KR102207023B1 - 유체가열장치 - Google Patents

유체가열장치 Download PDF

Info

Publication number
KR102207023B1
KR102207023B1 KR1020200020331A KR20200020331A KR102207023B1 KR 102207023 B1 KR102207023 B1 KR 102207023B1 KR 1020200020331 A KR1020200020331 A KR 1020200020331A KR 20200020331 A KR20200020331 A KR 20200020331A KR 102207023 B1 KR102207023 B1 KR 102207023B1
Authority
KR
South Korea
Prior art keywords
flow path
fluid
phase
forming body
path forming
Prior art date
Application number
KR1020200020331A
Other languages
English (en)
Other versions
KR20200023334A (ko
Inventor
도루 도노무라
야스히로 후지모토
요시오 기타노
Original Assignee
토쿠덴 가부시기가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013095687A external-priority patent/JP6162473B2/ja
Application filed by 토쿠덴 가부시기가이샤 filed Critical 토쿠덴 가부시기가이샤
Publication of KR20200023334A publication Critical patent/KR20200023334A/ko
Application granted granted Critical
Publication of KR102207023B1 publication Critical patent/KR102207023B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/14Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form
    • F24H1/16Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form helically or spirally coiled
    • F24H1/162Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form helically or spirally coiled using electrical energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/14Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form
    • F24H1/142Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • F24H1/102Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance
    • F24H1/105Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance formed by the tube through which the fluid flows
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/28Methods of steam generation characterised by form of heating method in boilers heated electrically
    • F22B1/282Methods of steam generation characterised by form of heating method in boilers heated electrically with water or steam circulating in tubes or ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/16Steam superheating characterised by heating method by using a separate heat source independent from heat supply of the steam boiler, e.g. by electricity, by auxiliary combustion of fuel oil
    • F22G1/165Steam superheating characterised by heating method by using a separate heat source independent from heat supply of the steam boiler, e.g. by electricity, by auxiliary combustion of fuel oil by electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/101Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply
    • F24H1/102Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance
    • F24H1/103Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium using electric energy supply with resistance with bare resistances in direct contact with the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0015Guiding means in water channels
    • F24H9/0021Sleeves surrounding heating elements or heating pipes, e.g. pipes filled with heat transfer fluid, for guiding heated liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/02Casings; Cover lids; Ornamental panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/14Arrangements for connecting different sections, e.g. in water heaters 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1818Arrangement or mounting of electric heating means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0019Circuit arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Resistance Heating (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

본 발명은, 유체가 흐르는 유체 배관을 통전 가열하여 유체를 가열하는 유체가열장치에 있어서, 회로 역률을 개선하여 설비 효율을 향상시키는 것으로, 내부에 피가열유체가 흐르는 유로가 형성된 도전성 재료로 이루어지는 유로형성체를 통전 가열하여, 상기 유로를 흐르는 피가열유체를 가열하는 유체가열장치로서, 유로형성체에서, 유로형성체의 유로방향을 따라서 다른 위치에 접속된 3n+1개(n은 1 이상의 정수이다.)의 급전부재를 구비하고, 3n+1개의 급전부재에, 연속하여 늘어서는 3개의 상기 급전부재에 접속되는 삼상교류전원의 극성이 각각 다르도록, 삼상교류전원의 U상, V상 및 W상이 교호(交互)로 접속되어 있다.

Description

유체가열장치{FLUID HEATING APPARATUS}
본 발명은 유체가열장치에 관한 것이다.
유체가열장치로서는, 특허문헌 1에 나타내는 바와 같이, 중공(中空) 도체관을 통전(通電) 가열하여, 당해 도체관의 내부를 흐르는 유체를 가열하여 가열유체를 발생하는 것이 있다. 이 유체가열장치에서는, 도체관의 양단부에 마련한 전극으로부터 교류전압이 인가되어, 도체관의 측벽에 교류전류가 흐르는 것에 의해, 도체관의 내부저항에 의해 발생하는 쥴(Joule)열에 의해서 도체관이 자기발열한다. 이 도체관의 자기발열에 의해서, 당해 도체관을 흐르는 유체가 가열된다.
그렇지만, 도체관의 양단부에 교류전압을 인가하는 것에서는, 도체관이 가지는 인덕턴스에 의해서 전압강하가 발생하며, 당해 도체관에 교류전압을 인가하는 회로의 역률(力率)이 저하된다고 하는 문제가 있다.
특허문헌 1 : 일본국 특개2011-86443호 공보
그래서 본 발명은 상기 문제점을 일거에 해결하기 위해서 이루어진 것으로, 내부에 유체가 흐르는 유로형성체를 통전 가열하는 유체가열장치에 있어서, 회로 역률을 개선하여 설비 효율을 향상시키는 것을 그 주된 소기 과제로 하는 것이다.
즉 본 발명에 관한 유체가열장치는, 내부에 피가열유체가 흐르는 유로가 형성된 도전성 재료로 이루어지는 유로형성체를 통전 가열하여, 상기 유로를 흐르는 피가열유체를 가열하는 유체가열장치로서, 상기 유로형성체의 유로 일단 측에 접속된 제1 급전(給電)부재와, 상기 유로형성체의 유로 타단 측에 접속된 제2 급전부재와의 사이에 교류전압을 인가하는 것이고, 상기 제2 급전부재가 상기 유로형성체의 유로방향을 따라서 유로 일단 측을 향하여 배치되어 있는 것을 특징으로 한다.
이와 같은 것으로 하면, 유로형성체에 흐르는 전류와 제2 급전부재에 흐르는 전류가 역방향이 되므로, 각각의 전류에 의해 발생하는 자속(磁束)이 제거되고, 유로형성체에 발생하는 리액턴스(reactance)가 저감되어 회로 역률을 개선할 수 있다. 따라서, 유체가열장치의 설비 효율을 향상시킬 수 있다.
제2 급전부재의 전류에 의해 발생하는 자속에 의해서, 유로형성체의 전류에 의해 발생하는 자속을 제거하는 효과를 충분히 발휘시키기 위해서는, 상기 제1 급전부재 및 상기 제2 급전부재가 상기 유로형성체의 유로 일단 측으로부터 전원 측으로 인출(引出)되어 있는 것이 바람직하다. 이렇게 하면, 제1 급전부재 및 제2 급전부재가 유로형성체의 유로 일단 측으로부터 인출되어 있으므로, 제1 급전부재를 흐르는 전류에 의해 발생하는 자속이나, 제2 급전부재에서 유로형성체를 따라서 배치된 부분 이외의 부분을 흐르는 전류에 의해 발생하는 자속이, 자속의 제거 효과를 저해하는 것을 방지할 수 있다. 또, 제2 급전부재를 유로형성체의 유로 타단 측으로부터 유로 일단 측에 배치한 후, 그대로 유로 일단 측으로부터 인출하는 것만으로 되어, 장치 구성을 간단화 할 수 있다.
유로형성체의 구체적인 실시의 태양으로서는, 상기 유로형성체가 직관(直管)형상을 이루는 것인 것이 바람직하다. 이렇게 하면, 유로형성체의 구성을 간단화 할 수 있다. 또, 제2 급전부재를 유로형성체의 유로방향을 따라서 배치하기 쉽게 할 수 있어, 제2 급전부재의 구성도 간단화 할 수 있다.
상기 유로형성체의 양단부에 다른 유로형성체에 접속하기 위한 접속부가 마련되어 있는 것이 바람직하다. 이렇게 하면, 복수의 유로형성체를 접속하는 것에 의해서, 소망의 길이의 유로를 가지는 유체가열장치를 구성할 수 있다.
제1 급전부재 및 제2 급전부재의 구체적인 실시의 태양으로서는, 상기 제1 급전부재가 상기 유로형성체의 유로 일단 측에 마련된 제1 전극과, 당해 제1 전극에 접속되어 상기 제1 전극에 교류전압을 인가하기 위한 제1 전선으로 이루어지며, 상기 제2 급전부재가 상기 유로형성체의 유로 타단 측에 마련된 제2 전극과, 당해 제2 전극에 접속되어 상기 제2 전극에 교류전압을 인가하기 위한 제2 전선으로 이루어지는 것이 바람직하다.
상기 제2 급전부재에서, 상기 제2 전극이 상기 유로형성체의 유로방향을 따라서 유로 일단 측을 향하여 배치되어 있는 것이 바람직하다. 이렇게 하면, 제2 전극에 제2 전선을 접속하는 것만으로, 유로형성체에 흐르는 전류와 제2 급전부재에 흐르는 전류를 역방향으로 하는 구성을 실현할 수 있어, 회로접속작업을 용이하게 할 수 있다.
상기 제2 급전부재에서, 상기 제2 전선이 상기 유로형성체의 유로방향을 따라서 유로 일단 측을 향하여 배치되어 있는 것이 바람직하다. 이렇게 하면, 제2 전선을 유로형성체에 따르게 하는 구성으로 할 수 있으므로, 제2 전극의 구성을 간략화할 수 있다.
상기 유로형성체의 외주에 절연성 단열부재가 마련되어 있고, 상기 제2 전선이 상기 절연성 단열부재에 접촉하며, 상기 유로형성체의 유로방향을 따라서 유로 일단 측을 향하여 배치된 나전선(裸電線, naked wire)을 가지는 것이 바람직하다. 이렇게 하면, 유로형성체가 통전 가열되어 온도 상승해도, 당해 유로형성체로부터 외부로의 방열을 저감할 수 있다. 또, 제2 전선이 절연성 단열부재에 접촉하여 배치된 나전선을 가지기 때문에, 제2 전선의 냉각을 행하면서도, 리액턴스를 저감할 수 있다.
유체가열장치가, 2개의 유로형성체를, 그들 유로가 연통함과 아울러 상기 2개의 유로형성체에 마련된 제1 급전부재가 내측에 위치하도록 접속한, n조(組)(n은 1 이상의 정수이다.)의 유체가열 유니트를 구비하고, 상기 각 유체가열 유니트에서의 2개의 제1 급전부재에, 동일한 극성의 전원출력이 인가되어 있으며, 상기 각 유체가열 유니트에서의 2개의 제2 급전부재에, 상기 제1 급전부재에 인가되는 극성과는 다르고, 또한, 서로 동일 또는 서로 다른 극성의 전원출력이 인가되는 것이 바람직하다. 이렇게 하면, 접속하는 유체가열 유니트수를 선택하는 것에 의해서, 소망의 길이의 유로를 가지는 유체가열장치를 구성할 수 있다. 또, 상기 유체가열 유니트를 이용하는 것으로, 각 유체가열 유니트에 단상(單相)교류전원, 삼상(三相)교류전원 또는 삼상교류전원으로부터의 삼상교류를 2개의 단상교류로 변환하는 스콧(scott) 결선(結線) 변압기를 접속할 수 있다.
상기의 유체가열 유니트를 구성하는 2개의 유로형성체의 온도를 개별적으로 제어하기 위해서는, 상기 유체가열 유니트를 구성하는 2개의 제2 급전부재에 상기 전원출력을 입력하는 회로상에 전류제어회로가 마련되어 있는 것이 바람직하다.
유체가열장치가, 3개의 유로형성체를, 그들 유로가 연통함과 아울러 상기 3개의 유로형성체에 마련된 제1 급전부재 및 제2 급전부재가 동일 방향을 향하도록 접속한, n조(n은 1 이상의 정수이다.)의 유체가열 유니트를 구비하고, 상기 각 유체가열 유니트를 구성하는 1번째의 유로형성체, 2번째의 유로형성체 및 3번째의 유로형성체에서, 상기 1번째의 유로형성체의 제1 급전부재 및 상기 2번째의 유로형성체의 제2 급전부재에 삼상교류의 제1 상이 접속되어 있으며, 상기 2번째의 유로형성체의 제1 급전부재 및 상기 3번째의 유로형성체의 제2 급전부재에 삼상교류의 제2 상이 접속되어 있고, 상기 3번째의 유로형성체의 제1 급전부재 및 상기 1번째의 유로형성체의 제2 급전부재에 삼상교류의 제3 상이 접속되어 있는 것이 바람직하다. 이렇게 하면, 접속하는 유체가열 유니트수를 선택하는 것에 의해서, 소망의 길이의 유로를 가지는 유체가열장치를 구성할 수 있다. 또, 상기 유체가열 유니트를 이용하는 것으로, 각 유체가열 유니트에 삼상교류전원을 그대로 접속할 수 있다.
내부에 피가열유체가 흐르는 유로가 형성된 도전성 재료로 이루어지는 유로형성체를 통전 가열하여, 상기 유로를 흐르는 피가열유체를 가열하는 유체가열장치로서, 상기 유로형성체에 있어서, 상기 유로방향을 따라서 다른 위치에 접속된 3n+1개(n은 1 이상의 정수이다.)의 급전부재를 구비하고, 상기 3n+1개의 급전부재에 연속하여 늘어선 3개의 상기 급전부재에 접속되는 삼상교류전원의 극성이 각각 다르도록, 삼상교류전원의 U상, V상 및 W상이 교호(交互)로 접속되어 있는 것이 바람직하다. 이렇게 하면, 연속하여 늘어선 3개의 급전부재에 접속되는 삼상교류전원의 극성이 각각 다르도록 삼상교류전원의 U상, V상 및 W상이 접속되어 있으므로, 상기 유로형성체에 흐르는 전류에 의해 발생하는 자속이 상쇄되고, 상기 유로형성체에 발생하는 임피던스(impedance)가 저감되어 회로 역률을 개선할 수 있다. 따라서, 유체가열장치의 설비 효율을 향상시킬 수 있다.
또, 본 발명에 관한 유체가열장치는, 내부에 피가열유체가 흐르는 유로가 형성된 도전성 재료로 이루어지는 유로형성체를 통전 가열하여, 상기 유로를 흐르는 피가열유체를 가열하는 유체가열장치로서, 상기 유로형성체의 유로 일단 측에 접속된 제1 급전부재와, 상기 유로형성체의 유로 타단 측에 접속된 제2 급전부재와의 사이에 교류전압을 인가하는 것이며, 상기 제2 급전부재가 상기 유로형성체의 유로 타단 측으로부터 유로 일단 측에서의 외측 둘레면의 대략 전체 둘레를 덮는 피복체를 가지고, 상기 피복체의 유로 타단 측 단부가 상기 유로형성체에 전기적으로 접속되어 있는 것을 특징으로 한다.
이와 같은 것으로 하면, 유로형성체에 흐르는 전류와, 제2 급전부재, 특히 피복체에 흐르는 전류가 역방향이 되므로, 각각의 전류에 의해 발생하는 자속이 상쇄되고, 유로형성체에 발생하는 리액턴스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 유체가열장치의 설비 효율을 향상시킬 수 있다. 또, 상기 유로형성체의 유로 타단 측으로부터 유로 일단 측에서의 외측 둘레면의 대략 전체 둘레가 상기 피복체에 의해 덮여 있으므로, 상기 피복체가 보온부재로서도 기능하므로, 상기 유로형성체 및 상기 유로형성체의 내부를 흐르는 피가열유체의 온도 저하를 방지할 수 있다.
피가열유체를 보다 고온의 상태에서 상기 유로형성체로부터 분출하게 하기 위해서는, 상기 유로형성체에서, 상기 피복체와의 접속부보다도 유로 타단 측에 유체분출구가 마련되어 있는 것이 바람직하다. 이렇게 하면, 상기 유로형성체에 마련된 유체분출구로부터 직접 분출하게 할 수 있으므로, 상기 유로형성체의 내부에서 가열된 피가열유체의 온도를 저하시키지 않고 그대로 분출시킬 수 있다.
상기 유체분출구가 상기 유로형성체의 외측 둘레면에 마련되어 있는 것이 바람직하다. 이렇게 하면, 유체분출구가 상기 유로형성체의 외측 둘레면에 마련되어 있으므로, 상기 유로형성체의 외주 방향으로 가열한 유체를 분출시킬 수 있다. 따라서, 예를 들면 바닥이 있는 심혈(深穴) 또는 관통한 심공(深孔) 등의 내주면에 상기 피가열유체를 직접 분출하게 하는 것이 가능하게 되어, 상기 심혈 또는 심공의 내주면을 효율 좋게 표면 개질(改質)할 수 있다. 여기서, 처리되는 상기 심혈 또는 심공의 개구 형상으로서는, 원형 모양, 타원 또는 다각형 등이라도 되고, 특정의 개구 형상에 한정되지 않는다. 또, 상기 심혈 또는 심공은 상기 개구 형상의 최대 치수를 d로 하고, 상기 심혈의 깊이 치수 또는 상기 심공의 길이 치수를 L로 했을 경우에, d<L의 관계를 만족하는 것이다. 또한, 상기 유체분출구가 상기 유로형성체의 둘레방향을 따라서 마련되어 있으면, 상기 유로형성체의 외주 방향으로 가열한 유체를 한층 효율 좋게 분출시킬 수 있다. 상기 유체분출구가 둘레방향을 따라서 마련되는 경우의 형태로서는, 예를 들면, 1개의 상기 유체분출구가 상기 유로형성체의 둘레방향을 따라서 연장하는 것이라도 되고, 복수의 상기 유체분출구가 상기 유로형성체의 둘레방향을 따라서 늘어서는 것이라도 된다.
상기 유로형성체가 상기 피복체보다도 높은 전기저항을 가지는 도전성 재료로 이루어지는 것이 바람직하다. 이렇게 하면, 통전 가열할 때에 상기 유로형성체를 보다 효율 좋게 가열할 수 있으므로, 효율적으로 피가열유체를 고온의 상태로 할 수 있다.
상기 피복체가 동 또는 진유(眞鍮, 놋쇠)로 이루어지는 것이 바람직하다. 이렇게 하면, 전기저항이 낮은 동 또는 진유에 의해 상기 피복체를 형성하는 것으로, 상기 피복체가 통전에 의해 가열되는 것을 방지하여, 효율적으로 상기 유로형성체를 가열할 수 있다.
상기 유로형성체 및 상기 피복체가, 각각 직관형상을 이루고, 상기 유로형성체 및 상기 피복체가 용접되는 것에 의해 전기적으로 접속되어 있는 것이 바람직하다. 이렇게 하면, 유로형성체의 구성을 간단화 할 수 있다. 또, 상기 피복체를 유로형성체의 유로방향을 따라서 배치하기 쉽게 할 수 있어, 상기 피복체의 구성도 간단화 할 수 있다.
상기 유로형성체와 상기 피복체와의 사이에 절연성 부재가 마련되어 있는 것이 바람직하다. 이렇게 하면, 상기 유로형성체와 상기 피복체를 확실히 절연할 수 있어, 접속부 이외의 부분에서의 단락을 방지할 수 있다.
상기 유로형성체의 유로 일단 측으로부터 유로 타단 측에서의 외측 둘레면을 덮는 세라믹 재료로 이루어지는 절연성 부재가 마련되고, 상기 유로형성체에서의 상기 절연성 부재보다도 유로 타단 측의 외측 둘레면으로부터, 상기 절연성 부재의 외측 둘레면에 걸쳐 금속박이 감겨지는 것에 의해 상기 피복체가 형성되어 있는 것이 바람직하다. 이렇게 하면, 상기 피복체를 얇은 금속박으로 구성할 수 있으므로, 유체가열장치 전체를 작은 치수로 할 수 있다. 또, 상기 절연성 부재가 내열성을 가지는 세라믹 재료로 이루어지므로, 고온의 과열 수증기를 생성하는 경우 등의, 고온 조건하에서도 절연성을 확보할 수 있다.
상기 피복체에서의 외측 둘레면의 대략 전체 둘레를 덮는 세라믹 재료로 이루어지는 외측 절연성 부재가 마련되어 있는 것이 바람직하다. 이렇게 하면, 유체가열장치를 설치하는 설치 대상물이 도전성 부재로 이루어지는 경우나, 분출한 피가열유체에 의해서 도전성이 되는 경우 등에서도, 상기 피복체로부터 외부로 누전하는 것을 방지할 수 있다. 또, 상기 절연성 부재가 내열성을 가지는 세라믹 재료로 이루어지므로, 고온의 과열 수증기를 생성하는 경우 등의, 고온 조건하에서도 절연성을 확보할 수 있다.
상기 유로형성체로 유입하는 상기 피가열유체가, 포화 수증기 또는 과열 수증기로서, 상기 유로형성체로부터 유출하는 유체가 과열 수증기인 것이 바람직하다.
또, 본 발명에 관한 유체가열장치는, 내부에 유체가 흐르는 도체관에 교류전압을 인가하여 통전 가열하고, 상기 도체관 내를 흐르는 유체를 가열하는 유체가열장치로서, 2N개(N은 1 이상의 정수이다.)의 상기 도체관이 서로 평행하게 되도록 배치되어 있으며, 상기 2N개의 도체관의 일단부가 서로 전기적으로 접속되고, 상기 2N개의 도체관의 타단부에 있어서, 서로 인접하는 타단부에 접속되는 단상교류전원의 극성이 다르도록, 단상교류전원의 U상 및 V상이 교호로 접속되어 있는 것을 특징으로 한다.
이와 같은 것으로 하면, 서로 인접하는 도체관에 흐르는 전류가 서로 역방향이 되므로, 각각의 전류에 의해 발생하는 자속이 상쇄되어, 도체관에 발생하는 임피던스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 유체가열장치의 설비 효율을 향상시킬 수 있다.
상기 2N개의 도체관의 일단부에 접속됨과 아울러, 상기 2N개의 도체관에 상기 유체를 분류시키는 도전성을 가지는 분류관을 가지고 있고, 당해 분류관에 의해 상기 2N개의 도체관이 전기적으로 접속되어 있는 것이 바람직하다. 이렇게 하면, 분류관으로부터 2N개의 도체관에 유체를 흘리는 것에 의해서, 유체 유입구의 수를 2N개보다도 줄일 수 있어, 배관 구성을 간략화할 수 있다. 또, 분류관이 도전성을 가지기 때문에, 배관 구성의 간략화와 함께, 전기적인 접속도 실현될 수 있다. 특히 배관 구성을 간략화하기 위해서는, 2N개의 도체관의 일단부에 2N개로 분기한 단일의 분류관을 접속하는 것이 바람직하다.
또, 본 발명에 관한 유체가열장치는, 내부에 유체가 흐르는 도체관에 교류전압을 인가하여 통전 가열하고, 상기 도체관 내를 흐르는 유체를 가열하는 유체가열장치로서, 3N개(N은 1 이상의 정수이다.)의 상기 도체관이 서로 평행하게 되도록 배치되어 있으며, 상기 3N개의 도체관의 일단부가 서로 전기적으로 접속되고, 상기 3N개의 도체관의 타단부에 있어서, 연속하여 늘어선 3개의 타단부에 접속되는 삼상교류전원의 극성이 각각 다르도록, 삼상교류전원의 U상, V상 및 W상이 교호로 접속되어 있는 것을 특징으로 한다.
이와 같은 것으로 하면, 연속하여 늘어선 3개의 타단부에 접속되는 삼상교류전원의 극성이 각각 다르도록 삼상교류전원의 U상, V상 및 W상이 접속되어 있으므로, 연속하여 늘어선 3개의 도체관에 흐르는 전류에 의해 발생하는 자속이 상쇄되어 도체관에 발생하는 임피던스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 유체가열장치의 설비 효율을 향상시킬 수 있다.
상기 3N개의 도체관의 일단부에 접속됨과 아울러, 상기 3N개의 도체관에 상기 유체를 분류시키는 도전성을 가지는 분류관을 가지고 있고, 당해 분류관에 의해 상기 3N개의 도체관이 전기적으로 접속되어 있는 것이 바람직하다. 이렇게 하면, 분류관으로부터 3N개의 도체관에 유체를 흘리는 것에 의해서, 유체 유입구의 수를 3N개보다도 줄일 수 있어, 배관 구성을 간략화할 수 있다. 또, 분류관이 도전성을 가지기 때문에, 배관 구성의 간략화와 함께, 전기적인 접속도 실현될 수 있다. 특히 배관 구성을 간략화하기 위해서는, 3N개의 도체관의 일단부에, 3N개로 분기한 단일의 분류관을 접속하는 것이 바람직하다.
1개의 열원으로 가열된 유체는 1개소로부터 집중적으로 배출되는 것이 일반적이지만, 가열된 유체를 이용하는 경우는 분산시키는 일이 많다. 게다가, 가열된 유체는 온도 저하하지 않도록 보온하거나 혹은 더욱 가열하는 경우가 있다. 이 때문에, 상기 도체관의 타단부가 폐색됨과 아울러, 상기 도체관의 도중에 복수의 유체분출구가 형성되어 있고, 상기 유체분출구로부터 상기 유체가 분출되도록 구성되어 있는 것이 바람직하다.
또, 상기 도체관이, 가열된 유체를 수용하기 위한 수용용기 등의 수용실 또는 가열된 유체에 의해 피처리물을 처리하기 위한 처리용기 등의 처리실 내에 삽입하여 마련되어 있는 것이 바람직하다. 이렇게 하면, 가열된 유체를 수용실에 수용시키는 것으로 보온 또는 가열할 수 있다. 또, 처리실 내에서 피처리물을 처리할 수 있다. 이 때, 상기 도체관에 접속되는 단상교류전원 또는 삼상교류전원이 상기 수용실 또는 상기 처리실과는 다른 공간에 마련되어 있는 것이 바람직하다. 본 발명에서는, 도체관이 과열증기 발생부로서 기능하기 때문에, 도체관을 보온실 또는 처리실에 삽입하여 마련하고, 보온실 또는 처리실의 외부에 마련된 단상교류전원 또는 삼상교류전원에 의해 전력을 공급하면 되어, 배관 구성을 간략화 할 수 있음과 아울러, 열효율을 향상시킬 수 있어, 에너지 절약에도 크게 공헌할 수 있다. 또, 보온실 또는 처리실과 단상교류전원 또는 삼상교류전원이 설치된 공간(예를 들면 전원실)을 전기배선으로 접속하면 되어, 유체가열장치의 전체 구성을 간략화 할 수 있음과 아울러, 단상교류전원 또는 삼상교류전원이 도전관으로부터의 열영향을 받을 일도 없다.
상기 도체관의 타단부에 접속되는 전극이 상기 도체관의 외측 둘레면을 따른 형상인 것이 바람직하다. 이렇게 하면, 도체관이 보온실 또는 처리실의 측벽 등의 위요벽(圍繞壁)으로부터 삽입하여 마련되는 것인 경우에, 도체관을 상기 보온실 또는 처리실의 측벽 등의 위요벽에 장착할 때 또는 떼어낼 때에 전극이 방해가 되지 않는다.
상기 도체관이 둥근 관 모양을 이루는 것이고, 상기 전극이 부분 원통 형상을 이루는 것인 것이 바람직하다. 이렇게 하면, 유체와 도체관과의 접촉 면적을 가급적으로 크게 하여 가열효율을 향상시킬 수 있다. 또, 전극이 부분 원통 형상을 이루는 것이며, 도체관을 상기 보온실 또는 처리실의 측벽 등의 위요벽에 장착할 때 또는 떼어낼 때에 전극이 방해가 되지 않는다.
상기 도체관의 도중에 1 또는 복수의 유체분출노즐이 마련되어 있고, 상기 유체분출노즐로부터 상기 유체가 분출되도록 구성되어 있는 것이 바람직하다. 이렇게 하면, 도체관에 유체분출노즐을 마련하는 것에 의해서, 가열된 유체를 당해 유체분출노즐에 의해 정해지는 소정의 분사 범위로 분출할 수 있다. 여기서, 도체관에 마련되는 유체분출노즐은 용도에 따라 선택된다.
또, 본 발명에 관한 유체가열장치는 내부에 피가열유체가 흐르는 도전성 재료로 이루어지는 유로형성체를 통전 가열하여, 상기 유로를 흐르는 피가열유체를 가열하는 유체가열장치로서, 상기 유로형성체가 직선 모양의 유로를 형성하는 1 또는 복수의 직선부를 가지고, 상기 직선부에 상기 유로를 흐르는 유체를 분출하는 복수의 유체분출구가 마련되며, 상기 직선부에서의 상기 유로의 유로방향을 따라서 복수의 전극이 접속되어 있고, 서로 인접하는 상기 전극에 접속되는 단상교류전원의 극성이 다르도록, 단상교류전원의 U상 및 V상이 교호로 접속되어 있는 것을 특징으로 한다.
이와 같은 것으로 하면, 서로 인접하는 상기 전극 사이에 흐르는 전류의 위상이 서로 역방향이 되므로, 각각의 전류에 의해 발생하는 자속이 상쇄되어, 상기 유로형성체에 발생하는 임피던스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 유체가열장치의 설비 효율을 향상시킬 수 있다. 또, 상기 직선부에 복수의 유체분출구가 마련되어 있으므로, 가열된 피가열유체를 유로형성체로부터 외부의 소정의 분사 범위로 직접 분출할 수 있다.
상기 직선부를 상기 유로방향을 따라서 2n 등분(n은 1 이상의 정수이다.)하는 위치에, 상기 전극이 각각 접속되어 있는 것이 바람직하다. 이렇게 하면, 각 전극 사이에 발생하는 자속량이 대략 동일하게 되어, 상기 전극 사이에 발생하는 자속을 효율 좋게 제거할 수 있다.
또, 본 발명에 관한 유체가열장치는, 내부에 피가열유체가 흐르는 유로가 형성된 도전성 재료로 이루어지는 유로형성체를 통전 가열하여, 상기 유로를 흐르는 피가열유체를 가열하는 유체가열장치로서, 상기 유로형성체가 각각 서로 대략 평행하게 배치되고, 직선 모양의 유로를 형성하는 2n개(n은 1 이상의 정수이다.)의 직선부와, 서로 인접하는 상기 직선부의 단부를 접속하여 사행(蛇行)한 1개의 유로를 형성하는 2n-1개의 되접기부를 가지고, 상기 유로형성체에 상기 유로를 흐르는 유체를 분출하는 복수의 유체분출구가 마련되며, 상기 유로형성체에서, 상기 사행한 유로의 양단부에 전극이 접속됨과 아울러, 상기 2n-1개의 되접기부의 적어도 1개에 전극이 접속되어 있고, 상기 복수의 전극이 상기 유로방향을 따라서 서로 인접하는 전극의 사이의 유로를 형성하는 상기 직선부가 짝수 개가 되도록 접속되어 있으며, 상기 유로방향을 따라서 서로 인접하는 전극에 접속되는 단상교류전원의 극성이 다르도록, 단상교류전원의 U상 및 V상이 교호로 접속되어 있는 것이 바람직하다.
이와 같은 것으로 하면, 서로 인접하는 상기 직선부에 흐르는 전류가 서로 역방향이 되므로, 각각의 전류에 의해 발생하는 자속이 상쇄되어, 유로형성체에 발생하는 임피던스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 유체가열장치의 설비 효율을 향상시킬 수 있다. 또, 상기 직선부에 복수의 유체분출구가 마련되어 있으므로, 가열된 피가열유체를 유로형성체로부터 외부의 소정의 분사 범위로 직접 분출할 수 있다.
상기 되접기부에 접속되는 전극이 상기 유로방향을 따라서 서로 인접하는 전극의 사이의 유로를 형성하는 상기 직선부가 2개가 되도록 접속되어 있는 것이 바람직하다.
이렇게 하면, 유로방향을 따라서 서로 인접하는 전극 사이의 직선부가 2개씩이며, 각 직선부를 흐르는 전류에 의해 발생하는 자속을 확실히 서로 제거할 수 있다. 이것에 의해, 유로형성체에 발생하는 임피던스의 저감 효과를 한층 현저하게 하며, 회로 역률의 개선 효과를 향상시킬 수 있다.
또, 본 발명에 관한 유체가열장치는 내부에 피가열유체가 흐르는 도전성 재료로 이루어지는 유로형성체를 통전 가열하여, 상기 유로를 흐르는 피가열유체를 가열하는 유체가열장치로서, 상기 유로형성체가 직선 모양의 유로를 형성하는 1 또는 복수의 직선부를 가지고, 상기 직선부에 상기 유로를 흐르는 유체를 분출하는 복수의 유체분출구가 마련되며, 상기 직선부에서의 상기 유로의 유로방향을 따라서 복수의 전극이 접속되어 있고, 연속하여 늘어선 3개의 상기 전극에 접속되는 삼상교류전원의 극성이 각각 다르도록, 삼상교류전원의 U상, V상 및 W상이 교호로 접속되어 있는 것이 바람직하다.
이와 같은 것으로 하면, 연속하여 늘어선 3개의 전극에 접속되는 삼상교류전원의 극성이 각각 다르도록 삼상교류전원의 U상, V상 및 W상이 접속되어 있으므로, 연속하여 늘어선 3개의 전극에 흐르는 전류에 의해 발생하는 자속이 상쇄되어 유로형성체에 발생하는 임피던스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 유체가열장치의 설비 효율을 향상시킬 수 있다. 또, 상기 직선부에 복수의 유체분출구가 마련되어 있으므로, 정해지는 소정의 분사 범위로 분출할 수 있다.
상기 직선부를 상기 유로방향을 따라서 3n등분(n은 1 이상의 정수이다.)하는 위치에 상기 전극이 각각 접속되어 있는 것이 바람직하다. 이렇게 하면, 각 전극 사이에 발생하는 자속량이 대략 동일하게 되어, 상기 전극 사이에 발생하는 자속을 효율 좋게 제거할 수 있다.
또, 본 발명에 관한 유체가열장치는, 내부에 피가열유체가 흐르는 유로가 형성된 도전성 재료로 이루어지는 유로형성체를 통전 가열하여, 상기 유로를 흐르는 피가열유체를 가열하는 유체가열장치로서, 상기 유로형성체가 각각 서로 대략 평행하게 배치되고, 직선 모양의 유로를 형성하는 3n개(n은 1 이상의 정수이다.)의 직선부와, 서로 인접하는 상기 직선부의 단부를 접속하여 사행한 1개의 유로를 형성하는 3n-1개의 되접기부를 가지며, 상기 유로형성체에 상기 유로를 흐르는 유체를 분출하는 복수의 유체분출구가 마련되고, 상기 유로형성체에서 상기 사행한 유로의 양단부 및 상기 되접기부에 삼상교류전원에 접속된 전극이 각각 접속됨과 아울러, 상기 유로의 유로방향을 따라서 연속하여 늘어선 3개의 상기 전극에 접속되는 삼상교류전원의 극성이 각각 다르도록, 삼상교류전원의 U상, V상 및 W상이 교호로 접속되어 있는 것이 바람직하다.
이와 같은 것으로 하면, 연속하여 늘어선 3개의 전극에 접속되는 삼상교류전원의 극성이 각각 다르도록 삼상교류전원의 U상, V상 및 W상이 접속되어 있으므로, 연속하여 늘어선 3개의 전극에 흐르는 전류에 의해 발생하는 자속이 상쇄되어 유로형성체에 발생하는 임피던스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 유체가열장치의 설비 효율을 향상시킬 수 있다. 또, 상기 직선부에 복수의 유체분출구가 마련되어 있으므로, 가열된 피가열유체를 유로형성체로부터 외부의 소정의 분사 범위로 직접 분출할 수 있다.
상기 유로형성체가 동보다도 높은 전기저항을 가지는 도전성 재료로 이루어지는 것이 바람직하다. 이렇게 하면, 배선 또는 전극 등에 동을 이용했을 경우에, 통전 가열할 때에 상기 유로형성체를 효율 좋게 가열할 수 있으므로, 피가열유체를 효율 좋게 고온의 상태로 할 수 있다.
상기 전극 사이마다 전력제어장치를 마련하고, 상기 전극에 인가되는 전력이 제어 가능하게 구성된 것이 바람직하다. 이렇게 하면, 상기 전극 사이마다에서의 상기 유로형성체의 온도를 개별적으로 제어할 수 있어, 피가열유체를 효율 좋게 소망의 상태로 할 수 있다.
상기 유체분출구에 유체분출노즐이 장착된 것이 바람직하다. 이렇게 하면, 상기 유체분출구에 유체분출노즐을 마련하는 것에 의해서, 가열된 유체를 당해 유체분출노즐에 의해 정해지는 소정의 분사 범위로 분출할 수 있다. 여기서, 상기 유체분출구에 마련되는 유체분출노즐은 용도에 따라 선택된다.
상기 유로형성체로 유입하는 상기 피가열유체가 포화 수증기 또는 과열 수증기로서, 상기 유로형성체로부터 유출하는 유체가 과열 수증기인 것이 바람직하다.
이와 같이 구성한 본 발명에 의하면, 내부에 유체가 흐르는 유로형성체를 통전 가열하는 유체가열장치에 있어서, 회로 역률을 개선하여 설비 효율을 향상시킬 수 있다.
도 1은 제1 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 도면.
도 2는 제1 실시형태의 유체가열장치 및 종래의 유체가열장치를 모식적으로 나타내는 도면.
도 3은 제2 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 도면.
도 4는 제3 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 도면.
도 5는 제3 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 도면 및 A-A선 단면도.
도 6은 변형 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 도면 및 B-B선 단면도.
도 7은 변형 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 도면(삼상교류전원 접속).
도 8은 변형 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 도면(단상교류전원 접속).
도 9는 변형 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 도면(스콧 결선 변압기 접속).
도 10은 변형 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 도면.
도 11은 제4 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 도면.
도 12는 변형 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 도면.
도 13은 변형 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 도면.
도 14는 변형 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 도면.
도 15는 변형 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 도면.
도 16은 변형 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 도면.
도 17은 제5 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 평면도, A-A'선 단면도 및 회로 구성도.
도 18은 제6 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 평면도, A-A'선 단면도 및 회로 구성도.
도 19는 제6 실시형태의 변형예를 나타내는 평면도, A-A'선 단면도 및 회로 구성도.
도 20은 제7 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 평면도 및 회로 구성도.
도 21은 제8 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 평면도 및 회로 구성도.
도 22는 제8 실시형태의 변형예를 나타내는 평면도 및 회로 구성도.
도 23은 변형 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 평면도 및 회로 구성도.
도 24는 변형 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 평면도 및 회로 구성도.
도 25는 수용용기를 가지는 유체가열장치의 구성을 모식적으로 나타내는 정면도.
도 26은 수용용기를 가지는 유체가열장치의 구성을 모식적으로 나타내는 A-A'선 단면도.
도 27은 변형 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 평면도.
도 28은 변형 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 평면도.
도 29는 변형 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 평면도, A-A'선 단면도 및 회로 구성도.
도 30은 제9 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 정면도.
도 31은 제9 실시형태의 변형예의 구성을 모식적으로 나타내는 저면도.
도 32는 제10 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 정면도.
도 33은 제10 실시형태의 변형예의 구성을 모식적으로 나타내는 저면도.
도 34는 제11 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 저면도.
도 35는 제12 실시형태의 유체가열장치의 구성을 모식적으로 나타내는 저면도.
이하에 본 발명에 관한 유체가열장치의 각 실시형태에 대해서 도면을 참조하여 설명한다.
1. 제1 실시형태
제1 실시형태의 유체가열장치(100)는, 도 1에 나타내는 바와 같이, 내부에 피가열유체가 흐르는 유로(R)가 형성된 도전성 재료로 이루어지는 유로형성체(2)에 교류전압을 인가하여 직접 통전하고, 유로형성체(2)의 내부 저항에 의해 발생하는 쥴열에 의해서 유로형성체(2)를 가열하는 것에 의해, 상기 유로(R)를 흐르는 피가열유체를 가열하는 것이다.
본 실시형태의 유로형성체(2)는 개략 원통 직관 모양의 파이프로 형성되어 있다. 이것에 의해, 유로(R)는 직선 모양을 이루는 유로가 된다.
그리고, 유로형성체(2)의 유로 일단 측인 유로 일단부(2a)에는 제1 급전부재(3)가 접속되어 있고, 유로형성체(2)의 유로 타단 측인 유로 타단부(2b)에는 제2 급전부재(4)가 접속되어 있다. 그리고, 이 제1 급전부재(3) 및 제2 급전부재(4)에 단상교류전원(5)의 출력단자를 접속하는 것에 의해서, 제1 급전부재(3) 및 제2 급전부재(4)를 통하여 유로형성체(2)에 단상교류전압이 인가된다.
제1 급전부재(3)는 유로형성체(2)의 유로 일단부(2a)에 접속된 제1 전극(31)과, 당해 제1 전극(31)에 접속되어 단상교류전원(5)의 한쪽의 출력단자에 접속되는 제1 전선(32)으로 이루어진다. 또, 제2 급전부재(4)는 유로형성체(2)의 유로 타단부(2b)에 마련된 제2 전극(41)과, 당해 제2 전극(41)에 접속되어 단상교류전원(5)의 다른 쪽의 출력단자에 접속되는 제2 전선(42)으로 이루어진다. 제1 전극(31) 및 제2 전극(41)은 각각, 유로형성체(2)의 외측 둘레면에 돌려 감아져 용접 등에 의해 접속되어 있다.
그러나 상기의 제1 급전부재(3) 및 제2 급전부재(4)가 유로형성체(2)의 유로 일단부(2a)로부터 전원(5) 측으로 인출되어 있다. 구체적으로는, 제1 전극(31)이 유로방향에 직교하는 방향으로 연장하도록 마련되어 있고, 제2 전극(41)이 유로형성체(2)의 유로방향을 따름과 아울러, 유로형성체(2)의 측둘레면을 따라서 직선 모양으로 연장하고, 유로 타단부(2b)로부터 유로 일단부(2a)를 향하여 배치되어 있다. 본 실시형태의 제2 전극(41)은 유로 타단부(2b)에서 제1 전극(31)의 연장방향과 동일 방향으로 연장하도록 굴곡되어 있다. 또한, 제1 전극(31)의 연장방향 및 제2 전극(41)의 연장방향은 동일 방향일 필요는 없고, 예를 들면 유로 타단부(2b)에서 둘레방향에 있어서 다른 방향이라도 된다. 또, 본 실시형태에서는, 제2 전극(41) 및 유로형성체(2)의 외주면과의 사이에 공간을 형성하고 있지만, 유로형성체(2)의 외주면과 당해 외주면에 대향하는 제2 전극(41)과의 사이에 절연부재를 마련해도 된다.
또, 제2 급전부재(4)가 유로형성체(2)의 유로방향을 따라서 유로 타단부(2b)로부터 유로 일단부(2a)를 향하여 배치되고, 제1 급전부재(3) 및 제2 급전부재(4)가 유로형성체(2)의 유로 일단부(2a)로부터 전원(5) 측으로 인출되어 있기 때문에, 유로형성체(2)에서의 제1 전극(31) 및 제2 전극(41)의 사이의 외주면의 근방에는 제2 급전부재(4)(구체적으로는 제2 전극(41))만이 마련되는 구조가 된다.
이와 같이 구성한 유체가열장치(100)에 있어서, 단상교류전원(5)으로부터 단상교류전압을 제1 급전부재(3) 및 제2 급전부재(4)를 통하여 유로형성체(2)에 인가하면, 유로형성체(2)에서 제1 전극(31) 및 제2 전극(41)의 사이에 흐르는 전류의 방향과, 당해 유로형성체(2)의 외주면에 대향하는 제2 전극(41)에 흐르는 전류의 방향은 역방향이 된다. 그렇게 하면, 각각의 전류에 의해 발생하는 자속이 상쇄되어, 유로형성체(2)에 발생하는 리액턴스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 유체가열장치(100)의 설비 효율을 향상시킬 수 있다.
다음으로 이와 같이 구성한 유체가열장치(100)의 역률 개선을 나타내는 시험에 대해서 설명한다. 또한, 이하의 시험에서는, 비교 경향을 현저하게 나타내기 위해서, 주파수 800㎐의 단상교류전원을 이용했다.
도 2의 (1)에는 재질 SUS304, 외경 34㎜, 벽두께 1.65㎜, 길이 2200㎜, 온도 20℃의 파이프를 이용하여, 당해 파이프에 급전부재를 따르게 하여 배치한 본 발명의 회로 구성을 나타내고 있고, (2)에는 (1)과 동일한 파이프를 이용하여, 당해 파이프에 급전부재를 따르게 하지 않는 종래의 회로 구성을 나타내고 있다.
이 때, 이하의 표 1에 나타내는 바와 같이, 회로 구성 (1)의 경우에는 역률이 0.251인 것에 대해서, 회로 구성 (2)의 경우에는 역률이 0.102였다. 이와 같이, 도 2의 회로 구성 (1)의 경우에는, 유로형성체 및 제2 전극에 발생하는 자속이 상쇄하기 때문에 전압강하가 억제되어 역률이 개선되었고 생각된다. 또한, 상용 주파수 60㎐의 교류전압으로 환산했을 경우에는, 회로 구성 (1)의 역률이 0.961인데 대해서, 회로 구성 (2)의 역률이 0.810이며 큰 개선 효과를 얻을 수 있고 있는 것을 알 수 있다.
Figure 112020017663436-pat00001
2. 제2 실시형태
제2 실시형태의 유체가열장치(100)는, 도 3에 나타내는 바와 같이, 직선 모양을 이루는 유로(R)를 형성하는 유로형성체(2)에 삼상교류전압을 인가하여 직접 통전하고, 유로형성체(2)의 내부 저항에 의해 발생하는 쥴열에 의해서 유로형성체(2)를 가열하는 것에 의해, 유로(R)를 흐르는 피가열유체를 가열하는 것이다.
이 유체가열장치(100)는, 1개의 유로형성체(2)에, 1개의 제1 급전부재(3) 및 3개의 제2 급전부재(4)가 접속되어 있다. 구체적으로는, 제1 급전부재(3)는 유로형성체(2)의 유로 일단부(2a)에 접속되고, 3개의 제2 급전부재(4)는 유로형성체(2)의 유로 일단부(2a)로부터 유로 타단부(2b)의 사이를 대략 3등분하도록 대략 등간격이 되는 위치에서, 유로형성체(2)에 접속되어 있다.
여기서, 제2 급전부재(4)의 수는, 3개에 한정되지 않고, 예를 들면 3n개(n은 1 이상의 정수이다.)로 하여도 된다. 3n개의 제2 급전부재(4)는, n≥2인 경우에는, 유로형성체(2)의 유로 일단부(2a)로부터 유로 타단부(2b)의 사이를 대략 3n등분하는 위치에서, 유로형성체(2)에 접속되어 있으면 된다.
또, 유체가열장치(100)는, 도 3에 나타내는 바와 같이, 연속하여 늘어선 3개의 상기 급전부재에 접속되는 삼상교류전원의 극성이 각각 다르도록, 삼상교류전원(5)의 U상, V상 및 W상이 교호로 접속되도록 구성되어 있다. 구체적으로는, 제1 급전부재(3)에 삼상교류전원(5)의 U상이 접속되고, 3개의 제2 급전부재(4)는 유로형성체(2)의 유로 일단부(2a) 측으로부터 순서대로, 1번째의 제2 급전부재(4)에 W상, 2번째의 제2 급전부재(4)에 V상, 3번째의 제2 급전부재(4)에 U상이 접속되어 있다.
여기서, 각 급전부재에 접속되는 삼상교류전원(5)의 U상, V상 및 W상의 순서는 도 3에 나타내는 것에 한정되지 않고, 각 급전부재에 U상, V상 및 W상이 순서대로 접속되어 있으면 된다.
또, 유체가열장치(100)는, 도 3에 나타내는 바와 같이, 제2 급전부재(4)가 유로형성체(2)의 유로방향을 따름과 아울러, 유로형성체(2)의 측둘레면을 따라서, 유로 일단부(2a) 측에 서로 인접하는 급전부재의 근방까지 직선 모양으로 연장하고 있다. 또, 본 실시형태에서는, 제2 전극(41) 및 유로형성체(2)의 외주면과의 사이에 공간을 형성하고 있지만, 유로형성체(2)의 외주면과 당해 외주면에 대향하는 제2 전극(41)과의 사이에 절연부재를 마련해도 된다.
이와 같이 구성한 유체가열장치(100)로 하면, 연속하여 늘어선 3개의 제2 급전부재(4)에 접속되는 삼상교류전원(5)의 극성이 각각 다르도록 삼상교류전원의 U상, V상 및 W상이 접속되어 있으므로, 유로형성체(2) 및 제2 급전부재(4)에 흐르는 전류에 의해 발생하는 자속이 상쇄되어 유로형성체(2)에 발생하는 임피던스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 유체가열장치(100)의 설비 효율을 향상시킬 수 있다.
3. 제3 실시형태
제3 실시형태의 유체가열장치(100)는, 도 4 및 도 5에 나타내는 바와 같이, 유로형성체(2)가 직선 모양의 유로를 형성하는 3개의 직선부(2A ~ 2C)와, 이 직선부(2A ~ 2C)를 접속하는 2개의 되접기부(2Y 및 2Z)를 가진다. 구체적으로 직선부(2A ~ 2C)는 대략 동일한 길이이다. 또, 되접기부(2Y 및 2Z)는 직선부(2A ~ 2C)가 각각 서로 대략 평행하게 되도록, 'コ'자 모양 또는 'U'자 모양으로 구성되어 있다.
여기서, 직선부(2A ~ 2C)의 배치 구성으로서는 직선부(2A ~ 2C)가 각각 서로 대략 평행하게 되어 있는 것이면 되고, 도 4에 나타내는 바와 같이, 동일 평면상에 등간격으로 배치되어 있는 것이라도 되며, 도 5에 나타내는 바와 같이, 3개의 직선부(2A ~ 2C)를 삼각형의 정점(頂点)에 위치하도록 배치된 것이라도 된다.
또, 유로형성체(2)의 직선부의 수는 3개에 한정되지 않고, 예를 들면 3n개(n은 1 이상의 정수이다.)로 하여도 된다. n≥2인 경우에는, 되접기부는 3n-1개 마련됨과 아울러, 유로형성체(2)의 유로 일단부(2a)로부터 유로 타단부(2b)의 사이를 대략 3n등분하는 위치에 배치된다.
이와 같은 유로형성체(2)를 이용하는 유체가열장치(100)는 유로형성체(2)에 제1 급전부재(3)가 4개 접속되어 있다. 구체적으로는, 제1 급전부재(3)가 유로형성체(2)에서의 유로 일단부(2a), 되접기부(2Y), 되접기부(2Z) 및 유로 타단부(2b)에 접속되어 있다. 되접기부(2Y) 및 되접기부(2Z)에 접속되는 제1 급전부재(3)는 되접기부(2Y) 및 되접기부(2Z)에서의 중간 위치에 접속되어 있다.
여기서, 유체가열장치(100)는 연속하여 늘어선 3개의 제1 급전부재(3)에 접속되는 삼상교류전원의 극성이 각각 다르도록, 삼상교류전원(5)의 U상, V상 및 W상이 교호로 접속되도록 구성되어 있다. 구체적으로는, 유로형성체(2)의 유로 일단부(2a) 측으로부터 순서대로, 1번째의 제1 급전부재(3)에 W상, 2번째의 제1 급전부재(3)에 V상, 3번째의 제1 급전부재(3)에 U상이 접속되어 있다.
이와 같이 구성한 유체가열장치(100)로 하면, 연속하여 늘어선 3개의 제1 급전부재(3)에 접속되는 삼상교류전원(5)의 극성이 각각 다르도록 삼상교류전원의 U상, V상 및 W상이 접속되어 있으므로, 직선부(2A ~ 2C)에 흐르는 전류에 의해 발생하는 자속이 각각 상쇄되고, 유로형성체(2)에 발생하는 임피던스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 유체가열장치(100)의 설비 효율을 향상시킬 수 있다.
4. 제1 ~ 제3 실시형태의 변형예
또한, 본 발명은 상기 제1 ~ 제3 실시형태에 한정되는 것은 아니다. 예를 들면, 상기 제1 ~ 제3 실시형태에서는, 제2 급전부재에 있어서, 제2 전극을 유로형성체의 유로방향을 따라서 배치한 것이었지만, 제2 전극을 유로형성체의 유로 타단부에 마련하고, 그 제2 전극에 접속되는 제2 전선을 유로형성체의 유로방향을 따라서 배치해도 된다.
또, 도 6에 나타내는 바와 같이, 유로형성체(2)의 외측 둘레면을 덮도록 절연성 단열부재(6)를 마련해도 된다. 이렇게 하면, 유로형성체(2)가 통전 가열되어 온도 상승해도, 당해 유로형성체(2)로부터 외부로의 방열을 저감할 수 있다. 이 때, 제1 급전부재(3) 및 제2 급전부재(4)는 절연성 단열부재(6)보다도 외측에서 유로형성체(2)에 접속된다. 또한, 도 6의 유로형성체(2)에는 그 양단에 다른 유로형성체(2)와 접속하기 위한 접속부로서 플랜지(21)가 형성되어 있다. 또한, 제1 전극(31) 및 제2 전극(41)은 절연성 단열부재(6) 및 플랜지(21)의 사이에 접속되어 있다.
또, 도 6에서는, 유로형성체(2)의 유로방향을 따라서 배치되는 제2 전선(42)이 나전선(421)을 가진다. 이렇게 하면, 절연성 단열부재(6)에 접촉하여 배치된 제2 전선(42)이 나전선(421)이므로, 제2 전선(42)의 냉각을 행하면서도, 리액턴스를 저감할 수 있다.
또한, 도 7 ~ 도 9에 나타내는 바와 같이, 2개의 유로형성체(2)를, 그들 유로(R)가 연통함과 아울러, 2개의 유로형성체(2)에 마련된 제1 급전부재(3)가 내측에 위치하도록 플랜지(21)에 의해 접속하여 유니트화 하여, 유체가열장치(100)를 구성해도 된다. 또한, 도 7 ~ 도 9에는 이 유체가열 유니트(10)를 1개 이용하여 유체가열장치(100)를 구성한 예를 나타내고 있지만, 복수의 유체가열 유니트(10)를 그들 유로(R)가 연통하도록 접속하여 유체가열장치(100)를 구성해도 된다.
도 7의 유체가열 유니트(10)는 그 2개의 제1 급전부재(3)에 삼상교류전원(5)의 제1 전원출력(V상)이 인가되어 있고, 2개의 제2 급전부재(4)의 한쪽에, 삼상교류전원(5)의 제2 전원출력(U상)이 인가되어 있으며, 2개의 제2 급전부재(4)의 다른 쪽에 삼상교류전원(5)의 제3 전원출력(W상)이 인가되었을 경우를 나타내고 있다.
도 8의 유체가열 유니트(10)는 그 2개의 제1 급전부재(3)에 단상교류전원(5)의 한쪽의 전원출력이 인가되어 있고, 2개의 제2 급전부재(4)의 양쪽에 단상교류전원(5)의 다른 쪽의 전원출력이 인가되었을 경우를 나타내고 있다. 또, 이 유체가열 유니트(10)에는 2개의 제2 급전부재(4)에 전원출력을 입력하는 회로상에 예를 들면 사이리스터(thyristor)를 이용한 전류제어회로(7)가 마련되어 있다.
도 9의 유체가열 유니트(10)는, 그 2개의 제1 급전부재(3)에, 스콧 결선 변압기(51)의 o단자가 접속되어 동일 극성의 출력이 인가되고, 2개의 제2 급전부재(4)의 한쪽에, 스콧 결선 변압기(51)의 u단자가 접속되어 u상이 인가되어 있으며, 2개의 제2 급전부재(4)의 다른 쪽에 스콧 결선 변압기(51)의 v단자가 접속되어v상이 인가되었을 경우를 나타내고 있다.
게다가, 도 10에 나타내는 바와 같이, 3개의 유로형성체(2)를, 그들 유로(R)가 연통함과 아울러, 3개의 유로형성체(2)에 마련된 제1 급전부재(3) 및 제2 급전부재(4)가 동일 방향을 향하도록 플랜지(21)에 의해 접속해 유니트화 하여, 유체가열장치(100)를 구성해도 된다. 또한, 도 10에는 이 유체가열 유니트(10)를 1개 이용하여 유체가열장치(100)를 구성한 예를 나타내고 있지만, 복수의 유체가열 유니트(10)를 그들 유로(R)가 연통하도록 접속하여 유체가열장치(100)를 구성해도 된다. 또한, 도 10에서 왼쪽으로부터 1번째의 유로형성체, 2번째의 유로형성체 및 3번째의 유로형성체로 한다.
이 유체가열 유니트(10)에서, 1번째의 유로형성체(2)의 제1 급전부재(3) 및 2번째의 유로형성체(2)의 제2 급전부재(4)에 삼상교류전원(5)의 V상이 접속되어 있고, 2번째의 유로형성체(2)의 제1 급전부재(3) 및 3번째의 유로형성체(2)의 제2 급전부재(4)에 삼상교류전원(5)의 W상이 접속되어 있으며, 3번째의 유로형성체(2)의 제1 급전부재(3) 및 1번째의 유로형성체(2)의 제2 급전부재(4)에 삼상교류전원(5)의 U상이 접속되어 있다. 이와 같이 구성하는 것으로, 삼상교류전원을 그대로 접속하는 것이 가능하게 된다.
5. 제4 실시형태
제4 실시형태의 유체가열장치(100)는, 도 11에 나타내는 바와 같이, 내부에 피가열유체가 흐르는 유로(R)가 형성된 도전성 재료로 이루어지는 유로형성체(2)에 교류전압을 인가하여 직접 통전하고, 유로형성체(2)의 내부 저항에 의해 발생하는 쥴열에 의해서 유로형성체(2)를 가열하는 것에 의해, 상기 유로(R)를 흐르는 피가열유체를 가열하는 것이다.
본 실시형태의 유로형성체(2)는 도전성 재료로 이루어지는 개략 원통 직관 모양의 파이프에 의해 형성되어 있다. 이것에 의해, 유로(R)는 직선 모양을 이루는 유로가 된다.
그리고, 유로형성체(2)의 유로 일단 측인 유로 일단부(2a)에는 제1 급전부재(3)가 접속되어 있고, 유로형성체(2)에서의 제1 급전부재(3)보다도 유로 타단 측에는 제2 급전부재(4)가 접속되어 있다. 그리고, 이 제1 급전부재(3) 및 제2 급전부재(4)에 단상교류전원(5)의 출력단자를 접속하는 것에 의해서, 제1 급전부재(3) 및 제2 급전부재(4)를 통하여 유로형성체(2)에 단상교류전압이 인가된다.
제1 급전부재(3)는 유로형성체(2)의 유로 일단부(2a)에 접속된 제1 전극(31)과, 당해 제1 전극(31)에 접속되어 단상교류전원(5)의 한쪽의 출력단자에 접속되는 제1 전선(32)으로 이루어진다. 제1 전극(31)은 유로형성체(2)의 외측 둘레면에 돌려 감아져 용접 등에 의해 접속되어 있다.
또, 제2 급전부재(4)는 유로형성체(2)에서의 제1 급전부재(3)보다도 유로 타단 측에 접속된 피복체(43)와, 피복체(43)의 유로 일단 측인 유로 일단 측 단부(43a)에 접속된 제2 전극(41)과, 당해 제2 전극(41)에 접속되어 단상교류전원(5)의 다른 쪽의 출력단자에 접속되는 제2 전선(42)으로 이루어진다. 제2 전극(41)은 피복체(43)의 외측 둘레면에 돌려 감아져 용접 등에 의해 접속되어 있다.
구체적으로 피복체(43)는 도전성 재료로 이루어지는 개략 원통 직관 모양의 파이프에 의해 형성되어 있다. 또 피복체(43)는 유로형성체(2)의 외측 둘레면을 따라서, 유로형성체(2)의 유로 타단 측으로부터 유로 일단 측에서의 외측 둘레면의 대략 전체 둘레를 덮는 것이다. 여기서, 피복체(43)는 유로형성체(2)보다도 지름이 크고, 유로형성체(2)와 동축상에 배치되어 있다. 즉, 피복체(43)는 유로형성체(2)와 함께 소위 이중관 구조를 이루는 것이다. 또, 도 11에 나타내는 바와 같이, 피복체(43)는 유로 타단 측 단부(43b)에서 유로형성체(2)의 외측 둘레면에 용접되는 것에 의해 전기적으로 접속되어 있다.
여기서, 본 실시형태의 유로형성체(2)는 제1 급전부재(3) 및 제2 급전부재(4)보다도 높은 전기저항을 가지는 도전성 재료에 의해 형성되어 있다. 구체적으로는, 제1 급전부재(3) 및 제2 급전부재(4)가 동 또는 진유에 의해 형성되어 있는 경우에는, 유로형성체(2)는 동 또는 진유보다도 높은 전기저항을 가지는 도전성 재료에 의해 형성되어 있으면 되고, 예를 들면 스테인리스나 티탄 등으로 형성되어 있으면 된다.
또, 본 실시형태에서는, 유로(R)에 연통하는 유로형성체(2)의 타단 개구(2z)가 폐색부재(23)에 의해 폐색되어 있다. 그리고, 본 실시형태의 유로형성체(2)는 피복체(43)와의 접속부보다도 유로 타단 측인 유로 타단부(2b)에 유체분출구(22)가 마련되어 있다. 본 실시형태의 유체분출구(22)는 유로형성체(2)의 외측 둘레면에서 축방향에 직교하는 방향으로 연장하는 1 또는 복수의 슬릿(22)에 의해 구성되어 있다.
또한, 유로형성체(2)와 피복체(43)와의 사이에는 세라믹 재료로 이루어지는 절연성 부재(6)가 마련되어 있다. 구체적으로는, 유로형성체(2)에서의 피복체(43)에 대향하는 외측 둘레면에 절연성 부재(6)가 마련되어 있다. 여기서, 절연성 부재(6)는 피복체(43)의 내측 둘레면에 접촉하는 것이라도 되고, 접촉하지 않는 것이라도 된다. 또, 절연성 부재(6)는 피복체(43)의 내측 둘레면에 마련되어 있는 것이어도 된다. 이 절연성 부재(6)에 의해, 유로형성체(2)와 피복체(43)를 확실히 절연할 수 있어, 접속부 이외의 부분에서의 단락을 방지할 수 있다.
게다가, 피복체(43)의 외측 둘레면에는 당해 피복체(43)의 외측 둘레면의 대략 전체 둘레를 덮는 세라믹 재료로 이루어지는 외측 절연성 부재(8)가 마련되어 있다. 이 외측 절연성 부재(8)에 의해, 유체가열장치(100)를 설치하는 설치 대상물이 도전성 부재로 이루어지는 경우나, 분출한 피가열유체에 의해서 도전성이 되는 경우 등에서도, 피복체(43)로부터 외부로 누전하는 것을 방지할 수 있다.
그러나 상기의 제1 급전부재(3) 및 제2 급전부재(4)가 유로형성체(2)의 유로 일단부(2a)로부터 전원(5) 측으로 인출되어 있다. 구체적으로는, 제1 전극(31)이 유로형성체(2)의 유로 일단부(2a)로부터, 제2 전극(41)이 피복체(43)의 유로 일단 측 단부(43a)로부터, 유로방향에 직교하는 방향으로 연장하도록 마련되어 있다. 또한, 제1 전극(31)의 연장방향 및 제2 전극(41)의 연장방향은 동일 방향일 필요는 없고, 예를 들면 유로 일단부(2a)에 있어서 둘레방향에서 다른 방향이라도 된다.
이와 같이 구성된 유로형성체(2)는 가열된 유체를 수용하기 위한 수용실 또는 가열된 유체에 의해 피처리물을 처리하기 위한 처리실 내에 삽입하여 마련된다. 구체적으로는, 유로형성체(2)의 유로 일단부(2a)를 제외한 부분이 상기 수용실 또는 처리실에 삽입하여 마련된다. 그리고, 이 유로형성체(2)에 접속되는 단상교류전원(5)이 상기 수용실 또는 상기 처리실과는 별개의 공간(예를 들면 전원실)에 마련된다.
여기서, 이와 같이 구성한 유체가열장치(100)에서의 피가열유체의 흐름을 설명한다. 피가열유체는 유로(R)에 연통하는 유로형성체(2)의 일단 개구(2y)(유로 일단 측)로부터 유입하고, 유로형성체(2) 내부의 유로(R)가 가열되면서 흐르며, 유로(R)에 연통하는 유로형성체(2)의 타단 개구(2z)에 이른다. 여기서, 본 실시형태에서는, 타단 개구(2z)가 폐색부재(23)에 의해 폐색되어 있음과 아울러, 유로 타단부(2b)에 슬릿(22)이 마련되어 있으므로, 피가열유체는 슬릿(22)으로부터 유로형성체(2)의 외부, 즉 유체가열장치(100)의 외부로 유출한다. 또한, 피가열유체의 일례로서는, 유로형성체(2)로 유입하는 피가열유체가 포화 수증기 또는 과열 수증기로서, 유로형성체(2)로부터 유출하는 유체가 과열 수증기인 것이 고려된다. 단, 피가열유체는 특정의 유체에 한정되지 않고, 유체가열장치(100)의 용도에 맞추어 적절히 선택되는 것이면 된다.
이와 같이 구성한 유체가열장치(100)에 있어서, 단상교류전원(5)으로부터 단상교류전압을 제1 급전부재(3) 및 제2 급전부재(4)를 통하여 유로형성체(2)에 인가하면, 유로형성체(2)에서 유로형성체(2)에 흐르는 전류의 방향과, 제2 급전부재(4)에서의 피복체(43)를 흐르는 전류의 방향이 역방향이 된다. 그렇게 하면, 각각의 전류에 의해 발생하는 자속이 상쇄되어, 유로형성체(2)에 발생하는 리액턴스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 유체가열장치(100)의 설비 효율을 향상시킬 수 있다.
또, 유로형성체(2)에 마련된 유체분출구(22)로부터 직접 분출하게 할 수 있으므로, 유로형성체(2)의 내부에서 가열된 피가열유체의 온도를 저하시키지 않고 분출시킬 수 있다. 또한, 피복체(43)가 동 또는 진유로 이루어짐과 아울러, 유로형성체(2)가 피복체(43)보다도 높은 전기저항을 가지는 도전성 재료에 의해 형성되어 있으므로, 피복체(43)가 통전에 의해 가열되지 않고, 피가열유체가 흐르는 유로형성체(2)가 보다 효율 좋게 가열되므로, 효율적으로 피가열유체를 고온의 상태로 할 수 있다.
또한, 유체분출구(22)가 유로형성체(2)의 외측 둘레면에 원주방향을 따라서 마련되어 있으므로, 예를 들면 철로 이루어지는 피처리물에 형성된 심혈 또는 심공에 유체가열장치(100)를 삽입한 상태에서, 유체분출구(22)로부터 피가열유체를 분출하게 하는 것으로, 상기 피처리물의 내주면에 4산화 3철의 막을 용이하게 형성할 수 있다.
6. 제4 실시형태의 변형예
또한, 본 발명은 상기 제4 실시형태에 한정되는 것은 아니다. 예를 들면, 도 12에 나타내는 바와 같이, 유로형성체(2)의 유로 일단 측으로부터 유로 타단 측에서의 외측 둘레면을 덮는 절연성 부재(6)가 마련되고, 유로형성체(2)에서의 절연성 부재(6)보다도 유로 타단 측의 외측 둘레면으로부터 절연성 부재(6)의 외측 둘레면에 걸쳐 테이프 모양의 금속박(401)이 감겨지는 것에 의해 피복체(43)가 형성되어 있는 것이라도 된다. 이렇게 하면, 피복체(43)를 얇은 테이프 모양의 금속박(401)으로 구성할 수 있으므로, 유체가열장치(100) 전체를 작은 치수로 할 수 있다.
또, 피복체(43)는 유로형성체(2)의 유로 타단 측으로부터 유로 일단 측에서의 외측 둘레면에서, 반드시 전체 둘레를 덮는 것이 아니라도 된다. 예를 들면, 피복체(43)의 일부에 노치 형상 또는 구멍이 마련되어 있는 것이나, 피복체(43)에서의 유로 일단 측 단부(43a) 또는 유로 타단 측 단부(43b)의 단면이 유로방향에 대해서 수직이 아닌 것이라도 된다.
유로형성체(2) 및 피복체(43)는 원통 직관 모양의 것에 한정되지 않고, 단면이 다각형인 것, 타원형인 것 또는 자유 곡선으로 구성되는 것 등이라도 된다. 또, 유로형성체(2)와 피복체(43)는 그 단면이 동일한 형상이 아니어도 되고, 예를 들면 유로형성체(2)가 단면 사각형이며, 피복체(43)가 타원형인 것 등이라도 된다.
또, 유로형성체(2) 및 피복체(43)는 직선 모양인 것에 한정되지 않고, 구부러져 있는 것이라도 된다. 예를 들면, 유로형성체(2)가 구부러져 있는 경우에, 피복체(43)가 유로형성체(2)가 구부러져 있는 외측 둘레면을 따라서 형성되어 있는 것 등이라도 된다.
또한, 도 13 ~ 도 15에 나타내는 바와 같이, 2개의 유로형성체(2)를, 그들 유로(R)가 연통함과 아울러, 2개의 유로형성체(2)에 마련된 제1 급전부재(3)가 내측에 위치하도록 플랜지(21)에 의해 접속하여 유니트화 하여, 유체가열장치(100)를 구성해도 된다. 또한, 도 13 ~ 도 15에는, 이 유체가열 유니트(10)를 1개 이용하여 유체가열장치(100)를 구성한 예를 나타내고 있지만, 복수의 유체가열 유니트(10)를 그들 유로(R)가 연통하도록 접속하여 유체가열장치(100)를 구성해도 된다.
도 13의 유체가열 유니트(10)는 그 2개의 제1 급전부재(3)에 삼상교류전원(5)의 제1 전원출력(V상)이 인가되어 있고, 2개의 제2 급전부재(4)의 한쪽에 삼상교류전원(5)의 제2 전원출력(U상)이 인가되어 있으며, 2개의 제2 급전부재(4)의 다른 쪽에 삼상교류전원(5)의 제3 전원출력(W상)이 인가되었을 경우를 나타내고 있다.
도 14의 유체가열 유니트(10)는 그 2개의 제1 급전부재(3)에 단상교류전원(5)의 한쪽의 전원출력이 인가되어 있고, 2개의 제2 급전부재(4)의 양쪽에 단상교류전원(5)의 다른 쪽의 전원출력이 인가되었을 경우를 나타내고 있다. 또, 이 유체가열 유니트(10)에는 2개의 제2 급전부재(4)에 전원출력을 입력하는 회로상에 예를 들면 사이리스터를 이용한 전류제어회로(7)가 마련되어 있다.
도 15의 유체가열 유니트(10)는 그 2개의 제1 급전부재(3)에 스콧 결선 변압기(51)의 o단자가 접속되어 동일 극성의 출력이 인가되고, 2개의 제2 급전부재(4)의 한쪽에 스콧 결선 변압기(51)의 u단자가 접속되어 u상이 인가되어 있으며, 2개의 제2 급전부재(4)의 다른 쪽에 스콧 결선 변압기(51)의 v단자가 접속되어 v상이 인가되었을 경우를 나타내고 있다.
게다가, 도 16에 나타내는 바와 같이, 3개의 유로형성체(2)를, 그들 유로(R)가 연통함과 아울러, 3개의 유로형성체(2)에 마련된 제1 급전부재(3) 및 제2 급전부재(4)가 동일 방향을 향하도록 플랜지(21)에 의해 접속하여 유니트화 하여, 유체가열장치(100)를 구성해도 된다. 또한, 도 16에는 이 유체가열 유니트(10)를 3개 이용하여 유체가열장치(100)를 구성한 예를 나타내고 있지만, 복수의 유체가열 유니트(10)를 그들 유로(R)가 연통하도록 접속하여 유체가열장치(100)를 구성해도 된다. 또한, 도 16에서 왼쪽으로부터 1번째의 유로형성체, 2번째의 유로형성체 및 3번째의 유로형성체로 한다.
이 유체가열 유니트(10)에 있어서, 1번째의 유로형성체(2)의 제1 급전부재(3) 및 2번째의 유로형성체(2)의 제2 급전부재(4)에 삼상교류전원(5)의 V상이 접속되어 있고, 2번째의 유로형성체(2)의 제1 급전부재(3) 및 3번째의 유로형성체(2)의 제2 급전부재(4)에 삼상교류전원(5)의 W상이 접속되어 있으며, 3번째의 유로형성체(2)의 제1 급전부재(3) 및 1번째의 유로형성체(2)의 제2 급전부재(4)에 삼상교류전원(5)의 U상이 접속되어 있다. 이와 같이 구성하는 것으로, 삼상교류전원(5)를 그대로 접속하는 것이 가능하게 된다.
또, 유로(R)에 연통하는 유로형성체(2)의 타단 개구(2z)에 폐색부재(23)가 마련되지 않고, 당해 유로형성체(2)의 타단 개구(2z)가 개방되는 것이어도 된다. 이 경우, 유로형성체(2)의 타단 개구(2z)를 유체분출구(22)로 해도 된다. 또, 유로형성체(2)의 타단 개구(2z)를 유체분출구(22)로 하는 경우에는, 당해 유체분출구(22)(타단 개구(2z))에 유체분출노즐이 장착되는 것이어도 된다. 이렇게 하면, 유체분출노즐을 용도에 맞추어 선택하는 것에 의해, 가열된 유체를 당해 유체분출노즐에 의해 정해지는 소정의 분사 범위로 분출할 수 있다.
7. 제5 실시형태
제5 실시형태의 유체가열장치(100)는 내부에 유체가 흐르는 유로(R)가 형성된 도전성 재료로 이루어지는 도체관(20)에 교류전압을 인가하여 직접 통전하고, 도체관(20)의 내부 저항에 의해 발생하는 쥴열에 의해서 도체관(20)을 가열하는 것에 의해, 상기 유로(R)를 흐르는 유체를 가열하는 것이다.
구체적으로 유체가열장치(100)는, 도 17에 나타내는 바와 같이, 2개의 도체관(20)이 서로 평행하게 되도록 배치되어 있고, 당해 2개의 도체관(20)의 유체 도입 측인 일단부(20a)가 서로 전기적으로 접속되어 있다. 각 도체관(20)은 직관 모양을 이루는 원통관이며, 동일 형상을 이루는 것이다.
구체적으로 2개의 도체관(20)의 일단부(20a)는 도전성을 가지는 분류관(30)에 의해 전기적으로 접속되어 있다. 이 분류관(30)은 2개의 도체관(20)의 일단부(20a)에 접속됨과 아울러, 당해 2개의 도체관(20)에 유체를 분류시키는 것이다. 또, 본 실시형태에서는, 도체관(20) 및 분류관(30)이 일체 구성된 것이다. 즉, 본 실시형태의 유체가열장치(100)의 배관 구성은 상류 측에 1개의 유체 도입구(P1)를 가지고, 그 하류 측에서 2개의 유로(R)로 분기하여 2개의 유체 도출구(P2)를 가진다. 또한, 분류관(30)의 상류 측 개구에 의해 구성되는 유체 도입구(P1)에는 플랜지부가 형성되어 있으며, 외부 배관과의 접속이 가능하게 되도록 구성되어 있다. 또, 도체관(20)의 타단부(20b)에 의해 구성되는 유체 도출구(P2)에는 플랜지부가 형성되어 있고, 외부 배관과의 접속이 가능하게 되도록 구성되어 있다.
그리고, 2개의 도체관(20)의 유체 도출 측인 타단부(20b)에 단상교류전원(40)이 접속되어 있다. 구체적으로는, 2개의 도체관(20)의 타단부(20b)의 한쪽에 단상교류전원(40)의 U상이 접속되어 있고, 2개의 도체관(20)의 타단부(20b)의 다른 쪽에 단상교류전원(40)의 V상이 접속되어 있다. 각 도체관(20)의 타단부(20b)에 접속되는 전극(50)은, 도 17에 나타내는 바와 같이, 타단부(20b)의 외측 둘레면의 일부에 돌려 감아져 용접 등에 의해 접속되어 있다. 이들 전극(50)은 2개의 도체관(20)의 배열방향에 직교하는 방향으로 연장하도록 마련되어 있다.
이와 같이 구성한 유체가열장치(100)에 있어서, 단상교류전원(40)으로부터 단상교류전압을 전극(50)을 통하여 도체관(20)에 인가하면, 한쪽의 도체관(20)에 흐르는 전류의 방향과, 다른 쪽의 도체관(20)에 흐르는 전류의 방향이 역방향이 된다. 그렇게 하면, 각각의 전류에 의해 발생하는 자속이 상쇄되어, 도체관(20)에 발생하는 임피던스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 유체가열장치(100)의 설비 효율을 향상시킬 수 있다.
8. 제6 실시형태
제6 실시형태의 유체가열장치(100)는, 도 18에 나타내는 바와 같이, 3개의 도체관(20)이 서로 평행하게 되도록 배치되어 있고, 당해 3개의 도체관(20)의 유체 도입 측인 일단부(20a)가 서로 전기적으로 접속되어 있다. 각 도체관(20)은 직관 모양을 이루는 원통관이며, 동일 형상을 이루는 것이다. 또, 3개의 도체관(20)은 동일 평면상에 등간격으로 배열되어 있다.
구체적으로 3개의 도체관(20)의 일단부(20a)는 도전성을 가지는 분류관(30)에 의해 전기적으로 접속되어 있다. 이 분류관(30)은 3개의 도체관(20)의 일단부(20a)에 접속됨과 아울러, 당해 3개의 도체관(20)에 유체를 분류시키는 것이다. 또, 본 실시형태에서는 도체관(20) 및 분류관(30)이 일체 구성된 것이다. 즉, 본 실시형태의 유체가열장치(100)의 배관 구성은 상류 측에 1개의 유체 도입구(P1)를 가지고, 그 하류 측에서 3개의 유로로 분기하여 3개의 유체 도출구(P2)를 가진다. 또한, 유체 도입구(P1) 및 유체 도출구(P2)에는 상기 제1 실시형태와 마찬가지로 플랜지부가 형성되어 있다.
그리고, 3개의 도체관(20)의 유체 도출 측인 타단부(20b)에 삼상교류전원(60)이 접속되어 있다. 구체적으로는, 3개의 도체관(20)의 타단부(20b)에서 1번째의 타단부(20b)에 삼상교류전원(60)의 U상이 접속되어 있고, 2번째의 타단부(20b)에 삼상교류전원(60)의 V상이 접속되어 있으며, 3번째의 타단부(20b)에 삼상교류전원(60)의 W상이 접속되어 있다. 각 도체관(20)의 타단부(20b)에 접속되는 전극(70)은, 도 18에 나타내는 바와 같이, 타단부(20b)의 외측 둘레면의 일부에 돌려 감아져 용접 등에 의해 접속되어 있다. 이들 전극(70)은 3개의 도체관(20)의 배열방향에 직교하는 방향으로 연장하도록 마련되어 있다.
이와 같이 구성한 유체가열장치(100)에 있어서, 삼상교류전원(60)으로부터 삼상교류전압을 전극(70)을 통하여 도체관(20)에 인가하면, 3개의 도체관(20)에 흐르는 전류에 의해 발생하는 자속이 상쇄되어, 도체관(20)에 발생하는 임피던스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 유체가열장치(100)의 설비 효율을 향상할 수 있다.
9. 제6 실시형태의 변형예
상기 제2 실시형태의 3개의 도체관(20)은 동일 평면상에 등간격으로 배열된 것이었지만, 도 19에 나타내는 바와 같이, 3개의 도체관(20)을 삼각형의 3개의 정점에 위치하도록 배치한 것이라도 된다. 또, 이 경우, 각 도체관(20)의 타단부(20b)에 마련되는 전극(70)은, 예를 들면 삼각형의 외측에 방사상으로 연장하도록 마련된다. 이와 같이 전극(70)을 방사상으로 마련하는 것에 의해서, 배선을 용이하게 할 수 있음과 아울러, 단락을 방지하고 있다.
10. 제7 실시형태
제7 실시형태의 유체가열장치(100)는, 도 20에 나타내는 바와 같이, 2개의 도체관(20)이 서로 평행하게 되도록 배치되어 있고, 당해 2개의 도체관(20)의 유체 도입 측인 일단부(20a)가 서로 전기적으로 접속되어 있다. 각 도체관(20)은 직관 모양을 이루는 원통관이며, 동일 형상을 이루는 것이다.
구체적으로 2개의 도체관(20)의 일단부(20a)는 도전성을 가지는 분류관(30)에 의해 전기적으로 접속되어 있다. 이 분류관(30)은 2개의 도체관(20)의 일단부(20a)에 접속됨과 아울러, 당해 2개의 도체관(20)에 유체를 분류시키는 것이다. 또, 본 실시형태에서는 도체관(20) 및 분류관(30)이 일체 구성된 것이다.
또, 2개의 도체관(20)의 타단부(20b)는 폐색되어 있고, 도체관(20)의 도중 (일단부(20a) 및 타단부(20b)의 사이)의 측벽에 복수의 유체분출구(20x)가 형성되어 있다. 이 복수의 유체분출구(20x)는 도체관(20)의 측벽에서 둘레방향 전체에 형성되는 것이라도 되고, 도체관(20)의 측벽에서 배열방향에 직교하는 한쪽 방향 측에 형성되는 것이라도 된다. 또, 도 20에서는, 복수의 유체분출구(20x)는 측벽에서 일단부(20a)로부터 타단부(20b)에 걸쳐 길이방향의 대략 전체에 형성되어 있지만, 길이방향의 일부, 예를 들면 도체관(20)의 길이방향 중앙부로부터 타단부(20b)에 형성해도 된다.
이상에 의해, 본 실시형태의 유체가열장치(100)의 배관 구성은 상류 측에 1개의 유체 도입구(P1)를 가지고, 그 하류 측에서 2개의 유로(R)로 분기하여, 각각의 유로(R)로부터 복수의 유체분출구(20x)를 통하여 가열된 유체를 분출하도록 구성되어 있다.
그리고, 2개의 도체관(20)의 폐색된 타단부(20b)에 단상교류전원(40)이 접속되어 있다. 구체적으로는, 2개의 도체관(20)의 타단부(20b)의 한쪽에 단상교류전원(40)의 U상이 접속되어 있고, 2개의 도체관(20)의 타단부(20b)의 다른 쪽에 단상교류전원(40)의 V상이 접속되어 있다. 각 도체관(20)의 타단부(20b)에 접속되는 전극(50)은, 도 20에 나타내는 바와 같이, 도체관(20)의 외측 둘레면을 따른 형상이며, 당해 도체관(20)의 타단부(20b)보다도 길이방향 외측으로 연장하여 마련되어 있다. 구체적으로는 도체관(20)이 둥근 관 모양을 이루는 것이며, 전극(50)은 부분 원통 형상의 소위 반원통 형상을 이루는 것이다. 이 전극(50)은 도체관(20)의 타단부(20b)에 용접 등에 의해 접속되어 있다. 이와 같이 전극(50)이 반원통 형상을 이루고, 도체관(20)의 길이방향을 따라서 연장해 있으므로, 도체관(20)이 가열된 유체를 수용하는 수용실을 형성하는 수용용기 내에 삽입해 이용하는 경우에, 도체관(20)을 수용용기에 장착할 때 또는 떼어낼 때에 전극(50)이 방해가 되지 않는다.
이와 같이 구성한 유체가열장치(100)에 있어서, 단상교류전원(40)으로부터 단상교류전압을 전극(50)을 통하여 도체관(20)에 인가하면, 한쪽의 도체관(20)에 흐르는 전류의 방향과, 다른 쪽의 도체관(20)에 흐르는 전류의 방향이 역방향이 된다. 그렇게 하면, 각각의 전류에 의해 발생하는 자속이 상쇄되어, 도체관(20)에 발생하는 임피던스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 유체가열장치(100)의 설비 효율을 향상시킬 수 있다. 또, 도체관(20)의 일단부(20a) 및 폐색된 타단부(20b)의 사이에 복수의 유체분출구(20x)를 형성하고 있으므로, 가열된 유체를 분산시켜 이용하는 경우에 사용하기 편하게 할 수 있다.
11. 제8 실시형태
제8 실시형태의 유체가열장치(100)는, 도 21에 나타내는 바와 같이, 3개의 도체관(20)이 서로 평행하게 되도록 배치되어 있고, 당해 3개의 도체관(20)의 유체 도입 측인 일단부(20a)가 서로 전기적으로 접속되어 있다. 각 도체관(20)은 직관 모양을 이루는 원통관이며, 동일 형상을 이루는 것이다. 또, 3개의 도체관(20)은 동일 평면상에 등간격으로 배열되어 있다.
구체적으로 3개의 도체관(20)의 일단부(20a)는 도전성을 가지는 분류관(30)에 의해 전기적으로 접속되어 있다. 이 분류관(30)은 3개의 도체관(20)의 일단부(20a)에 접속됨과 아울러, 당해 3개의 도체관(20)에 유체를 분류시키는 것이다. 또, 본 실시형태에서는 도체관(20) 및 분류관(30)이 일체 구성된 것이다.
또, 3개의 도체관(20)의 타단부(20b)는 폐색되어 있으며, 도체관(20)의 도중 (일단부(20a) 및 타단부(20b)의 사이)의 측벽에 복수의 유체분출구(20x)가 형성되어 있다. 이 복수의 유체분출구(20x)는 도체관(20)의 측벽에서 둘레방향 전체에 형성되는 것이라도 되고, 도체관(20)의 측벽에서 배열방향에 직교하는 한쪽 방향 측에 형성되는 것이라도 된다. 또, 도 21에서는, 복수의 유체분출구(20x)는 측벽에서 일단부(20a)로부터 타단부(20b)에 걸쳐 길이방향의 대략 전체에 형성되어 있지만, 길이방향의 일부, 예를 들면 도체관(20)의 길이방향 중앙부로부터 타단부(20b)에 형성해도 된다.
이상에 의해, 본 실시형태의 유체가열장치(100)의 배관 구성은 상류 측에 1개의 유체 도입구(P1)를 가지고, 그 하류 측에서 3개의 유로(R)로 분기하여, 각 유로(R)로부터 복수의 유체분출구(20x)를 통하여 가열된 유체를 분출하도록 구성되어 있다.
12. 제8 실시형태의 변형예
상기 제4 실시형태의 3개의 도체관(20)은 동일 평면상에 등간격으로 배열된 것이었지만, 상기 제2 실시형태의 변형예와 마찬가지로, 도 22에 나타내는 바와 같이, 3개의 도체관(20)을 삼각형의 3개의 정점에 위치하도록 배치한 것이라도 된다.
13. 그 외의 변형 실시형태
또한, 본 발명은 상기 제5 ~ 제8 실시형태에 한정되는 것은 아니다. 예를 들면, 상기 제5 ~ 제8 실시형태에서는 도체관(20) 및 분류관(30)을 일체 구성한 것이었지만, 도체관(20) 및 분류관(30)을 별도의 부재로 하여, 그들을 플랜지를 통하여 접속해 구성해도 된다.
또, 상기 제5 실시형태 및 제7 실시형태에서는, 2개의 도체관(20)을 가지는 유체가열장치(100)에 대해서 설명했지만, 도 23에 나타내는 바와 같이, 2N개(N은 2이상의 정수)의 도체관(20)을 가지는 것이라도 된다. 또한, 도 23에서는 4개의 도체관(20)을 가지는 유체가열장치(100)에 대해서 예시하고 있다. 그리고, 2N개의 도체관(20)의 일단부(20a)에 2N의 유로로 분기한 단일의 분류관(30)을 접속하는 것으로 전기적으로 접속한다. 또, 2N개의 도체관(20)의 타단부(20b)에 있어서, 서로 인접하는 타단부(20b)에 접속되는 단상교류전원(40)의 극성이 다르도록, 단상교류전원(40)의 U상 및 V상이 교호로 접속되어 있다. 도 23에서는 4개의 도체관(20)의 타단부(20b)에 위로부터 순서대로 U상, V상, U상, V상이 되도록 접속되어 있다.
이와 같은 것으로 하여도, 서로 인접하는 도체관(20)에 흐르는 전류가 서로 역방향이 되므로, 각각의 전류에 의해 발생하는 자속이 상쇄되어, 도체관(20)에 발생하는 임피던스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 유체가열장치(100)의 설비 효율을 향상시킬 수 있다. 또, 도체관(20)의 개수를 늘리는 것에 의해서, 가열된 유체를 대용량화할 수 있다. 또한, 2N개의 도체관(20)에 복수의 유체분출구(20x)를 형성하는 것으로, 가열된 유체의 분출 면적을 크게 할 수 있으며, 이것에 의해, 유체를 넓은 범위로 확산시킬 수 있다.
또한, 도 23에서는 도체관(20)의 타단부(20b)가 폐색되어 있고, 도체관(20)의 도중에 복수의 유체분출구(20x)가 형성된 것을 나타내고 있지만, 상기 제1 실시형태와 마찬가지로, 복수의 유체분출구(20x)를 가지지 않고, 도체관(20)의 타단부(20b)가 개구되어 유체 도출구를 형성하는 것이라도 된다.
또한, 상기 제6 실시형태 및 제8 실시형태에서는 3개의 도체관(20)을 가지는 유체가열장치(100)에 대해서 설명했지만, 도 24에 나타내는 바와 같이, 3N개(N은 2이상의 정수)의 도체관(20)을 가지는 것이라도 된다. 또한, 도 24에서는 6개의 도체관(20)을 가지는 유체가열장치(100)에 대해서 예시하고 있다. 그리고, 3N개의 도체관(20)의 일단부(20a)에 3N의 유로로 분기한 단일의 분류관(30)을 접속하는 것으로 전기적으로 접속한다. 또, 3N개의 도체관(20)의 타단부(20b)에 있어서, 연속하여 늘어선 3개의 타단부(20b)에 접속되는 삼상교류전원(60)의 극성이 각각 다르도록, 삼상교류전원(60)의 U상, V상 및 W상이 교호로 접속되어 있다. 도 24에서는 6개의 도체관(20)의 타단부(20b)에 위로부터 W상, V상, U상, W상, V상, U상이 되도록 접속되어 있다.
이와 같은 것으로 하여도, 연속하여 늘어선 3개의 타단부(20b)에 접속되는 삼상교류전원(60)의 극성이 각각 다르도록 삼상교류전원(60)의 U상, V상 및 W상이 접속되어 있으므로, 연속하여 늘어선 3개의 도체관(20)에 흐르는 전류에 의해 발생하는 자속이 상쇄되어 도체관(20)에 발생하는 임피던스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 유체가열장치(100)의 설비 효율을 향상시킬 수 있다. 또, 도체관(20)의 개수를 늘리는 것에 의해서, 가열된 유체를 대용량화할 수 있다. 또한, 3N개의 도체관(20)에 복수의 유체분출구(20x)를 형성하는 것으로, 가열된 유체의 분출 면적을 크게 할 수 있으며, 이것에 의해, 유체를 넓은 범위로 확산시킬 수 있다.
또한, 도 24에서는 도체관(20)의 타단부(20b)가 폐색되어 있고, 도체관(20)의 도중에 복수의 유체분출구(20x)가 형성된 것을 나타내고 있지만, 상기 제2 실시형태와 마찬가지로, 복수의 유체분출구(20x)를 가지지 않고, 도체관(20)의 타단부(20b)가 개구되어 유체 도출구를 형성하는 것이라도 된다.
게다가, 상기 제7 실시형태 및 제8 실시형태의 유체가열장치(100)와 같이, 도체관(20)에 복수의 유체분출구(20x)가 형성되었을 경우에는, 도 25 및 도 26에 나타내는 바와 같이, 유체가열장치(100)가 도체관(20)의 유체분출구(20x)로부터 분출된 가열된 유체를 수용하여 보온하기 위한 수용실을 형성하는 보온용기(80)를 가지는 것이라도 된다. 구체적으로는, 보온용기(80)의 좌우 측벽(801, 802)을 관통하도록 도체관(20)을 삽입하여 마련한다. 이 때, 도체관(20)에는 보온용기(80)의 좌우 측벽(801, 802)에 삽입된 상태에서, 당해 좌우 측벽(801, 802)의 사이, 즉, 보온용기(80)의 밀폐된 내부 공간에 위치하는 부분에 복수의 유체분출구(20x)를 형성하고 있다. 또, 도체관(20)이 보온용기(80)에 삽입된 상태에서, 당해 도체관(20)에 접속되는 전극(50)은 보온용기(80)의 외측에 위치하고 있다. 또한, 이 전극(50)은, 상기 제3 실시형태와 같이, 반원통 형상을 이루는 것으로 하고 있다. 이것에 의해, 보온용기(80)의 좌우 측벽(801, 802)에 도체관(20)을 통과하기 위한 구멍을 형성하는 것만으로, 전극(50)이 마련된 도체관(20)을 간단하게 착탈할 수 있다. 즉, 도체관(20)을 보온용기(80)에 삽입하여 장착할 때, 또, 도체관(20)을 보온용기(80)로부터 뽑아내 떼어낼 때에, 전극(50)이 좌우 측벽(801, 802)에 간섭하여 방해가 되는 것을 방지할 수 있다. 또, 도체관(20)에 접속되는 단상교류전원(40)은 상기 보온용기(80)의 외부에 마련된 전원실(PR) 내에 마련되어 있다. 이와 같이 보온용기(80)와는 다른 공간에 설치된 단상교류전원(40)은 전기배선에 의해서 도전관(20)의 전극(50)에 전기적으로 접속된다.
이 보온용기(80)에 수용된 가열된 유체는 보온용기(80)에 마련된 유체 도출 포트(미도시)로부터 외부로 도출되어 이용된다. 또한, 상기에서는 수용실이 보온용기에 의해 형성되는 경우를 설명했지만, 그 외, 수용실로서는 도체관(20)에서 가열된 유체를 더욱 가열하기 위한 가열기구를 가지는 가열용기에 의해 형성되는 것이라도 되고, 가열된 유체의 온도조절을 하기 위한 온도조절 기능을 가지는 온도조절용기에 의해 형성되는 것이라도 된다. 또, 도체관(20)은, 수용실 외에, 가열된 유체에 의해 피가열물을 처리하기 위한 처리실에 삽입하여 마련된 것이라도 된다. 여기서, 피처리물은 상기 처리실에 반송벨트 등의 반송기구에 의해 연속적으로 반송되는 구성으로 하는 것이 고려된다.
또한, 상기 제5 ~ 제8 실시형태에서는 복수의 도체관(20)의 일단부(20a)에 단일의 분류관(30)이 접속되어 유체 도입구(P1)가 1개로 되어 있었지만, 도 27에 나타내는 바와 같이, 복수의 도체관(20)의 일단부(20a) 각각이 개구하여 복수의 유체 도입구(P1)를 가지는 것이라도 된다. 이 경우, 복수의 도체관(20)의 일단부(20a)는 도전성 부재(90)에 의해 전기적으로 접속되어 있다.
이에 더하여, 도 28에 나타내는 바와 같이, 복수의 요소배관(20m)을 직렬로 접속하는 것에 의해서 도체관(20)을 구성하는 것이라도 된다. 이 경우, 각 요소배관(20m)에는 다른 요소배관(20m)에 접속하기 위한 플랜지부 등의 접속부가 마련되어 있다. 이렇게 하면, 복수의 요소배관(20m)을 접속하는 것에 의해서, 소망의 길이의 유로를 가지는 유체가열장치(100)를 구성할 수 있다.
또한 이에 더하여, 도 29에 나타내는 바와 같이, 도체관(20)의 도중(일단부(20a) 및 타단부(20b)의 사이)의 측벽에 복수의 유체분출노즐(201)을 마련한 것이라도 된다. 이 복수의 유체분출노즐(201)은 도체관(20)의 측벽에서 둘레방향 전체에 형성되는 것이라도 되고, 도체관(20)의 측벽에서 배열방향에 직교하는 한쪽 방향 측에 형성되는 것이라도 된다. 또, 도 29에서는, 복수의 유체분출노즐(201)은 측벽에서 일단부(20a)로부터 타단부(20b)에 걸쳐 등간격으로 마련되어 있지만, 이것에 한정되지 않는다. 또한, 도 29에는 상기 제5 실시형태와 같은 2개의 도체관(20)을 가지는 유체가열장치(100)에 적용했을 경우를 나타내고 있지만, 그 외, 상기 제6 실시형태와 같은 3개의 도체관(20)을 가지는 유체가열장치(100)에 적용해도 되고, 상기 제7, 제8 실시형태와 같은 타단부(20b)가 폐색된 도체관(20)을 가지는 유체가열장치(100)에 적용해도 된다. 또한, 2N개 또는 3N개(N은 2 이상의 정수)의 도체관(20)을 가지는 유체가열장치(100)에 적용해도 된다. 이와 같이 유체분출노즐(201)을 가지는 것이면, 유체분출노즐(201)을 용도에 맞추어 선택하는 것에 의해, 가열된 유체를 당해 유체분출노즐에 의해 정해지는 소정의 분사 범위로 분출할 수 있다.
14. 제9 실시형태
제9 실시형태의 유체가열장치(100)는 내부에 피가열유체가 흐르는 유로(R)가 형성된 도전성 재료로 이루어지는 유로형성체(2)에 교류전압을 인가하여 직접 통전하고, 유로형성체(2)의 내부 저항에 의해 발생하는 쥴열에 의해서 유로형성체(2)를 가열하는 것에 의해, 상기 유로(R)를 흐르는 피가열유체를 가열하는 것이다.
본 실시형태의 유로형성체(2)는, 도 30에 나타내는 바와 같이, 개략 원통 직관 모양의 파이프로 형성되어 있다. 이것에 의해, 유로(R)는 직선 모양을 이루는 1개의 유로가 된다. 또, 유로형성체(2)는 동보다도 높은 전기저항을 가지는 도전성 재료로 이루어지며, 예를 들면 스테인리스나 티탄 등으로 형성되어 있으면 된다. 또한, 유로형성체(2)의 유로 일단부(2a) 측의 일단 개구인 제1 유통구(P1)에는 플랜지부(21)가 형성되어 있고, 외부 배관과의 접속이 가능하게 되도록 구성되어 있다. 마찬가지로, 유로형성체(2)의 유로 타단부(2b) 측의 타단 개구인 제2 유통구(P2)에는 플랜지부(21)가 형성되어 있고, 외부 배관과의 접속이 가능하게 되도록 구성되어 있다.
그리고, 유로형성체(2)에는 유로형성체(2)에서의 유로(R)의 유로방향을 따라서 대략 4등분하는 위치에 전극(3z)이 5개 접속되어 있다. 이 5개의 전극(3z) 중 2개는 유로 일단부(2a) 및 유로 타단부(2b)에 접속되어 있다. 이들 전극(3z)은 단상교류전원의 출력단자에 접속되어 있고, 서로 인접하는 전극(3z)에 접속되는 단상교류전원의 극성이 다르도록, 단상교류전원의 U상 및 V상이 교호로 접속되어 있다. 구체적으로는, 가장 유로 일단부(2a) 측에 있는 전극(3z)으로부터 순서대로, U상, V상, U상, V상, U상이 되도록 접속되어 있다. 또한, 전극(3z)에 접속되는 단상교류전원의 U상 및 V상의 순서는 도 30에 나타내는 것에 한정되지 않고, U상과 V상이 반대로 된 것이라도 된다.
여기서, 전극(3z)의 수는 5개에 한정되지 않고, 유로형성체(2)에서의 유로(R)의 유로방향을 따라서 2n등분(n은 1 이상의 정수이다.)하는 위치에 접속되어 있으면 된다. 예를 들면 본 실시형태와 같이, 유로 일단부(2a) 및 유로 타단부(2b)에 각각 전극(3z)이 접속되어 있는 경우에는 전극(3z)이 2n+1개 접속되어 있는 것이면 된다.
또, 유로형성체(2)의 도중(일단부(2a) 및 타단부(2b)의 사이)의 외측 둘레면에는 복수의 유체분출구(22)가 마련되어 있다. 이 유체분출구(22)는 유로형성체(2)의 외측 둘레면에서의 유로방향에 직교하는 한쪽 방향 측(도 30에서의 아래쪽)을 향하도록, 각 전극(3z)의 사이에서 동일한 개수씩 배치되어 있다. 본 실시형태에서 유체분출구(22)는 각 전극(3z)의 사이에 각각 4개씩 배치되어 있다. 또한, 본 실시형태의 각 유체분출구(22)에는 유체분출노즐(24)이 장착되어 있다. 또한, 유체분출구(22)는 유로형성체(2)의 외측 둘레면에서 둘레방향 전체에 형성되는 것이라도 된다. 또, 본 실시형태의 유체분출구(22)는 유로형성체(2)의 외측 둘레면에서 유로 일단부(2a)로부터 유로 타단부(2b)에 걸쳐 길이방향의 대략 전체에 형성되어 있지만, 길이방향의 일부, 예를 들면 유로형성체(2)의 길이방향 중앙부로부터 타단부(2b)에 형성해도 된다.
여기서, 유체가열장치(100)에서의 피가열유체의 흐름을 설명한다. 피가열유체는 유로(R)에 연통하는 유로형성체(2)의 제1 유통구(P1)로부터 유입하고, 유로형성체(2) 내부의 유로(R)가 가열되면서 흘러, 유로(R)에 연통하는 유로형성체(2)의 제2 유통구(P2)에 이른다. 가열된 유체의 일부는 이 제1 유통구(P1)로부터 제2 유통구(P2)에 이를 때까지의 동안에, 유체분출구(22) 및 유체분출노즐(24)을 통과하여 유체가열장치(100)의 외부로 분출된다. 또, 제1 유통구(P1) 또는 제2 유통구(P2)의 한쪽을 폐색하고, 제1 유통구(P1) 또는 제2 유통구(P2)의 다른 쪽으로부터 피가열유체를 유입시키는 구성으로 하여, 가열된 유체의 전부를 유체분출구(22) 및 유체분출노즐(24)로부터 외부로 분출하게 하도록 해도 된다. 또한, 제1 유통구(P1) 및 제2 유통구(P2)의 양쪽으로부터 피가열유체를 유입시키는 구성으로 하여, 가열된 유체의 전부를 유체분출구(22) 및 유체분출노즐(24)로부터 외부로 분출하게 하도록 해도 된다. 또한, 피가열유체의 일례로서는, 유로형성체(2)로 유입하는 피가열유체가 포화 수증기 또는 과열 수증기로서, 유로형성체(2)로부터 유출하는 가열된 유체가 과열 수증기인 것이 고려된다. 단, 피가열유체는 특정의 유체에 한정되지 않고, 유체가열장치(100)의 용도에 맞추어 적절히 선택되는 것이면 된다.
이와 같이 구성한 유체가열장치(100)에 있어서, 단상교류전원으로부터 단상교류전압을 각 전극(3z)을 통하여 유로형성체(2)에 인가하면, 서로 인접하는 전극(3z) 사이에 흐르는 전류의 위상이 서로 역방향이 되므로, 각각의 전류에 의해 발생하는 자속이 상쇄되어, 유로형성체(2)에 발생하는 임피던스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 피가열유체를 효율 좋게 가열할 수 있어, 유체가열장치(100)의 설비 효율을 향상시킬 수 있다.
15. 제9 실시형태의 변형예
또한, 제9 실시형태의 유체가열장치(100)는 유로형성체(2)가 1개의 직선부에 의해서만 형성되는 구성에 한정되지 않고, 직선부를 복수 가지는 것이라도 된다. 구체적으로는, 도 31에 나타내는 바와 같이, 외측 둘레면에 복수의 유체분출구(22)가 마련된 직선부(25)를 예를 들면 3개 가지는 것이라도 된다. 구체적으로 3개의 직선부(25)는 유로 타단부(2b) 측에서 도전성을 가지는 접속부(26)에 의해 접속되어 있고, 직선부(25) 및 접속부(26)에 의해 유로형성체(2)가 구성되어 있다. 즉, 이 유체가열장치(100)의 배관 구성은 유로 일단부(2a) 측에 3개의 제1 유통구(P1)를 가지고, 유로 타단부(2b) 측에 1개의 제2 유통구(P2)를 가진다. 이 접속부(26)는 피가열유체가 유로 일단부(2a)로부터 유로 타단부(2b)를 향하여 흐르는 경우에는 3개의 유로를 1개의 유로로 합류시키고, 피가열유체가 유로 타단부(2b)로부터 유로 일단부(2a)를 향하여 흐르는 경우에는 1개의 유로를 3개의 유로로 분류시키는 것이다.
이와 같이 직선부(25)를 복수 가지는 경우라도, 유로형성체(2)에서의 유로 일단부(2a)로부터 유로 타단부(2b)의 사이를 유로(R)의 유로방향을 따라서 2n등분 하는 위치에 전극(3z)이 배치되어 있는 것이 바람직하다. 예를 들면 도 31의 유체가열장치(100)의 경우, 각 직선부(25)는 동일 평면상에서 대략 평행하게 배치되어 있다. 또, 전극(3z)은 직선부(25)의 배열방향을 따라서(도 31에서의 아래쪽으로부터) 보았을 때에, 유로(R)의 유로방향을 따라서 대략 4등분하는 위치에 접속되어 있다. 또한, 직선부(25)에 접속된 복수의 전극(3z)은 서로 인접하는 직선부(25)에 접속된 전극(3z)과 유로(R)의 유로방향을 따라서 각각 대략 동일한 위치에 접속되어 있다. 또한, 직선부(25)는 3개에 한정되지 않고, 2개라도 되고, 4개 이상이라도 된다. 또, 각 직선부(25)가, 예를 들면 방사상으로 배치되어 있는 등, 대략 평행하게 배치되지 않은 것이라도 된다.
16. 제10 실시형태
제10 실시형태의 유체가열장치(100)는 전극(3z)의 배치를 변경함과 아울러, 전극(3z)에 접속되는 전원을 단상교류전원으로부터 삼상교류전원으로 변경한 것이다. 또한, 유체가열장치(100)의 배관 구성은 제1 실시형태와 동일하다.
본 실시형태의 유체가열장치(100)는, 도 32에 나타내는 바와 같이, 유로형성체(2)에서의 유로(R)의 유로방향을 따라서 대략 6등분하는 위치에 전극(3z)이 7개 접속되어 있다. 이 7개의 전극(3z) 중 2개는 유로 일단부(2a) 및 유로 타단부(2b)에 접속되어 있다. 이 전극(3z)은 삼상교류전원의 출력단자에 접속되어 있고, 연속하여 늘어선 3개의 전극(3z)에 접속되는 삼상교류전원의 극성이 각각 다르도록, 삼상교류전원의 U상, V상 및 W상이 교호로 접속되어 있다. 구체적으로는, 가장 유로 일단부(2a) 측에 있는 전극(3z)으로부터 순서대로, U상, V상, W상, U상, V상, W상, U상이 되도록 접속되어 있다. 또한, 전극(3z)에 접속되는 삼상교류전원의 U상, V상 및 W상의 순서는 도 32의 것에 한정되지 않고, 연속하여 늘어선 3개의 전극(3z)에 접속되는 삼상교류전원의 극성이 각각 다르도록, 유로형성체(2)에 접속되어 있으면 된다.
여기서, 전극(3z)의 수는 7개에 한정되지 않고, 유로형성체(2)에서의 유로(R)의 유로방향을 따라서 3n등분(n은 1 이상의 정수이다.)하는 위치에 접속되어 있으면 된다. 예를 들면 본 실시형태와 같이, 유로 일단부(2a) 및 유로 타단부(2b)에 각각 전극(3z)이 접속되어 있는 경우에는 3n+1개 접속되어 있는 것이면 된다.
또, 유로형성체(2)의 도중(일단부(2a) 및 타단부(2b)의 사이)의 외측 둘레면에는 복수의 유체분출구(22)가 마련되어 있다. 본 실시형태의 유체분출구(22)는 유로형성체(2)의 외측 둘레면에서의 유로방향에 직교하는 한쪽 방향 측(도 32에서의 아래쪽)을 향하도록, 각 전극(3z)의 사이에 각각 4개씩 배치되어 있다. 또한, 본 실시형태의 각 유체분출구(22)에는 유체분출구(22)의 개구방향을 따라서 연장하는 유체분출노즐(24)이 장착되어 있다. 또한, 유체분출구(22)는 유로형성체(2)의 외측 둘레면에서 둘레방향 전체에 형성되는 것이라도 된다. 또, 본 실시형태의 유체분출구(22)는 유로형성체(2)의 외측 둘레면에서 유로 일단부(2a)로부터 유로 타단부(2b)에 걸쳐 길이방향의 대략 전체에 형성되어 있지만, 길이방향의 일부, 예를 들면 유로형성체(2)의 길이방향 중앙부로부터 타단부(2b)에 형성해도 된다. 또한, 유체분출구(22)의 수는 본 실시형태의 것에 한정되지 않고, 유체가열장치(100)의 용도에 맞추어 적당한 수의 유체분출구(22)를 배치한 것이면 된다.
이 유체가열장치(100)에서의 피가열유체의 흐름은 상기 제1 실시형태와 동일하다. 또, 제1 유통구(P1) 또는 제2 유통구(P2)의 한쪽을 폐색하고, 제1 유통구(P1) 또는 제2 유통구(P2)의 다른 쪽으로부터 피가열유체를 유입시키는 구성으로 하여, 가열된 유체의 전부를 유체분출구(22) 및 유체분출노즐(24)로부터 외부로 분출하게 하도록 해도 된다. 또한, 제1 유통구(P1) 및 제2 유통구(P2)의 양쪽으로부터 피가열유체를 유입시키는 구성으로 하여, 가열된 유체의 전부를 유체분출구(22) 및 유체분출노즐(24)로부터 외부로 분출하게 하도록 해도 된다.
이와 같이 구성한 유체가열장치(100)에 있어서, 삼상교류전원으로부터 삼상교류전압을 각 전극(3z)을 통하여 유로형성체(2)에 인가하면, 연속하여 늘어선 3개의 전극(3z) 사이에 흐르는 전류의 위상이 각각 서로 120° 다르므로, 각각의 전류에 의해 발생하는 자속이 상쇄되어, 유로형성체(2)에 발생하는 임피던스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 피가열유체를 효율 좋게 가열할 수 있어, 유체가열장치(100)의 설비 효율을 향상시킬 수 있다.
17. 제10 실시형태의 변형예
또한, 제10 실시형태의 유체가열장치(100)는 유로형성체(2)가 1개의 직선부(25)에 의해서만 형성되는 구성에 한정되지 않고, 직선부(25)를 복수 가지는 것이라도 된다. 구체적으로는, 도 33에 나타내는 바와 같이, 외측 둘레면에 복수의 유체분출구(22)가 마련된 직선부(25)를 예를 들면 3개 가지는 것이라도 된다. 또한, 이 형태에서의 유체가열장치(100)의 배관 구성은, 도 31에 나타내는 것과 마찬가지로, 도 31의 유체가열장치(100)와 동일 또는 대응하는 구성에는 동일한 부호를 부여하고 있다. 이와 같이 직선부(25)를 복수 가지는 경우라도, 유로형성체(2)에서의 유로 일단부(2a)로부터 유로 타단부(2b)의 사이를 유로(R)의 유로방향을 따라서 3n등분하는 위치에 전극(3z)이 배치되어 있는 것이 바람직하다. 예를 들면 도 33의 유체가열장치(100)의 경우, 각 직선부(25)가 동일 평면상에서 대략 평행하게 배치되고, 각 직선부(25)의 배열방향을 따라서(도 33에서의 아래쪽으로부터) 보았을 때에, 유로(R)의 유로방향을 따라서 대략 6등분하는 위치에 전극(3z)이 접속되어 있다.
18. 제11 실시형태
제11 실시형태의 유체가열장치(100)는, 도 34에 나타내는 바와 같이, 내부에 피가열유체가 흐르는 유로(R)가 형성된 도전성 재료로 이루어지는 유로형성체(2)에 교류전압을 인가하여 직접 통전하고, 유로형성체(2)의 내부 저항에 의해 발생하는 쥴열에 의해서 유로형성체(2)를 가열하는 것에 의해, 상기 유로(R)를 흐르는 피가열유체를 가열하는 것이다.
본 실시형태의 유로형성체(2)는 서로 대략 평행하게 배치된 직선 모양의 유로를 형성하는 6개의 직선부(25)와, 서로 인접하는 직선부(25)의 단부를 접속하여 사행한 1개의 유로(R)를 형성하는 5개의 되접기부(27)를 가진다. 여기서, 본 실시형태의 6개의 직선부(25)는 동일 평면상에서 각각 서로 대략 평행하게 되도록 등간격으로 배치되며, 대략 동일한 길이이다. 또, 되접기부(27)는 'コ'자 모양 또는 'U'자 모양으로 구성됨과 아울러, 각 직선부(25)의 한쪽의 단부와 다른 쪽의 단부가 각각 다른 직선부(25)와 접속한다. 또한, 유로형성체(2)의 유로 일단부(2a)에 구성되는 제1 유통구(P1)에는 플랜지부(21)가 형성되어 있고, 외부 배관과의 접속이 가능하게 되도록 구성되어 있다. 마찬가지로, 유로형성체(2)의 유로 타단부(2b)에 구성되는 제2 유통구(P2)에는 플랜지부(21)가 형성되어 있으며, 외부 배관과의 접속이 가능하게 되도록 구성되어 있다.
그리고, 도 34에 나타내는 바와 같이, 유로형성체(2)에는 유로 일단부(2a), 유로 타단부(2b) 및 일부의 되접기부(27)에 전극(3z)이 접속되어 있다. 이 전극(3z)은 유로(R)의 유로방향을 따라서 서로 인접하는 전극(3z)의 사이의 유로(R)를 형성하는 직선부(25)가 짝수 개, 본 실시형태에서는 2개가 되도록 접속되어 있다. 따라서, 본 실시형태에서는, 유로 일단부(2a)와, 유로 타단부(2b)와, 평면에서 보았을 때 유로 일단부(2a) 및 유로 타단부(2b) 측에 있는 2개의 되접기부(27)와의 4개소에 전극(3z)이 접속되어 있다.
또, 전극(3z)은 단상교류전원의 출력단자에 접속되어 있고, 서로 인접하는 전극(3z)에 접속되는 단상교류전원의 극성이 다르도록, 단상교류전원의 U상 및 V상이 교호로 접속되어 있다. 구체적으로는, 가장 유로 일단부(2a) 측에 있는 전극(3z)으로부터 순서대로, V상, U상, V상, U상이 되도록 접속되어 있다. 또한, 전극(3z)에 접속되는 단상교류전원의 U상 및 V상의 순서는 도 34에 나타내는 것에 한정되지 않고, U상과 V상이 반대로 된 것이라도 된다.
또, 유로형성체(2)의 도중(일단부(2a) 및 타단부(2b)의 사이)의 외측 둘레면에는 복수의 유체분출구(22)가 마련되어 있다. 본 실시형태의 유체분출구(22)는 유로형성체(2)의 외측 둘레면에서의 유로방향에 직교하는 한쪽 방향 측(도 34에서의 하부)을 향하도록, 각 직선부(25)에 각각 4개씩 배치되어 있다. 또한, 본 실시형태의 각 유체분출구(22)에는 유체분출노즐(24)이 장착되어 있다. 또한, 유체분출구(22)는 유로형성체(2)의 외측 둘레면에서 둘레방향 전체에 형성되는 것이라도 된다. 또, 본 실시형태의 유체분출구(22)는 유로형성체(2)의 외측 둘레면에서 유로 일단부(2a)로부터 유로 타단부(2b)에 걸쳐 길이방향의 대략 전체에 형성되어 있지만, 길이방향의 일부, 예를 들면 유로형성체(2)의 길이방향 중앙부로부터 타단부(2b)에 형성해도 된다.
여기서, 본 실시형태의 유체가열장치(100)는 제1 유통구(P1) 또는 제2 유통구(P2)의 한쪽을 폐색하고, 제1 유통구(P1) 또는 제2 유통구(P2)의 다른 쪽으로부터 피가열유체를 유입시키는 구성으로 하여, 가열된 유체의 전부를 유체분출구(22) 및 유체분출노즐(24)로부터 외부로 분출하게 하도록 해도 된다. 또, 제1 유통구(P1) 및 제2 유통구(P2)의 양쪽으로부터 피가열유체를 유입시키는 구성으로 하여, 가열된 유체의 전부를 유체분출구(22) 및 유체분출노즐(24)로부터 외부로 분출하게 하도록 해도 된다. 또한, 도 34에 나타내는 바와 같이, 1 또는 복수의 되접기부(27)에 유로(R)에 피가열유체를 유입시키기 위한 중간 배관부(28)가 접속되어 있는 경우에는 제1 유통구(P1) 및 제2 유통구(P2)의 양쪽을 폐색하고, 중간 배관부(28)로부터 피가열유체를 유입시키는 구성으로 하여, 가열된 유체의 전부를 유체분출구(22) 및 유체분출노즐(24)로부터 외부로 분출하게 하도록 해도 된다. 또한, 상술한 중간 배관부(28)에는 역지(逆止)밸브 또는 유량조정밸브를 마련하는 것이 고려된다.
이와 같이 구성한 유체가열장치(100)에 있어서, 단상교류전원으로부터 단상교류전압을 각 전극(3z)을 통하여 유로형성체(2)에 인가하면, 서로 인접하는 직선부(25) 사이에 흐르는 전류의 위상이 서로 역방향이 되므로, 각각의 전류에 의해 발생하는 자속이 상쇄되어, 유로형성체(2)에 발생하는 임피던스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 피가열유체를 효율 좋게 가열할 수 있어, 유체가열장치(100)의 설비 효율을 향상시킬 수 있다.
19. 제12 실시형태
제12 실시형태의 유체가열장치(100)는 전극(3z)의 배치를 변경함과 아울러, 전극(3z)에 접속되는 전원을 단상교류전원으로부터 삼상교류전원으로 변경한 것이다. 또한, 유체가열장치(100)의 배관 구성은 제3 실시형태와 동일하다.
본 실시형태의 유체가열장치(100)는, 도 35에 나타내는 바와 같이, 유로형성체(2)에 유로 일단부(2a), 유로 타단부(2b) 및 전부(全部)의 되접기부(27)에 전극(3z)이 접속되어 있다. 또한, 반드시 전부의 되접기부(27)에 전극(3z)이 접속되어 있지 않아도 되며, 일부의 되접기부(27)에 전극(3z)이 접속되어 있는 것이라도 된다.
또, 각 전극(3z)은 삼상교류전원의 출력단자에 접속되어 있고, 연속하여 늘어선 3개의 전극(3z)에 접속되는 삼상교류전원의 극성이 각각 다르도록, 삼상교류전원의 U상, V상 및 W상이 교호로 접속되어 있다. 구체적으로는, 가장 유로 일단부(2a) 측에 있는 전극(3z)으로부터 순서대로, U상, W상, V상, U상, W상, V상, U상이 되도록 접속되어 있다. 또한, 전극(3z)에 접속되는 삼상교류전원의 U상, V상 및 W상의 순서는 도 35의 것에 한정되지 않고, 연속하여 늘어선 3개의 전극(3z)에 접속되는 삼상교류전원의 극성이 각각 다르도록, 유로형성체(2)에 접속되어 있으면 된다.
또, 유로형성체(2)의 도중(일단부(2a) 및 타단부(2b)의 사이)의 외측 둘레면에는 복수의 유체분출구(22)가 마련되어 있다. 본 실시형태의 유체분출구(22)는 유로형성체(2)의 외측 둘레면에서의 유로방향에 직교하는 한쪽 방향 측(도 35에서의 아래쪽)을 향하도록, 각 직선부(25)에 각각 5개씩 배치되어 있다. 또한, 본 실시형태의 각 유체분출구(22)에는 유체분출구(22)의 개구방향을 따라서 연장하는 유체분출노즐(24)이 장착되어 있다. 또한, 유체분출구(22)는 유로형성체(2)의 외측 둘레면에서 둘레방향 전체에 형성되는 것이라도 된다. 또, 본 실시형태의 유체분출구(22)는 유로형성체(2)의 외측 둘레면에서 유로 일단부(2a)로부터 유로 타단부(2b)에 걸쳐 길이방향의 대략 전체에 형성되어 있지만, 길이방향의 일부, 예를 들면 유로형성체(2)의 길이방향 중앙부로부터 타단부(2b)에 형성해도 된다.
여기서, 본 실시형태의 유체가열장치(100)는 제2 유통구(P2)를 폐색하여, 피가열유체를 유로형성체(2)의 제1 유통구(P1)로부터 유입시키고, 가열된 유체를 유체분출구(22)로부터 분출하게 하는 것이라도 되고, 피가열유체를 유로형성체(2)의 제1 유통구(P1) 및 제2 유통구(P2)의 양쪽으로부터 유입시키고, 가열된 유체를 유체분출구(22)로부터 분출하게 하는 것이라도 된다. 또, 도 35에 나타내는 바와 같이, 1 또는 복수의 되접기부(27)에 피가열유체를 더욱 유입시키기 위한 플랜지부(28)를 구비하는 경우에는, 제1 유통구(P1) 및 제2 유통구(P2)의 양쪽을 폐색하여, 가열된 유체를 유체분출구(22)로부터 분출하게 하는 것이라도 된다.
또한, 상술한 플랜지부(28)는 역지밸브가 마련되어 있는 것이나, 유량조정밸브가 마련되어 있는 것 등이 바람직하다.
이와 같이 구성한 유체가열장치(100)에 있어서, 삼상교류전원(5)으로부터 삼상교류전압을 각 전극(3z)을 통하여 유로형성체(2)에 인가하면, 연속하여 늘어선 3개의 직선부(25)의 사이에 흐르는 전류의 위상이 각각 서로 120°다르므로, 각각의 전류에 의해 발생하는 자속이 상쇄되어, 유로형성체(2)에 발생하는 임피던스가 저감되어 회로 역률을 개선할 수 있다. 따라서, 피가열유체를 효율 좋게 가열할 수 있어 유체가열장치(100)의 설비 효율을 향상시킬 수 있다.
20. 제12 실시형태의 변형예
또한, 본 발명은 상기 제 제10 ~ 12실시형태에 한정되는 것은 아니다. 예를 들면, 각 전극(3z) 사이마다 전력제어장치를 마련하고, 전극(3z)에 인가되는 전력이 제어 가능하게 구성되어 있는 것이라도 된다. 이렇게 하면, 전극(3z) 사이마다에서의 유로형성체(2)의 온도를 개별적으로 제어할 수 있어, 효율 좋게 피가열유체를 소망의 상태로 할 수 있다.
또, 유체분출구(22)에 유체분출노즐(24)을 장착하지 않고, 유체분출구(22)로부터 가열된 유체를 직접 분출하게 하는 것이라도 된다. 이 경우, 유체분출구(22)의 형상은 대략 원형의 것이라도 되고, 가늘고 긴 슬릿 모양인 것 등이라도 된다. 이와 같이 유체분출구(22)의 형상 또는 유로형성체(2)에서의 배치 장소, 혹은 유체분출노즐(24)의 유무 등에 대해서는, 유체가열장치(100)의 용도에 맞추어 적절히 선택되는 것이면 된다.
또한, 2개의 유로형성체(2)를, 그들 유로(R)가 연통함과 아울러, 2개의 유로형성체(2)에 마련된 전극(3z)이 내측에 위치하도록 플랜지부(21)에 의해 접속하여 유니트화 하여, 유체가열장치(100)를 구성해도 된다.
그 외, 본 발명은 상기 제1 ~ 제12 실시형태에 한정되지 않고, 그 취지를 일탈하지 않는 범위에서 여러 가지의 변형이 가능하다는 것은 말할 필요도 없다.
100 … 유체가열장치 2 … 유로형성체(파이프)
R … 유로 3 … 제1 급전부재
31 … 제1 전극 32 … 제1 전선
4 … 제2 급전부재 41 … 제2 전극
42 … 제2 전선 5 … 전원
51 … 스콧 결선 변압기 6 … 절연성 단열부재
10 … 유체가열 유니트

Claims (2)

  1. 삭제
  2. 내부에 피가열유체가 흐르는 유로가 형성된 도전성 재료로 이루어지는 유로형성체를 통전 가열하여, 상기 유로를 흐르는 피가열유체를 가열하는 유체가열장치로서,
    상기 유로형성체에서, 유로방향을 따라서 다른 위치에 접속된 3n+1개(n은 1 이상의 정수이다.)의 급전부재를 구비하고,
    상기 유로형성체가 직선 모양의 유로를 형성하는 3n개(n은 1 이상의 정수이다.)의 직선부와, 이들 직선부를 접속하여 1개의 유로로 하는 3n-1개의 되접기부를 가지고,
    상기 3n+1개의 급전부재가, 상기 유로형성체에서의 유로 일단부, 상기 3n-1개의 되접기부 및 유로 타단부에 접속되어 있으며,
    상기 3n+1개의 급전부재에, 연속하여 늘어서는 3개의 상기 급전부재에 접속되는 삼상교류전원의 극성이 각각 다르도록, 삼상교류전원의 U상, V상 및 W상이 교호(交互)로 접속되어 있고,
    상기 3n개의 직선부를 흐르는 전류에 의해 발생하는 자속이 각각 서로 상쇄되도록 구성되어 있으며,
    상기 3n개의 직선부에서 인접하는 3개의 직선부가 삼각형의 정점에 위치하도록 배치되어 있는 유체가열장치.
KR1020200020331A 2012-08-21 2020-02-19 유체가열장치 KR102207023B1 (ko)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2012182045 2012-08-21
JPJP-P-2012-182045 2012-08-21
JPJP-P-2013-046637 2013-03-08
JP2013046637 2013-03-08
JPJP-P-2013-095687 2013-04-30
JP2013095687A JP6162473B2 (ja) 2012-08-21 2013-04-30 流体加熱装置
JPJP-P-2013-113701 2013-05-30
JP2013113701 2013-05-30
JPJP-P-2013-125385 2013-06-14
JP2013125385 2013-06-14

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020130098371A Division KR102082012B1 (ko) 2012-08-21 2013-08-20 유체가열장치

Publications (2)

Publication Number Publication Date
KR20200023334A KR20200023334A (ko) 2020-03-04
KR102207023B1 true KR102207023B1 (ko) 2021-01-22

Family

ID=50640308

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020130098371A KR102082012B1 (ko) 2012-08-21 2013-08-20 유체가열장치
KR1020200020332A KR102162932B1 (ko) 2012-08-21 2020-02-19 유체가열장치
KR1020200020331A KR102207023B1 (ko) 2012-08-21 2020-02-19 유체가열장치

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020130098371A KR102082012B1 (ko) 2012-08-21 2013-08-20 유체가열장치
KR1020200020332A KR102162932B1 (ko) 2012-08-21 2020-02-19 유체가열장치

Country Status (3)

Country Link
KR (3) KR102082012B1 (ko)
CN (4) CN106288343B (ko)
TW (4) TWI587733B (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106288343B (zh) * 2012-08-21 2019-06-07 特电株式会社 流体加热装置
CN103634950B (zh) * 2012-08-21 2016-09-28 特电株式会社 流体加热装置
CN107343330A (zh) * 2017-07-26 2017-11-10 湖南利德电子浆料股份有限公司 一种厚膜混合电路(hic)加热层及其加热装置
CN108550997B (zh) * 2017-11-15 2020-03-06 盖茨公司 自穿刺连接器
CN112805509B (zh) * 2018-08-16 2023-03-10 巴斯夫欧洲公司 用于通过直流加热管道中的流体的装置和方法
WO2023046943A1 (de) * 2021-09-27 2023-03-30 Basf Se Mehrfachzylinder
TW202407264A (zh) * 2022-05-12 2024-02-16 南韓商Lg化學股份有限公司 流體加熱裝置
CN115104922A (zh) * 2022-07-19 2022-09-27 芜湖艾尔达科技有限责任公司 一种饮水机及饮水机控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291574A (ja) 2000-04-07 2001-10-19 Frontier Engineering:Kk 加熱装置
JP2006143563A (ja) * 2004-11-24 2006-06-08 Hoya Corp ガラス成形体、光学素子それぞれの製造方法、熔融ガラス流出装置およびガラス成形体の製造装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825942A (ko) * 1971-08-09 1973-04-04
JPS5145546Y2 (ko) * 1971-09-30 1976-11-05
JPS4847639A (ko) * 1971-10-19 1973-07-06
US4180723A (en) * 1977-03-28 1979-12-25 Corning Glass Works Electrical contacts for electrically conductive carbon glasses
JPS55132500A (en) * 1979-04-04 1980-10-15 Showa Denki Kogyo Kk Pipe transport of crude oil
GB2067390B (en) * 1980-01-21 1984-12-19 Electricity Council Apparatus for heating electrically conductive flowable media
JPS57144840A (en) * 1981-03-04 1982-09-07 Chisso Eng Kk Direct energization fluid heating pipe device
JPS5963689A (ja) * 1982-10-01 1984-04-11 新日本製鐵株式会社 パイプラインの直接通電加熱装置
JPS61268368A (ja) * 1985-05-23 1986-11-27 Chiyoda Chem Eng & Constr Co Ltd 電熱式散水管装置
JPH05317843A (ja) * 1992-05-19 1993-12-03 Shinko Pantec Co Ltd 超純水加熱装置および超純水加熱方法
JPH10177421A (ja) * 1996-12-17 1998-06-30 Kokusai Electric Co Ltd 温度調節器
JP2001148282A (ja) * 1999-11-19 2001-05-29 Yamamoto Vinita Co Ltd 流動性食品の高周波加熱装置
US6459854B1 (en) * 2000-01-24 2002-10-01 Nestec S.A. Process and module for heating liquid
JP2002013812A (ja) * 2000-06-26 2002-01-18 Toto Ltd 温水装置
CN100505953C (zh) * 2002-12-03 2009-06-24 肖特股份公司 有用于导电地加热熔体的电极的加热设备
JP4332469B2 (ja) * 2004-05-24 2009-09-16 株式会社ミヤデン 加熱水蒸気発生装置
KR100733304B1 (ko) * 2005-02-21 2007-06-28 엘지전자 주식회사 전극을 이용한 물 가열 장치
JP4801973B2 (ja) * 2005-11-10 2011-10-26 株式会社フロンティアエンジニアリング ジュール加熱装置およびその制御方法
JP2008253202A (ja) * 2007-04-05 2008-10-23 Ryoso:Kk 食品の加熱処理方法と装置
TWM331645U (en) * 2007-07-27 2008-05-01 Ying-Yu Shen The heater with the low resistance conducting thin membrane
JP5317284B2 (ja) * 2009-10-09 2013-10-16 トクデン株式会社 流体加熱装置
JP2011086443A (ja) * 2009-10-14 2011-04-28 Izumi Food Machinery Co Ltd 流動物の通電加熱装置
JP2012059371A (ja) * 2010-09-03 2012-03-22 Nitta Ind Corp 流体加熱用チューブ
CN106288343B (zh) * 2012-08-21 2019-06-07 特电株式会社 流体加热装置
KR20230143199A (ko) * 2018-07-03 2023-10-11 에프. 호프만-라 로슈 아게 타우 발현을 조절하기 위한 올리고뉴클레오티드

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291574A (ja) 2000-04-07 2001-10-19 Frontier Engineering:Kk 加熱装置
JP2006143563A (ja) * 2004-11-24 2006-06-08 Hoya Corp ガラス成形体、光学素子それぞれの製造方法、熔融ガラス流出装置およびガラス成形体の製造装置

Also Published As

Publication number Publication date
CN203618139U (zh) 2014-05-28
TWI618444B (zh) 2018-03-11
CN106288346A (zh) 2017-01-04
CN106288343A (zh) 2017-01-04
CN106288343B (zh) 2019-06-07
TWI643523B (zh) 2018-12-01
TW201731339A (zh) 2017-09-01
TW201731338A (zh) 2017-09-01
TWI639355B (zh) 2018-10-21
TW201412179A (zh) 2014-03-16
KR102082012B1 (ko) 2020-02-26
KR102162932B1 (ko) 2020-10-07
KR20200023334A (ko) 2020-03-04
KR20140024823A (ko) 2014-03-03
TW201731337A (zh) 2017-09-01
CN106332323B (zh) 2020-02-14
KR20200023335A (ko) 2020-03-04
CN106332323A (zh) 2017-01-11
CN106288346B (zh) 2019-09-27
TWI587733B (zh) 2017-06-11

Similar Documents

Publication Publication Date Title
KR102207023B1 (ko) 유체가열장치
CN107255362B (zh) 流体加热装置
EP2911277B1 (en) Separated coolant circulation structure for water-cooled power generator and cooling method thereof
JP2010071624A (ja) 流体加熱装置
CN210921360U (zh) 过热水蒸气生成装置
KR102016040B1 (ko) 전기 기계 부품 및 최소한 하나의 권선을 갖는 전기 기계
CN103634950B (zh) 流体加热装置
JP6224971B2 (ja) 流体加熱装置
JP5947048B2 (ja) 流体加熱装置
JP2016152064A (ja) 過熱水蒸気発生装置
US4587659A (en) Feed through structure for electrodes in electric furnaces
JP6162473B2 (ja) 流体加熱装置
CN205245118U (zh) 流体加热装置
JP2015083913A (ja) 流体加熱装置
US20170184323A1 (en) Super-high-efficiency induction hot water heater
JP2015017794A (ja) 流体加熱装置
ITTO980650A1 (it) Dispositivo di riscaldamento elettrico integrale per gas e liquidi dielettrici per usi industriali.
TW201339518A (zh) 流體加熱裝置
PL219249B1 (pl) Trójfazowy bifilarny tor wielkoprądowy do pieców elektrycznych, zwłaszcza łukowo-oporowych

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant