된 바와 같다.
상기 화학식 1에서 X1 내지 X3은 모두 N일 수 있다.
상기 화학식 1에서 Ar1 및 Ar2는 각각 독립적으로 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다.
Figure 112020044230010-pat00011
상기 화학식 1-1은 하기 화합물로 구성되는 군으로부터 선택될 수 있다.
Figure 112020044230010-pat00012
상기 화학식 1로 표시되는 화합물은 하기 화합물로 구성되는 군으로부터 선택될 수 있다.
Figure 112020044230010-pat00013
Figure 112020044230010-pat00014
Figure 112020044230010-pat00015
Figure 112020044230010-pat00016
Figure 112020044230010-pat00017
Figure 112020044230010-pat00018
Figure 112020044230010-pat00019
Figure 112020044230010-pat00020
Figure 112020044230010-pat00021
.
상기 화학식 1로 표시되는 화합물은 하기 반응식 1 또는 2와 같은 제조 방법으로 제조할 수 있다. 상기 제조 방법은 후술한 제조예에서 보다 구체화될 수 있다.
[반응식 1]
Figure 112020044230010-pat00022
[반응식 2]
Figure 112020044230010-pat00023
상기 반응식 1 및 2에서, Q를 제외한 나머지 정의는 앞서 정의한 바와 같으며, Q는 할로겐이고 보다 바람직하게는 브로모 또는 클로로이다. 상기 반응은 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
또한, 상기 호스트 재료로는 상기 화학식 1로 표시되는 화합물과 상기 화학식 2로 표시되는 화합물이 함께 사용될 수 있다.
상기 화학식 2로 표시되는 화합물은 하기 화학식 2-1로 표시되는 화합물일 수 있다.
[화학식 2-1]
Figure 112020044230010-pat00024
상기 Ar3, Ar4, L1 및 L2 에 대한 설명은 앞서 정의된 바와 같다.
상기 화학식 2에서 Ar3 및 Ar4는 각각 독립적으로 아래로 구성되는 군으로부터 선택되는 어느 하나일 수 있다.
Figure 112020044230010-pat00025
상기 화학식 2에서 L1 및 L2는 각각 독립적으로 단일 결합 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다.
Figure 112020044230010-pat00026
상기 화학식 2에서 R11 내지 R14는 수소일 수 있다.
상기 화학식 2로 표시되는 화합물은 하기 화합물로 구성되는 군으로부터 선택될 수 있다.
Figure 112020044230010-pat00027
Figure 112020044230010-pat00028
Figure 112020044230010-pat00029
Figure 112020044230010-pat00030
Figure 112020044230010-pat00031
Figure 112020044230010-pat00032
Figure 112020044230010-pat00033
Figure 112020044230010-pat00034
Figure 112020044230010-pat00035
Figure 112020044230010-pat00036
Figure 112020044230010-pat00037
Figure 112020044230010-pat00038
Figure 112020044230010-pat00039
Figure 112020044230010-pat00040
Figure 112020044230010-pat00041
Figure 112020044230010-pat00042
Figure 112020044230010-pat00043
Figure 112020044230010-pat00044
상기 화학식 2로 표시되는 화합물은 하기 반응식 3과 같은 제조 방법으로 제조할 수 있다. 상기 제조 방법은 후술한 제조예에서 보다 구체화될 수 있다.
[반응식 3]
Figure 112020044230010-pat00045
상기 반응식 3에서, Q’를 제외한 나머지 정의는 앞서 정의한 바와 같으며, Q는 할로겐이고 보다 바람직하게는 브로모 또는 클로로이다. 상기 반응은 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
상기 발광층은 상기 화학식 1로 표시되는 화합물 및 화학식 2로 표시되는 화합물 외에 본 발명이 속한 기술분야에 알려진 호스트 재료를 추가로 포함할 수 있다. 이러한 호스트 재료의 구체적인 예로는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
한편, 상기 발광층은 도펀트 재료를 더 포함할 수 있다. 도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 시클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
예를 들어, 상기 도펀트는 하기 Dp-1 내지 Dp-38로 표시되는 화합물 중에서 선택되는 어느 하나일 수 있다.
Figure 112020044230010-pat00046
Figure 112020044230010-pat00047
Figure 112020044230010-pat00048
Figure 112020044230010-pat00049
Figure 112020044230010-pat00050
Figure 112020044230010-pat00051
Figure 112020044230010-pat00052
Figure 112020044230010-pat00053
Figure 112020044230010-pat00054
Figure 112020044230010-pat00055
Figure 112020044230010-pat00056
Figure 112020044230010-pat00057
Figure 112020044230010-pat00058
Figure 112020044230010-pat00059
Figure 112020044230010-pat00060
Figure 112020044230010-pat00061
Figure 112020044230010-pat00062
Figure 112020044230010-pat00063
Figure 112020044230010-pat00064
Figure 112020044230010-pat00065
Figure 112020044230010-pat00066
Figure 112020044230010-pat00067
Figure 112020044230010-pat00068
Figure 112020044230010-pat00069
Figure 112020044230010-pat00070
Figure 112020044230010-pat00071
Figure 112020044230010-pat00072
Figure 112020044230010-pat00073
Figure 112020044230010-pat00074
Figure 112020044230010-pat00075
Figure 112020044230010-pat00076
Figure 112020044230010-pat00077
Figure 112020044230010-pat00078
Figure 112020044230010-pat00079
Figure 112020044230010-pat00080
Figure 112020044230010-pat00081
Figure 112020044230010-pat00082
Figure 112020044230010-pat00083
정공수송층
상기 정공수송층은 양극 또는 양극 상에 형성된 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다.
구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
정공조절층
상기 정공조절층은 유기 발광 소자에서 발광층의 에너지 준위에 따라서, 정공의 이동도를 조절하는 역할을 하는 층을 의미한다.
전자수송층
상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
전자주입층
본 발명에 따른 유기 발광 소자는 필요에 따라 전자수송층과 음극 사이에 전자주입층을 포함할 수 있다. 상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
유기 발광 소자
본 발명에 따른 유기 발광 소자의 구조를 도 1 및 도 2에 예시하였다. 도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1 및 화학식 2로 표시되는 화합물은 상기 발광층에 포함될 수 있다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(3), 정공저지층(8), 전자 주입 및 수송층(9) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1 및 화학식 2로 표시되는 화합물은 상기 정공주입층, 정공수송층, 전자억제층, 발광층, 정공저지층, 전자 주입 및 수송층 중 1층 이상에 포함될 수 있다. 구체적으로, 상기 유기물층은 발광층을 포함할 수 있고, 상기 발광층은 2종 이상의 호스트 물질을 포함할 수 있다. 이때, 상기 2종 이상의 호스트 물질은 상기 화학식 1 및 2로 표시되는 화합물을 포함할 수 있다.
본 발명에 따른 유기 발광 소자는 상술한 구성을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 상술한 각 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. 또한, 발광층은 호스트 및 도펀트를 진공 증착법 뿐만 아니라 용액 도포법에 의하여 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
한편, 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
상술한 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
제조예 1-1: 중간체 a의 제조
1) 중간체 a-1의 제조
Figure 112020044230010-pat00084
나프탈렌-2-아민 (naphthalen-2-amine, 300.0 g, 1.0 eq), 1-브로모-2-아이오도벤젠(1-bromo-2-iodobenzene 592.7 g, 1.0 eq), 소듐 터트-부톡사이드(NaOtBu, 302.0 g, 1.5 eq), 초산팔라듐(Pd(OAc)2, 4.70 g, 0.01 eq), 잔트포스(Xantphos, 12.12 g, 0.01 eq)을 1,4-다이옥세인(1,4-dioxane, 5L)에 녹여 환류 및 교반했다. 3 시간 후 반응이 종료되면 감압하여 용매를 제거했다. 이후 아세트산에틸(Ethyl acetate)에 완전히 녹여서 물로 씻어주고 다시 감압하여 용매를 70% 정도 제거했다. 다시 환류 상태에서 헥센(Hexane)을 넣어주며 결정을 떨어트려 식힌 후 여과했다. 이를 컬럼크로마토그래피하여 중간체 a-1을 얻었다. (443.5 g, 수율 71 %, [M+H]+=299)
2) 중간체 a(5H-benzo[b]carbazole)의 제조
Figure 112020044230010-pat00085
중간체 a-1 (443.5 g, 1.0 eq)에 비스(트리-터트-부틸포스핀)팔라듐(0) (Pd(t-Bu3P)2, 8.56 g, 0.01 eq), 탄산칼륨(K2CO3, 463.2 g, 2.00 eq)을 다이에틸아세트아마이드 (Dimethylacetamide, 4L)에 넣고 환류 및 교반했다. 3 시간 후 반응물을 물에 부어서 결정을 떨어트리고 여과했다. 여과한 고체를 1,2-디클로로벤젠 완전히 녹인 후 물로 씻어주고, 생성물이 녹아있는 용액을 감압 농축하여 결정을 떨어트려 식힌 후 여과했다. 이를 컬럼크로마토그래피로 정제하여 중간체 a(5H-benzo[b]carbazole)을 얻었다. (174.8 g, 수율 48 %, [M+H]+=218)
제조예 1-2: 중간체 b의 제조
1-브로모-2-아이오도벤젠 대신 1-브로모-2-아이오도나프탈렌(1-bromo-2-iodonaphthalene)을 사용한 것을 제외하고는, 상기 제조예 1-1의 제조방법과 동일한 방법으로 하기 중간체 b(7H-dibenzo[b,g]carbazole)를 얻었다.
Figure 112020044230010-pat00086
제조예 1-3: 중간체 c의 제조
1-브로모-2-아이오도벤젠 대신 2,3-디브로모나프탈렌(2,3-dibromonaphthalene)을 사용한 것을 제외하고는, 상기 제조예 1-1의 제조방법과 동일한 방법으로 하기 중간체 c(6H-dibenzo[b,h]carbazole)를 얻었다.
Figure 112020044230010-pat00087
제조예 1-4: 중간체 d의 제조
1-브로모-2-아이오도벤젠 대신 2-브로모-1-아이오도나프탈렌 (2-bromo-1-iodonaphthalene)을 사용한 것을 제외하고는, 상기 제조예 1의 제조방법과 동일한 방법으로 하기 중간체 d(13H-dibenzo[a,h]carbazole)를 제조했다.
Figure 112020044230010-pat00088
제조예 1-5: 중간체 e의 제조
1) 중간체 e-2의 제조
Figure 112020044230010-pat00089
1-브로모-3-플로오로-2-아이오도벤젠 (1-bromo-3-fluoro-2-iodobenzene, 200.0 g, 1.0 eq), (4-클로로-2-하이드록시페닐)보론산 ((4-chloro-2-hydroxyphenyl)boronic acid, 82.3 g, 1.0 eq), 탄산칼륨(K2CO3, 164.6 g, 2.0 eq), 테트라키스(트리페닐포스핀)팔라듐(0) (Pd(PPh3)4, 13.77 g, 0.02 eq)를 테트라하이드로퓨란(THF, 3L)에 녹여 환류 및 교반했다. 2 시간 후 반응이 종료되면 감압하여 용매를 제거했다. 이후 아세트산에틸(Ethyl acetate)에 완전히 녹여서 물로 씻어주고 다시 감압하여 용매를 80% 정도 제거했다. 다시 환류 상태에서 헥센을 넣어주며 결정을 떨어트려 식힌 후 여과했다. 이를 컬럼크로마토그래피하여 중간체 e-2를 얻었다. (129.5 g, 수율 72 %, [M+H]+=300)
2) 중간체 e-1의 제조
Figure 112020044230010-pat00090
중간체 e-2 (129.5 g, 1.0 eq)과 탄산칼륨(K2CO3, 118.5 g, 2.00 eq)을 다이에틸아세트아마이드 (Dimethylacetamide, 2L)에 넣고 환류 및 교반했다. 1 시간 후 반응물을 물에 부어서 결정을 떨어트리고 여과했다. 여과한 고체를 아세트산에틸(Ethyl acetate)에 완전히 녹여서 물로 씻어주고 다시 감압하여 용매를 70% 정도 제거했다. 다시 환류 상태에서 헥센을 넣어주며 결정을 떨어트려 식힌 후 여과했다. 이를 컬럼크로마토그래피하여 중간체 e-1을 얻었다. (101.6 g, 수율 84 %, [M+H]+=280)
3) 중간체e의 제조
Figure 112020044230010-pat00091
중간체 e-1 (101.6 g, 1.0 eq), 비스(피나콜라토)디보론 (Bis(pinacolato)diboron, 119.1 g, 1.3 eq), 1,1 -비스(디페닐포스피노)페로센-팔라듐(II)디클로라이드 (Pd(dppf)Cl2, 5.28 g, 0.02 eq), 포타슘아세테이트(KOAc, 40.4 g, 2.00 eq)을 디옥세인(dioxnae, 2L)에 넣고 환류 및 교반했다. 3 시간 후 반응이 종료되면 감압하여 용매를 제거했다. 여과한 고체를 클로로포름(CHCl3)에 완전히 녹인 후 물로 씻어주고 생성물이 녹아있는 용액을 감압 농축하여 용매를 90% 정도 제거했다. 이를 다시 환류 상태에서 에탄올을 넣어주며 결정을 떨어트리고 식힌 후 여과하여 중간체 e를 얻었다. (103.1 g, 수율 87 %, [M+H]+=329)
제조예 1-6: 중간체 f의 제조
(4-클로로-2-하이드록시페닐)보론산 대신 (5-클로로-2-하이드록시페닐)보론산((5-chloro-2-hydroxyphenyl)boronic acid)을 사용하였다는 점을 제외하고는, 제조예 1-5와 동일한 방법으로 하기 중간체f를 제조하였다.
Figure 112020044230010-pat00092
제조예 1-7: 중간체 g의 제조
1-브로모-3-플로오로-2-아이오도벤젠 대신 3-브로모-1-플루오로-2-아이오도나프탈렌(3-bromo-1-fluoro-2-iodonaphthalene)을 사용하였다는 점을 제외하고는, 제조예 1-5와 동일한 방법으로 중간체g를 제조하였다.
Figure 112020044230010-pat00093
제조예 1-8: 중간체 h의 제조
(4-클로로-2-하이드록시페닐)보론산 대신 (5-클로로-2-하이드록시페닐)보론산을 사용하였다는 점을 제외하고는, 제조예 1-7과 동일한 방법으로 중간체h를 제조하였다.
Figure 112020044230010-pat00094
제조예 1-9: 중간체 i의 제조
1-브로모-3-플로오로-2-아이오도벤젠 대신 1-브로모-3-플루오로-2-아이오도나프탈렌(1-bromo-3-fluoro-2-iodonaphthalene)을 사용하였다는 점을 제외하고는, 제조예 1-5와 동일한 방법으로 중간체i를 제조하였다.
Figure 112020044230010-pat00095
제조예 1-10: 중간체 j의 제조
(4-클로로-2-하이드록시페닐)보론산 대신 (5-클로로-2-하이드록시페닐)보론산을 사용하였다는 점을 제외하고는, 제조예 1-9와 동일한 방법으로 중간체j를 제조하였다.
Figure 112020044230010-pat00096
제조예 2-1: 화합물 1의 제조
Figure 112020044230010-pat00097
질소 분위기에서 중간체 1-1 (20.0 g, 46.2 mmol), 중간체 a (10.0 g, 46.2 mmol), 쇼듐 터트-부톡사이드 (sodium tert-butoxide, 8.9 g, 92.4 mmol)을 자일렌(Xylene, 400 ml)에 넣고 교반 및 환류했다. 이후 비스(트리-터트-부틸포스핀)팔라듐(0) (bis(tri-tert-butylphosphine)palladium(0), 0.5 g, 0.9 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2 회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 1을 얻었다. (14.7 g, 수율 52%, MS: [M+H]+= 615)
제조예 2-2: 화합물 2의 제조
Figure 112020044230010-pat00098
질소 분위기에서 중간체 2-1 (20.0 g, 46.2 mmol), 중간체 a (10.0 g, 46.2 mmol), 쇼듐 터트-부톡사이드 (8.9 g, 92.4 mmol)을 자일렌(400 ml)에 교반 및 환류했다. 이후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.5 g, 0.9 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2 회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 2를 얻었다. (19.3 g, 수율 68%, MS: [M+H]+= 615)
제조예 2-3: 화합물 3의 제조
Figure 112020044230010-pat00099
질소 분위기에서 중간체 3-1 (20.0 g, 41.4 mmol), 중간체 a (9 g, 41.4 mmol), 쇼듐 터트-부톡사이드 (8 g, 82.8 mmol)을 자일렌(400 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.4 g, 0.8 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2 회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 3을 얻었다. (16.8 g, 수율 61%, MS: [M+H]+= 665)
제조예 2-4: 화합물 4의 제조
Figure 112020044230010-pat00100
질소 분위기에서 중간체4-1 (20.0 g, 41.4 mmol), 중간체a (9 g, 41.4 mmol), 쇼듐 터트-부톡사이드 (8 g, 82.8 mmol)을 자일렌(400 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.4 g, 0.8 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2 회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 4를 얻었다. (16.2 g, 수율 59%, MS: [M+H]+= 665)
제조예 2-5: 화합물 5의 제조
Figure 112020044230010-pat00101
질소 분위기에서 중간체 5-1 (20.0 g, 41.4 mmol), 중간체 a (9 g, 41.4 mmol), 쇼듐 터트-부톡사이드 (8 g, 82.8 mmol)을 자일렌(400 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.4 g, 0.8 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2 회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 5를 얻었다. (13.7 g, 수율 50%, MS: [M+H]+= 665)
제조예 2-6: 화합물 6의 제조
Figure 112020044230010-pat00102
질소 분위기에서 중간체 6-1 (20.0 g, 36.4 mmol), 중간체 b (9.7 g, 36.4 mmol), 쇼듐 터트-부톡사이드 (7 g, 72.8 mmol)을 자일렌(400 ml)에 넣고 교반 및 환류했다. 이후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.4 g, 0.7 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 6을 얻었다. (14.8 g, 수율 61%, MS: [M+H]+= 665)
제조예 2-7: 화합물 7의 제조
Figure 112020044230010-pat00103
질소 분위기에서 중간체7-1 (20.0 g, 46.2 mmol), 중간체b (12.3 g, 46.2 mmol), 쇼듐 터트-부톡사이드 (8.9 g, 92.4 mmol)을 자일렌(Xylene, 400 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 7을 얻었다. (18.4 g, 수율 60%, MS: [M+H]+= 665)
제조예 2-8: 화합물 8의 제조
Figure 112020044230010-pat00104
질소 분위기에서 중간체8-1 (20.0 g, 41.4 mmol), 중간체b (11.1 g, 41.4 mmol), 쇼듐 터트-부톡사이드 (8 g, 82.8 mmol)을 자일렌(Xylene, 400 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.4 g, 0.8 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 8을 얻었다. (14.8 g, 수율 50%, MS: [M+H]+= 715)
제조예 2-9: 화합물 9의 제조
Figure 112020044230010-pat00105
질소 분위기에서 중간체 9-1 (20.0 g, 46.2 mmol), 중간체 c (12.3 g, 46.2 mmol), 쇼듐 터트-부톡사이드 (8.9 g, 92.4 mmol)을 자일렌(Xylene, 400 ml)에 넣고 교반 및 환류했다. 이후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 9를 얻었다. (17.8 g, 수율 58%, MS: [M+H]+= 665)
제조예 2-10: 화합물 10의 제조
Figure 112020044230010-pat00106
질소 분위기에서 중간체 10-1 (20.0 g, 46.2 mmol), 중간체c (12.3 g, 46.2 mmol), 쇼듐 터트-부톡사이드 (8.9 g, 92.4 mmol)을 자일렌(Xylene, 400 ml)에 넣고 교반 및 환류했다. 이후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.5 g, 0.9 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 10을 얻었다. (15.3 g, 수율 50%, MS: [M+H]+= 665)
제조예 2-11: 화합물 11의 제조
Figure 112020044230010-pat00107
질소 분위기에서 중간체 11-1 (20.0 g, 41.4 mmol), 중간체 c (11.1 g, 41.4 mmol), 쇼듐 터트-부톡사이드 (8 g, 82.8 mmol)을 자일렌(Xylene, 400 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.4 g, 0.8 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 11을 얻었다. (16.9 g, 수율 57%, MS: [M+H]+= 715)
제조예 2-12: 화합물 12의 제조
Figure 112020044230010-pat00108
질소 분위기에서 중간체 12-1 (20.0 g, 37.5 mmol), 중간체 d (10.0 g, 37.5 mmol), 쇼듐 터트-부톡사이드 (7.2 g, 75 mmol)을 자일렌(Xylene, 400 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.4 g, 0.8 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 12를 얻었다. (15.2 g, 수율 53%, MS: [M+H]+= 765)
제조예 2-13: 화합물 13의 제조
Figure 112020044230010-pat00109
질소 분위기에서 중간체 13-1 (20.0 g, 40.9 mmol), 중간체 a (8.9 g, 40.9 mmol), 쇼듐 터트-부톡사이드 (7.9 g, 81.7 mmol)을 자일렌(Xylene, 400 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.4 g, 0.8 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 13을 얻었다. (15 g, 수율 52%, MS: [M+H]+= 706)
제조예 2-14: 화합물 14의 제조
Figure 112020044230010-pat00110
질소 분위기에서 중간체 14-1 (20.0 g, 42.1 mmol), 중간체a (9.1 g, 42.1 mmol), 쇼듐 터트-부톡사이드 (8.1 g, 84.1 mmol)을 자일렌(Xylene, 400 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.4 g, 0.8 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 14를 얻었다. (20.0 g, 수율 69%, MS: [M+H]+= 692)
제조예 2-15: 화합물 15의 제조
Figure 112020044230010-pat00111
질소 분위기에서 중간체 15-1 (20.0 g, 31.7 mmol), 중간체a (6.9 g, 31.7 mmol), 쇼듐 터트-부톡사이드 (6.1 g, 63.3 mmol)을 자일렌(Xylene, 400 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.3 g, 0.6 mmol)을 투입했다. 3시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 15를 얻었다. (18.5 g, 수율 69%, MS: [M+H]+= 848)
제조예 2-16: 화합물 16의 제조
Figure 112020044230010-pat00112
질소 분위기에서 중간체 16-1 (20.0 g, 39.6 mmol), 중간체c (10.6 g, 39.6 mmol), 쇼듐 터트-부톡사이드 (7.6 g, 79.1 mmol)을 자일렌(Xylene, 400 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.4 g, 0.8 mmol)을 투입했다. 2시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 16을 얻었다. (20.4 g, 수율 67%, MS: [M+H]+= 772)
제조예 2-17: 화합물 17의 제조
Figure 112020044230010-pat00113
질소 분위기에서 중간체 17-1 (20.0 g, 39.6 mmol), 중간체 b (10.6 g, 39.6 mmol), 쇼듐 터트-부톡사이드 (7.6 g, 79.1 mmol)을 자일렌(Xylene, 400 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.4 g, 0.8 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 17을 얻었다. (21.3 g, 수율 70%, MS: [M+H]+= 772)
제조예 2-18: 화합물 18의 제조
Figure 112020044230010-pat00114
질소 분위기에서 중간체 18-1 (20.0 g, 34.7 mmol), 중간체 a (7.5 g, 34.7 mmol), 쇼듐 터트-부톡사이드 (6.7 g, 69.5 mmol)을 자일렌(Xylene, 400 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.4 g, 0.7 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 18을 얻었다. (17.6 g, 수율 64%, MS: [M+H]+= 792)
제조예 2-19: 화합물 19의 제조
Figure 112020044230010-pat00115
질소 분위기에서 중간체 19-1 (20.0 g, 39.6 mmol), 중간체 a (8.6 g, 39.6 mmol), 쇼듐 터트-부톡사이드 (7.6 g, 79.1 mmol)을 자일렌(Xylene, 400 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.4 g, 0.8 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 19 을 얻었다. (17.4 g, 수율 61%, MS: [M+H]+= 722)
제조예 2-20: 화합물 20의 제조
Figure 112020044230010-pat00116
질소 분위기에서 중간체 20-1 (20.0 g, 33.2 mmol), 중간체 a (7.2 g, 33.2 mmol), 쇼듐 터트-부톡사이드 (6.4 g, 66.5 mmol)을 자일렌(Xylene, 400 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.3 g, 0.7 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 20을 얻었다. (18.2 g, 수율 67%, MS: [M+H]+= 818)
제조예 2-21: 화합물 21의 제조
Figure 112020044230010-pat00117
질소 분위기에서 중간체 21-1 (20.0 g, 36.4 mmol), 중간체 b (9.7 g, 36.4 mmol), 쇼듐 터트-부톡사이드 (7 g, 72.8 mmol)을 자일렌(Xylene, 400 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.4 g, 0.7 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 21을 얻었다. (18.1 g, 수율 61%, MS: [M+H]+= 816)
제조예 2-22: 화합물 22의 제조
Figure 112020044230010-pat00118
질소 분위기에서 중간체 22-1 (20.0 g, 37.1 mmol), 중간체 a (8.1 g, 37.1 mmol), 쇼듐 터트-부톡사이드 (7.1 g, 74.1 mmol)을 자일렌(Xylene, 400 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0) (0.4 g, 0.7 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제해서 화합물 22를 얻었다. (19 g, 수율 68%, MS: [M+H]+= 756)
제조예 3-1: 화합물 2-1의 제조
Figure 112020044230010-pat00119
질소 분위기에서 중간체 2-1-1 (10.0 g, 25.2 mmol)와 중간체 2-1-2 (8 g, 27.7 mmol)를 테트라하이드로퓨란(THF, 200 ml)에 넣어 교반하고, 포타슘 카보네이트 (13.9 g, 100.7 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0) (0.1 g, 0.3 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하고, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-1을 제조하였다. (9 g, 수율 64%, MS: [M+H]+= 561)
제조예 3-2: 화합물 2-2의 제조
Figure 112020044230010-pat00120
질소 분위기에서 중간체 2-2-1 (10.0 g, 25.2 mmol)와 중간체 2-2-2 (8 g, 27.7 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(13.9 g, 100.7 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-2를 제조하였다. (10.6 g, 수율 66%, MS: [M+H]+= 637)
제조예 3-3: 화합물 2-3의 제조
Figure 112020044230010-pat00121
질소 분위기에서 중간체 2-3-1 (10.0 g, 25.2 mmol)와 중간체 2-3-2 (10.1 g, 27.7 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(13.9 g, 100.7 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0) (0.1 g, 0.3 mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-3을 제조하였다. (9 g, 수율 56%, MS: [M+H]+= 637)
제조예 3-4: 화합물 2-4의 제조
Figure 112020044230010-pat00122
질소 분위기에서 중간체 2-4-1 (10.0 g, 25.2 mmol)와 중간체 2-4-2 (9.3 g, 27.7 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(13.9 g, 100.7 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0) (0.1 g, 0.3 mmol)을 투입하였다. 2시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-4를 제조하였다. (7.8 g, 수율 51%, MS: [M+H]+= 611)
제조예 3-5: 화합물 2-5의 제조
Figure 112020044230010-pat00123
질소 분위기에서 중간체 2-5-1 (10.0 g, 25.2 mmol)와 중간체 2-5-2 (10.1 g, 27.7 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(13.9 g, 100.7 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0) (0.1 g, 0.3 mmol)을 투입하였다. 4시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-5를 제조하였다. (10.4 g, 수율 65%, MS: [M+H]+= 637)
제조예 3-6: 화합물 2-6의 제조
Figure 112020044230010-pat00124
질소 분위기에서 중간체 2-6-1 (10.0 g, 25.2 mmol)와 중간체 2-6-2 (11.4 g, 27.7 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(13.9 g, 100.7 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0) (0.1 g, 0.3 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-6을 제조하였다. (10.5 g, 수율 61%, MS: [M+H]+= 687)
제조예 3-7: 화합물 2-7의 제조
Figure 112020044230010-pat00125
질소 분위기에서 중간체 2-7-1 (10.0 g, 22.4 mmol)와 중간체 2-7-2 (10.2 g, 24.6 mmol)를 THF(200 ml)에 넣어 교반하고 포타슘 카보네이트(12.4 g, 89.5 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0) (0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-7을 제조하였다. (11 g, 수율 67%, MS: [M+H]+= 737)
제조예 3-8: 화합물 2-8의 제조
Figure 112020044230010-pat00126
질소 분위기에서 중간체 2-8-1 (10.0 g, 17.9 mmol)와 중간체 2-8-2 (5.6 g, 19.7 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(9.9 g, 71.5 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-8을 제조하였다. (7.8 g, 수율 60%, MS: [M+H]+= 723)
제조예 3-9: 화합물 2-9의 제조
Figure 112020044230010-pat00127
질소 분위기에서 중간체 2-9-1 (10.0 g, 21.1 mmol)와 중간체 2-9-2 (6.7 g, 23.3 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(11.7 g, 84.6 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-9를 제조하였다. (7.4 g, 수율 55%, MS: [M+H]+= 637)
제조예 3-10: 화합물 2-10의 제조
Figure 112020044230010-pat00128
질소 분위기에서 중간체 2-10-1 (10.0 g, 27 mmol)와 중간체 2-10-2 (10.0 g, 29.6 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(14.9 g, 107.8 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-10을 제조하였다. (11 g, 수율 70%, MS: [M+H]+= 585)
제조예 3-11: 화합물 2-11의 제조
Figure 112020044230010-pat00129
질소 분위기에서 중간체 2-11-1 (10.0 g, 27 mmol)와 중간체 2-11-2 (11.5 g, 29.6 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(14.9 g, 107.8 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.3 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-11을 제조하였다. (11.5 g, 수율 67%, MS: [M+H]+= 635)
제조예 3-12: 화합물 2-12의 제조
Figure 112020044230010-pat00130
질소 분위기에서 중간체 2-12-1 (10.0 g, 23.8 mmol)와 중간체 2-12-2 (8.8 g, 26.1 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(13.1 g, 95 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-12를 제조하였다. (10.4 g, 수율 69%, MS: [M+H]+= 635)
제조예 3-13: 화합물 2-13의 제조
Figure 112020044230010-pat00131
질소 분위기에서 중간체 2-13-1 (10.0 g, 24.3 mmol)와 중간체 2-13-2 (11.1 g, 26.8 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(13.5 g, 97.3 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-13을 제조하였다. (9 g, 수율 53%, MS: [M+H]+= 701)
제조예 3-14: 화합물 2-14의 제조
Figure 112020044230010-pat00132
질소 분위기에서 중간체 2-14-1 (10.0 g, 24.3 mmol)와 중간체 2-14-2 (7.7 g, 26.8 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(13.5 g, 97.3 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-14를 제조하였다. (8.9 g, 수율 64%, MS: [M+H]+= 575)
제조예 3-15: 화합물 2-15의 제조
Figure 112020044230010-pat00133
질소 분위기에서 중간체 2-15-1 (10.0 g, 24.3 mmol)와 중간체 2-15-2 (9 g, 26.8 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(13.5 g, 97.3 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-15를 제조하였다. (8.4 g, 수율 55%, MS: [M+H]+= 625)
제조예 3-16: 화합물 2-16의 제조
Figure 112020044230010-pat00134
질소 분위기에서 중간체 2-16-1 (10.0 g, 24.3 mmol)와 중간체 2-16-2 (11.1 g, 26.8 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(13.5 g, 97.3 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-16을 제조하였다. (11.2 g, 수율 66%, MS: [M+H]+= 701)
제조예 3-17: 화합물 2-17의 제조
Figure 112020044230010-pat00135
질소 분위기에서 중간체 2-17-1 (10.0 g, 24.3 mmol)와 중간체 2-17-2 (10.1 g, 26.8 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(13.5 g, 97.3 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-17을 제조하였다. (10.0 g, 수율 62%, MS: [M+H]+= 665)
제조예 3-18: 화합물 2-18의 제조
Figure 112020044230010-pat00136
질소 분위기에서 중간체 2-18-1 (10.0 g, 24.3 mmol)와 중간체 2-18-2 (10.5 g, 26.8 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(13.5 g, 97.3 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-18을 제조하였다. (9.8 g, 수율 59%, MS: [M+H]+= 681)
제조예 3-19: 화합물 2-19의 제조
Figure 112020044230010-pat00137
질소 분위기에서 중간체 2-19-1 (10.0 g, 24.3 mmol)와 중간체 2-19-2 (10.5 g, 26.8 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(13.5 g, 97.3 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-19를 제조하였다. (11.4 g, 수율 69%, MS: [M+H]+= 681)
제조예 3-20: 화합물 2-20의 제조
Figure 112020044230010-pat00138
질소 분위기에서 중간체 2-20-1 (10.0 g, 23.4 mmol)와 중간체 2-20-2 (9.4 g, 25.8 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(12.9 g, 93.7 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-20을 제조하였다. (9 g, 수율 58%, MS: [M+H]+= 667)
제조예 3-21: 화합물 2-21의 제조
Figure 112020044230010-pat00139
질소 분위기에서 중간체 2-21-1 (10.0 g, 23.4 mmol)와 중간체 2-21-2 (10.6 g, 25.8 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(12.9 g, 93.7 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-21을 제조하였다. (10.7 g, 수율 64%, MS: [M+H]+= 717)
제조예 3-22: 화합물 2-22의 제조
Figure 112020044230010-pat00140
질소 분위기에서 중간체 2-22-1 (10.0 g, 23.4 mmol)와 중간체 2-22-2 (11.3 g, 25.8 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(12.9 g, 93.7 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-22를 제조하였다. (9 g, 수율 52%, MS: [M+H]+= 743)
제조예 3-23: 화합물 2-23의 제조
Figure 112020044230010-pat00141
질소 분위기에서 중간체 2-23-1 (10.0 g, 23.4 mmol)와 중간체 2-23-2 (10.1 g, 25.8 mmol)를 THF(200 ml)에 넣어 교반하고, 포타슘 카보네이트(12.9 g, 93.7 mmol)를 물에 녹여 투입하고, 충분히 교반 및 환류하였다. 이후, 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카겔 컬럼크로마토그래피로 정제하여 화합물 2-23을 제조하였다. (9.1 g, 수율 56%, MS: [M+H]+= 697)
실시예 1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척했다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용했다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행했다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 HI-1 화합물을 1150Å의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 p-doping 했다. 상기 정공주입층 위에 하기 HT-1 화합물을 진공 증착하여 막 두께 800Å의 정공수송층을 형성했다. 이어서, 상기 정공수송층 위에 막 두께 150Å으로 하기 EB-1 화합물을 진공 증착하여 전자억제층을 형성했다. 이어서, 상기 EB-1 증착막 위에 호스트 물질로 상기 제조예 2-1에서 제조된 화합물 1, 상기 제조예 3-1에서 제조된 화합물 2-1을 1:1의 중량비로 공증착하고 도판트 Dp-7 화합물을 98:2(호스트:도판트)의 중량비로 진공 증착하여 400Å 두께의 적색 발광층을 형성했다. 상기 발광층 위에 막 두께 30Å으로 하기 HB-1 화합물을 진공 증착하여 정공 저지층을 형성했다. 이어서, 상기 정공저지층 위에 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 300Å의 두께로 전자 주입 및 수송층을 형성했다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성했다.
Figure 112020044230010-pat00142
상기의 과정에서 유기물의 증착 속도는 0.4~0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2ⅹ10-7 ~ 5ⅹ10-6 torr를 유지하여, 유기 발광 소자를 제작했다.
실시예 2 내지 88 및 비교예 1 내지 56
실시예 1의 유기 발광 소자에서 사용된 화합물 1 및 화합물 2-1 대신 하기 표 1 내지 5에 각각 기재된 제 1 호스트 및 제 2 호스트를 1:1로 공증착하여 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조했다.
이때, 비교예 1 내지 56에서 사용된 화합물 C-1 내지 C-14는 하기와 같다.
Figure 112020044230010-pat00143
상기 실시예 및 비교예에서 유기 발광 소자를 10 mA/cm2의 전류 밀도에서 전압과 효율을 측정하였고, 50 mA/cm2의 전류 밀도에서 수명을 측정하여 그 결과를 하기 표 1 내지 5에 나타내었다. 이때, T95는 초기 휘도 대비 95%가 되는 시간(hr)을 의미한다.
구분 제1호스트 제2호스트 구동전압
(V)
효율(cd/A) 수명 T95(hr) 발광색
실시예 1 화합물1 화합물2-1 3.86 21.5 208 적색
실시예 2 화합물2-2 3.88 21.2 213 적색
실시예 3 화합물2-8 3.87 21.1 197 적색
실시예 4 화합물2-19 3.86 21.4 213 적색
실시예 5 화합물2 화합물2-1 3.88 20.4 217 적색
실시예 6 화합물2-2 3.81 21.3 214 적색
실시예 7 화합물2-8 3.80 20.7 201 적색
실시예 8 화합물2-19 3.82 20.5 210 적색
실시예 8 화합물3 화합물2-1 3.58 22.4 238 적색
실시예 10 화합물2-2 3.52 22.8 242 적색
실시예 11 화합물2-8 3.54 22.9 237 적색
실시예 12 화합물2-19 3.56 23.4 251 적색
실시예 13 화합물4 화합물2-1 3.55 22.1 233 적색
실시예 14 화합물2-2 3.50 23.3 239 적색
실시예 15 화합물2-8 3.54 22.4 247 적색
실시예 16 화합물2-19 3.53 22.5 231 적색
실시예 17 화합물5 화합물2-1 3.55 24.1 233 적색
실시예 18 화합물2-2 3.51 24.3 247 적색
실시예 19 화합물2-8 3.50 23.8 252 적색
실시예 20 화합물2-19 3.58 23.6 243 적색
실시예 21 화합물6 화합물2-1 3.54 21.1 246 적색
실시예 22 화합물2-2 3.52 21.5 243 적색
실시예 23 화합물2-8 3.51 20.2 247 적색
실시예 24 화합물2-19 3.54 21.1 240 적색
실시예 25 화합물7 화합물2-1 3.69 20.3 221 적색
실시예 26 화합물2-2 3.62 21.2 223 적색
실시예 27 화합물2-8 3.61 21.7 213 적색
실시예 28 화합물2-19 3.65 20.8 224 적색
구분 제1호스트 제2호스트 구동전압
(V)
효율(cd/A) 수명 T95(hr) 발광색
실시예 29 화합물8 화합물2-5 3.52 22.9 241 적색
실시예 30 화합물2-6 3.55 23.1 256 적색
실시예 31 화합물2-13 3.52 22.9 240 적색
실시예 32 화합물2-20 3.56 23.4 259 적색
실시예 33 화합물9 화합물2-5 3.60 22.7 217 적색
실시예 34 화합물2-6 3.61 23.5 219 적색
실시예 35 화합물2-13 3.64 22.3 211 적색
실시예 36 화합물2-20 3.63 21.7 208 적색
실시예 37 화합물10 화합물2-5 3.64 21.1 211 적색
실시예 38 화합물2-6 3.61 20.8 203 적색
실시예 39 화합물2-13 3.67 20.7 198 적색
실시예 40 화합물2-20 3.60 21.3 204 적색
실시예 41 화합물11 화합물2-5 3.52 22.9 251 적색
실시예 42 화합물2-6 3.54 23.3 257 적색
실시예 43 화합물2-13 3.50 22.9 246 적색
실시예 44 화합물2-20 3.57 22.4 260 적색
실시예 45 화합물12 화합물2-5 3.56 23.1 238 적색
실시예 46 화합물2-6 3.54 23.3 221 적색
실시예 47 화합물2-13 3.60 22.9 229 적색
실시예 48 화합물2-20 3.55 22.4 231 적색
실시예 49 화합물13 화합물2-5 3.81 21.3 191 적색
실시예 50 화합물2-6 3.80 20.8 194 적색
실시예 51 화합물2-13 3.84 21.0 190 적색
실시예 52 화합물2-20 3.83 21.5 198 적색
실시예 53 화합물14 화합물2-5 3.86 20.9 194 적색
실시예 54 화합물2-6 3.88 21.1 196 적색
실시예 55 화합물2-13 3.86 20.7 190 적색
실시예 56 화합물2-20 3.85 20.9 195 적색
구분 제1호스트 제2호스트 구동전압
(V)
효율(cd/A) 수명 T95(hr) 발광색
실시예 57 화합물15 화합물2-5 3.91 20.0 198 적색
실시예 58 화합물2-6 3.90 20.5 197 적색
실시예 59 화합물2-13 3.88 20.3 203 적색
실시예 60 화합물2-20 3.90 20.7 195 적색
실시예 61 화합물16 화합물2-3 3.60 21.8 200 적색
실시예 62 화합물2-4 3.61 21.1 191 적색
실시예 63 화합물2-14 3.64 21.4 198 적색
실시예 64 화합물2-21 3.62 21.2 205 적색
실시예 65 화합물17 화합물2-3 3.67 21.8 208 적색
실시예 66 화합물2-4 3.68 21.1 203 적색
실시예 67 화합물2-14 3.71 21.4 198 적색
실시예 68 화합물2-21 3.69 21.2 210 적색
실시예 69 화합물18 화합물2-3 3.59 22.3 234 적색
실시예 70 화합물2-4 3.57 22.5 221 적색
실시예 71 화합물2-14 3.58 22.2 224 적색
실시예 72 화합물2-21 3.57 22.0 228 적색
실시예 73 화합물19 화합물2-3 3.87 20.7 195 적색
실시예 74 화합물2-4 3.88 20.1 183 적색
실시예 75 화합물2-14 3.88 20.6 201 적색
실시예 76 화합물2-21 3.91 19.8 199 적색
실시예 77 화합물20 화합물2-3 3.57 22.1 205 적색
실시예 78 화합물2-4 3.60 21.9 191 적색
실시예 79 화합물2-14 3.59 21.8 208 적색
실시예 80 화합물2-21 3.61 22.0 214 적색
실시예 81 화합물21 화합물2-3 3.51 22.9 257 적색
실시예 82 화합물2-4 3.53 23.1 242 적색
실시예 83 화합물2-14 3.52 23.4 263 적색
실시예 84 화합물2-21 3.55 23.8 254 적색
실시예 85 화합물22 화합물2-3 3.78 20.1 210 적색
실시예 86 화합물2-4 3.82 20.4 204 적색
실시예 87 화합물2-14 3.86 20.6 208 적색
실시예 88 화합물2-21 3.83 20.2 200 적색
구분 제1호스트 제2호스트 구동전압
(V)
효율(cd/A) 수명 T95(hr) 발광색
비교예 1 화합물C-1 화합물2-1 4.25 14.1 131 적색
비교예 2 화합물2-2 4.24 14.3 133 적색
비교예 3 화합물2-8 4.22 15.8 137 적색
비교예 4 화합물2-19 4.23 15.5 132 적색
비교예 5 화합물C-2 화합물2-1 4.20 15.0 164 적색
비교예 6 화합물2-2 4.22 15.7 163 적색
비교예 7 화합물2-8 4.25 15.2 174 적색
비교예 8 화합물2-19 4.21 15.4 167 적색
비교예 9 화합물C-3 화합물2-1 4.21 16.2 158 적색
비교예 10 화합물2-2 4.23 15.8 167 적색
비교예 11 화합물2-8 4.22 15.4 151 적색
비교예 12 화합물2-19 4.08 15.0 154 적색
비교예 13 화합물C-4 화합물2-1 4.05 15.8 105 적색
비교예 14 화합물2-2 4.04 15.5 103 적색
비교예 15 화합물2-8 4.17 15.2 111 적색
비교예 16 화합물2-19 4.10 14.3 109 적색
비교예 17 화합물C-5 화합물2-9 4.23 15.0 128 적색
비교예 18 화합물2-10 4.10 13.8 123 적색
비교예 19 화합물2-12 4.17 15.1 120 적색
비교예 20 화합물2-16 4.12 14.5 111 적색
비교예 21 화합물C-6 화합물2-9 4.20 15.1 116 적색
비교예 22 화합물2-10 4.25 15.4 120 적색
비교예 23 화합물2-12 4.21 15.3 127 적색
비교예 24 화합물2-16 4.18 14.0 104 적색
비교예 25 화합물C-7 화합물2-5 4.12 13.6 139 적색
비교예 26 화합물2-6 4.25 14.1 131 적색
비교예 27 화합물2-13 4.13 15.5 135 적색
비교예 28 화합물2-20 4.17 13.4 128 적색
구분 제1호스트 제2호스트 구동전압
(V)
효율(cd/A) 수명 T95(hr) 발광색
비교예 29 화합물C-8 화합물2-5 4.05 14.0 120 적색
비교예 30 화합물2-6 4.03 13.4 128 적색
비교예 31 화합물2-13 4.08 13.1 121 적색
비교예 32 화합물2-20 4.09 14.2 119 적색
비교예 33 화합물C-9 화합물2-5 4.11 13.5 117 적색
비교예 34 화합물2-6 4.13 15.9 119 적색
비교예 35 화합물2-13 4.15 15.3 117 적색
비교예 36 화합물2-20 4.14 14.5 110 적색
비교예 37 화합물C-10 화합물2-5 4.06 15.3 127 적색
비교예 38 화합물2-6 4.09 16.0 131 적색
비교예 39 화합물2-13 4.05 16.4 128 적색
비교예 40 화합물2-20 4.02 16.1 120 적색
비교예 41 화합물C-11 화합물2-5 4.11 16.0 121 적색
비교예 42 화합물2-6 4.18 16.1 127 적색
비교예 43 화합물2-13 4.21 17.3 138 적색
비교예 44 화합물2-20 4.18 16.0 121 적색
비교예 45 화합물C-12 화합물2-3 4.10 16.2 131 적색
비교예 46 화합물2-4 4.11 15.5 129 적색
비교예 47 화합물2-14 4.10 16.8 124 적색
비교예 48 화합물2-21 4.14 15.9 136 적색
비교예 49 화합물C-13 화합물2-3 4.25 15.8 105 적색
비교예 50 화합물2-4 4.24 15.5 103 적색
비교예 51 화합물2-14 4.27 15.2 101 적색
비교예 52 화합물2-21 4.20 14.3 118 적색
비교예 53 화합물C-14 화합물2-3 4.23 15.0 108 적색
비교예 54 화합물2-4 4.20 13.8 93 적색
비교예 55 화합물2-14 4.27 15.1 100 적색
비교예 56 화합물2-21 4.22 14.5 101 적색
상기 표 1 내지 5를 참고하면, 실시예 1은 전자억제층으로 상기 EB-1을 사용하고, 적색 발광층으로 상기 화학식 1의 화합물, 상기 화학식 2의 화합물 및 도판트는 Dp-7를 사용하여, 비교예의 유기 발광 소자에 비해 구동 전압이 낮고 효율과 수명이 높다는 점을 확인했다. 이로부터, 제 1 호스트인 상기 화학식 1의 화합물과 제 2 호스트인 상기 화학식 2의 화합물의 조합을 사용하는 경우, 적색 발광층 내의 적색 도판트로의 에너지 전달이 잘 이루어져, 유기 발광 소자의 효율 및 수명이 효과적으로 상승하게 됨을 예측할 수 있다. 나아가, 실시예가 비교예에 비해 전자와 정공에 대한 안정도가 높다는 점을 예측할 수 있으며, 또한, 제 2 호스트를 사용함에 따라 정공의 양이 많아지면서 적색 발광층 내에 전자와 정공이 더 안정적인 균형을 유지하게 되고, 이에 따라 효율과 수명이 더욱 상승한다는 점을 예측할 수 있다. 즉, 상기 화학식 1의 화합물과 상기 화학식 2의 화합물을 공증착하여 적색 발광층의 호스트로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있다는 점을 확인하였다.
1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 전자억제층 8: 정공저지층
9: 전자 주입 및 수송층

Claims (14)

  1. 양극; 상기 양극과 대향하여 구비된 음극; 및 상기 양극과 음극 사이에 구비된 1 층 이상의 유기물층을 포함하는 유기 발광 소자로서,
    상기 유기물층은 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하는, 유기 발광 소자:
    [화학식 1]
    Figure 112020044230010-pat00144

    상기 화학식 1에서,
    X1 내지 X3은 각각 독립적으로 N 또는 CR5이되, 적어도 어느 하나는 N이고,
    Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴; 혹은 치환 또는 비치환된 O, N, Si 및 S 중 1개 이상을 포함하는 탄소수 2 내지 60의 헤테로아릴이고,
    R1 내지 R5는 각각 독립적으로 수소; 중수소; 할로겐; 히드록시; 니트릴; 니트로; 아미노; 치환 또는 비치환된 탄소수 2 내지 60의 알킬; 치환 또는 비치환된 2 내지 60의 알콕시; 치환 또는 비치환된 2 내지 60의 알케닐; 치환 또는 비치환된 6 내지 60의 아릴; 치환 또는 비치환된 O, N, Si 및 S 중 1개 이상을 포함하는 탄소수 2 내지 60의 헤테로아릴이거나, R1 내지 R3은 서로 인접하는 기와 결합하여 축합 고리 형성하고,
    A 및 B 중 하나는 하기 화학식 1-1로 표시되는 치환기이고, 나머지 하나는 수소 또는 중수소이고,
    [화학식 1-1]
    Figure 112020044230010-pat00145

    상기 화학식 1-1에서,
    R6 내지 R10은 각각 독립적으로 수소; 중수소; 할로겐; 히드록시; 니트릴; 니트로; 아미노; 치환 또는 비치환된 탄소수 2 내지 60의 알킬; 치환 또는 비치환된 2 내지 60의 알콕시; 치환 또는 비치환된 2 내지 60의 알케닐; 치환 또는 비치환된 6 내지 60의 아릴; 치환 또는 비치환된 O, N, Si 및 S 중 1개 이상을 포함하는 탄소수 2 내지 60의 헤테로아릴이거나, R6 내지 R9는 서로 인접하는 기와 결합하여 축합 고리 형성하고,
    a는 1 내지 6의 정수이고,
    [화학식 2]
    Figure 112020044230010-pat00146

    상기 화학식 2에서,
    Ar3 및 Ar4는 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 60의 아릴; 혹은 치환 또는 비치환된 O, N, Si 및 S 중 1개 이상을 포함하는 탄소수 2 내지 60의 헤테로아릴이고,
    L1 및 L2는 각각 독립적으로 단일 결합; 혹은 치환 또는 비치환된 탄소수 6 내지 60의 아릴렌이고,
    R11 내지 R14는 각각 독립적으로 수소; 중수소; 할로겐; 히드록시; 니트릴; 니트로; 아미노; 치환 또는 비치환된 탄소수 2 내지 60의 알킬; 치환 또는 비치환된 2 내지 60의 알콕시; 치환 또는 비치환된 2 내지 60의 알케닐; 치환 또는 비치환된 6 내지 60의 아릴; 혹은 치환 또는 비치환된 O, N, Si 및 S 중 1개 이상을 포함하는 탄소수 2 내지 60의 헤테로아릴이고,
    b 및 e는 각각 독립적으로 1 내지 4의 정수이고
    c 및 d는 각각 독립적으로 1 내지 3의 정수이다.
  2. 제1항에 있어서,
    상기 화학식 1은 하기 화학식 1-A, 1-B 및 1-C로 표시되는 화합물 중에서 선택되는 어느 하나인, 유기 발광 소자:
    Figure 112020044230010-pat00147

    상기 화학식 1-A, 1-B 및 1-C 에서,
    X1, X2, X3, Ar1, Ar2, A 및 B에 대한 설명은 제1항에서 정의된 바와 같다.
  3. 제1항에 있어서,
    X1 내지 X3은 모두 N인, 유기 발광 소자.
  4. 제1항에 있어서,
    Ar1 및 Ar2는 각각 독립적으로 하기로 구성되는 군으로부터 선택되는 어느 하나인, 유기 발광 소자.
    Figure 112020044230010-pat00148

  5. 제 1 항에 있어서,
    상기 화학식 1-1은 하기 화합물로 구성되는 군으로부터 선택되는, 유기 발광 소자:
    Figure 112020044230010-pat00149

  6. 제 1 항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화합물로 구성되는 군으로부터 선택되는, 유기 발광 소자:
    Figure 112020044230010-pat00150

    Figure 112020044230010-pat00151

    Figure 112020044230010-pat00152

    Figure 112020044230010-pat00153

    Figure 112020044230010-pat00154

    Figure 112020044230010-pat00155

    Figure 112020044230010-pat00156

    Figure 112020044230010-pat00157

    Figure 112020044230010-pat00158
    .
  7. 제 1 항에 있어서,
    상기 화학식 2로 표시되는 화합물은 하기 화학식 2-1로 표시되는 화합물인, 유기 발광 소자:
    [화학식 2-1]
    Figure 112020044230010-pat00159

    상기 화학식 2-1에서,
    Ar3, Ar4, L1 및 L2 에 대한 설명은 제1항에서 정의된 바와 같다.
  8. 제1항에 있어서,
    Ar3 및 Ar4는 각각 독립적으로 아래로 구성되는 군으로부터 선택되는 어느 하나인, 유기 발광 소자:
    Figure 112020044230010-pat00160

  9. 제1항에 있어서,
    L1 및 L2는 각각 독립적으로 단일 결합 또는 하기로 구성되는 군으로부터 선택되는 어느 하나인, 유기 발광 소자:
    Figure 112020044230010-pat00161

  10. 제1항에 있어서,
    R11 내지 R14는 수소인, 유기 발광 소자.
  11. 제1항에 있어서,
    상기 화학식 2로 표시되는 화합물은 하기 화합물로 구성되는 군으로부터 선택되는, 유기 발광 소자:
    Figure 112020044230010-pat00162

    Figure 112020044230010-pat00163

    Figure 112020044230010-pat00164

    Figure 112020044230010-pat00165

    Figure 112020044230010-pat00166

    Figure 112020044230010-pat00167

    Figure 112020044230010-pat00168

    Figure 112020044230010-pat00169

    Figure 112020044230010-pat00170

    Figure 112020044230010-pat00171

    Figure 112020044230010-pat00172

    Figure 112020044230010-pat00173

    Figure 112020044230010-pat00174

    Figure 112020044230010-pat00175

    Figure 112020044230010-pat00176

    Figure 112020044230010-pat00177

    Figure 112020044230010-pat00178

    Figure 112020044230010-pat00179

  12. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물을 포함하는 유기물층은 발광층인, 유기 발광 소자.
  13. 제12항에 있어서,
    상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물은 발광층 내의 호스트 재료인, 유기 발광 소자.
  14. 제12항에 있어서
    상기 발광층은 도펀트 재료를 더 포함하는, 유기 발광 소자.
KR1020200052000A 2019-05-02 2020-04-29 유기 발광 소자 KR102322796B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021513458A JP7155477B2 (ja) 2019-05-02 2020-04-29 有機発光素子
TW109114400A TWI740477B (zh) 2019-05-02 2020-04-29 有機發光裝置
PCT/KR2020/005777 WO2020222569A1 (ko) 2019-05-02 2020-04-29 유기 발광 소자
US17/269,226 US20220109114A1 (en) 2019-05-02 2020-04-29 Organic light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190051622 2019-05-02
KR20190051622 2019-05-02

Publications (2)

Publication Number Publication Date
KR20200127886A KR20200127886A (ko) 2020-11-11
KR102322796B1 true KR102322796B1 (ko) 2021-11-08

Family

ID=73451671

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200052000A KR102322796B1 (ko) 2019-05-02 2020-04-29 유기 발광 소자

Country Status (4)

Country Link
EP (1) EP3832746A4 (ko)
KR (1) KR102322796B1 (ko)
CN (1) CN112640148B (ko)
TW (1) TWI740477B (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102228768B1 (ko) * 2019-09-27 2021-03-19 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20220089516A (ko) * 2020-12-21 2022-06-28 엘티소재주식회사 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조방법 및 유기물층용 조성물
WO2023125498A1 (zh) * 2021-12-27 2023-07-06 浙江光昊光电科技有限公司 一种有机化合物,包含其混合物,组合物,有机电子器件及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174679A1 (ko) * 2017-03-24 2018-09-27 희성소재(주) 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430549B1 (ko) 1999-01-27 2004-05-10 주식회사 엘지화학 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자 및 그의 제조 방법
JP2006339122A (ja) * 2005-06-06 2006-12-14 Toyota Industries Corp 有機エレクトロルミネッセンス素子を利用した発光装置
KR101744248B1 (ko) * 2016-09-06 2017-06-07 주식회사 엘지화학 유기발광 소자
KR101885898B1 (ko) * 2016-11-16 2018-08-06 주식회사 엘지화학 유기 발광 소자
WO2018174681A1 (ko) * 2017-03-24 2018-09-27 희성소재(주) 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
KR101856728B1 (ko) * 2017-08-10 2018-05-10 주식회사 엘지화학 유기 발광 소자
KR102038031B1 (ko) * 2017-09-15 2019-10-30 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
CN109535138B (zh) * 2017-09-22 2021-03-12 北京绿人科技有限责任公司 含氘代苯基的三嗪化合物及其应用和有机电致发光器件
KR102101354B1 (ko) * 2018-10-02 2020-04-17 엘티소재주식회사 헤테로고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174679A1 (ko) * 2017-03-24 2018-09-27 희성소재(주) 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물

Also Published As

Publication number Publication date
KR20200127886A (ko) 2020-11-11
EP3832746A4 (en) 2021-12-08
TW202041651A (zh) 2020-11-16
EP3832746A1 (en) 2021-06-09
TWI740477B (zh) 2021-09-21
CN112640148B (zh) 2024-02-06
CN112640148A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
KR102263104B1 (ko) 유기 발광 소자
KR102322796B1 (ko) 유기 발광 소자
KR102523030B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR102322795B1 (ko) 유기 발광 소자
JP7155477B2 (ja) 有機発光素子
KR102032954B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
KR102311643B1 (ko) 유기 발광 소자
KR102361624B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102462985B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR102446406B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102360901B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR102413614B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR102578116B1 (ko) 유기 발광 소자
KR102427161B1 (ko) 유기 발광 소자
KR102361623B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102415264B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102419609B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR20190096228A (ko) 유기 발광 소자
KR102648796B1 (ko) 유기 발광 소자
KR102459859B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR102591471B1 (ko) 유기 발광 소자
KR102462986B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR20220052289A (ko) 유기 발광 소자
KR20210156260A (ko) 유기 발광 소자
KR20210104602A (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant