KR102280026B1 - 혼합 가스 공급 장치 - Google Patents
혼합 가스 공급 장치 Download PDFInfo
- Publication number
- KR102280026B1 KR102280026B1 KR1020197010718A KR20197010718A KR102280026B1 KR 102280026 B1 KR102280026 B1 KR 102280026B1 KR 1020197010718 A KR1020197010718 A KR 1020197010718A KR 20197010718 A KR20197010718 A KR 20197010718A KR 102280026 B1 KR102280026 B1 KR 102280026B1
- Authority
- KR
- South Korea
- Prior art keywords
- gas
- hydrogen
- gas supply
- nitrogen
- nitrogen gas
- Prior art date
Links
- 239000007789 gas Substances 0.000 claims abstract description 306
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 242
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 191
- 229910001873 dinitrogen Inorganic materials 0.000 claims abstract description 161
- 238000002156 mixing Methods 0.000 claims abstract description 134
- 239000001257 hydrogen Substances 0.000 claims description 69
- 229910052739 hydrogen Inorganic materials 0.000 claims description 69
- 238000007689 inspection Methods 0.000 claims description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 48
- 238000012360 testing method Methods 0.000 claims description 47
- 238000011144 upstream manufacturing Methods 0.000 claims description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 238000010790 dilution Methods 0.000 description 23
- 239000012895 dilution Substances 0.000 description 23
- 239000012528 membrane Substances 0.000 description 23
- 239000001307 helium Substances 0.000 description 13
- 229910052734 helium Inorganic materials 0.000 description 13
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 13
- 238000000926 separation method Methods 0.000 description 11
- 238000007865 diluting Methods 0.000 description 10
- 238000007726 management method Methods 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 239000008213 purified water Substances 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000004880 explosion Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
Images
Classifications
-
- B01F3/02—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/10—Mixing gases with gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/229—Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
-
- B01F15/04—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/10—Mixing gases with gases
- B01F23/19—Mixing systems, i.e. flow charts or diagrams; Arrangements, e.g. comprising controlling means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/10—Mixing gases with gases
- B01F23/19—Mixing systems, i.e. flow charts or diagrams; Arrangements, e.g. comprising controlling means
- B01F23/191—Mixing systems, i.e. flow charts or diagrams; Arrangements, e.g. comprising controlling means characterised by the construction of the controlling means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F31/00—Mixers with shaking, oscillating, or vibrating mechanisms
- B01F31/57—Mixers with shaking, oscillating, or vibrating mechanisms for material continuously moving therethrough
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/50—Movable or transportable mixing devices or plants
- B01F33/501—Movable mixing devices, i.e. readily shifted or displaced from one place to another, e.g. portable during use
- B01F33/5014—Movable mixing devices, i.e. readily shifted or displaced from one place to another, e.g. portable during use movable by human force, e.g. kitchen or table devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/80—Forming a predetermined ratio of the substances to be mixed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/80—Forming a predetermined ratio of the substances to be mixed
- B01F35/83—Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices
- B01F35/833—Flow control by valves, e.g. opening intermittently
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/70—Assemblies comprising two or more cells
- C25B9/73—Assemblies comprising two or more cells of the filter-press type
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
- G01M3/20—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/10—Nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/10—Single element gases other than halogens
- B01D2257/104—Oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2101/00—Mixing characterised by the nature of the mixed materials or by the application field
- B01F2101/23—Mixing of laboratory samples e.g. in preparation of analysing or testing properties of materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Accessories For Mixers (AREA)
- Examining Or Testing Airtightness (AREA)
Abstract
혼합 가스 공급 장치는, 수소 가스를 발생시키는 수소 가스 발생부와, 질소 가스를 발생시키는 질소 가스 발생부와, 상기 수소 가스 발생부로부터 유도된 수소 가스 및 상기 질소 가스 발생부로부터 유도된 질소 가스를 혼합하는 가스 혼합부를 갖는다. 상기 가스 혼합부는, 상기 가스 혼합부에서 혼합된 가스를 외부에 공급한다.
Description
본 발명은, 예를 들어 누설 검사(누설 테스트)에 있어서의 검사용 가스 등으로서 사용되는 혼합 가스를 공급하기 위한 장치에 관한 것이다.
본원은, 2016년 10월 17일에 출원된 일본 특허 출원 제2016-203695호 및 2017년 2월 28일에 출원된 일본 특허 출원 제2017-36830호에 기초하여 우선권을 주장하고, 그 내용을 여기에 원용한다.
각종 기체나 액체를 수용한 중공 부품, 혹은 기체나 액체를 이송하기 위한 배관 등에 대해서는, 충분한 기밀성이 요구되는 경우가 많다. 그래서 이들 부품이나 배관 등에 대해서는, 그 제조 공정의 최종 단계나 출하 단계, 혹은 사용 전의 단계 등에 있어서, 누설이 발생하는지 여부를 체크하기 위한 검사를 행하는 것이 통상이다. 이러한 종류의 누설 검사에서는, 검사 대상물(워크) 내에 검사용 가스를 도입하고, 검사 대상물의 외측에 있어서 가스 검지 장치에 의해 검사용 가스의 누출의 유무를 검출하는 것이 일반적이다.
이러한 누설 검사용 가스로서는, 일반적으로는 헬륨(He) 가스가 사용되고 있다. 단, 고가인 100% 헬륨 가스를 사용할 필요는 없다. 일반적으로는 공기 등의 희석용 가스를 고농도의 헬륨 가스에 혼합하여, 헬륨 가스 농도를 소정의 저농도로 희석한 희석 헬륨 가스를 누설 검사용 가스로서 사용하는 것이 일반적이다. 이러한 누설 검사용 가스의 공급 장치, 예를 들어 고농도의 헬륨 가스에 공기를 혼합하여 희석하고, 누설 검사 장치에 공급하기 위한 혼합 가스 공급 장치가, 이미 특허문헌 1에 의해 제안되어 있다.
각종 중공 부품 등에 대해 누설 검사를 행하는 공장 등의 누설 검사 현장에 있어서는, 헬륨 가스는, 상설 배관에 의해 어느 현장에나 즉시 공급할 수 있도록 되어 있지는 않은 것이 통상이다. 그 때문에, 특허문헌 1에 개시하고 있는 누설 검사용 혼합 가스 공급 장치에 헬륨 가스를 공급하기 위해서는, 그 공급원으로서 헬륨 가스 봄베를 사용하지 않을 수 없다.
이와 같이 헬륨 가스 공급원으로서 봄베를 사용하는 경우, 다음과 같은 문제가 있다.
즉, 봄베가 비면, 검사를 중단하고 봄베를 새로운 것으로 교환할 필요가 있다. 그러나 이러한 종류의 봄베는 중량이 커, 그 운반이나 설치에 다대한 노동력과 시간을 요한다. 물론 실제상은, 복수의 봄베를 누설 검사 현장에 준비해 두고, 하나의 봄베가 비었을 때에 다른 봄베로 전환하는 경우도 많다. 그 경우라도, 봄베를 누설 검사 현장으로 운반, 설치해야 하는 점에서는 동일한 문제가 있다.
또한 헬륨 가스 공급원으로서 봄베를 사용하는 경우, 누설 검사에는, 누설 검사를 행하는 현장뿐만 아니라 봄베 보관 개소도 관계된다. 이 때문에, 누설 검사에 있어서는, 검사 현장뿐만 아니라, 검사 현장으로부터 떨어진 봄베 보관 장소에서의 봄베의 관리도 필요하다. 따라서 관리를 위한 수고, 노동력도 무시할 수 없다.
또한, 헬륨 가스는 고가이며, 그 때문에 누설 검사에 요하는 비용도 한층 높아지지 않을 수 없다고 하는 문제도 있다.
전술한 바와 같은 누설 검사용 가스로서는, 희석 헬륨 가스 대신에, 수소 가스를 사용하는 것이 고려되고 있다. 수소 가스를 사용하는 경우는, 100% 수소 가스를 저장한 봄베를 구입하거나, 미리 가연성이 되지 않는 저농도로 희석된 저농도 수소 가스를 저장한 봄베를 구입해야 한다. 그러나 100% 수소 가스는 위험해서, 누설 검사 가스로서는 부적합하다. 한편, 저농도 수소 가스의 봄베는 고가이고, 또한 그다지 유통되고 있지 않으므로 입수에 시간이 걸린다고 하는 문제가 있다. 그 때문에, 누설 검사에 최적인 저농도 수소 가스를, 누설 검사의 현장에서 공급하기 위한 장치는, 아직 실용화되어 있지 않은 것이 실정이다.
본 발명은 이상의 사정을 배경으로 하여 이루어졌다. 본 발명의 목적의 일례는, 혼합되는 가스로서 수소 가스와 질소 가스를 사용함으로써, 가스원으로서의 고압 가스 봄베의 사용을 최대한 억제하여, 가스 봄베 사용에 의한 불이익을 최소한으로 억제하고, 동시에 러닝 코스트의 저감을 도모하도록 한, 혼합 가스 공급 장치를 제공하는 것이다.
본 발명의 실시 양태에 관한 혼합 가스 공급 장치는, 수소 가스를 발생시키는 수소 가스 발생부와, 질소 가스를 발생시키는 질소 가스 발생부와, 상기 수소 가스 발생부로부터 유도된 수소 가스 및 상기 질소 가스 발생부로부터 유도된 질소 가스를 혼합하는 가스 혼합부를 갖는다. 상기 가스 혼합부는, 상기 가스 혼합부에서 혼합된 가스를 외부에 공급한다.
본 발명의 실시 형태에 따르면, 가스 공급원으로서의 고압 가스 봄베의 사용을 최대한 억제하여, 가스 봄베 사용에 의한 불이익을 최소한으로 억제하고, 누설 검사 등에 있어서, 저비용화를 도모함과 함께, 작업의 효율화를 도모할 수 있다.
도 1은 본 발명의 제A1 실시 형태의 희석 수소 가스 생성 장치를 도시하는 블록도이다.
도 2는 제A1 실시 형태에서 사용되는 매스 플로우 컨트롤러의 일례를 원리적으로 도시하는 약해도이다.
도 3은 본 발명의 제A2 실시 형태의 희석 수소 가스 생성 장치를 도시하는 블록도이다.
도 4는 본 발명의 제B 실시 형태에 관한 혼합 가스 공급 장치의 플로우 구성을 원리적으로 도시하는 블록도이다.
도 5는 본 발명의 제B 실시 형태에 관한 혼합 가스 공급 장치의 입체적인 구조를 도시하는 사시도이다.
도 6은 본 발명의 제B 실시 형태에 관한 혼합 가스 공급 장치의 입체적인 구조를, 도 5에 대해 반대측으로부터 도시하는 사시도이다.
도 7은 본 발명의 제B 실시 형태에 관한 혼합 가스 공급 장치의 입체적인 구조에 대해, 그 하우징의 전방면을 절결한 상태에서 도시하는 절결 정면도이다.
도 8은 본 발명의 제B 실시 형태에 관한 혼합 가스 공급 장치의 입체적인 구조에 대해, 그 하우징의 후방면을 절결한 상태에서 도시하는 절결 배면도이다.
도 9는 본 발명의 제B 실시 형태에 관한 혼합 가스 공급 장치의 플로우 구성을 더 구체화한 예를 도시하는 블록도이다.
도 10은 본 발명의 제B 실시 형태에 관한 혼합 가스 공급 장치의 플로우 구성을 더 구체화한 다른 예를 도시하는 블록도이다.
도 2는 제A1 실시 형태에서 사용되는 매스 플로우 컨트롤러의 일례를 원리적으로 도시하는 약해도이다.
도 3은 본 발명의 제A2 실시 형태의 희석 수소 가스 생성 장치를 도시하는 블록도이다.
도 4는 본 발명의 제B 실시 형태에 관한 혼합 가스 공급 장치의 플로우 구성을 원리적으로 도시하는 블록도이다.
도 5는 본 발명의 제B 실시 형태에 관한 혼합 가스 공급 장치의 입체적인 구조를 도시하는 사시도이다.
도 6은 본 발명의 제B 실시 형태에 관한 혼합 가스 공급 장치의 입체적인 구조를, 도 5에 대해 반대측으로부터 도시하는 사시도이다.
도 7은 본 발명의 제B 실시 형태에 관한 혼합 가스 공급 장치의 입체적인 구조에 대해, 그 하우징의 전방면을 절결한 상태에서 도시하는 절결 정면도이다.
도 8은 본 발명의 제B 실시 형태에 관한 혼합 가스 공급 장치의 입체적인 구조에 대해, 그 하우징의 후방면을 절결한 상태에서 도시하는 절결 배면도이다.
도 9는 본 발명의 제B 실시 형태에 관한 혼합 가스 공급 장치의 플로우 구성을 더 구체화한 예를 도시하는 블록도이다.
도 10은 본 발명의 제B 실시 형태에 관한 혼합 가스 공급 장치의 플로우 구성을 더 구체화한 다른 예를 도시하는 블록도이다.
이하에, 본 발명의 실시 형태에 대해, 도면을 참조하여 상세하게 설명한다.
도 1에, 본 발명의 제A1 실시 형태의 희석 수소 가스 생성 장치(혼합 가스 공급 장치)를 도시한다. 제A1 실시 형태는, 일례로서, 고농도 수소 가스를 질소 가스에 의해 희석하여 누설 검사용 가스를 생성하는 경우를 나타내고 있다.
도 1에 도시하는 예에 있어서, 혼합 탱크(혼합부, 가스 혼합부)(121)에는, 수소 가스 공급 유로(수소 가스 배관)(122)를 거쳐, 고농도 수소 가스가 도입된다. 또한, 혼합 탱크(121)에는, 희석용 가스 공급 유로로서의 질소 가스 공급 유로(질소 가스 배관, 희석용 가스 공급 유로)(123)를 거쳐, 희석용 가스로서의 질소 가스가 도입된다. 혼합 탱크(121)는, 고농도 수소 가스와 질소 가스를 혼합한다(즉, 고농도 수소 가스를 질소 가스로 희석함). 혼합 탱크(121)는, 그 혼합 가스, 즉 질소 가스로 희석한 저농도 수소 가스를, 개폐 밸브(혼합 가스 공급 개폐 밸브)(124) 및 검사용 가스 배송관(혼합 가스 공급 포트)(125)을 통해 도시하지 않은 누설 검사 장치로 송출한다. 또한 이하에서는, 상기한 고농도 수소 가스를, 단순히 수소 가스라고 칭하기로 한다.
수소 가스 공급 유로(122)에는, 그 상류단의 수소 발생기(수소 가스 발생부)(126)로부터 혼합 탱크(121)를 향해, 감압 밸브(127A), 수소 가스용 매스 플로우 컨트롤러(제1 매스 플로우 컨트롤러)(128A), 수소 가스용 개폐 밸브(개폐 밸브)(129A)가 그 순서로 개재 삽입되어 있다. 질소 가스 공급 유로(123)에는, 그 상류단의 공기 펌프(130)로부터 혼합 탱크(121)를 향해, 감압 밸브(127B), 질소 가스 분리용 막 모듈(질소 가스 발생부, 필터, 질소 분리 장치)(131), 질소 가스용 매스 플로우 컨트롤러(제2 매스 플로우 컨트롤러)(128B), 질소 가스용 개폐 밸브(개폐 밸브)(129B)가 그 순서로 개재 삽입되어 있다.
혼합 탱크(121)에는, 압력계(132)가 접속되어 있다. 압력계(132)는, 혼합 탱크(111) 내의 압력을 상시 계측한다. 압력계(132)의 출력(혼합 탱크 내 압력 검출 신호)은, 시퀀서(133)로 보내진다. 이 시퀀서(133)는, 혼합 탱크 내 압력 검출 신호에 따라서 개폐 밸브(129A, 129B)의 개폐를 제어한다.
이러한 제A1 실시 형태에 있어서는, 공기 펌프(130)와, 막 모듈(131)이, 희석용 가스를 공급하기 위한 희석용 가스 공급원(35)을 구성하고 있다. 공기 펌프(130)는, 외부로부터 공기를 도입하여, 그 공기를 압력을 가하여 보낸다. 막 모듈(131)은, 공기로부터 질소 가스를 분리하는 질소 분리 장치로서 기능한다. 즉, 제A1 실시 형태에 있어서는, 희석용 가스 공급원으로서, 질소 가스 봄베를 사용하지 않는다. 그 대신에, 대기 중에서 공기를 도입하고, 그 공기로부터 분리된 질소 가스를 희석용 가스로서 사용한다.
제A1 실시 형태에 있어서, 매스 플로우 컨트롤러(128A, 128B)는 각각, 수소 가스 공급 유로(122), 질소 가스 공급 유로(123)에 개재 삽입되고, 유체(본 실시 형태에서는 수소 가스 혹은 질소 가스)의 질량 유량을 계측하여 유량 제어를 순시에 행하는 장치이다. 매스 플로우 컨트롤러(128A, 128B)는, 수소 가스 공급 유로(122)를 거쳐 혼합 탱크(121)로 유도되는 수소 가스 유량과 희석용 가스 공급원(질소 가스 발생부)(135)으로부터 혼합 탱크(121)를 향해 유도되는 희석용 가스 유량의 비를 제어하기 위한 가스 유량비 제어부(가스 유량비 제어 수단, 가스류 제어부)(136)를 구성하고 있다.
매스 플로우 컨트롤러(128A, 128B)로서는, 시판되고 있는 일반적인 매스 플로우 컨트롤러를 사용해도 된다. 대표적인 매스 플로우 컨트롤러의 예를 도 2에 원리적으로 도시하고, 그 개략을 다음에 설명한다.
매스 플로우 컨트롤러는, 기본적으로는, 이하와 같다. 유로(151)를 모세관으로 이루어지는 센서측 유로(151a)와 바이패스 유로(151b)로 분기시킨다. 이들 유로(151a, 151b)의 합류 개소(151c)보다 하류측에 유량 제어 밸브(152)를 설치한다. 센서측 유로(151a)를 통과하는 유체의 질량 유량을 유량 센서(153)에 의해 계측한다. 그 계측 결과에 기초하여, 유량 제어 밸브(152)의 개방도가 제어된다. 구체적으로는, 유량 센서(153)는, 센서측 유로(151a)의 상류측과 하류측에 각각 저항체(154a, 154b)를 감고, 그 저항체(154a, 154b)를 브리지 회로(155)에 내장함으로써 구성된다. 브리지 회로(155)의 출력을, 증폭 회로(156)에 의해 증폭하고, 보정 회로(157)를 거쳐 비교 제어 회로(158)에 유량 계측 신호(S1)로서 부여한다. 그 유량 계측 신호(S1)를 외부로부터의 유량 설정 신호(S2)와 비교하여, 그 차 신호(S3)를 밸브 구동 회로(159)에 부여한다. 밸브 구동 회로(159)는, 차 신호(S3)에 따라서, 솔레노이드 방식 혹은 피에조 방식의 밸브 액추에이터(160)를 구동시켜, 유량 제어 밸브(152)의 개방도를 제어한다.
상기한 센서측 유로(151a)를 유체가 통과할 때에는, 상류측과 하류측의 저항체(154a, 154b)에 온도 차가 발생한다. 그 온도 차에 의해 저항체(154a, 154b)의 전기 저항에 차가 발생한다. 그 차 출력에 의해, 센서측 유로(151a)를 통과하는 유체의 질량 유량에 대응하는 유량 계측 신호(S1)가 얻어진다. 이러한 원리를 사용하여, 매스 플로우 컨트롤러는, 유로(151)를 흐르는 유체의 질량 유량이, 유량 설정 신호(S2)에 의해 설정한 유량이 되도록, 유량 제어 밸브(158)에 의해 즉시, 또한 정확하게 제어할 수 있다.
도 1에 도시하는 제A1 실시 형태에서는, 이러한 매스 플로우 컨트롤러를 수소 가스 공급 유로(122), 질소 가스 공급 유로(123) 각각에, 수소 가스용, 질소 가스용 매스 플로우 컨트롤러(128A, 128B)로서 개재 삽입하여, 각각의 유량을 설정한다. 그 결과, 수소 가스 공급 유로(122)를 흐르는 수소 가스의 유량과 질소 가스 공급 유로(123)를 흐르는 질소 가스의 유량의 비를 제어할 수 있다.
이상과 같은 도 1에 도시되는 제A1 실시 형태에 있어서의 전체적인 기능을 다음에 설명한다.
미리, 혼합 탱크(121)로부터 도시하지 않은 누설 검사 장치에 있어서 검사용 가스로서 사용하는 희석 수소 가스의 수소 농도를 정해 둔다. 누설 검사용 가스에 있어서의 수소 농도는 특별히 한정되지 않는다. 검사용 가스의 수소 농도는, 누설 검사의 양태나 검사 대상물의 형상, 혹은 누설 가스 검출 정밀도 등에 따라서 적절하게 선정 가능하다. 검사용 가스의 수소 농도는, 일반적으로는 1% 내지 20%의 범위 내가 바람직하고, 더 바람직하게는, 1 내지 5%의 범위 내이다. 검사 대상물을 진공 챔버 내에 배치하지 않고, 외부 공간에 있어서 직접 대상물의 누설 검사를 행하는 경우, 누설이 있으면, 누설된 수소가 대기 중으로 직접 방출된다. 이 때문에, 검사용 가스의 수소 농도는, 안전을 위해 비교적 낮은 농도, 예를 들어 5% 이하로 하는 것이 바람직하다. 이하의 설명에서는, 대표적인 예로서, 수소 농도가 5%인 희석 수소 가스를 생성하는 경우에 대해 설명한다.
도 1에 도시하는 제A1 실시 형태의 장치에 있어서는, 미리, 수소 가스용 매스 플로우 컨트롤러(제1 매스 플로우 컨트롤러)(128A)의 출구측 유량과, 질소 가스용 매스 플로우 컨트롤러(제2 매스 플로우 컨트롤러)(128B)의 출구측 유량의 비가, 검사용 가스의 혼합비(예를 들어 5:95)가 되도록 설정해 둔다.
누설 검사 시에는, 혼합 탱크(121)에 수용된 검사용 가스(수소 농도가 5%가 되도록 질소에 의해 희석된 가스)가, 개폐 밸브(124) 및 검사용 가스 배송관(125)을 통해 도시하지 않은 누설 검사 장치에 연속적으로 공급된다. 그 동안, 압력계(132)에 의해 혼합 탱크(121) 내의 압력이 계측되고, 그 압력 계측 신호는, 시퀀서(133)로 보내진다. 혼합 탱크(121) 내의 압력이 미리 정한 압력 이하로 저하되었을 때, 개폐 밸브(129A, 129B)가 개방된다. 그리고 다음에 설명하는 공급 동작에 의해, 수소 가스 공급 유로(122)를 거쳐 수소 가스가 혼합 탱크(121)로 도입됨과 함께, 질소 가스 공급 유로(123)를 거쳐 질소 가스가 혼합 탱크(121)로 도입된다.
수소 가스 공급 유로(122)의 상류단에 있어서는, 물(정제수 혹은 순수)이 수소 발생기(126)에 의해 분해되어, 수소 가스가 도입된다. 그 수소 가스가, 감압 밸브(127A)를 거쳐 수소 가스용 매스 플로우 컨트롤러(128A)로 도입된다. 그리고 그 수소 가스용 매스 플로우 컨트롤러(128A)에 미리 설정한 유량으로, 수소 가스가 흘러 나와, 개폐 밸브(129A)를 통해 혼합 탱크(121)로 송입된다.
질소 가스 공급 유로(123)의 상류단에 있어서는, 공기 펌프(130)에 의해 외부로부터 공기가 도입된다. 그 공기가 감압 밸브(127B)를 거쳐 질소 가스 분리용 막 모듈(131)로 송입되어, 공기로부터 질소 가스가 분리된다. 그 질소 가스는, 질소 가스용 매스 플로우 컨트롤러(128B)로 도입된다. 그리고 그 질소 가스용 매스 플로우 컨트롤러(128B)에 미리 설정한 유량으로, 질소 가스가 흘러 나와, 개폐 밸브(129B)를 통해 혼합 탱크(121)로 송입된다.
따라서, 혼합 탱크(121)에는, 수소 가스용 매스 플로우 컨트롤러(128A)에 설정한 유량과 질소 가스용 매스 플로우 컨트롤러(128B)에 설정한 유량의 비에 상당하는 혼합비로 수소 가스 및 질소 가스가 도입된다. 도입된 수소 가스 및 질소 가스에 의해, 혼합 탱크(121) 내의 압력이 상승한다. 그리고 압력계(132)에서 검출하는 혼합 탱크(121) 내의 압력이, 미리 정한 압력에 도달하면, 시퀀서(133)에 의해 개폐 밸브(129A, 129B)가 폐쇄되어, 공급 동작이 정지된다.
이와 같이 하여, 혼합 탱크(121)의 압력이 저하되었을 때, 수소 가스, 질소 가스가 소정의 비율로 공급되어, 소정의 수소 농도의 검사용 가스(희석 수소 가스)가 생성되고, 계속해서 누설 검사를 행하는 것이 가능해진다.
제A1 실시 형태에 있어서, 수소 발생기(126)는, 요는 고순도의 물(정제수)을 전기 분해하여 수소를 발생시키는 장치이면 특별히 한정되지 않는다. 수소 발생기(126)로서, 공지의 고체 전해질막을 사용한 수소 발생기 등, 임의의 장치를 사용할 수 있다.
제A1 실시 형태에 있어서, 희석용 가스 공급원(135)으로서, 질소 분리 장치인 막 모듈을 사용하여, 막 모듈이 이른바 막 분리법에 의해 공기로부터 질소 가스를 분리하고 있다. 다른 방법으로서, 심랭 분리법, 혹은 PSA법(흡착법) 등에 의해 공기로부터 질소 가스를 분리하도록 구성해도 된다. 이들 방법 중, 비용면에서는, 막 모듈을 사용한 막 분리법을 적용하는 것이 가장 유리하다.
이상과 같은 제A1 실시 형태의 희석 수소 가스 생성 장치에 있어서는, 수소 가스 공급원으로서는, 물의 분해에 의해 수소를 발생시키는 수소 발생기(26)를 사용한다. 또한, 희석용 가스 공급원으로서는, 막 모듈 등에 의해 공기로부터 질소 가스를 분리하는 구성을 사용하고 있다. 이 때문에, 이들 가스를 저류한 고가의 가스 봄베가 불필요하다. 그 때문에, 누설 검사의 러닝 코스트를 저감할 수 있다. 또한 중량이 큰 가스 봄베를 운반하거나 설치하거나 하는 작업이 불필요해지기 때문에, 그 작업을 위한 수고, 노동력이 불필요해진다. 또한, 예비의 가스 탱크를 보관해 둘 필요도 없다. 이 때문에, 가스 봄베의 보관 장소가 불필요해지는 동시에, 보관 장소에서의 예비 탱크의 관리도 불필요해진다. 따라서 관리가 누설 검사 현장에서만으로 충분하여, 이른바 온 사이트화가 가능해진다. 또한, 장치 전체를 하나의 하우징에 수납하여, 1 박스화를 도모하는 것도 가능해진다. 또한, 특허문헌 1에 개시되어 있는 가스 혼합비(희석도)의 제어 방식(혼합 탱크 내에 실제로 유입된 가스 유량에 의해 제어하는 방식)과는 달리, 각 가스가 혼합 탱크로 유입되기 이전의 각 가스 공급 유로에 있어서의 가스의 유량비에 의해 가스 혼합비(희석도)를 설정, 제어하는 방식이다. 이 때문에, 혼합비의 제어성이 양호하며, 가스 혼합비가 목표로부터 벗어나 버리는 사태(오버슈트)가 발생할 우려를 적게 할 수 있다.
도 3에는, 본 발명의 제A2 실시 형태의 희석 수소 가스 생성 장치를 도시한다. 제A2 실시 형태는, 제A1 실시 형태와 마찬가지로, 일례로서, 고농도 수소 가스를 질소 가스에 의해 희석하여 누설 검사용 가스를 생성하는 경우를 나타내고 있다.
제A2 실시 형태에서는, 가스 유량비 제어부(136)로서, 제A1 실시 형태에 있어서의 매스 플로우 컨트롤러(128A, 128B) 대신에 음속 노즐(143A, 143B)을 사용하고 있다. 또한 제A2 실시 형태의 희석 수소 가스 생성 장치는, 음속 노즐(143A, 143B)로 유입되는 가스의 압력을 동등하게 하기 위해, 직동식 레귤레이터(141)와 외부 파일럿식 레귤레이터(142)를 조합한 구성을 구비한다.
즉, 도 3에 있어서, 수소 가스 공급 유로(122)에는, 수소 발생기(126)와 개폐 밸브(129A) 사이에, 외부 파일럿식 레귤레이터(142)와 수소 가스용 음속 노즐(제1 음속 노즐)(143A)이 설치되어 있다. 외부 파일럿식 레귤레이터(142)와 수소 가스용 음속 노즐(143A)은, 상류측으로부터 하류측을 향해 그 순서로 개재 삽입되어 있다. 질소 가스 공급 유로(123)에는, 질소 가스 공급원(135)의 막 모듈(131)과 개폐 밸브(129B) 사이에, 직동식 레귤레이터(141)와 질소 가스용 음속 노즐(제2 음속 노즐)(143B)이 설치되어 있다. 직동식 레귤레이터(141)와 질소 가스용 음속 노즐(143B)은, 상류측으로부터 하류측을 향해 그 순서로 개재 삽입되어 있다. 수소 가스 공급 유로(122)의 외부 파일럿식 레귤레이터(142)에는, 질소 가스 공급 유로(123)의 직동식 레귤레이터(141)의 출구측 압력이 분류로(144)를 거쳐 파일럿 압력으로서 가해진다.
음속 노즐에 대해 설명한다. 음속 노즐은, 노즐의 유로에, 내경을 소직경으로 좁힌 스로트부를 갖는다. 기체의 상류측 압력과 하류측 압력의 비를 임계 압력비 이하로 유지하면, 스로트부(노즐의 최소 구경부)에 있어서의 유속이 음속으로 고정된다. 그 결과, 음속 노즐은, 유입측 압력과 스로트부의 구경이 일정하면, 항시 일정 유량을 발생시킬 수 있다. 이러한 음속 노즐에서는, 고정밀도로 소정의 질량 유량을 얻을 수 있다. 음속 노즐의 하류측의 유량은, 일정 유입측 압력하에서, 스로트부의 구경에 의존한다. 이 때문에, 수소 가스 공급 유로(122)에 개재 삽입된 수소 가스용 음속 노즐(143A)의 스로트부 구경과, 질소 가스 공급 유로(123)에 개재 삽입된 질소 가스용 음속 노즐(143B)의 스로트부 구경의 비를 정해 둠으로써, 혼합 탱크(121)로 유도되는 수소 가스의 유량과 질소 가스의 유량의 비를 설정할 수 있다.
음속 노즐에 있어서 유출측 유량은, 유입측 압력과 비례 관계에 있다. 이 때문에, 유입측의 가스 압력이 변동되면, 유출되는 가스 유량도 변동된다. 그래서 제A2 실시 형태에서는, 질소 가스 공급 유로(123)에 있어서의 질소 가스용 음속 노즐(143B)의 상류에 직동식 레귤레이터(141)를 설치한다. 직동식 레귤레이터(141)의 출구측 압력을, 분류로(144)를 거쳐 수소 가스 공급 유로(122)에 있어서의 외부 파일럿식 레귤레이터(142)에 파일럿 압력으로서 가함으로써, 각 레귤레이터(41, 42)의 출구측 압력을 동등한 압력으로 제어한다. 이상의 구성에 의해, 질소 가스용 음속 노즐(43B)의 입구측 압력과 수소 가스용 음속 노즐(43A)의 입구측 압력이 항시 동등한 상태를 유지하도록 하고 있다.
결국, 도 3에 도시되는 제A2 실시 형태에서는, 직동식 레귤레이터(141)와 외부 파일럿식 레귤레이터(142)를 조합하여, 수소 가스용 음속 노즐(143A)의 입구측 압력과 질소 가스용 음속 노즐(143B)의 입구측 압력을 동등하게 한다. 또한, 수소 가스용 음속 노즐(143A)의 스로트부 구경과, 질소 가스 공급 유로(123)에 개재 삽입된 질소 가스용 음속 노즐(143B)의 스로트부 구경의 비를 적절한 비로 설정한다. 그 결과, 혼합 탱크(121)로 유도되는 수소 가스의 유량과 질소 가스의 유량의 비가 적절하게 제어된다. 이에 의해 혼합 탱크(121)에서 수소 가스와 질소 가스를 적절한 비로 혼합하여, 소요의 낮은 수소 농도의 희석 수소 가스(검사용 가스)를 생성할 수 있다.
도 3의 예에서는, 질소 가스 공급 유로(123)에 직동식 레귤레이터(141)를 개재 삽입하고, 수소 가스 공급 유로(122)에 외부 파일럿식 레귤레이터(142)를 개재 삽입하고 있다. 다른 방법으로서, 도 3의 예와는 반대로, 수소 가스 공급 유로(122)에 직동식 레귤레이터(141)를 개재 삽입하고, 질소 가스 공급 유로(123)에 외부 파일럿식 레귤레이터(142)를 개재 삽입해도 된다. 이 경우, 수소 가스 공급 유로(122)에 있어서의 직동식 레귤레이터(141)의 출구측 압력을, 질소 가스 공급 유로(123)의 외부 파일럿식 레귤레이터(142)에 파일럿 압력으로서 가한다.
음속 노즐에 있어서의 출구측(출구)의 유량은, 스로트부의 최소 구경에 의존한다. 이 때문에, 스로트부의 구경이 상이한 노즐로 교환함으로써, 출구측 유량을 바꿀 수 있다. 따라서, 미리 스로트부의 구경이 상이한 노즐을 몇 개 준비해 두고, 검사용 가스의 혼합비(질소 가스에 의한 수소 가스의 희석도)를 변경하고 싶은 경우에는, 적절하게 상이한 스로트부 구경의 음속 노즐로 교환해도 된다. 노즐의 교환에 의해, 음속 노즐(143A, 143B) 중 어느 한쪽 혹은 양쪽의 출구측 유량을 변경하고, 이에 의해 혼합비를 변경할 수 있다. 이 경우, 음속 노즐의 장치 전체가 아닌, 스로트부만을 교환하여, 출구측 유량을 바꾸는 것도 가능하다.
검사용 가스의 혼합비(질소 가스에 의한 수소 가스의 희석도)를 변경하고 싶은 경우에 있어서는, 상술한 바와 같은 음속 노즐 혹은 그 스로트부의 교환에 상관없이, 개폐 밸브(129A, 129B)의 개방 시간을 바꿈으로써도, 혼합비를 변경하는 것도 가능하다.
제A2 실시 형태의 희석 수소 가스 생성 장치에서도, 제A1 실시 형태의 희석 수소 가스 생성 장치와 마찬가지로, 수소 가스 봄베 및 질소 가스 봄베가 불필요하다. 그 때문에 상기와 마찬가지로, 누설 검사의 러닝 코스트를 저감할 수 있음과 함께, 큰 중량의 가스 봄베를 운반하거나 설치하거나 하는 작업이 불필요해진다. 또한 가스 봄베의 보관, 관리도 불필요하며, 누설 검사의 온 사이트화가 가능해진다. 또한, 장치 전체를 1 박스화하는 것도 가능해진다. 또한, 제A1 실시 형태와 마찬가지로, 혼합비의 제어성이 양호하며, 가스 혼합비(수소 희석도)가 목표로부터 벗어나 버리는 사태(오버슈트)가 발생할 우려를 적게 할 수 있다.
특허문헌 1에 기재된 장치의 경우, 실제의 제어에 있어서는, 혼합 탱크 내로의 공급을 개시하고 나서, 압력이 어느 값 이상으로 높아진 시점에서 즉시 개폐 밸브가 폐쇄된다고 단언할 수는 없으며, 그 때문에 탱크 내의 압력이 과잉으로 높아져 버릴 것이 우려된다. 이에 비해, 도 3에 도시하는 본 발명의 제A2 실시 형태의 경우는, 특허문헌 1에 기재된 장치와 비교하여 응답성이 양호하고, 그 때문에 혼합 탱크의 압력이 과잉으로 높아져 버리는 사태가 발생할 우려가 적다.
이상의 제A1, 제A2 실시 형태에서는, 희석용 가스로서 질소 가스를 사용하는 경우에 대해 설명하였지만, 이것에 한정되는 것은 아니다. 누설 검사의 대상물에 악영향을 미치거나, 수소 폭발의 우려를 초래하거나 하는 일 없이, 수소를 희석할 수 있는 가스이면, 질소 가스 이외의 가스, 예를 들어 Ar 가스 등의 불활성 가스나, CO2 가스 등을 희석용 가스로서 사용하는 것도 허용된다.
이와 같이 불활성 가스나, CO2 가스 등을 희석용 가스로서 사용하는 경우는, 희석용 가스 공급원으로서는, 도 1의 제A1 실시 형태 혹은 도 3의 제A2 실시 형태에 있어서의 질소 분리를 위한 막 모듈(31) 등 대신에, 불활성 가스나, CO2 가스 등의 가스를 저류한 가스 봄베를 사용하면 된다. 이 경우도, 수소 가스는, 수소 발생기에 있어서 물의 분해에 의해 발생시킨다. 이 때문에, 수소 가스 공급원으로서의 수소 가스 봄베는 불필요하다. 따라서 토탈로서의 봄베의 종류 및 수는, 수소 가스 공급 봄베를 사용하는 경우보다 적어진다. 그 때문에 봄베의 교환을 위한 노동력이나 시간도 최소한으로 억제할 수 있고, 또한 봄베 사용에 의한 비용을 억제할 수도 있다.
또한, 누설 검사의 대상물(워크)이 산화되기 어려운 재료인 경우나, 대상물의 산화가 문제가 되지 않는 경우에는, 희석용 가스로서 공기를 사용하는 것도 허용된다. 단 그 경우에는, 수소 농도가 4% 미만, 바람직하게는 3% 이하가 되도록 수소를 공기에 의해 희석하는 것이 바람직하다. 즉, 공기와 수소 가스를 혼합한 경우라도, 수소 폭발의 우려가 있는 것은, 수소 농도가 4% 내지 75%의 경우인 것이 알려져 있다. 따라서 수소 농도가 4% 미만, 바람직하게는 3% 이하로 되도록 수소를 공기와 혼합하면, 수소 폭발의 우려를 회피할 수 있다.
이와 같이 희석용 가스로서 공기를 사용하는 경우, 도 1의 제A1 실시 형태 혹은 도 3의 제A2 실시 형태에 있어서의 막 모듈(31) 등의 질소 분리 장치를 생략할 수 있다. 따라서 희석용 가스로서 공기를 사용하면, 더 한층의 저비용화를 도모할 수 있다.
이상의 설명에서는, 본 발명의 실시 형태에 의한 희석 수소 가스 생성 장치에 의해 얻어진 희석 가스(수소 함유 혼합 가스)를 누설 검사용 가스로서 사용하는 것으로 하였지만, 본 발명의 실시 형태는 이러한 경우에 한정되는 것은 아니다. 그 밖의 용도에 본 발명의 실시 형태의 장치에 의해 얻어진 희석 수소 가스를 사용해도 된다.
이하에, 본 발명의 제B 실시 형태에 대해, 도면을 참조하여 상세하게 설명한다.
도 4는, 본 발명의 제B 실시 형태의 혼합 가스 공급 장치에 있어서의 원리적인 구성(플로우 구성)을 도시한다. 도 5 내지 도 8은, 제B 실시 형태의 혼합 가스 공급 장치의 입체적인 구조를 도시한다. 도 4 내지 도 8에 도시하는 제B 실시 형태의 혼합 가스 공급 장치(210)는, 물의 분해에 의해 생성된 고농도 수소 가스에, 공기로부터 분리된 질소 가스를 혼합하여, 저농도 수소 가스를 포함하는 수소와 질소의 혼합 가스를 생성하고, 그 혼합 가스를 예를 들어 누설 검사 장치를 향해 검사용 가스로서 공급하기 위한 장치 예로서 도시되어 있다.
우선 도 4를 참조하여 제B 실시 형태의 혼합 가스 공급 장치(210)의 원리적인 플로우 구성에 대해 설명한다.
도 4에 있어서, 에어 도입 포트(211)는, 가스 누설 검사를 행하는 공장 등에 있어서의 공기 배관 등으로부터 공기를 도입하기 위한 도입구이다. 혼합 가스 공급 장치(210)는, 그 내부에, 수동으로 개폐의 조작이 가능하게 구성된 에어 도입 개폐 밸브(212)와, 공기 공급 배관(213)과, 질소 가스 발생부로서의 필터(215)를 구비한다. 이 에어 도입 포트(211)는, 에어 도입 개폐 밸브(212) 및 공기 공급 배관(213)을 통해 필터(215)에 접속되어 있다. 이 필터(215)는, 예를 들어 막 모듈(막 분리 질소 가스 발생 장치)이며, 도입된 공기로부터 질소 가스를 분리하여, 비교적 고농도의 질소 가스를 발생시킨다.
필터(215)에 의해 발생된 질소 가스는, 질소 가스 배관(질소 가스 공급 유로)(217a)을 통해 가스류 제어부(가스 유량비 제어부)(219)로 유도되고, 또한 질소 가스 배관(질소 가스 공급 유로)(217b)을 통해, 후술하는 혼합부(가스 혼합부)(221)로 유도되고 있다.
또한 혼합 가스 공급 장치(210) 내에는, 장치의 외부로부터 정제수 혹은 순수(이하 단순히 물이라고 칭함)를 공급 가능한 수조(223)가 설치되어 있다. 수조(223)에는, 저류되어 있는 물의 양을 검출하기 위한 수위계(224)가 부설되어 있다. 이 수위계(224)는, 수조(223) 내의 물이 어느 레벨 이하가 되었을 때, 경보(신호나 소리)를 발생한다.
수조(223) 내의 물은, 급수 배관(225)을 통해 수소 발생기(27)로 유도된다. 수소 발생기(227)는, 물의 전기 분해에 의해 수소 가스를 발생시킨다. 수소 발생기(227)에 의해 발생된 수소 가스는, 수소 가스 배관(수소 가스 공급 유로)(229a)을 통해 가스류 제어부(219)로 유도되고, 또한 수소 가스 배관(수소 가스 공급 유로)(229b)을 통해, 혼합부(221)로 유도되고 있다.
가스류 제어부(219)는, 혼합부(221)에 있어서 수소 가스와 질소 가스의 소정의 혼합비가 얻어지도록 각 가스의 유량을 제어하거나, 혼합부로 보내지는 각 가스의 압력을 조정하거나 한다. 가스류 제어부(219)는, 도시하지 않은 유량 제어 밸브나 압력 제어 장치 등에 의해 구성된다.
혼합부(221)는, 대용량의 제1 혼합 탱크(221A)와 소용량의 제2 혼합 탱크(221B)로 이루어진다. 즉, 제1 혼합 탱크(221A)는, 제2 혼합 탱크(221B)보다 상대적으로 용량이 크다. 제1 혼합 탱크(221A)에는, 질소 가스 배관(217b)으로부터 질소 가스가 도입됨과 함께, 수소 가스 배관(229b)로부터 고농도 수소 가스가 도입된다. 제1 혼합 탱크(221A)에 있어서 질소 가스와 수소 가스가 혼합되어, 혼합 가스가 생성된다. 그 혼합 가스가 혼합 가스 중간 배관(231) 및 혼합 가스 중간 밸브(232)를 통해 제2 혼합 탱크(221B)로 유도된다. 제2 혼합 탱크(221B)에 있어서 혼합 가스의 균일화가 진행된다.
이와 같이 하여, 혼합부(221)에 있어서 수소 가스와 질소 가스가 균일하게 혼합된 혼합 가스가 생성된다. 바꾸어 말하면, 고농도의 수소 가스가 질소 가스에 의해 희석된, 저수소 농도의 혼합 가스(수소 농도가 낮은, 수소와 질소의 혼합 가스)가 생성된다.
제2 혼합 탱크(221B)의 혼합 가스류 출구는, 혼합 가스 공급 배관(233) 및 혼합 가스 공급 개폐 밸브(235)를 통해, 혼합 가스 공급 포트(237)에 접속되어 있다. 혼합 가스 공급 개폐 밸브(235)는, 수동으로 개폐 조작이 가능하게 구성되어 있다. 혼합 가스 공급 포트(237)는, 장치 외부의 도시하지 않은 누설 검사 장치로 혼합 가스(누설 검사용 가스)를 유도하기 위한 가요성 배관 등이 접속되는 부위이다.
도 5 내지 도 8은, 제B 실시 형태의 혼합 가스 공급 장치(210)의 입체적 구조를 도시한다.
혼합 가스 공급 장치(210)의 구성 부재는, 베이스(240) 상에 탑재됨과 함께, 하우징(캐비닛)(241) 내에 수납되어 있다. 하우징(241)은, 베이스(240)에 일체화되고, 예를 들어 사각형 상자 형상을 갖는다. 베이스(240)는, 판상 혹은 프레임상 중 어느 것이든 좋다. 하우징(241)은, 그 전방면(241A) 측의 상부에 조작/표시반(243)이 설치되어 있고, 조작/표시반(243)의 하측에는, 개폐 가능한 전방 도어(245)가 설치되어 있다.
하우징(241)의 후방면(241B) 측의 하부에는, 급배부(247)로서, 도 4에 도시한 에어 도입 포트(211)와, 혼합 가스 공급 포트(237)가 설치되어 있다. 에어 도입 포트(211)와 혼합 가스 공급 포트(237)는, 하우징(241)의 외측에 노출되어 있다. 급배부(247)에는, 도 4에는 도시되어 있지 않지만, 배기 포트(249)도, 외측에 노출된 상태로 설치되어 있다. 이 배기 포트(249)는, 수소 농도 컨트롤 시에 과잉이 된 희석 수소 가스를 외부로 배출한다. 에어 도입 포트(211)의 근방에는, 도 4에 도시한 에어 도입 개폐 밸브(212)의 개폐 조작부(212a)가 설치되고, 장치 외부에 노출되어 있다. 또한, 혼합 가스 공급 포트(237)의 근방에는, 도 4에 도시한 혼합 가스 공급 개폐 밸브(235)의 개폐 조작부(235a)가 설치되고, 장치 외부에 노출되어 있다. 배기 포트(249)의 근방에는, 배기 개폐 밸브의 조작부(250a)가 설치되고, 장치 외부에 노출되어 있다.
하우징(241)의 후방면(241B)에 있어서의 상기 급배부(247) 이외의 부분은, 후방 도어(248)에 의해 구성되어 있다. 후방 도어(248)는, 개폐 가능하고, 보수나 점검 시에 개폐된다.
베이스(240)의 네 코너에는, 바닥면 등의 평면 상에서 수평면 내 360도 방향으로 이동 가능해지도록 캐스터(260)가 설치되어 있다.
하우징(241)의 내부에는, 도 4에 도시한 각 구성 요소 및 배관류가 수납, 고정되어 있다. 제B 실시 형태에 있어서의 하우징(241)의 내부 구조를, 도 7 및 도 8에 도시한다. 또한 도 7 및 도 8은, 도 4에 도시한 각 구성 요소 중, 주요한 요소에 대해서만 도시하고, 장치 내부의 배관류나 밸브, 제어부 등을 생략하고 있다.
하우징(241)은, 전방 도어(245)를 갖는 전방면(241A)과, 후방면(241B)을 갖는다. 제B 실시 형태에서는, 하우징(241)의 내부이며, 전방면(241A)의 전방 도어(245) 측에, 도 4에 도시한 수조(223)와, 수소 발생기(227)가 배치되어 있다. 전방 도어(245)를 개방시킨 상태에서는, 외부로부터 수조(223)에 물(정제수 혹은 순수)을 주입할 수 있다. 하우징(241)의 내부이며, 후방면(241B) 측에, 질소 가스 발생부로서의 필터(막 모듈)(215)와, 혼합부(221)를 구성하는 제1 혼합 탱크(221A) 및 제2 혼합 탱크(221B)가 배치되어 있다. 필터(막 모듈)(215)의 입구측에는, 이미 도 4를 참조하여 설명한 바와 같이, 에어 도입 포트(211)로부터의 공기가 에어 도입 개폐 밸브(212)를 통해 도입된다. 제2 혼합 탱크(221B)의 출구측(출구)은, 도 4에 도시한 바와 같이, 혼합 가스 공급 개폐 밸브(235)를 통해 혼합 가스 공급 포트(237)에 배관에 의해 접속되어 있다.
도 4 내지 도 8에 도시한 제B 실시 형태의 혼합 가스 공급 장치(210)로부터 공급되는 혼합 가스를 사용하여, 각종 중공 부품 등에 대해 누설 검사를 행하는 경우의, 혼합 가스 공급 장치(210)의 동작 및 기능 및 사용 방법에 대해 이하에 설명한다.
미리, 누설 검사를 행하는 현장(예를 들어, 중공 부품의 제조 공장의 현장, 혹은 출하 검사 공장의 현장 등)에, 혼합 가스 공급 장치(210)를 배치한다. 여기서, 제B 실시 형태의 혼합 가스 공급 장치(210)는, 베이스(240)에 캐스터(260)가 설치되어 있고, 하우징마다 바닥면 상을 이동시킬 수 있으므로, 간단하면서 용이하게 누설 검사 현장 부근에 배치할 수 있다.
혼합 가스 공급 장치(210)의 가동 전에는, 미리, 하우징(241)의 전방 도어(245)를 개방하여, 수조(223)에 물(정제수 혹은 순수)을 넣어 둔다. 또한 에어 도입 포트(211)에 누설 검사 현장의 공장 등에 배치되어 있는 에어 배관을 접속하거나 하여, 에어 도입 포트(211)로부터 외부의 공기를 도입하는 상태로 한다.
혼합 가스 공급 장치(210)를 가동시키면, 수조(223)로부터 수소 발생기(227)로 유도된 물이, 그 수소 발생기(227)에 있어서 전기 분해되어, 고농도 수소 가스가 발생한다. 얻어진 고농도 수소 가스는, 가스류 제어부(219)를 거쳐 혼합부(221)의 제1 혼합 탱크(221A)로 유도된다. 에어 도입 포트(211)로부터 도입된 공기는, 질소 가스 발생부로서의 필터(막 모듈)(215)로 유도되고, 공기로부터 산소가 거의 제거되어, 질소 가스로서 가스류 제어부(219)를 거쳐 혼합부(221)의 제1 혼합 탱크(221A)로 유도된다.
가스류 제어부(219)는, 최종적으로 얻어야 할 혼합 가스에 있어서의 수소 가스와 질소 가스의 혼합비가 소정의 비가 되도록, 수소 가스 유량과 질소 가스 유량을 상호의 관련하에 제어한다. 가스류 제어부(219)가, 가스 유량비를 제어할 뿐만 아니라, 제1 혼합 탱크(221A)로 유입되는 수소 가스의 압력과 질소 가스의 압력을 적절하게 제어하는 것이 바람직하다.
혼합부(221)의 제1 혼합 탱크(221A) 내에서는, 도입된 수소 가스와 질소 가스가 혼합된다. 또한 그 혼합 가스가, 제2 혼합 탱크(221B)로 유도되어 혼합 가스의 균일화가 진행된다. 그리고 제2 혼합 탱크(221B)로부터 송출된 혼합 가스가 혼합 가스 공급 포트(237)에 이른다. 그 결과, 외부의 누설 검사 장치에, 수소 가스와 질소 가스의 혼합 가스, 바꾸어 말하면 수소 가스를 질소 가스에 의해 희석한 검사용 가스를 공급할 수 있다. 그리고 누설 검사 장치에 있어서 수소 가스의 누설을 검출하는 검사를 행할 수 있다.
혼합부(221)의 제1 혼합 탱크(221A)로부터 송출될 때, 혼합 가스는, 수소 가스와 질소 가스가 반드시 균일하게 혼합되어 있지는 않은 상태인 경우도 있다. 그래서 제1 혼합 탱크(221A)로부터 나온 혼합 가스를 변경하여 제2 혼합 탱크(221B)로 보낸다. 보내진 혼합 가스는, 제2 혼합 탱크(221B) 내에서 다시 혼합된다. 그 혼합 가스를 제2 혼합 탱크(221B)로부터 송출하고, 공급 포트(237)를 거쳐 외부의 누설 검사 장치에 공급한다. 그 결과, 더 균일하게 혼합된 혼합 가스를 누설 검사 장치에서 사용할 수 있다.
가스류 제어부(219)는, 전술한 바와 같이 혼합 가스에 있어서의 수소 가스와 질소 가스의 혼합비가, 소정의 비가 되도록, 수소 가스 유량과 질소 가스 유량을 상호의 관련하에 제어한다. 즉 제B 실시 형태에서는, 수소와 질소의 혼합 가스에 포함되는 수소 농도가, 누설 검사 장치에 있어서 검사용 가스로서 사용하기에 적합한 농도가 되도록, 수소 가스 유량과 질소 가스 유량을 제어한다. 가스 유량의 제어에 대해서는 후술한다.
누설 검사 장치에 있어서 검사용 가스로서 사용하는 경우의 혼합 가스에 있어서의 수소 농도는 특별히 한정되는 것은 아니며, 누설 검사의 양태나 검사 대상물의 형상, 혹은 누설 가스 검출 정밀도 등에 따라서 적절하게 선정 가능하다. 검사용 가스의 수소 농도는, 일반적으로는 1% 내지 20%의 범위 내가 바람직하고, 보다 바람직하게는, 1 내지 5%의 범위 내이다. 검사 대상물을 진공 챔버 내에 배치하지 않고, 외부 공간에 있어서 직접 대상물의 누설 검사를 행하는 경우, 누설이 있으면, 누설된 수소가 대기 중으로 직접 방출된다. 이 때문에, 검사용 가스의 수소 농도는, 가연성이 되지 않는 저농도의 범위로 하는 것이 바람직하다. 예를 들어, ISO10156:2010에서는, 가연성이 되지 않는 수소 농도 범위가 규정되어 있고, 검사용 가스의 수소 농도를 그 규정의 범위 내로 하는 것이 바람직하다.
수조(223) 내의 수량이 소정의 레벨 이하로 된 것이 수위계(224)에 의해 검지되면, 경보음이나 경보 표시 등에 의해 경보가 발생된다. 경보가 발생된 시점에서 하우징(241)의 전방 도어(245)를 개방하여, 수조(223)에 물을 보급할 수 있다.
이상과 같은 제B 실시 형태의 혼합 가스 공급 장치(210)에 있어서는, 수소 가스 공급원으로서는, 물의 분해에 의해 수소를 발생시키는 수소 발생기(227)를 사용한다. 희석용 질소 가스 공급원으로서는, 필터(막 모듈)(215)에 의해 공기로부터 질소 가스를 분리하는 구성을 사용한다. 이 때문에, 이들 가스를 저류한 고가의 가스 봄베가 불필요하다. 즉, 수소 발생원이 되는 물은 어디에서나 간단하게 수조(223)에 공급 가능하다. 한편, 또한 누설 검사 현장 부근에는 공장 배관으로서 에어 배관이 설치되어 있는 경우가 많다. 그 경우, 질소 공급원으로서의 공기는, 공장 에어 배관을 에어 도입 포트(211)에 연결하는 것만으로 도입할 수 있다. 공장 에어 배관이 없는 경우에는, 장치 외부의 공기를 직접 에어 도입 포트(211)로부터 도입하면 된다.
이와 같이 제B 실시 형태의 혼합 가스 공급 장치에서는, 가스 봄베를 사용하지 않고, 어디에서나 용이하게 입수 가능한 물과 공기를 가스 공급으로 하고 있다. 이 때문에, 누설 검사의 러닝 코스트를 저감할 수 있다. 또한 중량이 큰 가스 봄베를 운반하거나 설치하거나 하는 작업이 불필요해지기 때문에, 그 작업을 위한 수고, 노동력이 불필요해진다. 또한, 예비의 가스 탱크를 보관해 둘 필요도 없다. 이 때문에, 가스 봄베의 보관 장소가 불필요해지는 동시에, 보관 장소에서의 예비 탱크의 관리도 불필요해진다. 따라서 관리가 누설 검사 현장에서만으로 충분하여, 이른바 온 사이트화가 가능해진다.
또한, 제B 실시 형태에서는, 장치 전체를 하나의 하우징(241)에 수납하여, 1 박스화하고 있다. 이 때문에, 외관상의 겉보기가 좋을 뿐만 아니라, 장치의 운반, 이동 시에 있어서 하우징 내부에 수납된 각 부의 구성 부재나 배관, 밸브 등이 손상될 우려가 적고, 또한 환경 중의 진애로부터 내부의 구성 부재나 배관, 밸브 등을 보호할 수 있다.
또한 제B 실시 형태에서는, 캐스터(260)를 설치하고 있다. 이 때문에, 하우징(241)을 수평 방향으로 미는 것만으로, 장치 전체를 바닥면 상에서 간단하면서 용이하게 이동시킬 수 있다. 따라서, 작업자에게 과대한 부담을 강요하거나, 크레인을 사용하거나 하는 일 없이, 필요에 따라서 누설 검사 현장 부근 등으로 장치 전체를 용이하게 이동시키고, 또한 누설 검사 등의 종료 후에 현장으로부터 용이하게 퇴피시킬 수 있다.
다음으로, 본 발명의 제B 실시 형태의 혼합 가스 공급 장치를 더 구체화한 예, 특히 전술한 가스류 제어부(219)를 구체화한 예의 플로우 구성에 대해, 도 9에 나타낸다. 이 예에서는, 후술하는 바와 같이 가스류 제어부(219)는, 주 제어 요소로서, 직동식 레귤레이터(251) 및 외부 파일럿식 레귤레이터(252)와, 가스 유량비 제어부(가스 유량비 제어 수단)(253)로서의 음속 노즐(253A, 253B)과, 시퀀서(254)를 포함한다. 도 9에 나타내는 요소 중, 도 4에 나타낸 요소와 동일한 요소에 대해서는, 도 4와 동일한 부호를 붙이고, 그 상세는 생략한다.
도 9의 예에 있어서, 에어 도입 포트(211)는, 에어 도입 개폐 밸브(212) 및 감압 밸브(255)를 통해, 질소 가스 발생부로서의 필터(막 모듈)(215)에 접속되어 있다. 필터(막 모듈)(215)에서 분리된 질소 가스는, 외부 파일럿식 레귤레이터(252)의 입구측(입구)으로 유도된다. 외부 파일럿식 레귤레이터(252)의 출구측(출구)은 개폐 밸브(256B)를 통해 음속 노즐(253B)의 입구측(입구)에 접속되어 있다. 수조(223)로부터의 물이 수소 발생기(227)로 유도된다. 수소 발생기(227)에 의한 물의 전기 분해에 의해 발생한 고농도 수소 가스가, 직동식 레귤레이터(251)의 입구측(입구)으로 유도된다.
상기한 직동식 레귤레이터(251) 및 외부 파일럿식 레귤레이터(252)는, 수소 가스 유로측의 음속 노즐(제1 음속 노즐)(253A)로 유입되는 수소 가스의 압력과, 질소 가스 유로측의 음속 노즐(제2 음속 노즐)(253B)로 유입되는 질소 가스의 압력을 동등하게 하기 위해 사용된다. 즉, 수소 가스 유로측의 직동식 레귤레이터(251)의 출구측(출구)이 개폐 밸브(256A)를 통해 음속 노즐(253A)에 접속될 뿐만 아니라, 그 출구측 압력이, 분류로(57)를 거쳐 질소 가스 유로측의 외부 파일럿식 레귤레이터(252)에 파일럿 압력으로서 가해진다.
음속 노즐(253A, 253B)의 출구측(출구)은, 혼합부(221)의 제1 혼합 탱크(221A)에 접속되어 있다. 또한 혼합부(221)의 제1 혼합 탱크(221A) 내의 압력이, 제1 압력계(258A)에 의해 검출됨과 함께, 제2 혼합 탱크(221B) 내의 압력이, 제2 압력계(258B)에 의해 검출되도록 되어 있다. 각 압력계(258A, 258B)에 의해 검출된 압력 신호가 시퀀서(254)에 입력된다. 그 압력 신호에 따라서, 시퀀서(254)가 전술한 개폐 밸브(256A, 256B)의 개폐를 제어한다.
수소 가스측 유로에 개재 삽입된 음속 노즐(253A)의 스로트부 구경과, 질소 가스측 유로에 개재 삽입된 음속 노즐(253B)의 스로트부 구경의 비를 정해 둠으로써, 혼합부(221)로 유도되는 수소 가스의 유량과 질소 가스의 유량의 비를 설정할 수 있다.
음속 노즐에 있어서 유출측 유량은, 유입측 압력과 비례 관계에 있다. 이 때문에, 유입측의 가스 압력이 변동되면, 유출되는 가스 유량도 변동된다. 그래서 도 9의 예에서는, 수소 가스측로에 있어서의 음속 노즐(253A)의 상류에 설치한 직동식 레귤레이터(251)를 설치한다. 직동식 레귤레이터(251)의 출구측 압력을, 분류로(257)를 거쳐 질소 가스측 유로에 있어서의 외부 파일럿식 레귤레이터(252)에 파일럿 압력으로서 가함으로써, 각 레귤레이터(251, 252)의 출구측 압력을 동등한 압력으로 제어한다. 이상의 구성에 의해, 질소 가스측의 음속 노즐(253B)의 입구측 압력과 수소 가스측의 음속 노즐(253A)의 입구측 압력을, 항시 동등한 상태로 유지하도록 하고 있다.
결국, 도 9에 도시되는 예에서는, 직동식 레귤레이터(251)와 외부 파일럿식 레귤레이터(252)를 조합하여, 수소 가스측의 음속 노즐(253A)의 입구측 압력과, 질소 가스측의 음속 노즐(253B)의 입구측 압력을 동등하게 한다. 또한, 수소 가스측의 음속 노즐(253A)의 스로트부 구경과, 질소 가스측의 음속 노즐(253B)의 스로트부 구경의 비를 적절한 비로 설정한다. 그 결과, 혼합부(221)로 유도되는 수소 가스의 유량과 질소 가스의 유량의 비가 적절하게 제어된다. 이에 의해 혼합부(221)에서 수소 가스와 질소 가스를 적절한 비로 혼합하여, 소요의 낮은 수소 농도의 혼합 가스(희석 수소 가스)를 생성할 수 있다.
도 9에서는, 수소 가스측의 유로에 직동식 레귤레이터(251)를 개재 삽입하고, 질소 가스측의 유로에 외부 파일럿식 레귤레이터(252)를 개재 삽입하고 있다. 다른 방법으로서, 도 9의 예와는 반대로, 반대로 질소 가스측의 유로에 직동식 레귤레이터를 개재 삽입하고, 수소 가스측의 유로에 외부 파일럿식 레귤레이터를 개재 삽입해도 된다. 이 경우, 질소 가스측의 유로에 있어서의 직동식 레귤레이터의 출구측 압력을, 수소 가스측의 유로의 외부 파일럿식 레귤레이터에 파일럿 압력으로서 가한다.
상술한 바와 같이, 노즐의 교환에 의해, 음속 노즐(253A, 253B) 중 어느 한쪽 혹은 양쪽의 출구측 유량을 변경하고, 이에 의해 혼합비를 변경할 수 있다. 이 경우, 음속 노즐의 장치 전체가 아니라, 스로트부만을 교환하여, 출구측 유량을 바꾸는 것도 가능하다.
상술한 바와 같이, 개폐 밸브(256A, 256B)의 개방 시간을 바꿈으로써도, 혼합 가스의 혼합비(질소 가스에 의한 수소 가스의 희석도)를 변경하는 것도 가능하다.
이상과 같은 도 9에 플로우 구성을 나타낸 혼합 가스 공급 장치(10)의 입체적인 구조(입체 구성)에 대해서는, 도 5 내지 도 8에 도시한 구조와 마찬가지로 해도 된다.
다음으로, 도 10을 참조하여, 혼합 가스 공급 장치의 변형예로서, 혼합 가스 공급 장치(210A)를 설명한다. 혼합 가스 공급 장치(210A)는, 가스류 제어부(219) 대신에 가스류 제어부(219A)를 구비하고 있는 점에 있어서, 도 9에 도시하는 혼합 가스 공급 장치(210)와 상이하다. 도 10에 도시하는 요소 중, 도 9에 도시한 요소와 동일한 요소에 대해서는, 도 9와 동일한 부호를 붙이고, 그 상세는 생략한다.
혼합 가스 공급 장치(210A)는, 감압 밸브(327A), 수소 가스용 매스 플로우 컨트롤러(제1 매스 플로우 컨트롤러)(328A), 질소 가스용 매스 플로우 컨트롤러(제2 매스 플로우 컨트롤러)(328B), 수소 가스용 개폐 밸브(329A) 및 질소 가스용 개폐 밸브(329B)를 구비한다. 감압 밸브(327A), 수소 가스용 매스 플로우 컨트롤러(328A), 질소 가스용 매스 플로우 컨트롤러(328B), 수소 가스용 개폐 밸브(329A) 및 질소 가스용 개폐 밸브(329B)는 각각, 감압 밸브(127A), 수소 가스용 매스 플로우 컨트롤러(128A), 질소 가스용 매스 플로우 컨트롤러(128B), 수소 가스용 개폐 밸브(129A) 및 질소 가스용 개폐 밸브(129B)와 마찬가지의 구성 및 기능을 갖는다. 혼합 가스 공급 장치(210A)는, 시퀀서(333)를 더 구비한다. 시퀀서(333)는, 각 압력계(258A, 258B)에 의해 검출된 압력 신호를 수취하고, 그 압력 신호에 따라서, 밸브(329A, 329B)의 개폐를 제어한다.
이상의 설명에서는, 본 발명의 실시 형태의 혼합 가스 공급 장치로부터 공급되는 수소와 질소의 혼합 가스(수소 가스를 질소 가스로 희석한 가스)를 누설 검사용 가스로서 사용하는 것으로 하였지만, 본 발명의 실시 형태는 이러한 경우에 한정되는 것은 아니다. 그 밖의 용도에, 본 발명의 실시 형태의 장치에 의해 얻어진 혼합 가스를 사용해도 된다.
(1): 본 발명의 일 실시 형태에 관한 혼합 가스 공급 장치는, 수소 가스를 발생시키는 수소 가스 발생부와, 질소 가스를 발생시키는 질소 가스 발생부와, 상기 수소 가스 발생부로부터 유도된 수소 가스 및 상기 질소 가스 발생부로부터 유도된 질소 가스를 혼합하는 가스 혼합부를 갖는다. 상기 가스 혼합부는, 상기 가스 혼합부에서 혼합된 가스를 외부에 공급한다.
수소 가스는, 물의 전기 분해에 의해 간단하면서 용이하게 얻을 수 있다. 또한 질소 가스는 공기로부터 분리함으로써 용이하게 얻을 수 있다. 따라서, 가스원으로서 고압 가스 봄베를 사용하지 않아도, 누설 검사 등에 사용하기 위한 혼합 가스를 공급할 수 있다.
(2): 상기 (1)에 기재된 혼합 가스 공급 장치에 있어서, 상기 수소 가스 발생부는, 물을 분해하여 수소 가스를 발생시키는 수소 발생기를 가져도 된다.
(3): 상기 (1)에 기재된 혼합 가스 공급 장치에 있어서, 상기 질소 가스 발생부는, 공기로부터 질소 가스를 분리하는 필터를 가져도 된다.
(4): 상기 (1) 내지 (3) 중 어느 하나에 기재된 혼합 가스 공급 장치는, 상기 수소 가스 발생부와, 상기 질소 가스 발생부와, 상기 가스 혼합부가 탑재된 하나의 베이스를 더 가져도 된다. 상기 수소 가스 발생부와, 상기 질소 가스 발생부와, 상기 가스 혼합부가, 일체화되어 있어도 된다.
이러한 (4)에 기재된 혼합 가스 공급 장치에서는, 그 혼합 가스 공급 장치를 구성하는 각 부가 하나의 베이스 상에 탑재되어 일체화되어 있다. 이 때문에, 장치 전체를 용이하게 운반, 이동시킬 수 있다. 그 때문에, 필요에 따라서 누설 검사 현장 부근에 장치 전체를 용이하게 배치할 수 있다.
(5): 상기 (4)에 기재된 혼합 가스 공급 장치는, 상기 베이스 상에 설치된 단일의 하우징을 더 갖고 있어도 된다. 상기 수소 가스 발생부와, 상기 질소 가스 발생부와, 상기 가스 혼합부가, 상기 하우징 내에 수용되어 있어도 된다.
이러한 (5)에 기재된 혼합 가스 공급 장치에서는, 외관상의 겉보기가 좋을 뿐만 아니라, 장치의 운반, 이동 시에 있어서 하우징 내부에 수납된 각 부의 구성 부재나 배관, 밸브 등이 손상될 우려가 적고, 또한 환경 중의 진애로부터 내부의 구성 부재나 배관, 밸브 등을 보호할 수 있다.
(6): 상기 (4) 또는 (5)에 기재된 혼합 가스 공급 장치는, 상기 베이스에 설치된 캐스터를 더 갖고 있어도 된다.
이러한 (6)에 기재된 혼합 가스 공급 장치에서는, 캐스터의 구름 이동에 의해 장치 전체를 바닥면 상에서 간단하면서 용이하게 이동시킬 수 있다. 그 때문에, 작업자에게 과대한 부담을 강요하거나, 크레인을 사용하거나 하는 일 없이, 필요에 따라서 누설 검사 현장 부근으로 장치 전체를 용이하게 이동시키고, 또한 누설 검사 등의 종료 후에 현장으로부터 용이하게 퇴피시킬 수 있다.
(7): 상기 (1) 내지 (6) 중 어느 하나에 기재된 혼합 가스 공급 장치는, 상기 가스 혼합부가 직렬 접속된 2개의 혼합 탱크를 갖고 있어도 된다.
이러한 (7)에 기재된 혼합 가스 공급 장치에서는, 가스 혼합부가 직렬 접속된 2개의 혼합 탱크에 의해 구성된다. 이 때문에, 상류측의 혼합 탱크가 버퍼로서 기능하여 혼합 가스 공급의 안정화를 도모하는 것이 가능해진다. 또한 혼합 가스의 균일화를 도모하여, 균일한 혼합비의 혼합 가스를 확실하게 공급하는 것이 가능해진다.
(8): 상기 (1) 내지 (7) 중 어느 한 항에 기재된 혼합 가스 공급 장치는, 상기 수소 가스 발생부로부터 수소 가스 공급 유로를 거쳐 상기 가스 혼합부로 유도되는 수소 가스의 유량과, 상기 질소 가스 발생부로부터 질소 가스 공급 유로를 거쳐 상기 가스 혼합부로 유도되는 질소 가스 유량의 비를 제어하는 가스 유량비 제어부를 더 갖고 있어도 된다.
(9): 상기 (8)에 기재된 혼합 가스 공급 장치에 있어서, 상기 가스 유량비 제어부가, 상기 수소 가스 공급 유로에 설치된 제1 매스 플로우 컨트롤러와, 상기 질소 가스 공급 유로에 설치된 제2 매스 플로우 컨트롤러를 갖고 있어도 된다.
(10): 상기 (8)에 기재된 혼합 가스 공급 장치는, 직동식 레귤레이터와, 상기 직동식 레귤레이터로부터 파일럿 압력이 가해지는 파일럿식 레귤레이터를 더 갖고 있어도 된다. 상기 가스 유량비 제어부가, 상기 수소 가스 공급 유로에 설치된 제1 음속 노즐과, 상기 질소 가스 공급 유로에 설치된 제2 음속 노즐을 갖고 있어도 된다. 상기 직동식 레귤레이터는, 상기 제1 음속 노즐보다 상류측인 상기 수소 가스 공급 유로 상의 위치와, 상기 제2 음속 노즐보다 상류측인 상기 질소 가스 공급 유로 상의 위치 중 한쪽에 설치되어 있어도 된다. 상기 외부 파일럿식 레귤레이터는, 상기 수소 가스 공급 유로 상의 상기 위치와, 상기 질소 가스 공급 유로의 상기 위치 중 다른 쪽에 설치되어 있어도 된다.
(11): 상기 (1) 내지 (10) 중 어느 하나에 기재된 혼합 가스 공급 장치에 있어서, 상기 혼합 가스의 용도가, 누설 검사여도 된다.
본 발명의 실시 형태에 따르면, 예를 들어 누설 검사에 있어서의 검사용 가스 등으로서 사용되는 혼합 가스를 공급하기 위한 장치로서, 가스 공급원으로서의 고압 가스 봄베의 사용을 최대한 억제하여, 가스 봄베 사용에 의한 불이익을 최소한으로 억제하고, 누설 검사 등에 있어서, 저비용화를 도모함과 함께, 작업의 효율화를 도모할 수 있다.
또한, 본 발명의 실시 형태에 따르면, 수소에 접촉하는 일 없이 안전하게 수소 혼합 가스를 공급할 수 있다. 또한, 공기와 물만을 이용하여 수소 혼합 가스를 장치 내에서 제조할 수 있다. 그 때문에, 고압 가스 봄베를 구입할 필요가 없고, 수소 혼합 가스를 사용할 때에 그 자리에서 수소 혼합 가스를 제조하여 공급할 수 있다. 그 때문에 편리성이 높고, 또한 러닝 코스트를 억제할 수 있다.
이상, 본 발명의 바람직한 실시 형태에 대해 설명하였지만, 이들 실시 형태는 어디까지나 본 발명의 요지의 범위 내의 하나의 예에 불과하며, 본 발명의 요지로부터 일탈하지 않는 범위 내에서, 구성의 부가, 생략, 치환 및 그 밖의 변경이 가능하다. 즉, 본 발명은 전술한 설명에 의해 한정되는 일 없이, 청구범위에 의해서만 한정되고, 그 범위 내에서 적절하게 변경 가능하다.
본 발명은, 혼합 가스 공급 장치에 적용해도 된다.
210 : 혼합 가스 공급 장치
215 : 필터(막 모듈; 질소 가스 발생부)
219 : 가스류 제어부
221 : 혼합부
221A : 제1 혼합 탱크
221B : 제2 혼합 탱크
223 : 수조
227 : 수소 발생기(수소 가스 발생부)
240 : 베이스
241 : 하우징(캐비닛)
260 : 캐스터
215 : 필터(막 모듈; 질소 가스 발생부)
219 : 가스류 제어부
221 : 혼합부
221A : 제1 혼합 탱크
221B : 제2 혼합 탱크
223 : 수조
227 : 수소 발생기(수소 가스 발생부)
240 : 베이스
241 : 하우징(캐비닛)
260 : 캐스터
Claims (13)
- 물을 분해하여 수소 가스를 발생시키는 수소 발생기를 갖는 수소 가스 발생부와,
공기로부터 질소 가스를 분리하는 필터를 갖는 질소 가스 발생부와,
상기 수소 가스 발생부로부터 유도된 수소 가스 및 상기 질소 가스 발생부로부터 유도된 질소 가스를 혼합하는 가스 혼합부를 갖고,
상기 수소 가스 발생부와, 상기 질소 가스 발생부와, 상기 가스 혼합부가 하나의 베이스상에 탑재되어 일체화되고,
상기 가스 혼합부에서 혼합된 저수소 농도의 수소/질소 혼합 가스를 외부에 공급하도록 구성되고,
상기 수소 가스 발생부와, 상기 질소 가스 발생부와, 상기 가스 혼합부가 상기 베이스상에 설치된 단일의 하우징 내에 수용되고,
상기 가스 혼합부가 직렬 접속한 두개의 혼합 탱크로 구성되고,
상기 두개의 혼합 탱크는, 상기 수소 가스 및 상기 질소 가스가 도입되는 제1 혼합 탱크와, 상기 제1 혼합 탱크보다 소용량이며 상기 제1 혼합 탱크의 후단에 접속된 제2 혼합 탱크인 것을 특징으로 하는, 혼합 가스 공급 장치. - 제1항에 있어서,
상기 질소 가스 발생부는, 공장의 공기 배관에서 도입된 공기에서 질소 가스를 분리하며,
공장 현장에서 중공 부품의 누설 검사에 있어서 상기 중공 부품에 상기 수소/질소 혼합 가스를 도입하는 것을 특징으로 하는, 혼합 가스 공급 장치. - 제1항 또는 제2항에 있어서,
상기 베이스에 설치된 캐스터를 더 갖는, 혼합 가스 공급 장치. - 삭제
- 제1항 또는 제2항에 있어서,
상기 수소 가스 발생부로부터 수소 가스 공급 유로를 거쳐 상기 가스 혼합부로 유도되는 수소 가스의 유량과, 상기 질소 가스 발생부로부터 질소 가스 공급 유로를 거쳐 상기 가스 혼합부로 유도되는 질소 가스 유량의 비를 제어하는 가스 유량비 제어부를 더 갖는, 혼합 가스 공급 장치. - 제5항에 있어서,
상기 가스 유량비 제어부가,
상기 수소 가스 공급 유로에 설치된 제1 매스 플로우 컨트롤러와,
상기 질소 가스 공급 유로에 설치된 제2 매스 플로우 컨트롤러를 갖는, 혼합 가스 공급 장치. - 제5항에 있어서,
직동식 레귤레이터와,
상기 직동식 레귤레이터로부터 파일럿 압력이 가해지는 외부 파일럿식 레귤레이터를 더 갖고,
상기 가스 유량비 제어부가, 상기 수소 가스 공급 유로에 설치된 제1 음속 노즐과, 상기 질소 가스 공급 유로에 설치된 제2 음속 노즐을 갖고,
상기 직동식 레귤레이터는, 상기 제1 음속 노즐보다 상류측인 상기 수소 가스 공급 유로 상의 위치와, 상기 제2 음속 노즐보다 상류측인 상기 질소 가스 공급 유로 상의 위치 중 한쪽에 설치되고,
상기 외부 파일럿식 레귤레이터는, 상기 수소 가스 공급 유로 상의 상기 위치와, 상기 질소 가스 공급 유로의 상기 위치 중 다른 쪽에 설치되어 있는, 혼합 가스 공급 장치. - 제1항에 있어서,
상기 혼합 가스의 용도가, 누설 검사인, 혼합 가스 공급 장치. - 삭제
- 삭제
- 삭제
- 삭제
- 삭제
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2016-203695 | 2016-10-17 | ||
JP2016203695A JP2018065073A (ja) | 2016-10-17 | 2016-10-17 | 希釈水素ガス生成装置 |
JP2017036830A JP6663874B2 (ja) | 2017-02-28 | 2017-02-28 | 混合ガス供給装置 |
JPJP-P-2017-036830 | 2017-02-28 | ||
PCT/JP2017/037502 WO2018074460A1 (ja) | 2016-10-17 | 2017-10-17 | 混合ガス供給装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190049852A KR20190049852A (ko) | 2019-05-09 |
KR102280026B1 true KR102280026B1 (ko) | 2021-07-21 |
Family
ID=62018541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020197010718A KR102280026B1 (ko) | 2016-10-17 | 2017-10-17 | 혼합 가스 공급 장치 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11285446B2 (ko) |
KR (1) | KR102280026B1 (ko) |
CN (1) | CN209952607U (ko) |
WO (1) | WO2018074460A1 (ko) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11268875B2 (en) * | 2016-11-22 | 2022-03-08 | Redline Detection, Llc | Method and apparatus for fluid leak detection |
US11123687B2 (en) | 2018-03-19 | 2021-09-21 | Hamilton Sundstrand Corporation | Vacuum assisted air separation module operation |
JP7440057B2 (ja) * | 2020-01-09 | 2024-02-28 | ヤマハファインテック株式会社 | 水素ガス混合装置 |
JP7417255B6 (ja) * | 2020-01-09 | 2024-01-30 | ヤマハファインテック株式会社 | 水素ガス混合装置 |
JP7401091B2 (ja) * | 2020-01-09 | 2023-12-19 | ヤマハファインテック株式会社 | ガス混合装置 |
WO2022009262A1 (ja) * | 2020-07-06 | 2022-01-13 | ヤマハファインテック株式会社 | ガス混合装置 |
CN114748989B (zh) * | 2021-01-08 | 2023-04-28 | 中冶长天国际工程有限责任公司 | 氨稀释控制方法、装置及可读存储介质 |
CN113144925B (zh) * | 2021-04-21 | 2023-05-30 | 江苏科技大学 | 一种实时混气系统及其工作方法 |
CN113233421A (zh) * | 2021-05-11 | 2021-08-10 | 华融化学股份有限公司 | 一种hcl合成炉自动点火控制系统及其控制方法 |
CN113984304B (zh) * | 2021-12-28 | 2022-04-29 | 河南氢枫能源技术有限公司 | 一种氢能设备测试系统和测试方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006159168A (ja) | 2004-12-03 | 2006-06-22 | Fukuhara Co Ltd | 純度の高い窒素ガスを作り出す窒素ガスの製造方法および製造装置 |
JP2007038179A (ja) | 2005-08-05 | 2007-02-15 | Yutaka:Kk | ガス混合装置 |
JP2013075277A (ja) * | 2011-09-30 | 2013-04-25 | Tokyo Gas Co Ltd | 埋設パイプラインの漏洩検査ガス混合装置、埋設パイプラインの漏洩検査方法 |
WO2016132517A1 (ja) * | 2015-02-19 | 2016-08-25 | 株式会社グッドマン | 漏水探索装置および漏水探索方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2012046A (en) * | 1930-01-31 | 1935-08-20 | Nat Aniline & Chem Co Inc | Electrolytic process and apparatus |
DE2455751B2 (de) | 1974-11-26 | 1978-05-11 | Draegerwerk Ag, 2400 Luebeck | Verfahren zum Mischen von Druckgasen und ein Gasmischgerät dazu |
JPH06220531A (ja) * | 1992-09-02 | 1994-08-09 | Furukawa Electric Co Ltd:The | 窒素ガス雰囲気加熱装置 |
JPH10128102A (ja) * | 1996-11-06 | 1998-05-19 | Taiyo Toyo Sanso Co Ltd | 混合ガス供給システム |
JP4329921B2 (ja) | 2001-08-06 | 2009-09-09 | ヤマハファインテック株式会社 | 検査用ガスの混合装置および混合方法 |
JP2012047651A (ja) * | 2010-08-30 | 2012-03-08 | Anest Iwata Corp | リーク検出装置 |
-
2017
- 2017-10-17 WO PCT/JP2017/037502 patent/WO2018074460A1/ja active Application Filing
- 2017-10-17 KR KR1020197010718A patent/KR102280026B1/ko active IP Right Grant
- 2017-10-17 CN CN201790001320.6U patent/CN209952607U/zh active Active
-
2019
- 2019-04-12 US US16/382,611 patent/US11285446B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006159168A (ja) | 2004-12-03 | 2006-06-22 | Fukuhara Co Ltd | 純度の高い窒素ガスを作り出す窒素ガスの製造方法および製造装置 |
JP2007038179A (ja) | 2005-08-05 | 2007-02-15 | Yutaka:Kk | ガス混合装置 |
JP2013075277A (ja) * | 2011-09-30 | 2013-04-25 | Tokyo Gas Co Ltd | 埋設パイプラインの漏洩検査ガス混合装置、埋設パイプラインの漏洩検査方法 |
WO2016132517A1 (ja) * | 2015-02-19 | 2016-08-25 | 株式会社グッドマン | 漏水探索装置および漏水探索方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2018074460A1 (ja) | 2018-04-26 |
US11285446B2 (en) | 2022-03-29 |
US20190232235A1 (en) | 2019-08-01 |
KR20190049852A (ko) | 2019-05-09 |
CN209952607U (zh) | 2020-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102280026B1 (ko) | 혼합 가스 공급 장치 | |
US5470390A (en) | Mixed gas supply system with a backup supply system | |
US6164116A (en) | Gas module valve automated test fixture | |
US5065794A (en) | Gas flow distribution system | |
KR101565437B1 (ko) | 반도체 제조 장치용의 가스 공급 장치 | |
EP0969342B1 (en) | Fluid supply apparatus | |
US4094187A (en) | Stack gas analyzing system with calibrating/sampling feature | |
KR101677971B1 (ko) | 반도체 제조 장치의 가스 분류 공급 장치 | |
JP3168217B2 (ja) | 超高精度分析装置へのガス供給方法及び装置 | |
EP2618143B1 (en) | Analyzer with fluid pressure control device | |
JP5679367B2 (ja) | バッテリーボックス気密検査装置 | |
US10751763B2 (en) | Gas sampling methods | |
JP2018065073A (ja) | 希釈水素ガス生成装置 | |
US20130075636A1 (en) | Solenoid Bypass System for Continuous Operation of Pneumatic Valve | |
JP5879074B2 (ja) | シールドガス流量制御装置 | |
WO2009110611A1 (ja) | 表面処理装置 | |
JP5065115B2 (ja) | ガス供給システム | |
JP6663874B2 (ja) | 混合ガス供給装置 | |
JP2008281155A (ja) | シリンダーキャビネット | |
US6363626B1 (en) | Method and device for treating items stored in containers and storage apparatus equipped with such a device | |
JP2012078225A (ja) | バッテリーボックス気密検査装置 | |
JP2016211864A (ja) | ガス供給装置 | |
CN220061450U (zh) | 一种气体供应系统 | |
KR200357003Y1 (ko) | 반도체 제조용 가스공급장치 | |
KR102570936B1 (ko) | 1차계통 수화학 모사장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |