KR102316876B1 - 윤곽이 드러난 도핑을 가지는 반도체 웨이퍼 및 웨이퍼들의 제조 방법과, 드리프트 표면 및 백면과 같은 윤곽이 드러난 필드를 가지는 태양전지 성분들의 제조 방법 - Google Patents
윤곽이 드러난 도핑을 가지는 반도체 웨이퍼 및 웨이퍼들의 제조 방법과, 드리프트 표면 및 백면과 같은 윤곽이 드러난 필드를 가지는 태양전지 성분들의 제조 방법 Download PDFInfo
- Publication number
- KR102316876B1 KR102316876B1 KR1020177023916A KR20177023916A KR102316876B1 KR 102316876 B1 KR102316876 B1 KR 102316876B1 KR 1020177023916 A KR1020177023916 A KR 1020177023916A KR 20177023916 A KR20177023916 A KR 20177023916A KR 102316876 B1 KR102316876 B1 KR 102316876B1
- Authority
- KR
- South Korea
- Prior art keywords
- dopant
- wafer
- delete delete
- concentration
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- H01L31/18—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
- C30B11/002—Crucibles or containers for supporting the melt
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B19/00—Liquid-phase epitaxial-layer growth
- C30B19/12—Liquid-phase epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B28/00—Production of homogeneous polycrystalline material with defined structure
- C30B28/04—Production of homogeneous polycrystalline material with defined structure from liquids
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B31/00—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
- C30B31/02—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion materials in the solid state
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B31/00—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
- C30B31/04—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion materials in the liquid state
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B35/00—Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
- C30B35/002—Crucibles or containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
-
- H01L31/02167—
-
- H01L31/0288—
-
- H01L31/03046—
-
- H01L31/048—
-
- H01L31/06—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/14—Photovoltaic cells having only PN homojunction potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/80—Encapsulations or containers for integrated devices, or assemblies of multiple devices, having photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
- H10F71/1221—The active layers comprising only Group IV materials comprising polycrystalline silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
- H10F77/122—Active materials comprising only Group IV materials
- H10F77/1223—Active materials comprising only Group IV materials characterised by the dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
- H10F77/124—Active materials comprising only Group III-V materials, e.g. GaAs
- H10F77/1248—Active materials comprising only Group III-V materials, e.g. GaAs having three or more elements, e.g. GaAlAs, InGaAs or InGaAsP
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/40—Optical elements or arrangements
- H10F77/42—Optical elements or arrangements directly associated or integrated with photovoltaic cells, e.g. light-reflecting means or light-concentrating means
- H10F77/48—Back surface reflectors [BSR]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/546—Polycrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Photovoltaic Devices (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Silicon Compounds (AREA)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562107711P | 2015-01-26 | 2015-01-26 | |
| US62/107,711 | 2015-01-26 | ||
| US201562239115P | 2015-10-08 | 2015-10-08 | |
| US62/239,115 | 2015-10-08 | ||
| PCT/US2015/055460 WO2016122731A1 (en) | 2015-01-26 | 2015-10-14 | Method for creating a semiconductor wafer having profiled doping and wafers and solar cell components having a profiled field, such as drift and back surface |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20170108107A KR20170108107A (ko) | 2017-09-26 |
| KR102316876B1 true KR102316876B1 (ko) | 2021-10-22 |
Family
ID=56544124
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020177023916A Expired - Fee Related KR102316876B1 (ko) | 2015-01-26 | 2015-10-14 | 윤곽이 드러난 도핑을 가지는 반도체 웨이퍼 및 웨이퍼들의 제조 방법과, 드리프트 표면 및 백면과 같은 윤곽이 드러난 필드를 가지는 태양전지 성분들의 제조 방법 |
Country Status (14)
| Country | Link |
|---|---|
| US (2) | US10439095B2 (enExample) |
| EP (1) | EP3251146B1 (enExample) |
| JP (1) | JP6805155B2 (enExample) |
| KR (1) | KR102316876B1 (enExample) |
| CN (1) | CN107408490B (enExample) |
| ES (1) | ES2852725T3 (enExample) |
| HK (1) | HK1243548A1 (enExample) |
| MX (1) | MX391975B (enExample) |
| MY (2) | MY205282A (enExample) |
| PH (1) | PH12017501266B1 (enExample) |
| SA (1) | SA517381945B1 (enExample) |
| SG (1) | SG11201705410PA (enExample) |
| TW (1) | TWI704696B (enExample) |
| WO (1) | WO2016122731A1 (enExample) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102098705B1 (ko) | 2018-07-16 | 2020-04-08 | 한국에너지기술연구원 | P형 및 n형 공존 웨이퍼 제조방법, 이에 의해 제조된 p형 및 n형 공존 웨이퍼, p형 및 n형 공존 웨이퍼를 이용한 태양전지 제조방법 및 이에 의해 제조된 태양전지 |
| KR102477355B1 (ko) | 2018-10-23 | 2022-12-15 | 삼성전자주식회사 | 캐리어 기판 및 이를 이용한 기판 처리 장치 |
| US11585010B2 (en) | 2019-06-28 | 2023-02-21 | Globalwafers Co., Ltd. | Methods for producing a single crystal silicon ingot using boric acid as a dopant and ingot puller apparatus that use a solid-phase dopant |
| DE102019008927B4 (de) * | 2019-12-20 | 2024-04-11 | Azur Space Solar Power Gmbh | Gasphasenepitaxieverfahren |
| IL309370B2 (en) | 2021-06-16 | 2025-07-01 | Conti Spe Llc | Mechanically stacked solar transmissive cells or modules |
| CN116632093A (zh) * | 2023-04-21 | 2023-08-22 | 晶科能源(海宁)有限公司 | 太阳能电池及其制备方法、光伏组件 |
| US12414402B1 (en) | 2025-01-03 | 2025-09-09 | Conti Innovation Center, Llc | Optimizing cadmium (CD) alloy solar cells with sputtered copper-dopped zinc telluride (ZNTE:CU) back contacts in the presence of hydrogen |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006310373A (ja) | 2005-04-26 | 2006-11-09 | Shin Etsu Handotai Co Ltd | 太陽電池の製造方法及び太陽電池並びに半導体装置の製造方法 |
| US20080220544A1 (en) * | 2007-03-10 | 2008-09-11 | Bucher Charles E | Method for utilizing heavily doped silicon feedstock to produce substrates for photovoltaic applications by dopant compensation during crystal growth |
| US20130157401A1 (en) * | 2010-06-18 | 2013-06-20 | Albert-Ludwigs-Universitat Freiburg | Method for producing a selective doping structure in a semiconductor substrate in order to produce a photovoltaic solar cell |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3616785B2 (ja) | 1996-09-19 | 2005-02-02 | キヤノン株式会社 | 太陽電池の製造方法 |
| NL1026377C2 (nl) * | 2004-06-10 | 2005-12-14 | Stichting Energie | Werkwijze voor het fabriceren van kristallijn-siliciumfolies. |
| US8106481B2 (en) * | 2004-09-03 | 2012-01-31 | Rao G R Mohan | Semiconductor devices with graded dopant regions |
| JP4467392B2 (ja) * | 2004-09-24 | 2010-05-26 | シャープ株式会社 | 結晶シートの製造方法 |
| US20090050204A1 (en) * | 2007-08-03 | 2009-02-26 | Illuminex Corporation. | Photovoltaic device using nanostructured material |
| US7928015B2 (en) | 2006-12-12 | 2011-04-19 | Palo Alto Research Center Incorporated | Solar cell fabrication using extruded dopant-bearing materials |
| US20090092745A1 (en) * | 2007-10-05 | 2009-04-09 | Luca Pavani | Dopant material for manufacturing solar cells |
| WO2010091466A1 (en) * | 2009-02-11 | 2010-08-19 | Newsouth Innovations Pty Limited | Photovoltaic device structure and method |
| US8404970B2 (en) | 2009-05-01 | 2013-03-26 | Silicor Materials Inc. | Bifacial solar cells with back surface doping |
| JP2013015740A (ja) | 2011-07-06 | 2013-01-24 | Japan Display East Co Ltd | 液晶表示装置 |
| JP2013105602A (ja) | 2011-11-11 | 2013-05-30 | Hitachi Ltd | 燃料電池スタック及び燃料電池システム |
| TW201331991A (zh) * | 2012-01-10 | 2013-08-01 | Hitachi Chemical Co Ltd | n型擴散層形成組成物、n型擴散層形成組成物套組、帶有n型擴散層的半導體基板的製造方法以及太陽電池元件的製造方法 |
| WO2013142892A1 (en) * | 2012-03-29 | 2013-10-03 | Newsouth Innovations Pty Limited | Formation of localised molten regions in silicon containing multiple impurity types |
| US9306087B2 (en) * | 2012-09-04 | 2016-04-05 | E I Du Pont De Nemours And Company | Method for manufacturing a photovoltaic cell with a locally diffused rear side |
-
2015
- 2015-10-14 US US15/546,030 patent/US10439095B2/en active Active
- 2015-10-14 PH PH1/2017/501266A patent/PH12017501266B1/en unknown
- 2015-10-14 MY MYPI2021001772A patent/MY205282A/en unknown
- 2015-10-14 WO PCT/US2015/055460 patent/WO2016122731A1/en not_active Ceased
- 2015-10-14 MX MX2017008785A patent/MX391975B/es unknown
- 2015-10-14 KR KR1020177023916A patent/KR102316876B1/ko not_active Expired - Fee Related
- 2015-10-14 EP EP15880612.5A patent/EP3251146B1/en not_active Not-in-force
- 2015-10-14 SG SG11201705410PA patent/SG11201705410PA/en unknown
- 2015-10-14 MY MYPI2017001016A patent/MY186316A/en unknown
- 2015-10-14 ES ES15880612T patent/ES2852725T3/es active Active
- 2015-10-14 CN CN201580078308.0A patent/CN107408490B/zh not_active Expired - Fee Related
- 2015-10-14 HK HK18102773.9A patent/HK1243548A1/zh unknown
- 2015-10-14 JP JP2017538669A patent/JP6805155B2/ja not_active Expired - Fee Related
- 2015-11-19 TW TW104138228A patent/TWI704696B/zh not_active IP Right Cessation
-
2017
- 2017-07-19 SA SA517381945A patent/SA517381945B1/ar unknown
-
2019
- 2019-09-04 US US16/559,971 patent/US10770613B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006310373A (ja) | 2005-04-26 | 2006-11-09 | Shin Etsu Handotai Co Ltd | 太陽電池の製造方法及び太陽電池並びに半導体装置の製造方法 |
| US20080220544A1 (en) * | 2007-03-10 | 2008-09-11 | Bucher Charles E | Method for utilizing heavily doped silicon feedstock to produce substrates for photovoltaic applications by dopant compensation during crystal growth |
| US20130157401A1 (en) * | 2010-06-18 | 2013-06-20 | Albert-Ludwigs-Universitat Freiburg | Method for producing a selective doping structure in a semiconductor substrate in order to produce a photovoltaic solar cell |
Non-Patent Citations (1)
| Title |
|---|
| CONFERENCE RECORD OF THE 25TH, IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE 1996 Washington, DC, USA, p693-696 |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2018510493A (ja) | 2018-04-12 |
| MX2017008785A (es) | 2017-10-19 |
| JP6805155B2 (ja) | 2020-12-23 |
| US20190393375A1 (en) | 2019-12-26 |
| PH12017501266B1 (en) | 2022-11-04 |
| HK1243548A1 (zh) | 2018-07-13 |
| SA517381945B1 (ar) | 2021-01-25 |
| CN107408490B (zh) | 2021-05-25 |
| MY186316A (en) | 2021-07-08 |
| TWI704696B (zh) | 2020-09-11 |
| EP3251146B1 (en) | 2020-12-02 |
| EP3251146A1 (en) | 2017-12-06 |
| WO2016122731A1 (en) | 2016-08-04 |
| US20180019365A1 (en) | 2018-01-18 |
| MY205282A (en) | 2024-10-10 |
| PH12017501266A1 (en) | 2018-02-05 |
| US10439095B2 (en) | 2019-10-08 |
| MX391975B (es) | 2025-03-21 |
| TW201628211A (zh) | 2016-08-01 |
| US10770613B2 (en) | 2020-09-08 |
| EP3251146A4 (en) | 2018-12-19 |
| CN107408490A (zh) | 2017-11-28 |
| SG11201705410PA (en) | 2017-08-30 |
| ES2852725T3 (es) | 2021-09-14 |
| KR20170108107A (ko) | 2017-09-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102316876B1 (ko) | 윤곽이 드러난 도핑을 가지는 반도체 웨이퍼 및 웨이퍼들의 제조 방법과, 드리프트 표면 및 백면과 같은 윤곽이 드러난 필드를 가지는 태양전지 성분들의 제조 방법 | |
| CN117702269B (zh) | 一种高寿命硅片及硅片吸杂方法 | |
| Cuevas et al. | High minority carrier lifetime in phosphorus-gettered multicrystalline silicon | |
| US20130247981A1 (en) | Solar cell fabrication using a pre-doping dielectric layer | |
| US20150144186A1 (en) | Methods and Materials for the Improvement of Photovoltaic Device Performance | |
| EP1754264B1 (en) | Method for the production of crystalline silicon foils | |
| TW202120751A (zh) | 具有低氧濃度區之晶圓 | |
| Ciszek et al. | Si thin layer growth from metal solutions on single-crystal and cast metallurgical-grade multicrystalline Si substrates | |
| Wegrzecka et al. | Technology of silicon charged-particle detectors developed at the Institute of Electron Technology (ITE) | |
| JP2007137756A (ja) | 太陽電池用シリコン単結晶基板および太陽電池素子、並びにその製造方法 | |
| Tayanagi et al. | Improvement in the conversion efficiency of single-junction SiGe solar cells by intentional introduction of the compositional distribution | |
| MULTICRYSTALLINE | P. Geiger, P. Raue¹, G. Hahn, P. Fath, E. Bucher, E. Buhrig², HJ Möller¹ | |
| Minahan | Silicon Solar Cell Process, Development, Fabrication and Analysis | |
| Gamov et al. | Research of recombination characteristics of Cz-Si implanted with iron ions | |
| Park et al. | Uncooled GeSn MWIR Photodetectors Using Fully Relaxed Thin Triple‐Step Buffer | |
| Muehlbauer et al. | Al/Si back contact with improved resistivity and contact resistance by an optimized RTP temperature-time profile | |
| Pan et al. | Evaluation of crystalline silicon solar cells by current-modulating four-point-probe method | |
| Slaoui et al. | Rapid thermal dopants diffusion and surface passivation for silicon solar cells applications |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0105 | International application |
St.27 status event code: A-0-1-A10-A15-nap-PA0105 |
|
| E13-X000 | Pre-grant limitation requested |
St.27 status event code: A-2-3-E10-E13-lim-X000 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
| E13-X000 | Pre-grant limitation requested |
St.27 status event code: A-2-3-E10-E13-lim-X000 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| A302 | Request for accelerated examination | ||
| PA0302 | Request for accelerated examination |
St.27 status event code: A-1-2-D10-D17-exm-PA0302 St.27 status event code: A-1-2-D10-D16-exm-PA0302 |
|
| D13-X000 | Search requested |
St.27 status event code: A-1-2-D10-D13-srh-X000 |
|
| D14-X000 | Search report completed |
St.27 status event code: A-1-2-D10-D14-srh-X000 |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
| T11-X000 | Administrative time limit extension requested |
St.27 status event code: U-3-3-T10-T11-oth-X000 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
| PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U12-oth-PR1002 Fee payment year number: 1 |
|
| PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
| PC1903 | Unpaid annual fee |
St.27 status event code: A-4-4-U10-U13-oth-PC1903 Not in force date: 20241020 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
| PC1903 | Unpaid annual fee |
St.27 status event code: N-4-6-H10-H13-oth-PC1903 Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20241020 |