KR102140386B1 - 티타늄 및/또는 텅스텐을 갖는 윤활제 및 저속 조기-점화 개선을 위한 이의 용도 - Google Patents

티타늄 및/또는 텅스텐을 갖는 윤활제 및 저속 조기-점화 개선을 위한 이의 용도 Download PDF

Info

Publication number
KR102140386B1
KR102140386B1 KR1020187003417A KR20187003417A KR102140386B1 KR 102140386 B1 KR102140386 B1 KR 102140386B1 KR 1020187003417 A KR1020187003417 A KR 1020187003417A KR 20187003417 A KR20187003417 A KR 20187003417A KR 102140386 B1 KR102140386 B1 KR 102140386B1
Authority
KR
South Korea
Prior art keywords
ppm
composition
lubricating oil
lubricant composition
titanium
Prior art date
Application number
KR1020187003417A
Other languages
English (en)
Other versions
KR20180053295A (ko
Inventor
크리스틴 플래쳐
윌리엄 와이. 램
콩솅 양
제레미 스타이어
Original Assignee
에프톤 케미칼 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에프톤 케미칼 코포레이션 filed Critical 에프톤 케미칼 코포레이션
Publication of KR20180053295A publication Critical patent/KR20180053295A/ko
Application granted granted Critical
Publication of KR102140386B1 publication Critical patent/KR102140386B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/08Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium containing a sulfur-to-oxygen bond
    • C10M135/10Sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M163/00Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M127/00Lubricating compositions characterised by the additive being a non- macromolecular hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/48Carboxylic acids; Salts thereof having carboxyl groups bound to a carbon atom of a six-membered aromatic ring
    • C10M129/50Carboxylic acids; Salts thereof having carboxyl groups bound to a carbon atom of a six-membered aromatic ring monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M9/00Lubrication means having pertinent characteristics not provided for in, or of interest apart from, groups F01M1/00 - F01M7/00
    • F01M9/02Lubrication means having pertinent characteristics not provided for in, or of interest apart from, groups F01M1/00 - F01M7/00 having means for introducing additives to lubricant
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/141Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/08Groups 4 or 14
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/45Ash-less or low ash content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/52Base number [TBN]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

윤활유 조성물 및 배력 내부 연소 엔진 작동 방법. 윤활유 조성물은 다량의 기유, 중량 기준으로900 ppm 초과 내지 2400 ppm 미만의 칼슘을 윤활유 조성물을 제공하는225 mg KOH/gram 초과의 전체 염기 수를 가지는 하나 이상의 과염기성 칼슘-함유 세제, 및 윤활성 조성물 전체 중량 기준으로 10 ppm 내지 3000 ppm 티타늄을 제공하는 하나 이상의 티타늄-함유 화합물 및/또는 125 ppm 내지 3000 ppm 텅스텐을 제공하는 하나 이상의 텅스텐-함유 화합물의 저속 조기-점화 감소 성분들을 포함한다. 배력 내부 연소 엔진에서 저속 조기-점화 이벤트는 티타늄- 및/또는 텅스텐-함유 첨가제가 없는 동일 윤활유로 윤활되는 동일 엔진에서의 저속 조기-점화 이벤트 회수와 비교하여 감소될 수 있다.

Description

티타늄 및/또는 텅스텐을 갖는 윤활제 및 저속 조기-점화 개선을 위한 이의 용도
본 개시물은 하나 이상의 유용성 티타늄-함유 및/또는 텅스텐-함유 첨가제를 함유한 윤활제 조성물 및 저속 조기-점화 이벤트를 줄이기 위한 이러한 윤활유 조성물의 용도에 관한 것이다.
터보과급 또는 과급 엔진 (즉 배력 내부 연소 엔진)은 확률론적 조기-점화 또는 저속 조기-점화 (또는 “LSPI”)라고 알려진 비정상 연소 현상을 보일 수 있다. LSPI는 매우 높은 압력 상승, 부적합한 크랭크 각에서의 초기 연소, 및 노킹을 포함하는 조기-점화 이벤트 (event)이다. 이들 모두, 개별 및 조합에 의해, 잠재적으로 엔진에 대한 열화 및/또는 여러 손상이 유발될 수 있다. 그러나, LSPI 이벤트는 산발적이고 비조절적 방식으로만 발생되므로, 이러한 현상에 대한 원인 확인 및 이를 방지할 수 있는 해결책 제안이 어렵다.
조기-점화는 점화기에 의한 바람직한 공기-연료 혼합물 점화 전에 연소실에서의 공기-연료 혼합물의 점화로 인한 연소 형태이다. 조기-점화는 엔진 작동으로 인한 열이 공기-연료 혼합물을 점화시키기에 충분하게 연소실 일부를 가열할 수 있으므로 전형적으로 고속 엔진 작동 과정에서의 문제점이었다. 이러한 유형의 조기-점화는 때로 고온점 조기-점화라고 칭한다.
보다 최근에, 저속 및 중간-내지 높은 부하에서 간헐적인 비정상 연소가 배력 내부 연소 엔진에서 관찰되었다. 예를들면, 적어도 10 bar의 제동평균유효압력 (BMEP)의 부하를 받는 3,000 rpm 이하의 엔진 작동 중에, 저속 조기-점화 (LSPI)가 무작위 및 확률적 방식으로 발생할 수 있다. 저속 엔진 작동 과정에서, 압축 행정 시간은 가장 길다.
여러 공개적 연구는 과급기 사용, 엔진 설계, 엔진 코팅, 피스톤 형상, 연료 선택, 및/또는 엔진 오일 첨가제가 LSPI 이벤트 증가에 기여할 수 있다고 주장한다. 하나의 이론에 의하면 피스톤 간극 (피스톤 링 팩 및 실린더 라이너 사이 공간)으로부터 엔진 연소실로 들어간 엔진 오일 방울들의 자동-점화가 LSPI 이벤트의 하나의 원인일 수 있다고 제안한다.
따라서, 배력 내부 연소 엔진에서 LSPI를 줄이거나 없앨 수 있는 효과적인 엔진 오일 첨가제 성분들 및/또는 조합들에 대한 필요성이 존재한다.
본 개시물은 윤활유 조성물 및 배력 내부 연소 엔진 작동 방법에 관한 것이다. 윤활유 조성물은 50 wt.% 초과의 윤활 점도 기유 (base oil), 중량 기준으로 윤활유 조성물의 전체 중량에 대하여 900 ppm 초과 내지 2400 ppm 미만의 칼슘을 윤활유 조성물에 제공하기에 충분한 함량으로 ASTM D-2896 방법으로 측정될 때 225 mg KOH/g 초과의 전체 염기 수(total base number, TBN)를 가지는 하나 이상의 과염기성 칼슘-함유 세제, 및 중량 기준으로 윤활유 조성물의 전체 중량에 대하여 윤활유 조성물에 10 ppm 내지 3000 ppm의 티타늄을 제공하기에 충분한 함량의 하나 이상의 티타늄-함유 화합물 및/또는 중량 기준으로 윤활유 조성물에 윤활유 조성물의 전체 중량에 대하여 125 내지 3000 ppm의 텅스텐을 제공하기에 충분한 함량의 하나 이상의 텅스텐-함유 화합물을 포함하는 저속 조기-점화 감소 첨가제 조성물을 포함한다. 첨가제 조성물은, 하나 이상의 티타늄-함유 및/또는 하나 이상의 텅스텐-함유 화합물이 없는 동일한 윤활유 조성물로 윤활되는 동일한 엔진에서의 저속 조기-점화 이벤트 회수와 비교할 때, 윤활유 조성물로 윤활되는 배력 내부 연소 엔진에서 저속 조기-점화 이벤트를 줄이는데 효과적이다.
또 다른 구현예에서, 본 개시물은 배력 내부 연소 엔진에서 저속 조기 점화 이벤트를 감소시키는 방법을 제공한다. 본 방법은 배력 내부 연소 엔진을 윤활유 조성물로 윤활하는 단계를 포함하고, 조성물은 50 wt.% 초과의 윤활 점도 기유 (base oil), 중량 기준으로 윤활유 조성물의 전체 중량에 대하여 900 ppm 초과 내지 2400 ppm 미만의 칼슘을 윤활유 조성물에 제공하기에 충분한 함량으로 ASTM D-2896 방법으로 측정될 때 225 mg KOH/g 초과의 전체 염기 수(total base number, TBN)를 가지는 하나 이상의 과염기성 칼슘-함유 세제, 및 중량 기준으로 윤활유 조성물의 전체 중량에 대하여 윤활유 조성물에 10 ppm 내지 3000 ppm의 티타늄을 제공하기에 충분한 함량의 하나 이상의 티타늄-함유 화합물 및/또는 중량 기준으로 윤활유 조성물에 윤활유 조성물의 전체 중량에 대하여 125 내지 3000 ppm의 텅스텐을 제공하기에 충분한 함량의 하나 이상의 텅스텐-함유 화합물을 포함하는 저속 조기-점화 감소 첨가제 조성물을 포함한다. 본 방법은 윤활유 조성물로 윤활되는 배력 내부 연소 엔진에서 저속 조기-점화 이벤트를 감소시키는데 유효하다.
각각의 전기 구현예에서, 하나 이상의 과염기성 칼슘-함유 세제(들)는 과염기성 칼슘 술포네이트 세제, 과염기성 칼슘 페네이트 세제, 및 과염기성 칼슘 살리실레이트 세제에서 선택될 수 있다. 각각의 전기 구현예에서, 하나 이상의 과염기성 칼슘-함유 세제(들)는 중량 기준으로 윤활유 조성물의 전체 중량에 대하여 약 1100 내지 약 1800 ppm의 칼슘을 윤활유 조성물에 제공할 수 있다.
각각의 전기 구현예에서, 윤활유 조성물은 티타늄-함유 화합물을 함유할 수 있다. 각각의 전기 구현예에서, 하나 이상의 티타늄-함유 화합물(들)은 티타늄 이소프로폭시드 및 네오데칸산의 반응 생성물, 티타늄 이소프로폭시드, 티타늄-함유 분산제, 및 이의 혼합물을 포함할 수 있다.
각각의 전기 구현예에서, 하나 이상의 티타늄-함유 화합물(들)은 중량 기준으로 윤활성 조성물의 전체 중량에 대하여 약 25 ppm 내지 약 1000 ppm의 티타늄을 윤활유 조성물에 제공할 수 있는 함량으로 존재할 수 있다.
각각의 전기 구현예에서, 윤활유 조성물은 텅스텐-함유 화합물을 함유할 수 있다. 각각의 전기 구현예에서, 하나 이상의 텅스텐-함유 화합물(들)은 알킬 또는 아릴-치환된 암모늄 텅스테이트이고 상기 알킬 및 아릴기 각각은 6-30 개의 탄소 원자를 가진다.
각각의 전기 구현예에서, 하나 이상의 텅스텐-함유 화합물(들)은 중량 기준으로 윤활성 조성물의 전체 중량에 대하여 약 200 ppm 내지 약 1000 ppm의 텅스텐을 윤활유 조성물에 제공할 수 있는 함량으로 존재할 수 있다.
각각의 전기 구현예에서, 윤활유 조성물은 마찰 개질제, 항마모제, 분산제, 항산화제, 및 점도 지수 개선제에서 선택되는 하나 이상의 성분들을 포함할 수 있다. 각각의 전기 구현예에서, 윤활유 조성물은 약 1 wt.% 미만의 황산화 회분을 가질 수 있고, SASH는 0.8% 미만일 수 있다.
각각의 전기 구현예에서, LSPI 이벤트는 25,000회 엔진 사이클 동안의 LSPI 카운트이고, 엔진은 분당 2000 회전수 (RPM)로 작동되고, 제동평균유효압력 (BMEP)은18,000 kPA이다. 각각의 전기 구현예에서, 저속 조기-점화 감소 첨가제 조성물은 LSPI 이벤트 회수를 적어도 50% 또는 적어도 75%까지 감소시킬 수 있다.
각각의 전기 구현예에서, 50 wt.% 초과의 기유는 그룹 II, 그룹 III, 그룹 IV, 또는 그룹 V 기유들, 및 둘 이상의 전기 기유들의 조합에서 선택될 수 있고, 50 wt.% 초과의 기유는 조성물에서 첨가제 성분들 또는 점도 지수 개선제 제공으로 인한 희석 오일 (diluent oil) 외의 것이다.
각각의 전기 구현예에서, 윤활유 조성물은 10 wt.% 이하의 그룹 IV 기유, 그룹 V 기유, 또는 이들 조합을 포함할 수 있다. 각각의 전기 구현예에서, 윤활유 조성물은 5 wt.% 미만의 그룹 V 기유를 포함한다.
각각의 전기 구현예에서, 과염기성 칼슘-함유 세제는 과염기성 칼슘 술포네이트 세제일 수 있다.
각각의 전기 구현예에서, 과염기성 칼슘-함유 세제는 선택적으로 과염기성 칼슘 살리실레이트 세제들을 제외할 수 있다.
각각의 전기 구현예에서, 윤활유 조성물은 선택적으로 임의의 마그네슘-함유 세제들을 제외할 수 있거나 또는 윤활유 조성물에는 마그네슘이 부재일 수 있다.
각각의 전기 구현예에서, 윤활유 조성물은 임의의 그룹 IV 기유들을 함유하지 않을 수 있다.
각각의 전기 구현예에서, 윤활유 조성물은 임의의 그룹 V 기유들을 함유하지 않을 수 있다.
각각의 전기 구현예에서, 저염기성/중성 세제는 ASTM D-2896 방법으로 측정될 때 최대 175 mg KOH/g의 전체 염기 수를 가지는 저염기성/중성 칼슘-함유 세제를 더욱 포함한다. 저염기성/중성 세제는 전체 윤활유 조성물의 적어도 0.2 wt.%를 포함한다. 각각의 전기 구현예에서, 윤활유 조성물 중 전체 세제 범위는 윤활유 조성물의 전체 중량 기준으로 약 0.6 wt.% 내지 약 10 wt.%이다. 각각의 전기 구현예에서, 과염기성 칼슘-함유 세제 및 저염기성/중성 세제로부터의 칼슘 전체 함량 범위는 중량 기준으로 윤활유 조성물의 전체 중량에 대하여 1100 ppm 내지 2400 ppm 미만이다. 각각의 전기 구현예에서, 저염기성/중성 세제는 칼슘 술포네이트 세제일 수 있다.
하기 용어의 정의가 본원에 사용된 바와 같은 특정 용어의 의미를 명확하게 하기 위해 제공된다.
용어 “오일 조성물,” “윤활 조성물,” “윤활유 조성물,” “윤활유,” “윤활제 조성물,” “윤활성 조성물,” “완전 제형화 윤활제 조성물,” “윤활제,” “크랭크케이스 (crankcase) 오일,” “크랭크케이스 윤활제,” “엔진 오일,” “엔진 윤활제,” “모터 오일,” 및 “모터 윤활제”는 50 wt.% 초과의 기유와 소량의 첨가제 조성물을 포함하는 완성된 윤활 제품을 칭하는 동의어이고 완전 호환가능한 용어인 것으로 간주된다.
본원에서 사용되는 바와 같이, 용어 “첨가제 패키지,” “첨가제 농축물,” “첨가제 조성물,” “엔진 오일 첨가제 패키지,” “엔진 오일 첨가제 농축물,” “크랭크케이스 첨가제 패키지,” “크랭크케이스 첨가제 농축물,” “모터 오일 첨가제 패키지,” “모터 오일 농축물”은 50 wt.% 초과의 기유 스톡 혼합물을 배제한 윤활유 조성물의 일부를 칭하는 동의어이고 완전 호환가능한 용어인 것으로 간주된다. 첨가제 패키지는 점도 지수 개선제 또는 유동점 강하제를 포함하거나 하지 않을 수 있다.
용어 “과염기성”은 금속 염, 예컨대 술포네이트, 카르복실레이트, 살리실레이트, 및/또는 페네이트의 금속 염에 관한 것이고, 여기서 존재하는 금속의 양은 화학량론적 양을 초과한다. 상기 염은 100% 의 과량의 전환 수준을 가질 수 있다 (즉, 이는 산을 이의 "정상", "중성" 염으로 전환하는데 필요한 금속의 이론적 양의 100% 초과를 포함할 수 있음). 흔히 MR 로 약술되는 표현 "금속 비율" 은 공지된 화학 반응성 및 화학량론에 따라 중성 염 중 금속의 화학적 당량에 대한 과염기성 염 중 금속의 전체 화학적 당량의 비율을 지정하는데 사용된다. 정상 또는 중성 염에서, 금속 비율은 1 이고, 과염기성 염에서 MR 은 1 초과이다. 이는 과염기성, 하이퍼염기성 또는 초염기성 염으로 통상 나타내어지고 유기 황산, 카르복실산, 살리실레이트, 및/또는 페놀의 염일 수 있다. 본 개시물에서, 과염기성 세제의 TBN은 225 mg KOH/g 초과이다. 과염기성 세제는 둘 이상의 과염기성 세제들의 조합일 수 있고 각각의 TBN은 225 mg KOH/g 초과이다.
본 개시물에서, 저염기성/중성 세제의 TBN은 최대 175 mg KOH/g이다. 저염기성/중성 세제는 둘 이상의 저염기성 및/또는 중성 세제들의 조합일 수 있고 각각의 TBN은 최대 175 mg KOH/g이다. 일부 예시들에서, “과염기성”은 “OB”로 약술되고 일부 예시들에서, “저염기성/중성”은 “LB/N”으로 약술된다.
용어 “전체 금속”이란 윤활유 조성물의 세제 성분(들)에 의해 기여되는 금속을 포함하여 윤활유 조성물의 전체 금속, 반금속 또는 전이금속을 칭하는 것이다.
본원에 사용된 바와 같은, 용어 "히드로카르빌 치환기" 또는 "히드로카르빌기" 는 당업자에 익히 알려져 있는, 그 일반 의미로 사용된다. 구체적으로는, 이는 분자의 나머지에 직접 부착된 탄소 원자를 갖고 대개 탄화수소 특성을 갖는 기로 칭한다. 히드로카르빌기의 예는 하기를 포함한다:
(a) 탄화수소 치환기, 즉 지방족 (예를들면, 알킬 또는 알케닐), 지환족 (예를들면, 시클로알킬, 시클로알케닐) 치환기, 및 방향족-, 지방족-, 및 지환족-치환된 방향족 치환기, 뿐만 아니라 고리가 분자의 또다른 부분을 통해 완성되는 시클릭 치환기 (예를들면, 2 개의 치환기는 함께 지환족 부분을 형성함);
(b) 치환된 탄화수소 치환기, 즉 본 개시물의 맥락상 대부분의 탄화수소 치환기를 변경하지 않는 비탄화수소기 (예를들면, 할로 (특히, 클로로 및 플루오로), 히드록시, 알콕시, 메르캅토, 알킬메르캅토, 니트로, 니트로소, 아미노, 알킬아미노, 및 술폭시) 를 함유하는 치환기; 및
(c) 헤테로 치환기, 즉 본 개시물의 맥락상 대개 탄화수소 특성을 가지지만 다른 곳에서 탄소 원자로 구성된 고리 또는 사슬 중에 탄소 이외의 것을 함유하는 치환기. 헤테로원자는 황, 산소, 및 질소를 포함할 수 있고, 피리딜, 푸릴, 티에닐, 및 이미다졸릴과 같은 치환기를 포함할 수 있다. 일반적으로, 2 개 이하, 예를 들어 하나 이하의 비탄화수소 치환기는 히드로카르빌기에서 10 개의 탄소 원자마다 존재할 것이고; 전형적으로 히드로카르빌기에서 비탄화수소 치환기는 존재하지 않을 것이다.
본원에 사용된 바와 같은, 용어 "중량%" 는 달리 명백히 언급되지 않는 한 인용된 성분이 전체 조성물의 중량에 대해서 나타내는 백분율을 의미한다.
본원에 사용되는 용어 "가용성", "유용성", 또는 "분산성" 은 필수적인 것은 아니지만 화합물 또는 첨가제가 모든 비율로 오일 중에 가용성, 용해성, 혼화성, 또는 현탁성이 있는 것을 나타낼 수 있다. 그러나, 상기 용어는 예를 들어 오일이 활용되는 환경에서 그 의도되는 효과를 발휘하기에 충분한 정도로 오일 중에 가용성, 현탁성, 용해성, 또는 안정하게 분산성인 것을 의미한다. 게다가, 기타 첨가제의 추가 혼입은 또한 요망된다면 보다 높은 수준의 특정 첨가제의 혼입을 허용할 수 있다.
본원에서 활용된 바와 같은 용어 "TBN"은 ASTM D2896의 방법에 의해 측정된 바와 같이 KOH/g 조성물로서 전체 염기수를 나타내는데 사용된다.
본원에 활용된 바와 같은 용어 "알킬" 은 약 1 내지 약 100 개의 탄소 원자의 직선형, 분지형, 시클릭, 및/또는 치환된 포화 사슬 부분으로 칭한다.
본원에 활용된 바와 같은 용어 "알케닐" 은 약 3 내지 약 10 개의 탄소 원자의 직선형, 분지형, 시클릭, 및/또는 치환된 불포화 사슬 부분으로 칭한다.
본원에 활용된 바와 같은 용어 "아릴" 은 알킬, 알케닐, 알킬아릴, 아미노, 히드록실, 알콕시, 할로 치환기, 및/또는 질소, 산소, 및 황을 포함하지만 이에 제한되지 않는 헤테로원자를 포함할 수 있는 단일 및 다중-고리 방향족 화합물로 칭한다.
본 설명의 윤활제, 성분들의 조합, 또는 별개 성분은 각종 유형의 내부 연소 엔진에서 사용하기에 적합할 수 있다. 적합한 엔진 유형은 중량급 디젤, 승용차, 경량급 디젤, 중속 디젤, 또는 선박용 엔진을 포함할 수 있지만, 이에 제한되지 않는다. 내부 연소 엔진은 디젤 연료화 엔진, 가솔린 연료화 엔진, 천연 가스 연료화 엔진, 바이오-연료화 엔진, 혼합된 디젤/바이오연료 연료화 엔진, 혼합된 가솔린/바이오연료 연료화 엔진, 알코올 연료화 엔진, 혼합된 가솔린/알코올 연료화 엔진, 압축 천연 가스 (CNG) 연료화 엔진, 또는 그 혼합일 수 있다. 디젤 엔진은 압축 점화 엔진일 수 있다. 디젤 엔진은 불꽃-점화 보조가 있는 압축 점화 엔진일 수 있다. 가솔린 엔진은 불꽃-점화 엔진일 수 있다. 내부 연소 엔진은 또한 전기 또는 배터리 전력 공급원과의 조합으로 사용될 수 있다. 이렇게 구성된 엔진은 하이브리드 엔진으로 통상 알려져 있다. 내부 연소 엔진은 2-행정, 4-행정, 또는 회전 엔진일 수 있다. 적합한 내부 연소 엔진은 선박용 디젤 엔진 (예컨대 내항), 항공용 피스톤 엔진, 저하중 디젤 엔진, 및 모터사이클, 자동차, 기관차, 및 트럭 엔진을 포함한다.
내부 연소 엔진은 알루미늄-합금, 납, 주석, 구리, 주철, 마그네슘, 세라믹, 스테인리스 강, 복합물, 및/또는 그 혼합물 중 하나 이상의 성분을 함유할 수 있다. 성분은, 예를 들어 다이아몬드-유사 탄소 코팅, 윤활 코팅, 인-함유 코팅, 몰리브데늄-함유 코팅, 그래파이트 코팅, 나노-입자-함유 코팅, 및/또는 그 혼합물로 코팅될 수 있다. 알루미늄-합금은 알루미늄 실리케이트, 알루미늄 산화물, 또는 기타 세라믹 재료를 포함할 수 있다. 하나의 구현예에서, 알루미늄-합금은 알루미늄-실리케이트 표면이다. 본원에 사용된 바와 같은, 용어 "알루미늄 합금" 은 "알루미늄 복합물" 과 동의어이고, 그 상세 구조와 관계없이 알루미늄, 및 현미경 또는 거의 현미경 수준에서 섞이거나 또는 반응되는 또다른 성분을 포함하는 표면 또는 성분을 기재하는 것으로 의도된다. 이는 알루미늄 이외의 금속과의 임의의 통상의 합금, 뿐만 아니라 세라믹-유사 재료와 같은 비금속 원소 또는 화합물과의 복합물 또는 합금-유사 구조를 포함할 것이다.
내부 연소 엔진용 윤활제 조성물은 황, 인, 또는 황산화 회분 (ASTM D-874) 함량과 관계 없이 임의의 엔진 윤활제에 적합할 수 있다. 엔진 오일 윤활제의 황 함량은 약 1 wt% 이하, 또는 약 0.8 wt% 이하, 또는 약 0.5 wt% 이하, 또는 약 0.3 wt% 이하일 수 있다. 하나의 구현예에서, 황 함량은 약 0.001 wt% 내지 약 0.5 wt%, 또는 약 0.01 wt% 내지 약 0.3 wt% 범위일 수 있다. 인 함량은 약 0.2 wt% 이하, 또는 약 0.1 wt% 이하, 또는 약 0.085 wt% 이하, 또는 약 0.08 wt% 이하, 또는 심지어는 약 0.06 wt% 이하, 약 0.055 wt% 이하, 또는 약 0.05 wt% 이하일 수 있다. 하나의 구현예에서, 인 함량은 약 50 ppm 내지 약 1000 ppm, 또는 약 325 ppm 내지 약 850 ppm 일 수 있다. 전체 황산화 회분 함량은 약 2 wt% 이하, 또는 약 1.5 wt% 이하, 또는 약 1.1 wt% 이하, 또는 약 1 wt% 이하, 또는 약 0.8 wt% 이하, 또는 약 0.5 wt.% 이하일 수 있다. 하나의 구현예에서, 황산화 회분 함량은 약 0.05 wt% 내지 약 0.9 wt%, 또는 약 0.1 wt% 또는 약 0.2 wt% 내지 약 0.45 wt% 일 수 있다. 또다른 구현예에서, 황 함량은 약 0.4 wt% 이하일 수 있고, 인 함량은 약 0.08 wt% 이하일 수 있고, 황산화 회분은 약 1 wt% 이하이다. 또다른 구현예에서, 황 함량은 약 0.3 wt% 이하일 수 있고, 인 함량은 약 0.05 wt% 이하이고, 황산화 회분은 약 0.8 wt% 이하일 수 있다.
하나의 구현예에서, 윤활 조성물은 엔진 오일로서, 이때 윤활 조성물은 (i) 약 0.5 wt% 이하의 황 함량, (ii) 약 0.1 wt% 이하의 인 함량, 및 (iii) 약 1.5 wt% 이하의 황산화 회분 함량을 가질 수 있다.
일부 구현예들에서, 윤활유 조성물은 저황 연료, 예컨대 약 1 내지 약 5% 황 함유 연료 엔진에서 사용되기에 적합하다. 고속도로 차량 연료는 약 15 ppm 황 (또는 약 0.0015% 황)을 함유한다. 윤활유 조성물은 터보과급 또는 과급 내부 연소 엔진을 포함한 배력 내부 연소 엔진에 사용하기에 적합하다.
추가로, 본 설명의 윤활제는 하나 이상의 산업적 사양 요건, 예컨대 ILSAC GF-3, GF-4, GF-5, GF-6, PC-11, CI-4, CJ-4, ACEA A1/B1, A2/B2, A3/B3, A3/B4, A5/B5, C1, C2, C3, C4, C5, E4/E6/E7/E9, Euro 5/6,Jaso DL-1, Low SAPS, Mid SAPS, 또는 원래의 기기 제조업체 사양, 예컨대 DexosTM 1, DexosTM 2, MB-Approval 229.51/229.31, VW 502.00, 503.00/503.01, 504.00, 505.00, 506.00/506.01, 507.00, 508.00, 509.00, BMW Longlife-04, Porsche C30, Peugeot Citroen Automobiles B71 2290, B71 2296, B71 2297, B71 2300, B71 2302, B71 2312, B71 2007, B71 2008, Ford WSS-M2C153-H, WSS-M2C930-A, WSS-M2C945-A, WSS-M2C913A, WSS-M2C913-B, WSS-M2C913-C, GM 6094-M, Chrysler MS-6395, 또는 본원에 언급되지는 않은 임의의 과거 또는 미래의 PCMO 또는 HDD 사양에 부합되는 것이 적합할 수 있다. 승용차 모터 오일 (PCMO) 적용을 위한 일부 구현예에서, 완성된 유체 중 인의 양은 1000 ppm 이하, 또는 900 ppm 이하, 또는 800 ppm 이하이다.
기타 하드웨어는 개시된 윤활제와 함께 사용하기에 적합하지 않을 수 있다. "기능성 유체" 는 트랙터 유압 유체, 동력 변속 유체, 예컨대 자동 변속 유체, 연속 가변형 변속 유체 및 수동 변속 유체, 유압 유체, 예컨대 트랙터 유압 유체, 일부 기어 오일, 동력 조향 유체, 풍력 터빈, 압축기에 사용되는 유체, 일부 산업용 유체, 및 파워 트레인 구성품 관련 유체를 포함하지만 이에 제한되지 않는 다양한 유체를 포함하는 용어이다. 예를들면, 자동 변속 유체와 같은 이들 유체 각각 내에서, 현저하게 상이한 작동 특성의 유체에 대한 필요성을 유도했하는 상이한 디자인을 갖는 각종 트랜스미션 으로 인해 다양하고 상이한 유형의 유체가 존재한다는 것에 주목되어야 한다. 이는 동력의 발생 또는 이동에 사용되지 않는 용어 "윤활 유체" 와 대조적이다.
트랙터 유압 유체와 관련해, 예를들면 이들 유체는 엔진을 윤활시키는 것을 제외하고 트랙터에서 모든 윤활제 적용에 사용되는 다목적 제품이다. 이들 윤활 적용은 기어박스, 동력 테이크-오프(take-off) 및 클러치(들), 뒤차축, 감속 기어, 습식 브레이크, 및 유압 부속품의 윤활을 포함할 수 있다.
기능성 유체가 자동 변속기 유체일 때, 자동 변속기 유체는 클러치 판이 동력을 전달하는데 충분한 마찰을 가져야 한다. 그러나, 작동 동안 유체가 가열되는 온도 효과로 인해 유체의 마찰 계수는 하락하는 경향을 갖는다. 트랙터 유압 유체 또는 자동 변속기 유체가 상승된 온도에서 그것의 높은 마찰 계수를 유지하는 것이 중요하며, 그렇지 않은 경우 브레이크 시스템 또는 자동 변속기가 실패할 수 있다. 이는 엔진 오일의 기능이 아니다.
트랙터 유체, 및 예를들면 슈퍼 트랙터 범용 오일 (Super Tractor Universal Oil) (STUO) 또는 범용 트랙터 변속기 오일 (Universal Tractor Transmission Oil) (UTTO) 은 엔진 오일의 성능을 변속기, 차동장치, 최종 구동장치 유성 기어 (final-drive planetary gear), 습식 브레이크 (wet-brake), 및 유압 성능과 조합할 수 있다. UTTO 또는 STUO 유체를 제형화하는데 사용되는 많은 첨가제가 기능에서 유사하지만, 그들은 적절히 혼입되지 않는 경우에 유해 효과를 가질 수 있다. 예를들면, 엔진 오일에서 사용되는 일부 마모방지 및 극압 첨가제는 유압 펌프의 구리 부품에 극도로 부식성일 수 있다. 가솔린 또는 디젤 엔진 성능을 위해 사용되는 세제 및 분산제는 습식 브레이크 성능에 유해할 수 있다. 조용한 습식 브레이크 소리에 특수한 마찰 개질제는 엔진 오일 성능에 요구되는 열 안정성을 결여할 수 있다. 이들 유체는 각각, 기능성, 트랙터, 또는 윤활성 모두, 특수한 엄격한 제조사 요건을 만족시키도록 디자인된다.
본 개시물은 자동차 크랭크케이스 윤활제로서 사용하기 위해 특별히 제형화된 신규의 윤활유 블렌드를 제공한다. 본 개시물의 구현예는 크랭크케이스 적용에 적합하고 하기 특성에 있어서 개선을 갖는 윤활유를 제공할 수 있다: 공기 유입, 알코올 연료 양립성, 항산화성, 항마모 성능, 바이오연료 양립성, 발포 감소 특성, 마찰 감소, 연료 경제성, 조기점화 방지, 녹 저해, 슬러지 및/또는 그을음 분산성, 피스톤 청결성, 침착 형성 및 내수성.
본 개시물의 추가의 세부사항 및 이점이 하기와 같은 설명에서 부분 나열될 것이고/거나 본 개시물의 시행에 의해 학습될 수 있다. 본 개시물의 세부사항 및 이점은 첨부된 청구항들에서 특히 지적되는 요소 및 조합에 의해 실현 및 달성될 수 있다. 청구된 바와 같이, 상기 일반 설명 및 하기 상세한 설명 둘 모두가 단지 예시적이고 설명적인 것이고 본 개시물을 제한하고자 하는 것은 아닌 것으로 여겨져야 한다.
상세한 설명
본 개시물의 다양한 구현예들은 배력 (boosted) 내부 연소 엔진에서 저속 조기-점화 이벤트 (LSPI)를 감소시키기 위한 윤활유 조성물 및 방법을 제공한다. 특히, 본 개시물의 배력 내부 연소 엔진은 터보과급 및 과급 내부 연소 엔진을 포함한다. 배력 내부 연소 엔진은 불꽃-점화, 직접 분사 및/또는 포트-연료 분사 엔진을 포함한다. 불꽃-점화 내부 연소 엔진은 가솔린 엔진일 수 있다.
하나의 구현예에서, 개시물은 윤활유 조성물 및 배력 내부 연소 엔진 작동 방법을 제공한다. 윤활유 조성물은 50 wt.% 초과의 윤활 점도 기유, 중량 기준으로 윤활유 조성물의 전체 중량에 대하여 900 ppm 초과 내지 2400 ppm 미만의 칼슘을 윤활유 조성물에 제공하기에 충분한 함량으로 225 mg KOH/g 초과의 전체 염기 수를 가지는 하나 이상의 칼슘-함유 과염기성 세제(들), 및 중량 기준으로 윤활유 조성물의 전체 중량에 대하여 윤활유 조성물에 10 ppm 내지 3000 ppm의 티타늄을 제공하기에 충분한 함량의 하나 이상의 티타늄-함유 화합물 및/또는 중량 기준으로 윤활유 조성물에 윤활유 조성물의 전체 중량에 대하여 125 내지 3000 ppm의 텅스텐을 제공하기에 충분한 함량의 하나 이상의 텅스텐-함유 화합물을 포함하는 저속 조기-점화 감소 첨가제 조성물을 포함한다. 첨가제 조성물 및 방법은, 하나 이상의 티타늄-함유 및/또는 하나 이상의 텅스텐-함유 화합물이 없는 동일한 윤활유 조성물로 윤활되는 동일한 엔진에서의 저속 조기-점화 이벤트 회수와 비교할 때, 윤활유 조성물로 윤활되는 배력 내부 연소 엔진에서 저속 조기-점화 이벤트를 줄이는데 유효하다.
또 다른 구현예에서, 본 개시물은 배력 내부 연소 엔진에서 저속 조기 점화 이벤트를 감소시키는 방법을 제공한다. 본 방법은 배력 내부 연소 엔진을 윤활유 조성물로 윤활하는 단계를 포함하고, 조성물은 50 wt.% 초과의 윤활 점도 기유 (base oil), 중량 기준으로 윤활유 조성물의 전체 중량에 대하여 900 ppm 초과 내지 2400 ppm 미만의 칼슘을 윤활유 조성물에 제공하기에 충분한 함량으로 ASTM D-2896 방법으로 측정될 때 225 mg KOH/g 초과의 전체 염기 수를 가지는 하나 이상의 과염기성 칼슘-함유 세제, 및 중량 기준으로 윤활유 조성물의 전체 중량에 대하여 윤활유 조성물에 10 ppm 내지 3000 ppm의 티타늄을 제공하기에 충분한 함량의 하나 이상의 티타늄-함유 화합물 및/또는 중량 기준으로 윤활유 조성물에 윤활유 조성물의 전체 중량에 대하여 125 내지 3000 ppm의 텅스텐을 제공하기에 충분한 함량의 하나 이상의 텅스텐-함유 화합물을 포함하는 저속 조기-점화 감소 첨가제 조성물을 포함한다. 본 방법은 윤활유 조성물로 윤활되는 배력 내부 연소 엔진에서 저속 조기-점화 이벤트를 감소시키는데 효과적이다.
일부 구현예들에서, 터보 과급기 (turbocharger) 또는 과급기 (supercharger)가 제공되는 불꽃-점화 직접 분사 엔진 또는 포트 연료 분사식 내부 연소 엔진의 연소실 또는 실린더 벽이 윤활유 조성물로 작동되고 윤활됨으로써 윤활유 조성물로 윤활되는 엔진에서 저속 조기-점화 이벤트가 감소될 수 있다.
선택적으로, 본 발명의 방법은 윤활유로 윤활되는 내부 연소 엔진의 저속 조기-점화 이벤트를 측정하느 단계를 포함할 수 있다. 이러한 방법에서, 내부 연소 엔진의 LSPI 이벤트 감소는 50% 이상 감소, 또는, 더욱 바람직하게는, 75% 이상 감소이고 LSPI 이벤트는 25,000회 엔진 사이클에서의 LSPI 카운트로서, 엔진은 제동평균유효압력 18,000 kPa에서 분당2000 회전수로 작동된다.
본 발명의 조성물은 윤활 점도의 기유 및 특정 첨가제 조성물을 함유하는 윤활유 조성물을 포함한다. 본 개시물의 방법은 첨가제 조성물을 함유하는 윤활유 조성물을 이용하는 것이다. 이하 더욱 상세히 기재되는 바와 같이, 놀랍게도 윤활유 조성물은 윤활유 조성물로 윤활되는 배력 내부 연소 엔진에서 저속 조기-점화 이벤트 감소에 이용되기에 효과적이다.
세제들
윤활유 조성물은 하나 이상의 과염기성 세제들 단독, 또는 하나 이상의 저염기성/중성 세제들과의 조합을 포함한다. 적합한 세제 기재는 페네이트, 황 함유 페네이트, 술포네이트, 칼릭사레이트, 살릭사레이트, 살리실레이트, 카르복실산, 아인산, 모노- 및/또는 디-티오인산, 알킬 페놀, 황 커플링된 알킬 페놀 화합물, 또는 메틸렌 가교된 페놀을 포함한다. 적합한 세제 및 이들의 제조 방법은 미국 특허 번호 7,732,390 및 이에 언급된 참조문헌을 포함하여 많은 특허 공개문헌에 더욱 상세히 기재되어 있다. 세제 기재는 알칼리 또는 알칼리 토금속 예컨대, 그에 제한되는 것은 아니나, 칼슘, 마그네슘, 칼륨, 나트륨, 리튬, 바륨, 또는 그들 혼합물로 염화될 수 있다. 일부 구현예에서, 세제는 바륨을 함유하지 않는다. 적합한 세제는 석유 술폰산 및 벤질, 톨릴, 및 자일릴인 아릴 기를 갖는 장쇄 모노- 또는 디-알킬아릴술폰산의 알칼리 또는 알칼리 토금속 염을 포함할 수 있다. 적합한 추가 세제들의 예시로는, 제한되지는 않지만, 칼슘 페네이트, 칼슘 황 함유 페네이트, 칼슘 술포네이트, 칼슘 칼릭사레이트, 칼슘 살릭사레이트, 칼슘 살리실레이트, 칼슘 카르복실산, 칼슘 아인산, 칼슘 모노- 및/또는 디-티오인산, 칼슘 알킬 페놀, 칼슘 황 커플링된 알킬 페놀 화합물, 칼슘 메틸렌 가교된 페놀, 마그네슘 페네이트, 마그네슘 황 함유 페네이트, 마그네슘 술포네이트, 마그네슘 칼릭사레이트, 마그네슘 살릭사레이트, 마그네슘 살리실레이트, 마그네슘 카르복실산, 마그네슘 아인산, 마그네슘 모노- 및/또는 디-티오인산, 마그네슘 알킬 페놀, 마그네슘 황 커플링된 알킬 페놀 화합물, 마그네슘 메틸렌 가교된 페놀, 나트륨 페네이트, 나트륨 황 함유 페네이트, 나트륨 술포네이트, 나트륨 칼릭사레이트, 나트륨 살릭사레이트, 나트륨 살리실레이트, 나트륨 카르복실산, 나트륨 아인산, 나트륨 모노- 및/또는 디-티오인산, 나트륨 알킬 페놀, 나트륨 황 커플링된 알킬 페놀 화합물, 또는 나트륨 메틸렌 가교된 페놀을 포함한다.
과염기성 세제들은 당업계에 잘 알려져 있고 알칼리 금속 또는 알칼리 토금속 과염기성 세제일 수 있다. 이러한 세제들은 금속 산화물 또는 금속 수산화물을 기재 및 이산화탄소 기체와 반응시켜 제조할 수 있다. 기재는 전형적으로 산, 예를들면, 산 예컨대 지방족 치환된 술폰산, 지방족 치환된 카르복실산, 또는 지방족 치환된 페놀일 수 있다.
용어 “과염기성”은 금속 염, 예컨대 술포네이트, 카르복실레이트, 및 페네이트의 금속 염에 관한 것이고, 여기서 존재하는 금속의 양은 화학량론적 양을 초과한다. 이러한 염은 100% 의 과량의 전환 수준을 가질 수 있다 (즉, 이는 산을 이의 "정상", "중성" 염으로 전환하는데 필요한 금속의 이론적 양의 100% 초과를 포함할 수 있음). 흔히 MR 로 약술되는 표현 "금속 비율" 은 공지된 화학 반응성 및 화학량론에 따라 중성 염 중 금속의 화학적 당량에 대한 과염기성 염 중 금속의 전체 화학적 당량의 비율을 지정하는데 사용된다. 정상 또는 중성 염에서, 금속 비율은 1 이고, 과염기성 염에서 MR 은 1을 초과한다. 이는 과염기성, 하이퍼염기성 또는 초염기성 염으로 통상 나타내어지고 유기 황산, 카르복실산, 또는 페놀의 염일 수 있다.
과염기성 세제는 225 mg KOH/gram보다 큰 TBN, 또는 추가적인 예시들로서, 약 250 mg KOH/gram 이상의 TBN, 또는 약 300 mg KOH/gram 이상, 또는 약 350 mg KOH/gram 이상의 TBN, 또는 약 375 mg KOH/gram 이상의 TBN, 또는 약 400 mg KOH/gram 이상의 TBN을 가진다.
적합한 과염기성 세제들의 예시로는, 제한되지는 않지만, 과염기성 칼슘 페네이트, 과염기성 칼슘 황 함유 페네이트, 과염기성 칼슘 술포네이트, 과염기성 칼슘 칼릭사레이트, 과염기성 칼슘 살릭사레이트, 과염기성 칼슘 살리실레이트, 과염기성 칼슘 카르복실산, 과염기성 칼슘 아인산, 과염기성 칼슘 모노- 및/또는 디-티오인산, 과염기성 칼슘 알킬 페놀, 과염기성 칼슘 황 커플링된 알킬 페놀 화합물, 과염기성 칼슘 메틸렌 가교된 페놀, 과염기성 마그네슘 페네이트, 과염기성 마그네슘 황 함유 페네이트, 과염기성 마그네슘 술포네이트, 과염기성 마그네슘 칼릭사레이트, 과염기성 마그네슘 살릭사레이트, 과염기성 마그네슘 살리실레이트, 과염기성 마그네슘 카르복실산, 과염기성 마그네슘 아인산, 과염기성 마그네슘 모노- 및/또는 디-티오인산, 과염기성 마그네슘 알킬 페놀, 과염기성 마그네슘 황 커플링된 알킬 페놀 화합물, 또는 과염기성 마그네슘 메틸렌 가교된 페놀을 포함한다.
과염기성 세제는 금속 대 기재 비율은 1.1:1부터, 또는 2:1부터, 또는 4:1부터, 또는 5:1부터, 또는 7:1부터, 또는 10:1부터이다.
세제는 윤활유 조성물의 전체 중량 기준으로 최대 10 wt%, 또는 약 최대 8 wt%, 또는 최대 약 4 wt%, 또는 약 2 wt% 초과 내지 약 8 wt% 또는 4 wt% 내지 8 wt%로 존재할 수 있다.
세제는 완성된 유체에 약 1100 내지 약 3500 ppm의 금속을 제공할 함량으로 존재한다. 기타 구현예들에서, 세제는 완성된 유체에 약 1100 내지 약 3000 ppm의 금속, 또는 약 1150 내지 약 2500 ppm의 금속, 또는 약 1200 내지 약 2400 ppm의 금속을 제공할 수 있다.
본 개시물의 윤활유 조성물 및 방법에 적용되는 첨가제 조성물은 225 mg KOH/gram을 초과하는 TBN을 가지는 적어도 하나의 과염기성 세제 단독, 또는 최대 175 mg KOH/gram의 TBN을 가지는 적어도 하나의 중성/저염기성 세제와의 조합를 포함한다. 첨가제 조성물을 포함하는 본 개시물의 윤활유 조성물에서 적어도 하나의 과염기성 세제 단독, 또는 적어도 하나의 저염기성/중성 세제로부터의 전체 칼슘 함량 범위는 중량 기준으로 윤활유 조성물의 전체 중량에 대하여 900 ppm을 초과하고 2400 ppm 미만이다.
과염기성 세제는 과염기성 칼슘-함유 세제일 수 있다. 과염기성 칼슘-함유 세제는 과염기성 칼슘 술포네이트 세제, 과염기성 칼슘 페네이트 세제, 및 과염기성 칼슘 살리실레이트 세제에서 선택될 수 있다. 소정의 구현예들에서, 과염기성 칼슘-함유 세제는 과염기성 칼슘 술포네이트 세제를 포함한다. 소정의 구현예들에서, 과염기성 세제는 하나 이상의 칼슘-함유 세제들이다, 바람직하게는 과염기성 세제는 칼슘 술포네이트 세제이다.
소정의 구현예들에서, 과염기성 세제는 윤활유 조성물의 적어도 0.3 wt.%로 구성된다. 일부 구현예들에서, 윤활유 조성물 중 적어도 0.5 wt.%, 또는 적어도 0.75 wt.%, 또는 적어도 0.9 wt.%, 또는 적어도 1.0 wt.% 또는 적어도 1.2 wt.% 또는 적어도 2.0 wt.%는 과염기성 세제이다.
소정의 구현예들에서, 과염기성 칼슘-함유 세제는 약 900 내지 약 2400 ppm의 칼슘을 완성된 유체에 제공한다. 추가적인 예시로서, 하나 이상의 과염기성 칼슘-함유 세제들은 약 900 내지 약 2400 ppm의 칼슘, 또는 약 900 내지 약 1800 ppm의 칼슘, 또는 약 1100 내지 1600 ppm의 칼슘, 또는 약 1200 내지 1500 ppm의 칼슘을 완성된 유체에 제공할 수 있는 함량으로 존재한다.
잠재적 저염기성/중성 세제는 최대 175 mg KOH/g, 또는 최대 150 mg KOH/g의 TBN을 가진다. 저염기성/중성 세제는 칼슘-함유 세제를 포함한다. 저염기성 중성 칼슘-함유 세제는 칼슘 술포네이트 세제, 칼슘 페네이트 세제 및 칼슘 살리실레이트 세제에서 선택될 수 있다. 일부 구현예들에서, 저염기성/중성 세제는 칼슘-함유 세제 또는 칼슘-함유 세제들의 혼합물이다. 일부 구현예들에서, 저염기성/중성 세제는 칼슘 술포네이트 세제 또는 칼슘 페네이트 세제이다.
저염기성/중성 세제는 윤활유 조성물에서 적어도 0.2 wt.%로 포함된다. 일부 구현예들에서, 윤활유 조성물에서 적어도 0.5 wt.%, 또는 적어도 0.75 wt.%, 또는 적어도 0.9 wt.%, 또는 적어도 1.0 wt.% 또는 적어도 1.2 wt.% 또는 적어도 2.0 wt.%는 저염기성/중성 세제이고 선택적으로 저염기성/중성 칼슘-함유 세제일 수 있다.
소정의 구현예들에서, 저염기성/중성 칼슘-함유 세제는 윤활유 조성물의 전체 중량에 대하여 중량 기준으로 약 50 내지 약 1000 ppm의 칼슘을 윤활유 조성물에 제공한다. 일부 구현예들에서, 저염기성/중성 칼슘-함유 세제는 윤활유 조성물의 전체 중량에 대하여 중량 기준으로 75 내지 800 ppm 미만의, 또는 100 내지 600 ppm, 또는 125 내지 500 ppm의 칼슘을 윤활유 조성물에 제공한다.
일부 구현예들에서, 윤활유 조성물은 4.5 초과 내지 약 10.0의 윤활유 조성물 TBN에 대한 전체 밀리몰 금속 (M)의 비율 범위를 가진다. 일부 구현예들에서 윤활유 조성물 TBN에 대한 전체 밀리몰 금속 (M)의 비율 범위는 8 초과 내지 10.0 미만 또는 8 내지 9.5 또는 8.1 내지 9.0이다.
일부 구현예들에서, 저염기성/중성 세제가 과염기성 칼슘 세제와 함께 사용될 때, 중량 기준으로, 과염기성 칼슘 세제에 의해 윤활유 조성물에 제공되는ppm 칼슘에 대한 저염기성/중성 세제에 의해 윤활유 조성물에 제공되는 ppm 칼슘의 비율은 약 0.01 내지 약 1, 또는 약 0.03 내지 약 0.7, 또는 약 0.05 내지 약 0.5, 또는 약 0.08 내지 약 0.4이다.
과염기성 칼슘-함유 세제는 과염기성 칼슘 술포네이트 세제일 수 있다. 과염기성 칼슘-함유 세제는 선택적으로 과염기성 칼슘 살리실레이트 세제를 배제한다. 윤활유는 선택적으로 임의의 마그네슘-함유 세제를 배제하거나 또는 마그네슘이 존재하지 않는다. 본 개시물의 임의의 구현예들에서, 윤활성 조성물에서 나트륨 함량은 윤활유 조성물의 전체 중량 기준으로 150 ppm 이하의 나트륨으로 제한될 수 있다.
티타늄-함유 화합물
윤활성 조성물은 또한 하나 이상의 유용성 티타늄 화합물을 포함한다. 유용성 티타늄 화합물은 항마모제, 마찰 개질제, 항산화제, 침착 제어 첨가제, 또는 이러한 기능 중 하나 초과로서 기능할 수 있다. 소정의 구현예들에서 윤활유 조성물에 티타늄을 포함시키면 예기치 못하게 LSPI 이벤트 회수를 따라서 LSPI 비율을 줄인다. 윤활유 조성물에서 티타늄은 윤활유 조성물 중 칼슘 함량을 줄임으로써 제공되는 LSPI 이벤트 감소를 더욱 향상시킬 수 있다.
티타늄-함유 화합물은 항마모제, 마찰 개질제, 항산화제, 침착 제어 첨가제, 또는 이러한 기능 중 하나 초과로서 기능할 수 있다. 개시 기술의 유용성 물질 제조에 사용되거나 이러한 용도로 사용되는 티타늄 함유 화합 중, 다양한 Ti (IV) 화합물 예컨대 티타늄 (IV) 산화물; 티타늄 (IV) 술파이드; 티타늄 (IV) 질산염; 티타늄 (IV) 알콕시드 예컨대 티타늄 메톡시드, 티타늄 에톡시드, 티타늄 프로폭시드, 티타늄 이소프로폭시드, 티타늄 부톡시드, 티타늄 2-에틸헥속시드; 및 기타 티타늄 화합물 또는 착물 예컨대 제한되지 않지만 티타늄 페네이트; 티타늄 카르복실레이트 예컨대 티타늄 (IV) 2-에틸-1-3-헥산디오에이트 또는 티타늄 시트레이트 또는 티타늄 올레에이트; 및 티타늄 (IV) (트리에탄올아미나토)이소프로폭시드가 예시된다. 개시 기술 내에서 포괄되는 다른 형태의 티타늄은 티타늄 포스페이트 예컨대 티타늄 디티오포스페이트 (예를들면, 디알킬디티오포스페이트) 및 티타늄 술포네이트 (예를들면, 알킬벤젠술포네이트), 또는, 일반적으로, 티타늄 화합물 및 다양한 산 물질과의 염, 예컨대 유용성 염을 형성하기 위한 반응 생성물을 포함한다. 티타늄 화합물은 따라서, 무엇보다도, 유기 산, 알코올, 및 글리콜에서 유도될 수 있다. Ti 화합물은 또한 Ti--O--Ti 구조를 가지는 이중체 또는 올리고머 형태로 존재할 수 있다. 상기 티타늄 물질은 상업적으로 입수되거나 또는 당업자에게 명백한 적합한 합성 기술로 쉽게 제조될 수 있다. 이들은 특정 화합물에 따라 실온에서 고체 또는 액체로 존재할 수 있다. 이들은 또한 적합한 불활성 용매에서 용액 형태로 제공될 수 있다.
하나의 구현예에서, 티타늄은 티타늄-함유 분산제, 예컨대 티타늄-개질 분산제, 예컨대 숙신이미드 분산제로 공급될 수 있다. 상기 물질은 티타늄 알콕시드 및 히드로카르빌-치환된 숙신산 무수물, 예컨대 알케닐- (또는 알킬) 숙신산 무수물 간의 티타늄 혼합 무수물을 형성함으로서 제조될 수 있다. 생성된 티타네이트-숙시네이트 중간체는 직접 사용되거나 또는 임의의 다수의 물질, 예컨대 (a) 자유, 축합 가능한 --NH 관능기를 가지는 폴리아민-계 숙신이미드/아미드 분산제; (b) 폴리아민-계 숙신이미드/아미드 분산제 성분들, 즉, 알케닐- (또는 알킬-) 숙신산 무수물 및 폴리아민, (c) 치환된 숙신산 무수물과 폴리올, 아미노알코올, 폴리아민, 또는 이들 혼합물의 반응으로 제조되는 히드록시-함유 폴리에스테르 분산제로 처리될 수 있다. 대안으로, 티타네이트-숙시네이트 중간체는 기타 제제 예컨대 알코올, 아미노알코올, 에테르 알코올, 폴리에테르 알코올 또는 폴리올, 또는 지방산과 반응하여, 이의 생성물은 Ti를 윤활제에 부여하도록 직접 사용되거나, 또는 상기 숙신산 분산제와 추가 반응된다. 예시로서, 1 부 (몰 기준)의 테트라이소프로필 티타네이트는 약 2 부 (몰 기준)의 폴리이소부텐-치환된 숙신산 무수물과 140-150℃에서 5 내지 6 시간 반응하여 티타늄 개질 분산제 또는 중간체를 제공한다. 생성된 물질 (30g)은 폴리이소부텐-치환된 숙신산 무수물 및 폴리에틸렌폴리아민 혼합물 (127 그램 + 희석 오일)로부터의 숙신이미드 분산제와 150℃에서 1.5 시간 추가로 반응하여, 티타늄-개질 숙신이미드 분산제가 생성된다. 예시적 티타늄-함유 분산제는 미국 특허 번호 8,008,237 및 8,268,759에 개시된다.
또 다른 티타늄 함유 화합물은 티타늄 알콕시드 및 C6 내지 C25 카르복실산의 반응 생성물이다. 반응 생성물은 다음 식:
Figure 112018012154400-pct00001
식 중 n은 2, 3 및 4에서 선택되는 정수이고, R은 약 5 내지 약 24 개의 탄소 원자들을 가지는 히드로카르빌기, 또는 식으로 나타내고:
Figure 112018012154400-pct00002
식 중 각각의 R1, R2, R3, 및 R4 는 동일하거나 상이하고 약 5 내지 약 25 개의 탄소 원자들을 가지는 히드로카르빌기에서 선택된다. 적합한 카르복실산은, 제한되지는 않지만 카프로산, 카프릴산, 라우르산, 미리스트산, 팔미트산, 스테아르산, 아라키드산, 올레산, 에루스산, 리놀레산, 리놀렌산, 시클로헥산카르복실산, 페닐아세트산, 벤조산, 네오데칸산, 및 기타 등을 포함한다.
전기 구현예에서 유용성 티타늄 화합물은 윤활유 조성물에 중량 기준으로 10 내지 3000 ppm 티타늄 또는 중량 기준으로 25 내지 약 1500 ppm 티타늄 또는 중량 기준으로 약 35 ppm 내지 500 ppm 티타늄 또는 약 50 ppm 내지 약 300 ppm을 제공할 수 있는 함량으로 존재할 수 있다.
하나의 구현예에서, 유용성 티타늄-함유 화합물은 바람직하게는 티타늄 이소프로폭시드 및 네오데칸산의 반응 생성물이다. 또 다른 구현예에서, 티타늄 화합물은 바람직하게는 티타늄 이소프로폭시드이다. 추가 구현예에서 티타늄 화합물은 바람직하게는 티타늄-함유 분산제이다.
추가 구현예에서, 유용성 티타늄 화합물은 티타늄 (IV) 알콕시드일 수 있다. 티타늄 알콕시드는 일가 알코올, 폴리올, 또는 이의 혼합물로부터 형성될 수 있다. 일가 알콕시드는 탄소수가 2 내지 16, 또는 3 내지 10 일 수 있다. 구현예에서, 티타늄 알콕시드는 티타늄 (IV) 이소프로폭시드일 수 있다. 구현예에서, 티타늄 알콕시드는 티타늄 (IV) 2-에틸헥속시드일 수 있다. 구현예에서, 티타늄 화합물은 1,2-디올 또는 폴리올의 알콕시드일 수 있다. 구현예에서, 1,2-디올은 올레산과 같은 글리세롤 지방산 모노-에스테르를 포함한다. 구현예에서, 유용성 티타늄 화합물은 티타늄 카르복실레이트일 수 있다. 구현예에서, 티타늄 (IV) 카르복실레이트는 티타늄 네오데카노에이트일 수 있다.
텅스텐-함유 화합물
윤활성 조성물은 또한 하나 이상의 텅스텐-함유 화합물을 포함한다. 텅스텐-함유 화합물은 바람직하게는 유용성이고 항마모제, 마찰 개질제, 항산화제, 침착 제어 첨가제, 또는 이러한 기능 중 하나 초과로서 기능할 수 있다. 소정의 구현예들에서 윤활유 조성물에 텅스텐을 포함시키면 예기치 못하게 LSPI 이벤트 회수 따라서 LSPI 비율을 줄인다. 윤활유 조성물에서 텅스텐은 윤활유 조성물 중 칼슘 함량을 줄임으로써 제공되는 LSPI 이벤트 감소를 더욱 향상시킬 수 있다.
윤활유 조성물에서 사용하기에 적합한 텅스텐 화합물은 원소 텅스텐, 유기텅스텐, 텅스텐 산화물, 황-함유 유기텅스텐, 무황- 및 무인- (phosphorus-free) 텅스텐 공급원, 및 기타 등을 포함할 수 있다.
이들 텅스텐-함유 화합물은 알킬 또는 아릴-치환된 암모늄 텅스테이트 화합물을 포함할 수 있다. 적합한 알킬-치환된 암모늄 텅스테이트 화합물은 EP 1 618 172 B1에 기재된다. 이들 유기-암모늄 금속 화합물은 폴리텅스테이트 이온 및 R2NH2 + 타입의 디알킬-암모늄 이온으로 이루어지고, 식 중 라디칼 -R은 장쇄 알킬 또는 아릴기, 예컨대 C6-C30 또는 C10-C24 알킬 또는 아릴기이다. 이러한 기의 예시로는 디-트리데실 암모늄 텅스테이트이고, 이는 텅스텐산 수화물과 디-트리데실아민과의 반응으로 제조될 수 있다.
추가 예시로서, 황-함유 유기텅스텐 화합물은 다양한 방법들로 제조될 수 있다 하나의 방법은 아미노기를 가지는 무황- 및 무인 텅스텐 공급원과 하나 이상의 황 공급원과의 반응을 포함한다. 황-함유 텅스텐 화합물은 또한 아미노기 또는 티오람기를 가지는 무황 텅스텐 공급원과, 선택적으로, 제2 황 공급원과의 반응일 수 있다.
무황- 및 무인 텅스텐 공급원의 예시들로는 텅스텐산, 텅스텐 삼산화물, 오르토텅스텐산암모늄, 텅스텐산금속암모늄, 파라텅스텐산암모늄, 텅스텐산나트륨, 텅스텐산칼륨, 및 텅스텐 할라이드를 포함한다.
또 추가적인 텅스텐 화합물은, 제한적이지는 않지만, 텅스텐 헥사카르보닐, 텅스텐 에톡시드, 옥시염화텅스텐, 텅스텐 펜타카르보닐-N-펜틸이소니트릴, 규화텅스텐, 텅스텐산, 시클로마틱 (cyclomatic) 텅스텐 화합물, 텅스텐 유기아민, 텅스텐 포스펜, 유기-옥소-텅스텐산염을 포함한다.
또 추가적인 텅스텐 화합물은 나노합금 텅스텐 윤활제 첨가제 화합물 예컨대, 제한적이지는 않지만, MgWO4, CaWO4, ZnWO4, 및 기타 등의 형태일 수 있다.
텅스텐은 윤활제에서 유용성 또는 분산성 또는 혼합될 수 있다. 입수 가능한 텅스텐-함유 화합물, 및 이의 생산은 국제 공개 번호 WO 20071009022에 서술된다.
텅스텐-함유 첨가제는 윤활유 조성물에서 윤활유 조성물의 전체 중량에 대하여 텅스텐의 최종 농도가 적어도 125 ppm, 또는 적어도 200 ppm. 또는 적어도 300 ppm이 되도록 충분하게 첨가된다. 텅스텐-함유 첨가제는 윤활유 조성물에서 윤활유 조성물의 전체 중량에 대하여 텅스텐의 최종 농도가 125-3000 ppm, 또는 200-2000 ppm. 또는 300-1000 ppm이 되도록 충분하게 첨가된다.
사용 가능한 적합한 텅스텐-함유 화합물 예시로는 상표 VanLube™ W-324 (Vanderbilt Chemicals, LLC)로 판매되는 상업적 디알킬 암모늄 텅스테이트를 포함한다.
기유
본원의 윤활유 조성물에 사용되는 기유는 미국 석유기관 (API) 기유 호환성 가이드라인 [American Petroleum Institute (API) Base Oil Interchangeability Guidelines] 에 명시된 그룹 I-V 중 임의의 기유로부터 선택될 수 있다. 5 가지의 기유 그룹은 다음과 같다:
기유 분류 황 (%) 포화도 (%) 점도 지수
그룹 I > 0.03 및/또는 <90 80 내지 120
그룹 II ≤0.03 ≥90 80 내지 120
그룹 III ≤0.03 ≥90 ≥120
그룹 IV 전부 폴리알파올레핀 (PAO)
그룹 V 그룹 I, II, III, 또는 IV에 포함되지 않는 모든 다른 기유
그룹 I, II, 및 III 은 광유 프로세스 스톡이다. 그룹 IV 기유는 올레핀계 불포화 탄화수소의 중합에 의해 생산되는, 참 합성 분자 종을 함유한다. 많은 그룹 V 기유가 또한 참 합성 산물이고, 디에스테르, 폴리올 에스테르, 폴리알킬렌 글리콜, 알킬화 방향족, 폴리포스페이트 에스테르, 폴리비닐 에테르, 및/또는 폴리페닐에테르 등을 포함할 수 있으나, 또한 자연 발생적 오일, 예컨대 식물유일 수 있다. 그룹 III 기유는 광유에서 유래하지만, 이러한 유체가 겪는 엄격한 가공이 이의 물리적 특성을 PAO 와 같은 일부 참 합성 산물과 매우 유사하게 만든다는 점에 유의해야 한다. 그러므로, 그룹 III 기유에서 유래하는 오일은 산업에서 합성 유체로서 언급될 수 있다.
개시된 윤활유 조성물에 사용되는 기유는 광유, 동물유, 식물유, 합성유, 또는 그들의 혼합물일 수 있다. 적합한 오일은 수첨분해, 수소첨가, 하이드로피니싱 (hydrofinishing), 비정제, 정제, 및 재-정제 오일, 및 그들의 혼합물에서 유래할 수 있다.
비정제 오일은 천연, 광물, 또는 합성 공급원으로부터 추가의 정제 처리 없이 또는 거의 없이 유도되는 것이다. 정제 오일은 하나 이상의 특성의 개선을 초래할 수 있는 하나 이상의 정제 단계에서 처리된 것을 제외하고는 비정제 오일과 유사하다. 적합한 정제 기술의 예는 용매 추출, 이차 증류, 산 또는 염기 추출, 여과, 삼출 등이다. 먹을 수 있는 품질로 정제된 오일이 유용하거나 유용하지 않을 수 있다. 식용유는 또한 백유로 호칭될 수 있다. 일부 구현예에서, 윤활제 조성물에는 식용유 또는 백유가 없다.
재-정제 오일은 또한 재생 또는 재가공 오일로서 알려져 있다. 이러한 오일은 정제 오일과 유사하게 동일 또는 유사한 공정을 사용하여 수득된다. 종종 이러한 오일은 소모된 첨가제 및 오일 분해 산물의 제거를 위한 기술에 의해 부가적으로 가공된다.
광유는 굴착에 의해 또는 식물 및 동물로부터 수득된 오일 또는 그들의 임의의 혼합물을 포함할 수 있다. 예를들면 그러한 오일은 피마자유, 라드유, 올리브유, 땅콩유, 옥수수유, 대두유 및 아마인유, 뿐만 아니라 광물 윤활유 예컨대 액체 석유 및 파라핀, 나프텐 또는 혼합 파라핀-나프텐 유형의 용매-처리된 또는 산-처리된 광물 윤활유를 포함할 수 있으나 이에 제한되지 않는다. 그러한 오일은 필요에 따라 일부 또는 전부 수소첨가될 수 있다. 석탄 또는 셰일에서 유도된 오일도 또한 유용할 수 있다.
유용한 합성 윤활유는 탄화수소 오일 예컨대 중합, 소중합, 또는 공중합된 올레핀 (예를들면, 폴리부틸렌, 폴리프로필렌, 프로필렌이소부틸렌 공중합체); 폴리(1-헥센), 폴리(1-옥텐), 1-데센의 3량체 또는 올리고머, 예를들면, 폴리(1-데센) (이러한 물질은 종종 α-올레핀으로서 언급됨), 및 그들의 혼합물; 알킬-벤젠 (예를들면, 도데실벤젠, 테트라데실벤젠, 디노닐벤젠, 디-(2-에틸헥실)-벤젠); 폴리페닐 (예를 들어, 바이페닐, 테르페닐, 알킬화 폴리페닐); 디페닐 알칸, 알킬화 디페닐 알칸, 알킬화 디페닐 에테르 및 알킬화 디페닐 술파이드 및 그의 유도체, 유사체 및 동족체 또는 그들의 혼합물을 포함할 수 있다. 폴리알파올레핀은 전형적으로 수소첨가된 물질이다.
기타 합성 윤활유는 폴리올 에스테르, 디에스테르, 인-함유 산의 액체 에스테르 (예를들면, 트리크레실 포스페이트, 트리옥틸 포스페이트, 및 데칸 포스폰산의 디에틸 에스테르), 또는 중합체성 테트라히드로푸란을 포함한다. 합성 오일은 피셔-트로프슈 (Fischer-Tropsch) 반응에 의해 생산될 수 있고, 전형적으로 하이드로이성질화 (hydroisomerized) 피셔-트로프슈 탄화수소 또는 왁스일 수 있다. 하나의 구현예에서, 오일은 피셔-트로프슈 기체-에서-액체 (gas-to-liquid) 합성 절차 뿐만 아니라 기타 기체-에서-액체 오일에 의해 제조될 수 있다.
윤활성 조성물에 포함되는50 wt.%를 초과하는 기유는 그룹 I, 그룹 II, 그룹 III, 그룹 IV, 그룹 V, 및 둘 이상의 전기 기유들의 조합으로 이루어진 군에서 선택되고, 50 wt.% 초과의 기유는 조성물에서 첨가제 성분들 또는 점도 지수 개선제의 제공으로 인한 기유들 외의 것이다. 또 다른 구현예에서, 윤활성 조성물에 포함되는50 wt.%를 초과하는 기유는 그룹 II, 그룹 III, 그룹 IV, 그룹 V, 및 둘 이상의 전기 기유들의 조합으로 이루어진 군에서 선택되고, 50 wt.% 초과의 기유는 조성물에서 첨가제 성분들 또는 점도 지수 개선제의 제공으로 인한 오일들 외의 것이다.
존재하는 윤활 점도의 오일의 양은 점도 지수 개선제(들) 및/또는 유동점 강하제(들) 및/또는 기타 탑 트리트 (top treat) 첨가제를 포함하는 성능 첨가제의 양의 합계를 100 중량% 에서 뺀 후 나머지 값일 수 있다. 예를 들면, 완성된 유체에 존재할 수 있는 윤활 점도 오일은 다량, 예컨대 약 50 중량% 초과, 약 60 중량% 초과, 약 70 중량% 초과, 약 80 중량% 초과, 약 85 중량% 초과, 또는 약 90 중량% 초과일 수 있다.
윤활유 조성물은 10 wt.% 이하의 그룹 IV 기유, 그룹 V 기유, 또는 이들 조합을 포함한다. 각각의 전기 구현예에서, 윤활유 조성물은 5 wt.% 미만의 그룹 V 기유를 포함한다. 윤활유 조성물은 임의의 그룹 IV 기유들을 함유하지 않는다. 윤활유 조성물은 임의의 그룹 V 기유들을 함유하지 않는다.
다른 구현예들에서, 윤활유 조성물은 하기 제시되는 다양한 첨가제들에서 선택되는 하나 이상의 선택적 성분들을 더욱 포함한다.
항산화제
본원에서 윤활유 조성물은 또한 하나 이상의 항산화제를 임의 함유할 수 있다. 항산화제 화합물은 알려져 있고, 예를들면 페네이트, 페네이트 술파이드, 황화 올레핀, 포스포황화 테르펜, 황화 에스테르, 방향족 아민, 알킬화 디페닐아민 (예를 들어, 노닐 디페닐아민, 디-노닐 디페닐아민, 옥틸 디페닐아민, 디-옥틸 디페닐아민), 페닐-알파-나프틸아민, 알킬화 페닐-알파나프틸아민, 장해 비방향족 아민, 페놀, 장해 페놀, 유용성 몰리브데늄 화합물, 거대분자 항산화제, 또는 그 혼합물을 포함한다. 항산화제 화합물은 단독 또는 조합으로 사용될 수 있다.
장해 페놀 항산화제는 입체 장애기로서 2 차 부틸 및/또는 3 차 부틸기를 함유할 수 있다. 페놀기는 제 2 방향족기에 연결된 가교기 및/또는 히드로카르빌기로 추가 치환될 수 있다. 적합한 장해 페놀 항산화제의 예는 2,6-디-tert-부틸페놀, 4-메틸-2,6-디-tert-부틸페놀, 4-에틸-2,6-디-tert-부틸페놀, 4-프로필-2,6-디-tert-부틸페놀 또는 4-부틸-2,6-디-tert-부틸페놀, 또는 4-도데실-2,6-디-tert-부틸페놀을 포함한다. 하나의 구현예에서, 장해 페놀 항산화제는 에스테르일 수 있고, 예를 들어 IRGANOXTM L-135 (BASF로부터 입수가능) 또는 2,6-디-tert-부틸페놀 및 알킬 아크릴레이트 (이때, 알킬기는 약 1 내지 약 18, 또는 약 2 내지 약 12, 또는 약 2 내지 약 8, 또는 약 2 내지 약 6, 또는 약 4 개의 탄소 원자를 함유할 수 있음) 유래의 부가 생성물을 포함할 수 있다. 또다른 시판 장해 페놀 항산화제는 에스테르일 수 있고, ETHANOXTM 4716 (Albemarle Corporation 로부터 입수가능)을 포함할 수 있다
유용한 항산화제는 디아릴아민 및 고분자량 페놀을 포함할 수 있다. 구현예에서, 윤활유 조성물은 각 항산화제가 윤활유 조성물의 최종 중량을 기준으로 약 5 중량% 까지 제공하기에 충분량으로 존재할 수 있도록 디아릴아민 및 고분자량 페놀의 혼합물을 함유할 수 있다. 구현예에서, 항산화제는 윤활유 조성물의 최종 중량을 기준으로 약 0.3 내지 약 1.5% 디아릴아민 및 약 0.4 내지 약 2.5% (중량 기준) 고분자량 페놀의 혼합물일 수 있다.
황화되어 황화 올레핀을 형성할 수 있는 적합한 올레핀의 예는 프로필렌, 부틸렌, 이소부틸렌, 폴리이소부틸렌, 펜텐, 헥센, 헵텐, 옥텐, 노넨, 데센, 운데센, 도데센, 트리데센, 테트라데센, 펜타데센, 헥사데센, 헵타데센, 옥타데센, 노나데센, 에이코센 또는 그 혼합물을 포함한다. 하나의 구현예에서, 헥사데센, 헵타데센, 옥타데센, 노나데센, 에이코센 또는 그 혼합물 및 그 이량체, 삼량체 및 사량체는 특히 유용한 올레핀이다. 대안적으로, 올레핀은 디엔의 디일스-알더(Diels-Alder) 부가물, 예컨대 1,3-부타디엔 및 불포화 에스테르, 예컨대 부틸아크릴레이트일 수 있다.
또다른 부류의 황화 올레핀은 황화 지방산 및 그 에스테르를 포함한다. 지방산은 흔히 식물유 또는 동물유로부터 수득되고, 전형적으로 약 4 내지 약 22 개의 탄소 원자를 함유한다. 적합한 지방산 및 그 에스테르의 예는 트리글리세리드, 올레산, 리놀레산, 팔미트올레산 또는 그 혼합물을 포함한다. 흔히, 지방산은 라드 오일, 톨유, 땅콩유, 대두유, 면실유, 해바라기씨유 또는 그 혼합물로부터 수득된다. 지방산 및/또는 에스테르는 α-올레핀과 같은 올레핀과 혼합될 수 있다.
하나 이상의 항산화제(들) 는 윤활 조성물의 약 0 wt% 내지 약 20 wt%, 또는 약 0.1 wt% 내지 약 10 wt%, 또는 약 1 wt% 내지 약 5 wt% 범위로 존재할 수 있다.
항마모제
본원에서 윤활유 조성물은 또한 선택적으로 하나 이상의 항마모제를 임의 함유할 수 있다. 적합한 항마모제 예시로는, 제한되지는 않지만, 금속 티오포스페이트; 금속 디알킬디티오포스페이트; 인산 에스테르 또는 그 염; 포스페이트 에스테르(들); 포스파이트; 인-함유 카르복실 에스테르, 에테르, 또는 아미드; 황화 올레핀; 티오카르바메이트 에스테르, 알킬렌-커플링된 티오카르바메이트 및 비스(S-알킬디티오카르브아밀)디술파이드를 포함하는 티오카르바메이트-함유 화합물; 및 그 혼합물을 포함한다. 적합한 항마모제는 몰리브데늄 디티오카르바메이트일 수 있다. 인 함유 항마모제는 유럽 특허 612 839에 완전히 기재되어 있다. 디알킬 디티오 포스페이트 염에서 금속은 알칼리 금속, 알칼리 토금속, 알루미늄, 납, 주석, 몰리브데늄, 망간, 니켈, 구리, 티타늄, 또는 아연일 수 있다. 유용한 항마모제는 아연 디알킬티오포스페이트일 수 있다.
적합한 항마모제의 추가 예는 티타늄 화합물, 타르트레이트, 타르트리미드, 인 화합물의 유용성 아민 염, 황화 올레핀, 포스파이트 (예컨대, 디부틸 포스파이트), 포스포네이트, 티오카르바메이트-함유 화합물, 예컨대 티오카르바메이트 에스테르, 티오카르바메이트 아미드, 티오카르밤 에테르, 알킬렌-커플링된 티오카르바메이트, 및 비스(S-알킬디티오카르브아밀) 디술파이드를 포함한다. 타르트레이트 또는 타르트리미드는 알킬-에스테르기를 함유할 수 있으며, 이때 알킬기 상의 탄소 원자의 합계는 8 이상일 수 있다. 항마모제는 하나의 구현예에서 시트레이트를 포함할 수 있다.
항마모제는 윤활유 조성물의 약 0 wt% 내지 약 15 wt%, 또는 약 0.01 wt% 내지 약 10 wt%, 또는 약 0.05 wt% 내지 약 5 wt%, 또는 약 0.1 wt% 내지 약 3 wt% 를 포함하는 범위로 존재할 수 있다.
항마모 화합물은 P:Zn 비율이 약 1:0.8 내지 약 1:1.7인 아연 디히드로카르빌 디티오포스페이트 (ZDDP)일 수 있다.
붕소-함유 화합물
본원에서 윤활유 조성물은 하나 이상의 붕소-함유 화합물을 임의 함유할 수 있다.
붕소-함유 화합물의 예는 보레이트 에스테르, 보레이트화 지방 아민, 보레이트화 에폭시드, 보레이트화 세제, 및 보레이트화 분산제, 예컨대 미국 특허 번호 5,883,057 에 기재된 바와 같은 보레이트화 숙신이미드 분산제를 포함한다.
붕소-함유 화합물은 존재한다면 윤활 조성물의 약 8 wt% 이하, 약 0.01 wt% 내지 약 7 wt%, 약 0.05 wt% 내지 약 5 wt%, 또는 약 0.1 wt% 내지 약 3 wt% 를 제공하기에 충분량으로 사용될 수 있다.
분산제
윤활제 조성물은 임의로는 하나 이상의 분산제 또는 이의 혼합물을 추가로 포함할 수 있다. 분산제는, 윤활유 조성물 중에의 혼합 전에 이들이 회분-형성 금속을 함유하지 않고 이들이 일반적으로 윤활제에 첨가될 때 임의의 회분에 기여하지 않기 때문에, 무회-유형 분산제로서 흔히 공지되어 있다. 무회 유형 분산제는 비교적 높은 분자량 탄화수소 사슬에 부착된 극성 기에 의해 특징지어진다. 전형적 무회 분산제는 N-치환 장쇄 알케닐 숙신이미드를 포함한다. N-치환 장쇄 알케닐 숙신이미드의 예는, 폴리이소부틸렌 치환기의 수 평균 분자량이 약 350 내지 약 50,000, 또는 내지 약 5,000, 또는 내지 약 3,000 범위인 폴리이소부틸렌 숙신이미드를 포함한다. 숙신이미드 분산제 및 그 제조는 예를 들어 미국 특허 번호 7,897,696 또는 미국 특허 번호 4,234,435 에 개시되어 있다. 폴리올레핀은 탄소수 약 2 내지 약 16, 또는 약 2 내지 약 8, 또는 약 2 내지 약 6 의 중합성 단량체로부터 제조될 수 있다. 숙신이미드 분산제는 전형적으로 폴리아민으로부터 형성된 이미드, 전형적으로 폴리(에틸렌아민) 이다.
구현예에서, 본 개시는 약 350 내지 약 50,000, 또는 내지 약 5000, 또는 내지 약 3000 범위의 수 평균 분자량을 갖는 폴리이소부틸렌으로부터 유래된 하나 이상의 폴리이소부틸렌 숙신이미드 분산제를 추가로 포함한다. 폴리이소부틸렌 숙신이미드는 단독으로 또는 다른 분산제와의 조합으로 사용될 수 있다.
일부 구현예에서, 폴리이소부틸렌은 포함되는 경우, 50 mol% 초과, 60 mol% 초과, 70 mol% 초과, 80 mol% 초과, 또는 90 mol% 초과의 말단 이중 결합 함량을 가질 수 있다. 상기 PIB 는 또한 매우 반응성인 PIB ("HR-PIB") 로서 나타내어진다. 수 평균 분자량이 약 800 내지 약 5000 인 HR-PIB 는 본 개시의 구현예에서 사용하기에 적합하다. 통상적 PIB 는 전형적으로 50 mol% 미만, 40 mol% 미만, 30 mol% 미만, 20 mol% 미만, 또는 10 mol% 미만의 말단 이중 결합 함량을 갖는다.
약 900 내지 약 3000 범위의 수 평균 분자량을 갖는 HR-PIB 가 적합할 수 있다. 상기 HR-PIB 는 시판되거나, 비염소화 촉매, 예컨대 붕소 트리플루오라이드의 존재 하에 이소부텐의 중합에 의해 합성될 수 있다 (미국 특허 번호 4,152,499 (Boerzel, 등) 및 미국 특허 번호 5,739,355 (Gateau, 등) 에 기재됨). 상기 언급된 열적 엔 반응에 사용될 때, HR-PIB 는 증가된 반응성으로 인해 반응에서 높은 전환율 뿐만 아니라 적은 양의 침전물 형성을 유도할 수 있다. 적합한 방법은 미국 특허 번호 7,897,696 에 기재된다.
하나의 구현예에서, 본 개시는 또한 폴리이소부틸렌 숙신산 무수물 ("PIBSA") 로부터 유래되는 하나 이상의 분산제를 포함한다. PIBSA 는 중합체 당 평균 약 1.0 내지 약 2.0 개의 숙신산 부분을 가질 수 있다.
알케닐 또는 알킬 숙신산 무수물의% 활성은 크로마토그래피 기술을 사용하여 측정될 수 있다. 이러한 방법은 미국 특허 번호 5,334,321 의 컬럼 5 및 6 에 기재되어 있다.
폴리올레핀의 % 전환율은 미국 특허 번호 5,334,321 의 컬럼 5 및 6 에서의 등식을 사용하여% 활성으로부터 계산된다.
달리 나타내지 않는 한, 모든 백분율은 중량% 이고, 모든 분자량은 수 평균 분자량이다.
하나의 구현예에서, 분산제는 폴리알파올레핀 (PAO) 숙신산 무수물로부터 유래될 수 있다.
하나의 구현예에서, 분산제는 올레핀 말레산 무수물 공중합체로부터 유래될 수 있다. 예로서, 분산제는 폴리-PIBSA 로서 기재될 수 있다.
구현예에서, 분산제는 에틸렌-프로필렌 공중합체에 그라프트된 무수물로부터 유래될 수 있다.
적합한 분산제의 한 부류는 만니히 염기(Mannich base) 일 수 있다. 만니히 염기는 고분자량, 알킬 치환 페놀, 폴리알킬렌 폴리아민, 및 알데히드, 예컨대 포름알데히드의 축합에 의해 형성되는 물질이다. 만니히 염기는 미국 특허 번호 3,634,515 에 더 자세히 기재되어 있다.
분산제의 적합한 부류는 고분자량 에스테르 또는 하프 에스테르 아미드(half ester amide) 일 수 있다.
적합한 분산제는 또한 다양한 작용제 중 임의의 것과의 반응에 의한 통상적 방법에 의해 후속-처리될 수 있다. 이들 중에는 붕소, 우레아, 티오우레아, 디메르캅토티아디아졸, 카본 디술파이드, 알데히드, 케톤, 카르복실산, 탄산수소-치환 숙신산 무수물, 말레산 무수물, 니트릴, 에폭시드, 카르보네이트, 시클릭 카르보네이트, 장해 페놀 에스테르 및 인 화합물이 있다. US 7,645,726; US 7,214,649; 및 US 8,048,831 은 본원에서 전체로서 참조 인용된다.
카르보네이트 및 붕산 후속-처리 이외에, 모든 화합물은 상이한 특성을 개선시키거나 이를 부여하기 위해 고안된 다양한 후속-처리에 의해 후속-처리 또는 추가 후속-처리될 수 있다. 상기 후속-처리는 본원에서 참조 인용되는 미국 특허 번호 5,241,003 의 컬럼 27-29 에 요약된 것을 포함한다. 상기 처리는 하기를 사용한 처리를 포함한다: 무기 아인산 또는 무수화물 (예를들면, 미국 특허 번호 3,403,102 및 4,648,980); 유기 인화합물 (예를들면, 미국 특허 번호 3,502,677); 인 펜타술파이드; 상기 이미 나타낸 붕소 화합물 (예를들면, 미국 특허 번호 3,718,663 및 4,652,387); 카르복실산, 폴리카르복실산, 무수물 및/또는 산 할라이드 (예를들면, 미국 특허 번호 3,708,522 및 4,948,386); 에폭시드 폴리에폭시에이트 또는 티오에폭시드 (예를들면, 미국 특허 번호 3,859,318 및 5,026,495); 알데히드 또는 케톤 (예를들면, 미국 특허 번호 3,458,530); 이황화탄소(예를들면, 미국 특허 번호 3,256,185); 글리시돌 (예를들면, 미국 특허 번호 4,617,137); 우레아, 티오우레아 또는 구아니딘 (예를들면, 미국 특허 번호 3,312,619; 3,865,813; 및 영국 특허 GB 1,065,595); 유기 술폰산 (예를들면, 미국 특허 번호 3,189,544 및 영국 특허 GB 2,140,811); 알케닐 시아나이드 (예를들면, 미국 특허 번호 3,278,550 및 3,366,569); 디케텐 (예를들면, 미국 특허 번호 3,546,243); 디이소시아네이트 (예를들면, 미국 특허 번호 3,573,205); 알칸 술톤 (예를들면, 미국 특허 번호 3,749,695); 1,3-디카르보닐 화합물 (예를들면, 미국 특허 번호 4,579,675); 알콕시화 알코올 또는 페놀의 술페이트 (예를들면, 미국 특허 번호 3,954,639); 시클릭 락톤 (예를들면, 미국 특허 번호 4,617,138; 4,645,515; 4,668,246; 4,963,275; 및 4,971,711); 시클릭 카르보네이트 또는 티오카르보네이트 선형 모노카르보네이트 또는 폴리카르보네이트, 또는 클로로포르메이트 (예를들면, 미국 특허 번호 4,612,132; 4,647,390; 4,648,886; 4,670,170); 질소-함유 카르복실산 (예를들면, 미국 특허 4,971,598 및 영국 특허 GB 2,140,811); 히드록시-보호된 클로로디카르보닐옥시 화합물 (예를들면, 미국 특허 번호 4,614,522); 락탐, 티오락탐, 티오락톤 또는 디티오락톤 (예를들면, 미국 특허 번호 4,614,603 및 4,666,460); 시클릭 카르보네이트 또는 티오카르보네이트, 선형 모노카르보네이트 또는 폴리카르보네이트, 또는 클로로포르메이트 (예를들면, 미국 특허 번호 4,612,132; 4,647,390; 및 4,670,170); 시클릭 카르바메이트, 시클릭 티오카르바메이트 또는 시클릭 디티오카르바메이트 (예를들면, 미국 특허 번호 4,663,062 및 4,666,459); 히드록시지방족 카르복실산 (예를들면, 미국 특허 번호 4,482,464; 4,521,318; 4,713,189); 산화제 (예를들면, 미국 특허 번호 4,379,064); 인 펜타술파이드 및 폴리알킬렌 폴리아민의 조합 (예를들면, 미국 특허 번호 3,185,647); 카르복실산 또는 알데히드 또는 케톤 및 황 또는 황 클로라이드의 조합 (예를들면, 미국 특허 번호 3,390,086; 3,470,098); 히드라진 및 이황화탄소의 조합 (예를들면 미국 특허 번호 3,519,564); 알데히드 및 페놀의 조합 (예를들면, 미국 특허 번호 3,649,229; 5,030,249; 5,039,307); 알데히드 및 디티오인산의 O-디에스테르의 조합 (예를들면, 미국 특허 번호 3,865,740); 히드록시지방족 카르복실산 및 붕산의 조합 (예를들면, 미국 특허 번호 4,554,086); 히드록시지방족 카르복실산, 이후 포름알데히드 및 페놀의 조합 (예를들면, 미국 특허 번호 4,636,322); 히드록시지방족 카르복실산 및 이후 지방족 디카르복실산의 조합 (예를들면, 미국 특허 번호 4,663,064); 포름알데히드 및 페놀 및 이후 글리콜산의 조합 (예를들면, 미국 특허 번호 4,699,724); 히드록시지방족 카르복실산 또는 옥살산 및 이후 디이소시아네이트의 조합 (예를들면 미국 특허 번호 4,713,191); 인의 무기 산 또는 무수물 또는 이의 일부 또는 완전 황 유사체 및 붕소 화합물의 조합 (예를들면, 미국 특허 번호 4,857,214); 유기 이산 이후 불포화 지방산 및 이후 니트로소방향족 아민 임의로는 이후 붕소 화합물 및 이후 글리콜화제의 조합 (예를들면, 미국 특허 번호 4,973,412); 알데히드 및 트리아졸의 조합 (예를들면, 미국 특허 번호 4,963,278); 알데히드 및 트리아졸 이후 붕소 화합물의 조합 (예를들면, 미국 특허 번호 4,981,492); 시클릭 락톤 및 붕소 화합물의 조합 (예를들면, 미국 특허 번호 4,963,275 및 4,971,711). 상기 특허들은 본원에 전체가 참고로 통합된다.
적합한 분산제의 TBN 은 약 50% 희석 (diluent) 오일을 함유하는 분산제 샘플에 대해 측정되는 경우 약 5 내지 약 30 TBN에 필적하는, 무(無)-오일 기준으로 약 10 내지 약 65 일 수 있다.
분산제는 존재하는 경우 윤활유 조성물의 최종 중량을 기준으로 약 20 wt% 까지 제공하기에 충분량으로 사용될 수 있다. 사용될 수 있는 분산제의 또다른 양은 윤활유 조성물의 최종 중량을 기준으로 약 0.1 wt% 내지 약 15 wt%, 또는 약 0.1 wt% 내지 약 10 wt%, 또는 약 3 wt% 내지 약 10 wt%, 또는 약 1 wt% 내지 약 6 wt%, 또는 약 7 wt% 내지 약 12 wt% 일 수 있다. 하나의 구현예에서, 윤활유 조성물은 혼합 분산제 시스템을 이용한다. 단일 유형 또는 임의의 바람직한 비율로 둘 이상 유형들의 분산제 혼합물이 사용될 수 있다.
마찰 개질제
본원에서 윤활유 조성물은 또한 임의로는 하나 이상의 마찰 개질제를 함유할 수 있다. 적합한 마찰 개질제는 금속 함유 및 무금속 마찰 개질제를 포함할 수 있고, 제한 없이 이미다졸린, 아미드, 아민, 숙신이미드, 알콕시화 아민, 알콕시화 에테르 아민, 아민 산화물, 아미도아민, 니트릴, 베타인, 4차 아민, 이민, 아민 염, 아미노 구아나딘, 알칸올아미드, 포스포네이트, 금속-함유 화합물, 글리세롤 에스테르, 황화 지방 화합물 및 올레핀, 해바라기유 기타 천연 발생 식물 또는 동물유, 디카르복실산 에스테르, 폴리올의 에스테르 또는 일부 에스테르 및 하나 이상의 지방족 또는 방향족 카르복실산 등을 포함할 수 있다.
적합한 마찰 개질제는 직쇄, 분지쇄 또는 방향족 히드로카르빌기 또는 이의 혼합물로부터 선택되는 히드로카르빌기를 함유할 수 있고, 포화 또는 불포화될 수 있다. 히드로카르빌기는 탄소 및 수소 또는 헤테로원자, 예컨대 황 또는 산소로 구성될 수 있다. 히드로카르빌기는 탄소수가 약 12 내지 약 25 범위일 수 있다. 일부 구현예에서, 마찰 개질제는 장쇄 지방산 에스테르일 수 있다. 또다른 구현예에서, 장쇄 지방산 에스테르는 모노-에스테르, 또는 디-에스테르 또는 (트리)글리세리드일 수 있다. 마찰 개질제는 장쇄 지방 아미드, 장쇄 지방 에스테르, 장쇄 지방 에폭시드 유도체, 또는 장쇄 이미다졸린일 수 있다.
기타 적합한 마찰 개질제는 유기, 무회 (무금속), 무질소 유기 마찰 개질제를 포함할 수 있다. 상기 마찰 개질제는 카르복실산 및 무수물과 알칸올을 반응시켜 형성된 에스테르를 포함할 수 있고, 일반적으로 친유성 탄화수소 사슬에 공유 결합된 극성 말단기 (예를들면 카르복실 또는 히드록실) 를 포함한다. 유기 무회 무질소 마찰 개질제의 예는 일반적으로는 올레산의 모노-, 디-, 및 트리-에스테르를 함유할 수 있는 글리세롤 모노올레에이트 (GMO) 로서 공지되어 있다. 기타 적합한 마찰 개질제는 본원에서 전체로서 참조 인용되는 미국 특허 번호 6,723,685 에 기재되어 있다.
아민계 마찰 개질제는 아민 또는 폴리아민을 포함할 수 있다. 상기 화합물은 포화 또는 불포화된 선형인 히드로카르빌기, 또는 이의 혼합물을 가질 수 있고, 약 12 내지 약 25 개의 탄소 원자를 함유할 수 있다. 적합한 마찰 개질제의 추가 예는 알콕시화 아민 및 알콕시화 에테르 아민을 포함한다. 상기 화합물은 포화 또는 불포화된 선형인 히드로카르빌기, 또는 이의 혼합물을 가질 수 있다. 이는 약 12 내지 약 25 개의 탄소 원자를 함유할 수 있다. 예는 에톡시화 아민 및 에톡시화 에테르 아민을 포함한다.
아민 및 아미드는, 산화붕소, 붕소 할라이드, 메타보레이트, 붕산 또는 모노-, 디- 또는 트리-알킬 보레이트와 같은 붕소 화합물과의 부가물 또는 반응 생성물의 형태로 또는 그 자체로 사용될 수 있다. 기타 적합한 마찰 개질제는 본원에서 참조 인용되는 미국 특허 번호 6,300,291 에 기재되어 있다.
마찰 개질제는 임의로는 약 0 wt% 내지 약 10 wt%, 또는 약 0.01 wt% 내지 약 8 wt%, 또는 약 0.1 wt% 내지 약 4 wt% 범위로 존재할 수 있다.
몰리브데늄-함유 성분
본원에서 윤활유 조성물은 또한 임의로는 하나 이상의 몰리브데늄-함유 화합물을 함유할 수 있다. 유용성 몰리브데늄 화합물은 항마모제, 항산화제, 마찰 개질제, 또는 이의 혼합물의 기능적 성능을 가질 수 있다. 유용성 몰리브데늄 화합물은 몰리브데늄 디티오카르바메이트, 몰리브데늄 디알킬디티오포스페이트, 몰리브데늄 디티오포스피네이트, 몰리브데늄 화합물의 아민 염, 몰리브데늄 잔테이트, 몰리브데늄 티오잔테이트, 몰리브데늄 술파이드, 몰리브데늄 카르복실레이트, 몰리브데늄 알콕시드, 3핵 오르가노-몰리브데늄 화합물, 및/또는 이의 혼합물을 포함할 수 있다. 몰리브데늄 술파이드는 몰리브데늄 디술파이드를 포함한다. 몰리브데늄 디술파이드는 안정한 분산액의 형태일 수 있다. 하나의 구현예에서, 유용성 몰리브데늄 화합물은 몰리브데늄 디티오카르바메이트, 몰리브데늄 디알킬디티오포스페이트, 몰리브데늄 화합물의 아민 염, 및 이의 혼합물로 이루어지는 군으로부터 선택될 수 있다. 하나의 구현예에서, 유용성 몰리브데늄 화합물은 몰리브데늄 디티오카르바메이트일 수 있다.
사용될 수 있는 몰리브데늄 화합물의 적합한 예는 하기와 같은 상품명으로 시판되는 시판 물질을 포함한다: 예컨대 R. T. Vanderbilt Co., Ltd.로부터의 Molyvan 822™, Molyvan™ A, Molyvan 2000TM 및 Molyvan 855TM, 및 Adeka Corporation에서 입수되는 Sakura-Lube™ S-165, S-200, S-300, S-310G, S-525, S-600, S-700, 및 S-710, 및 이의 혼합물. 적합한 몰리브데늄 성분은 본원에서 전체가 참조 인용되는 US 5,650,381; US RE 37,363 E1; US RE 38,929 E1; 및 US RE 40,595 E1 에 기재되어 있다.
또한, 몰리브데늄 화합물은 산성 몰리브데늄 화합물일 수 있다. 포함되는 것은 몰리브데늄산, 암모늄 몰리브데이트, 나트륨 몰리브데이트, 칼륨 몰리브데이트, 및 기타 알칼리 금속 몰리브데이트 및 기타 몰리브데늄 염, 예를들면, 히드로겐 나트륨 몰리브데이트, MoOCl4, MoO2Br2, Mo2O3Cl6, 몰리브데늄 트리산화물 또는 유사한 산성 몰리브데늄 화합물이다. 대안적으로 조성물에는, 예를 들어 미국 특허 번호 4,263,152; 4,285,822; 4,283,295; 4,272,387; 4,265,773; 4,261,843; 4,259,195 및 4,259,194; 및 미국 특허 공개 번호 2002/0038525 에 기재된 바와 같은 염기성 질소 화합물의 몰리브데늄/황 착물에 의해 몰리브데늄이 제공될 수 있다.
적합한 오르가노-몰리브데늄 화합물의 또다른 부류는 3핵 몰리브데늄 화합물, 예컨대 화학식 Mo3SkLnQz의 것 및 이의 혼합물이며, 여기서 S 는 황을 나타내고, L 은 화합물을 오일 중에 가용성 또는 분산성으로 만들기에 충분한 수의 탄소 원자를 갖는 오르가노 기를 갖는 독립적으로 선택된 리간드를 나타내고, n 은 1 내지 4 이고, k는 4 내지 7 에서 변화하고, Q 는 중성 전자 공여 화합물의 군, 예컨대 물, 아민, 알코올, 포스핀 및 에테르로부터 선택되고, z 는 0 내지 5 의 범위이고, 비화학량론적 값을 포함한다. 적어도 21 개의 전체 탄소 원자, 예컨대 적어도 25 개, 적어도 30 개, 또는 적어도 35 개의 탄소 원자가 모든 리간드의 오르가노 기 중에 존재할 수 있다. 추가 적합한 몰리브데늄 화합물은 본원에서 전체가 참조 인용되는 미국 특허 번호 6,723,685 에 기재되어 있다.
유용성 몰리브데늄 화합물은 약 0.5 ppm 내지 약 2000 ppm, 약 1 ppm 내지 약 700 ppm, 약 1 ppm 내지 약 550 ppm, 약 5 ppm 내지 약 300 ppm, 또는 약 20 ppm 내지 약 250 ppm 의 몰리브데늄을 제공하기에 충분량으로 존재할 수 있다.
추가 전이금속-함유 화합물
또 다른 구현예에서, 유용성 화합물은 추가 전이금속 함유 화합물 또는 반금속일 수 있다. 추가 전이금속은, 제한되지는 않지만, 바나듐, 구리, 아연, 지르코늄, 몰리브데늄, 탄탈, 텅스텐, 및 기타 등을 포함한다. 적합한 반금속은, 제한되지는 않지만, 붕소, 규소, 안티몬, 텔루륨, 및 기타 등을 포함한다.
점도 지수 개선제
본원에서 윤활유 조성물은 또한 임의로는 하나 이상의 점도 지수 개선제를 함유할 수 있다. 적합한 점도 지수 개선제는 폴리올레핀, 올레핀 공중합체, 에틸렌/프로필렌 공중합체, 폴리이소부텐, 수소화 스티렌-이소프렌 중합체, 스티렌/말레 에스테르 공중합체, 수소화 스티렌/부타디엔 공중합체, 수소화 이소프렌 중합체, 알파-올레핀 말레산 무수물 공중합체, 폴리메타크릴레이트, 폴리아크릴레이트, 폴리알킬 스티렌, 수소화 알케닐 아릴 공액 디엔 공중합체, 또는 이의 혼합물을 포함할 수 있다. 점도 지수 개선제는 성형 중합체 (star polymer)를 포함할 수 있고 적합한 예는 미국 특허 번호 8,999,905 B2 에 기재되어 있다.
본원에서 윤활유 조성물은 또한 임의로는 점도 지수 개선제 이외에 또는 점도 지수 개선제 대신에, 하나 이상의 분산제 점도 지수 개선제를 함유할 수 있다. 적합한 점도 지수 개선제는 관능화 폴리올레핀, 예를들면 아크릴화제 (예컨대, 말레산 무수물) 및 아민의 반응 생성물로 관능화된 에틸렌-프로필렌 공중합체; 아민으로 관능화된 폴리메타크릴레이트, 또는 아민과 반응된 에스테르화 말레산 무수물-스티렌 공중합체를 포함할 수 있다.
점도 지수 개선제 및/또는 분산제 점도 지수 개선제의 총량은 윤활 조성물의 약 0 wt% 내지 약 20 wt%, 약 0.1 wt% 내지 약 15 wt%, 약 0.1 wt% 내지 약 12 wt%, 또는 약 0.5 wt% 내지 약 10 wt% 일 수 있다.
기타 선택적 첨가제
기타 첨가제는 윤활 유체의 필요한 하나 이상의 기능을 수행하기 위해 선택될 수 있다. 또한, 언급된 첨가제 중 하나 이상은 다기능성일 수 있고, 본원에 규정된 기능 이외의 또는 그 밖의 기능을 제공한다.
본 개시에 따른 윤활 조성물은 임의로는 기타 성능 첨가제를 포함할 수 있다. 기타 성능 첨가제는 본 개시의 명시된 첨가제 이외의 것일 수 있고/있거나 금속 탈활성화제, 점도 지수 개선제, 세제, 무회 TBN 촉진제, 마찰 개질제, 항마모제, 부식 저해제, 녹 저해제, 분산제, 분산제 점도 지수 개선제, 극압제, 항산화제, 발포 저해제, 해유화제, 유화제, 유동점 강하제, 밀봉 팽윤제 및 이의 혼합물 중 하나 이상을 포함할 수 있다. 전형적으로, 완전-제형화된 윤활유는 이러한 성능 첨가제 중 하나 이상을 함유할 것이다.
적합한 금속 탈활성화제는 벤조트리아졸의 유도체 (전형적으로, 톨릴트리아졸), 디메르캅토티아디아졸 유도체, 1,2,4-트리아졸, 벤지미다졸, 2-알킬디티오벤지미다졸, 또는 2-알킬디티오벤조티아졸; 발포 저해제는 에틸 아크릴레이트 및 2-에틸헥실아크릴레이트 및 임의로는 비닐 아세테이트의 공중합체; 해유화제는 트리알킬 포스페이트, 폴리에틸렌 글리콜, 폴리에틸렌 산화물, 폴리프로필렌 산화물 및 (에틸렌 산화물-프로필렌 산화물) 중합체; 유동점 강하제는 말레산 무수물-스티렌의 에스테르, 폴리메타크릴레이트, 폴리아크릴레이트 또는 폴리아크릴아미드를 포함할 수 있다.
적합한 발포 저해제는 규소계 화합물, 예컨대 실록산을 포함한다.
적합한 유동점 강하제는 폴리메틸메타크릴레이트 또는 이의 혼합물을 포함할 수 있다. 유동점 강하제는 윤활유 조성물의 최종 중량을 기준으로 약 0 wt% 내지 약 1 wt%, 약 0.01 wt% 내지 약 0.5 wt%, 또는 약 0.02 wt% 내지 약 0.04 wt% 을 제공하기에 충분량으로 존재할 수 있다.
적합한 녹 저해제는 제1철 금속 표면의 부식을 저해하는 특성을 갖는 단일 화합물 또는 화합물들의 혼합물일 수 있다. 본원에서 유용한 녹 저해제의 비제한적 예는 유용성 고분자량 유기산, 예컨대 2-에틸헥산산, 라우르산, 미리스트산, 팔미트산, 올레산, 리놀레산, 리놀렌산, 베헨산, 및 세로트산, 및 유용성 폴리카르복실산, 예컨대 이량체 및 삼량체 산, 예컨대 톨유 지방산, 올레산, 및 리놀레산에서 생성된 것을 포함한다. 기타 적합한 부식 저해제는 장쇄 알파, 오메가-디카르복실산 (분자량이 약 600 내지 약 3000 범위임) 및 알케닐숙신산 (여기서, 알케닐기는 약 10 개 이상의 탄소 원자를 함유함), 예컨대 테트라프로페닐숙신산, 테트라데세닐숙신산, 및 헥사데세닐숙신산을 포함한다. 산성 부식 저해제의 또다른 유용한 유형은 폴리글리콜과 같은 알코올과 알케닐기에 약 8 내지 약 24 개의 탄소 원자를 갖는 알케닐 숙신산과의 하프 에스테르이다. 상기 알케닐 숙신산의 상응하는 하프 아미드가 또한 유용하다. 유용한 녹 저해제는 고분자량 유기산이다. 일부 구현예에서, 엔진 오일은 녹 저해제가 결핍되어 있다.
녹 저해제는 존재하는 경우 윤활유 조성물의 최종 중량을 기준으로 약 0 wt% 내지 약 5 wt%, 약 0.01 wt% 내지 약 3 wt%, 약 0.1 wt% 내지 약 2 wt%를 제공하기에 충분량으로 사용될 수 있다.
일반적 용어로, 크랭크케이스 윤활제는 아래 표에 열거된 범위로 첨가제 성분들을 포함할 수 있다.
성분 Wt. %
(포괄적)
Wt. %
(전형적)
분산제(들) 0.0 - 10% 1.0 -8.5%
항산화제(들) 0.0 - 5.0 0.01 - 3.0
금속 세제(들) 0.1 - 15.0 0.2 - 8.0
무회 TBN 촉진제(들) 0.0 - 1.0 0.01 - 0.5
부식 저해제(들) 0.0 - 5.0 0.0 - 2.0
금속 디히드로카르빌 디티오포스페이트(들) 0.1 - 6.0 0.1 - 4.0
무회 아민 포스페이트 염(들) 0.0 - 3.0 0.0 - 1.5
소포제(들) 0.0 - 5.0 0.001 - 0.15
항마모제(들) 0.0 - 10.0 0.0 - 5.0
유동점 강하제(들) 0.0 - 5.0 0.01 - 1.5
점도 지수 개선제(들) 0.0 - 20.00 0.25 - 10.0
분산제 점도 지수 개선제(들) 0.0 - 10.0 0.0 - 5.0
마찰 개질제(들) 0.01 - 5.0 0.05 - 2.0
기유(들) 나머지 나머지
전체 100 100
상기 각 성분의 백분율은 최종 윤활유 조성물의 중량을 기준으로 하는 각 성분의 중량 백분율을 나타낸다. 윤활유 조성물의 나머지는 하나 이상의 기유들로 이루어진다.
본 발명의 윤활유 조성물은 윤활유 조성물의 전체 중량 기준으로 1.0 wt.% 미만 또는 0.8 wt.% 미만의 황산화 회분을 가질 수 있다. 구현예에서 황산화 회분 함량 범위는, 윤활유 조성물의 전체 중량 기준으로 약 0.5 wt.% 내지 약 1.0 wt.%, 또는 약 0.7 wt.% 내지 약 1.0 wt.%이다.
더욱 상세하게 하기되는 바와 같이, 본 개시물의 구현예들은 윤활유 조성물에서 상대적으로 높은 칼슘 세제 농도를 유지하면서 LSPI 이벤트 감소에 대한 유의하고 예기치 못한 개선을 제공한다. 각각의 전기 구현예에서, 저속 조기-점화 감소 첨가제 조성물은 적어도 50% 또는 적어도 75%까지 LSPI 이벤트 회수를 줄인다. 각각의 전기 구현예에서, LSPI 이벤트는 25,000회 엔진 사이클 동안의 LSPI 카운트이고, 엔진은 분당 2000 회전수로 작동되고, 제동평균유효압력은18,000 kPA이다.
본원에 기재된 조성물을 제형화하는데 사용된 첨가제는 개별적으로 또는 다양한 하위-조합으로 기유에 배합될 수 있다. 그러나, 첨가제 농축물 (즉, 첨가제 + 희석제, 예컨대 탄화수소 용매)을 사용하여 동시에 모든 성분을 배합하는 것이 적합할 수 있다. 본원에 기재된 조성물을 제형화하는데 사용된 첨가제는 개별적으로 또는 다양한 하위-조합으로 기유에 배합될 수 있다. 그러나, 첨가제 농축물 (즉, 첨가제 + 희석제, 예컨대 탄화수소 용매)을 사용하여 동시에 모든 성분을 배합하는 것이 적합할 수 있다.
본 개시물은 자동차 엔진 윤활제로서 사용되도록 특히 제제되는 새로운 윤활유 블렌드를 제공한다. 본 개시물의 구현예들은 하나 이상의 다음 특성들에 대한 개선을 제공하는 엔진 적용 분야에 적합한 윤활유를 제공할 수 있다: 저속 조기-점화 이벤트, 항산화성, 항마모 성능, 녹 방지, 연료 경제성, 내수성, 공기 유입, 밀폐 보호, 침착 감소, 즉 TEOST 33 테스트 통과, 및 거품 감소 특성.
완전 제형화 윤활제는 통상 제형에서 요구되는 특성을 공급하기 위하여 이하 분산제/저해제 패키지 또는 DI 패키지로 칭하는 첨가제 패키지를 함유한다. 적합한 DI 패키지는 예를들면 미국 특허 번호 5,204,012 및 6,034,040에 기재된다. 첨가제 패키지에 포함되는 첨가제 유형 중, 분산제, 밀봉 팽윤제, 항산화제, 거품 저해제, 윤활성 향상제, 녹 저해제, 부식 저해제, 해유화제, 점도 지수 개선제, 및 기타 등이 있다. 이들 여러 성분들은 당업자에게 잘 알려져 있고 본원에 기술되는 첨가제 및 조성물과 통상적인 함량으로 일반적으로 사용된다.
하기 실시예는 본 개시의 방법 및 조성물의 예시이나, 이에 제한되지는 않는다. 분야에서 일반적으로 접하고 당업자에게 명백한 다양한 조건 및 매개변수의 기타 적합한 변형 및 적합화는, 본 개시의 취지 및 범주 내에 있다. 본원에 언급된 모든 특허 및 문헌은 본원에서 그 전체가 완전히 전체가 참조 인용된다.
실시예들
통상의 첨가제를 함유한 완전 제형화 윤활유 조성물을 제조하고 윤활유 조성물의 저속 조기-점화 이벤트를 측정하였다. 각각의 윤활유 조성물은 대부분이 기유, 기초적인 통상의 DI 패키지와 점도 지수 개선제(들)를 함유하며, (점도 지수 개선제보다 적은) 기초적인DI 패키지는 윤활유 조성물의 약 8 내지 12 중량%를 제공한다. 기초적인DI 패키지는 아래 표 3에 제시되는 통상적 함량의 분산제(들), 항마모 첨가제(들), 소포제(들), 및 항산화제(들)을 함유한다. 상세하게는, 기초적인DI 패키지는 숙신이미드 분산제, 보레이트화 숙신이미드 분산제, 약 80 ppm의 몰리브데늄을 윤활유 조성물에 전달할 수 있는 함량의 몰리브데늄-함유 화합물, 유기 마찰 개질제, 하나 이상의 항산화제, 및 하나 이상의 항마모제 (달리 명시되지 않는 한)를 함유하였다. 기초적인DI 패키지는 또한 약 5 내지 약 10 wt%의 하나 이상의 점도 지수 개선제와 혼련되었다. 그룹 I 기유는 희석제로 사용되었다. 대부분의 기유 (약 78 내지 약 87 wt%)는 그룹 III 기유이다. 변경되는 성분들을 표 및 아래 실시예들의 논의에서 특정하였다. 나열된 모든 값들은 달리 명시되지 않는 한 윤활유 조성물 (즉, 활성 성분 + 존재한다면, 희석 오일) 에서의 성분 중량%로 언급된다.
표 3 - 기초적인 DI 패키지 조성물
성분 Wt. %
항산화제(들) 0.5 내지 2.5
항마모제(들), 임의의 금속 디히드로카르빌 디티오포스페이트 포함 0.7 내지 5.0
소포제(들) 0.001 내지 0.01
세제(들)* 0.0
분산제 (들) 2.0 내지 6.0
금속-함유 마찰 개질제(들) 0.05 내지 1.25
무금속 마찰 개질제(들) 0.01 내지 0.5
유동점 강하제(들) 0.05 내지 0.5
프로세스 오일 0.25 내지 1.0
*세제는 다음 실험들에서 변동되고, 기초 제형 목적으로, 세제 함량은 0으로 설정된다.
저속 조기-점화 (LSPI) 이벤트는 GM 2.0 리터, 4 실린더 에코텍 (Ecotec) 터보과급 가솔린 직접 분사 (TGDi) 엔진에서 측정되었다. 하나의 완전한 LSPI 연소 엔진 테스트은 4 테스트 사이클들로 이루어진다. 단일 테스트 사이클에서, 2 작동 단계들 또는 구획들이 반복되어 LSPI 이벤트를 발생시킨다. LSPI 발생 가능성이 가장 높은 단계 A에서, 엔진은 약 2000 rpm 및 약 18,000 kPa 제동평균유효압력 (BMEP)에서 작동된다. LSPI 발생 가능성이 낮은 단계 B에서, 엔진은 약 1500 rpm 및 약 17,000 kPa BMEP에서작동된다. 각각의 단계에서, 25,000 엔진 사이클들에 걸쳐 데이터를 수집한다. 테스트 사이클 구조는 다음과 같다: 단계 A - 단계 A - 단계 B - 단계 B - 단계 A - 단계 A. 각각의 단계는 아이들 구간에 의해 나누어진다. 단계 A에서 LSPI는 통계적으로 유의하고, 본 실시예들에서 고려되는 LSPI 이벤트 데이터는 단계 A 작동 과정에서 발생되는 LSPI만을 포함하였다. 따라서, 하나의 완전한 LSPI 연소 엔진 테스트에서, 데이터는 전형적으로 전체 16 단계들에 걸쳐 발생하였고 비교 및 본 발명 오일들의 성능 평가가 활용되었다.
LSPI 이벤트는 피크 실린더 압력 (ΡΡ)과 연소실에서 2%의 연소성 물질이 연소될 때 (MFB02)를 감시함으로써 결정되었다. 피크 실린더 압력에 대한 임계값은 각각의 실린더 및 각각의 단계에 대하여 계산하고 전형적으로 65,000 내지 85,000 kPa이다. MFB02에 대한 임계값은 각각의 실린더 및 각각의 단계에 대하여 계산하고 전형적으로 약 3.0 내지 약 7.5 크랭크 각도 (CAD) 상사점 후 (After Top Dead Center, ATDC) 범위이다. 단일 엔진 사이클에서 PP 및 MFB02 임계값들 모두가 초과될 때 LSPI가 기록되었다. LSPI 이벤트는 여러 방식으로 보고될 수 있다. 상이한 횟수의 엔진 사이클로 상이한 연소 엔진 테스트가 수행될 수 있는, 엔진 사이클 당 카운트 보고와 관련된 모호성을 없애기 위하여, 비교 및 본 발명 오일들의 상대 LSPI 이벤트가 “LSPI 비율”로서 보고되었다. 이러한 방식으로 일부 표준 응답에 대한 개선이 명백하게 결정된다.
모든 기준 오일들은 상업적으로 입수 가능한 엔진 오일들이고, 모든 ILSAC GF-5 성능 요건을 만족한다.
다음 실시예들에서, 과염기성 칼슘 세제 및 중성/저염기성 칼슘 세제의 조합을 기초 제형과 함께 시험하였다. LSPI 비율은 기준 오일 “R-1”의 LSPI 이벤트에 대한 테스트 오일의 LSPI 이벤트의 비율로 보고되었다. R-1은 기초적인DI 패키지 및 약 2400 ppm의 Ca을 윤활유 조성물에 제공하기에 충분한 함량의 과염기성 칼슘 세제로 제제되는 윤활유 조성물이었다. 기준 오일 R-1에 대한 더욱 상세한 제형 정보는 하기된다. R-1에 대하여 50%를 초과하는 LSPI 이벤트 감소 (0.5 미만의 LSPI 비율)가 있을 때 LSPI에 있어서 상당한 개선이 인정된다. 70%를 초과하는 LSPI 이벤트 감소 (0.3 미만의 LSPI 비율)가 있을 때 LSPI에 있어서 추가적인 개선이 인정되고, 75%를 초과하는 LSPI 이벤트 감소 (0.25 미만의 LSPI 비율)가 있을 때 LSPI에 있어서 더욱 추가적인 개선이 인정되고, R-1에 대하여 80%를 초과하는 LSPI 이벤트 감소 (0.20 미만의 LSPI 비율)가 있을 때 LSPI에 있어서 더욱 추가적인 개선이 인정되고, R-1에 대하여 90%를 초과하는 LSPI 이벤트 감소 (0.10 미만의 LSPI 비율)가 있을 때 LSPI에 있어서 더욱 추가적인 개선이 인정된다. R-1 기준 오일에 대한 LSPI 비율은 따라서 1.00로 간주된다.
완전 제형화 윤활유 조성물에서 황산화 회분 (SASH) 함량은 http://konnaris.com/portals/0/search/calculations.htm에 따라 윤활제 조성물에서 각각의 금속 원소 함량과 곱하는 다음 인자들에 의해 윤활제 조성물에서 SASH에 기여하는 금속 원자에 해당되는 SASH의 합으로 계산되었다:
Figure 112018012154400-pct00003
기준 오일로서 상업적 오일들, R-1 및 R-2이 포함되어 본 분야의 현재 기술 수준을 보인다. 기준 오일 R-1은 약 80.7 wt.%의 그룹 III 기유, Afton Chemical Corporation에서 입수되는 12.1 wt.%의 HiTEC® 11150 PCMO 첨가제 패키지 및 7.2 wt.%의 35 SSI 에틸렌/프로필렌 공중합체 점도 지수 개선제로 제제된다 . HiTEC® 11150 승용차 모터 오일 첨가제 패키지는 API SN, ILSAC-GF-5, 및 ACEA A5/B5 품질의 DI 패키지이다. R-1 또한 다음의 특성 및 부분 원소 분석을 보인다:
Figure 112018012154400-pct00004
기준 오일 R-2는 중량 기준으로 약 2600 ppm의 Ca을 윤활유 조성물에 제공할 수 있는 함량의 과염기성 칼슘 세제를 함유한다. R-2는 또한 티타늄 화합물을 포함하고 윤활성 조성물 R-2에 존재하는 중량 기준으로 약 100 ppm의 티타늄을 ICP 분석으로 측정하였다.
실시예 1
윤활유 조성물에서 상이한 함량의 티타늄에 의한 LSPI 비율에 대한 영향을 시험하였다. 기초 제형 (base formulation)과 함께 과염기성 칼슘 세제 (“OB”) 및 티타늄-함유 화합물의 조합을 시험하였다. 제형 R-1은, 상기와 같이, 중량 기준으로 약 2400 ppm의 Ca을 윤활유 조성물에 제공하는 함량으로 유일한 세제로서 과염기성 칼슘 세제를 함유하였다. 제형 R-2는 약간 더 많은 칼슘, 및 100 ppm 티타늄을 함유하였다.
비교 제형 C-1은 중량 기준으로 1600 ppm의 Ca을 윤활유 조성물에 제공하는 함량으로 유일한 세제로서 과염기성 칼슘 세제를 함유하였다. 비교 제형 C-2는 중량 기준으로 2400 ppm의 Ca을 윤활유 조성물에 제공하는 함량으로 과염기성 칼슘 세제를 함유하였다. 제형 C-2는 또한 중량 기준으로 약 300 ppm의 티타늄을 윤활유 조성물에 제공하는 함량으로 티타늄 이소프로폭시드 및 네오데칸산의 반응 생성물을 함유하였다.
본 발명의 제형들 I-1, I-2, I-3 및 I-4에서, 과염기성 칼슘 세제는 중량 기준으로 1600 또는 1575 ppm의 칼슘을 윤활유 조성물에 제공할 수 있는 함량으로 포함되었다. 티타늄 이소프로폭시드 및 네오데칸산의 반응 생성물을 이용하여 다양한 함량의 티타늄을 각각의 조성물에 제공하였다. 티타늄 함량 및 결과를 다음 표에 제시한다.
R-1 R-2 C-1 C-2 I-1 I-2 I-3 I-4
OB Ca, ppmw 2400 2600 1600 2400 1600 1575 1575 1600
Ti, ppmw 0 100 0 300 25 100 300 1000
LSPI 비율 1 1.18 0.22 0.83 0.16 0.14 0.05 0.00
황산화 회분 (SASH), wt.% 1.05 1.11 0.76 1.08 0.77 0.78 0.81 0.93
기준 오일로서 상업적 오일들, R-1 및 R-2이 포함되어 본 분야의 현재 기술 수준을 보인다. 제형들 R-1 및 R-2 모두는 높은 칼슘 함량을 가지는 칼슘-함유 세제를 함유한다. R-1 및 R-2는 ILSAC GF-5에 대한 모든 성능 요건들을 만족한다. 비교 실시예들 C-1 및 C-2는 SASH 및/또는 증가된 티타늄 함량에 의한 LSPI 비율에 대한 영향을 보이도록 제공되는 윤활제 조성물이다.
표 4에서 보이듯이, 제형들 R-1 및 R-2는 높은 함량의 Ca를 함유하는 조성물에 단지 티타늄을 첨가하면 LSPI 비율을 개선하지 않는다는 것을 보인다. 비교 제형 C-1은 제형들 R-1, R-2 및 C-2에 함유된 것에 비하여 과염기성 칼슘 세제 함량의 감소는 LSPI 비율을 줄인다는 것을 보인다. 본 발명 제형들 I-1, I-2, I-3 및 I-4는, 비교 제형 C-1과 비교할 때 감소된 칼슘 함량을 함유하는 제형들에 티타늄을 첨가하면, LSPI 비율을 더욱 감소시키고, 칼슘 함량을 상대적으로 일정하게 유지하면서 티타늄 함량을 높이면, 유의한, 예기치 못한 추가적인 LSPI 비율 감소를 제공한다는 것을 보인다.
R-2, C-2 및 I-2를 비교하면 조성물에 단지 티타늄을 첨가하면 반드시 더 낮은 LSPI 비율을 얻지는 못한다는 것을 보인다. 특히, 매우 높은 함량의 과염기성 Ca 세제가 윤활제 조성물에 포함되면, 예컨대 Ca 함량이 중량 기준으로 약 2400 ppm 이상일 때, 충분한 LSPI 비율 감소를 제공하기 위하여는, LSPI 비율에 대한 높은 Ca 함량의 부정적인 영향을 보완하기 위하여 다량의 티타늄이 필요할 것이다. 제형들 R-2 및 C-2 에서 1보다 큰 허용될 수 없는 높은 SASH 함량은 이러한 방안이 좋지 않다는 것을 보인다. 그러나, 본 발명 실시예들 I-1 내지 I-4의 결과들을 비교할 때 SASH 함량 증가는 LSPI 비율에 대하여 부정적인 영향을 미치지 않는다는 것은 예상치 못한 것이었다. 이들 실시예의 SASH 함량이 증가되면, LSPI 비율은 감소된다.
실시예 2
본 실시예에서는 윤활유 조성물에 상이한 공급원 으로부터의 티타늄이 포함될 때의 영향을 측정하였다. 제형들 R-1 및 C-1은, 실시예 1에서 상기된 바와 같이, 비교 목적으로 사용되었다. 추가로, 본 실시예 2에서 본 발명 실시예 I-2는 또한 실시예 1에서와 동일하다. 실시예 2의 각각의 I-2, I-5, 및 I-6 실험 조성물에서, 과염기성 칼슘 세제는 중량 기준으로 약 1575 ppm의 Ca을 각각의 윤활유 조성물에 공급할 수 있는 함량으로 포함되었다. 제형 I-2는 티타늄 공급원으로서 티타늄 이소프로폭시드 및 네오데칸산의 반응 생성물을 이용하였다. 제형 I-5는 티타늄 공급원으로서 티타늄 이소프로폭시드를 이용하였다. 제형 I-6에서 티타늄-함유 분산제가 티타늄 공급원으로서 이용되었다. 결과를 표 5에 제시한다.
R-1 C-1 I-2 I-5 I-6
OB Ca, ppmw 2400 1600 1575 1575 1575
Ti, ppmw 0 0 100 100 100
LSPI 비율 1 0.22 0.14 0.12 0.15
표 5에 제시된 바와 같이, 윤활유 조성물에 사용되는 각각의 상이한 티타늄 공급원은 LSPI 비율 감소에 효과적이었다.
실시예 3
본 실시예에서, 과염기성 칼슘 세제 및 저염기성/중성 (“LB/N”) 칼슘 세제 모두를 포함하는 조성물에 티타늄 첨가로 인한 영향을 측정하였다. 제형들 R-1, R-2, 및 C-1는, 상기 실시예들 1-2에 기재된 바와 같이, 모두 본 실시예에서 적용되었다. 제형 C-3 또한 포함되어 티타늄 첨가 없이 과염기성 및 저염기성/중성 칼슘 세제 조합의 이용에 따른 영향을 시험하였다.
본 발명 조성물 I-7, I-8, 및 I-9 또한 과염기성 및 저염기성/중성 칼슘 세제를 포함하였다. 세제 및 티타늄의 피험 함량 및 이들 조성물의 시험 결과를 표 6에 보인다.
R-1 R-2 C-1 C-3 I-7 I-8 I-9
OB Ca, ppmw 2400 2600 1600 1350 1325 1300 1325
LB/N Ca, ppmw 0 0 0 125 125 125 125
전체 Ca, ppmw 2400 2600 1600 1475 1450 1425 1450
Ti, ppmw 0 100 0 0 25 100 300
LSPI 비율 1 1.18 0.22 0.24 0.03 0.07 0.01
황산화 회분, wt.% 1.05 1.11 0.76 0.723 0.727 0.74 0.773
제형 C-3과 제형들 I-7, I-8, 및 I-9의 결과를 비교하면 과염기성 및 저염기성/중성 칼슘 세제 모두를 가지는 조성물에 티타늄을 첨가하면 유의한 LSPI 비율 감소를 제공한다는 것을 보인다.
실시예 4
윤활유 조성물에서 상이한 함량의 텅스텐 첨가가 LSPI 비율에 미치는 영향을 시험하였다. 기초 제형과 함께 텅스텐-함유 화합물 첨가를 시험하였다. 제형 R-1은, 상기와 같이, 유일한 세제로서 중량 기준으로 약 2400 ppm의 Ca을 윤활유 조성물에 제공하는 함량의 과염기성 칼슘 세제를 함유하였다. 비교 제형 C-1은 유일한 세제로서 중량 기준으로1600 ppm의 Ca을 윤활유 조성물에 제공하는 함량의 과염기성 칼슘 세제를 함유하였다. 비교 제형 C-2는 1600 ppm의 칼슘을 윤활유 조성물에 전달할 수 있는 함량의 과염기성 칼슘 술포네이트 및 중량 기준으로 약 100 ppm의 텅스텐을 윤활유 조성물에 제공하는 함량의 유용성 텅스텐-함유 화합물 (Vanderbilt Chemicals, LLC에서 입수되는 VanLube™ W-324)을 함유하였다.
본 발명 제형 I-1은 1600 ppm의 칼슘을 윤활유 조성물에 전달할 수 있는 함량의 과염기성 칼슘 술포네이트 및 중량 기준으로 약 300 ppm의 텅스텐을 윤활유 조성물에 제공하기에 충분한 함량의 유용성 텅스텐-함유 화합물 (Vanderbilt Chemicals, LLC에서 입수되는 VanLube™ W-324)을 함유하였다. 텅스텐 함량 및 결과를 다음 표에서 보인다.
R-1 C-1 C-2 I-1
OB Ca, ppmw 2400 1600 1600 1600
텅스텐, ppmw 0 0 100 300
LSPI 비율 1.000 0.218 0.213 0.087
기준 오일로서 상업적 오일, R-1은 본 분야의 현재 기술 수준을 보이기 위하여 포함된다. R-1은 ILSAC GF-5에 대한 모든 성능 요건들을 만족한다. 비교 실시예들 C-1 및 C-2는 중량 기준으로 전체 윤활유 조성물의 100 ppm 텅스텐에 의한 LSPI 비율에 대한 영향을 보이도록 제공되는 윤활제 조성물이다.
표 7에 도시된 바와 같이, 비교 제형 C-1은 제형 R-1에 포유되는 함량에 비하여, 과염기성 칼슘 세제 함량 감소로 LSPI 비율이 감소된다는 것을 보인다. 비교 제형 C-2는 중량 기준으로 100 ppm의 텅스텐을 윤활유 조성물에 첨가하면 LSPI 비율을 최소 함량만큼 감소시킨다는 것을 보인다. 본 발명 제형 I-1은, 비교 제형 C-1과 비교될 때 중량 기준으로 300 ppm의 텅스텐을 제형에 포함하면, 예기치 못한 정도로 LSPI 비율을 더욱 줄인다는 것을 보였다. 이러한 본 발명 조성물은 칼슘 함량을 상대적으로 일정하게 유지하면서 텅스텐 함량을 증가하면 유의한, 예기치 못한 추가적인 LSPI 비율 감소를 제공한다는 것을 보였다.
본 명세서 전체의 다수의 장소에서, 다수의 미국 특허 및 기타 문헌을 참조했다. 모든 그러한 언급된 문헌은 마치 본원에 전부 제시된 것처럼 본 공개에 전부 명백히 포함된다.
본 개시물의 기타 구현예는 명세서를 고려하여 그리고 본원에 개시된 구현예의 실시로부터 당업자에게 명백할 것이다. 명세서 및 청구항 전반에 걸쳐 사용된, 단수 표현은 하나보다는 하나 이상을 나타낼 수 있다. 달리 나타내지 않는 한, 명세서 및 청구항에서 사용된 성분, 특성의 양을 표현하는 모든 숫자, 예컨대 분자량, 백분율, 비율, 반응 조건 등은, 용어 "약" 이 존재하든지 존재하지 않든지 간에 용어 "약" 에 의해 모든 경우에서 변형되는 것으로 이해된다. 따라서, 달리 나타내지 않는 한, 명세서 및 청구항에 제시된 숫자 매개변수는 본 개시에 의해 얻어질 것으로 생각되는 원하는 특성에 따라 변화할 수 있는 근사치이다. 적어도, 및 청구항의 범주에 대한 균등론의 적용을 제한하고자 하지 않으면서, 각각의 수치 매개변수는 적어도 보고된 유효 숫자의 수에 비추어 및 보통의 반올림 기법을 적용하여 이해된다. 본 개시물의 넓은 범주를 제시하는 수치 범위 및 매개변수는 근사치임에도 불구하고, 특정 실시예에 제시된 수치 값은 가능한 한 정확하게 보고된다. 그러나, 임의의 수치 값은 내재적으로 이의 각각의 시험 측정에서 밝혀진 표준 편차로부터 필연적으로 야기되는 특정 오류를 포함한다. 명세서 및 실시예는, 하기 청구항에 의해 나타내어지는 본 개시의 실제 범주 및 취지와 함께, 오로지 예시적인 것으로 고려됨이 의도된다.
상기 구현예는 실시할 때 상당히 변화될 수 있다. 따라서, 구현예를 본원에서 위에 제시된 특정 예시에 제한하려는 의도는 없다. 오히려, 상기 구현예들은 법에 따라 이용가능한 그의 균등물을 포함하는 청구범위의 주제 및 범위 내에 있다.
특허권자는 어떠한 개시된 구현예도 대중에게 헌정하려고 의도하지 않고, 어떠한 개시된 수식 또는 변경도 문자 그대로 청구범위에 속하지 않을 수 있을 정도로, 그들은 균등론 하에 본원의 일부로 여겨진다.
본원에 개시된 각각의 성분, 화합물, 치환기 또는 매개변수는 단독으로 또는 본원에 개시된 하나 이상의 각각 및 모든 다른 성분, 화합물, 치환기 또는 매개변수와 조합하여 사용되는 것으로 개시된다고 해석된다.
또한 본원에 개시된 각각의 성분, 화합물, 치환기 또는 매개변수에 대한 각각의 함량/값 또는 함량/값의 범위는 본원에 개시된 임의의 다른 성분(들), 화합물(들), 치환기(들) 또는 매개변수(들)에 대한 각각의 함량/값 또는 함량/값의 범위와 조합되는 것으로 개시되고 본원에 개시된 둘 이상의 성분(들), 화합물(들), 치환기(들) 또는 매개변수의 함량/값 또는 함량/값의 범위에 대한 임의의 조합은 따라서 본 설명 목적에 따라 각각의 다른 것과 조합되는 것으로 개시된다고 해석된다.
추가로 본원에 개시된 각각의 범위는 개시된 범위 내에서 동일한 유효숫자를 가지는 각각의 특정 값의 개시로 이해된다. 따라서, 1-4의 범위는 1, 2, 3 및 4 값들에 대한 명백한 개시로 해석된다.
추가로 본원에 개시된 각각의 범위에 대한 각각의 하한은 동일한 성분, 화합물, 치환기 또는 매개변수에 대하여 본원에 개시된 각각의 범위에서 각각의 상한 및 각각의 범위 내에서 각각의 특정 값과 조합하여 개시되는 것으로 해석된다. 따라서, 각각의 범위의 각각의 하한과 각각의 범위의 각각의 상한 또는 각각의 범위 내의 각각의 특정 값과의 조합 또는 각각의 범위의 각각의 상한과 각각의 범위 내의 각각의 특정 값과의 조합으로 유도되는 모든 범위의 개시로 해석된다.
추가로, 설명 또는 실시예에서 개시된 성분, 화합물, 치환기 또는 매개변수의 특정 함량/값은 범위의 하한 또는 상한의 개시로 해석되고 따라서 본원에서 개시된 동일한 성분, 화합물, 치환기 또는 매개변수에 대한 범위의 임의의 다른 하한 또는 상한 또는 특정 함량/값과 조합되어 이러한 성분, 화합물, 치환기 또는 매개변수에 대한 범위를 형성한다.

Claims (23)

  1. 윤활유 조성물로서,
    50 wt.% 초과의 윤활 점도의 기유,
    중량 기준으로 상기 윤활유 조성물의 전체 중량에 대하여 1100 ppm 내지 1800 ppm 미만의 칼슘을 윤활유 조성물에 제공하기에 충분한 함량의 ASTM D-2896 방법으로 측정될 때 225 mg KOH/g 초과의 전체 염기 수를 가지는 하나 이상의 과염기성 칼슘-함유 세제, 및
    다음 a), b), 또는 c) 중 하나를 포함하는 저속 조기-점화 감소 첨가제 조성물을 포함하고:
    (a) 중량 기준으로 상기 윤활유 조성물의 전체 중량에 대하여, 윤활유 조성물에 10 ppm 내지 1500 ppm의 티타늄을 제공하기에 충분한 함량의 하나 이상의 유용성 티타늄-함유 화합물, 및 ASTM D-2896 방법으로 측정될 때 최대 175 mg KOH/g의 전체 염기 수를 가지는 적어도 0.2 wt.%의 적어도 하나의 저염기성/중성 세제, 및 선택적으로 윤활유 조성물에 125 내지 1000 ppm의 텅스텐을 제공하기에 충분한 함량의 하나 이상의 텅스텐-함유 화합물,
    (b) 중량 기준으로 상기 윤활유 조성물의 전체 중량에 대하여, 윤활유 조성물에 300 ppm 내지 1500 ppm의 티타늄을 제공하기에 충분한 함량의 하나 이상의 유용성 티타늄-함유 화합물, 및 선택적으로 윤활유 조성물에 125 내지 1000 ppm의 텅스텐을 제공하기에 충분한 함량의 하나 이상의 텅스텐-함유 화합물, 및
    (c) 상기 윤활유 조성물의 전체 중량에 대하여 윤활유 조성물에 125 ppm 내지 1000 ppm의 텅스텐을 제공하기에 충분한 함량의 하나 이상의 텅스텐-함유 화합물, 및 중량 기준으로 상기 윤활유 조성물의 전체 중량에 대하여 윤활유 조성물에 0.5 ppm 내지 300 ppm의 몰리브데늄을 제공하기에 충분한 함량의 하나 이상의 몰리브데늄-함유 화합물,
    상기 첨가제 조성물은, 하나 이상의 상기 유용성 티타늄-함유 화합물 및/또는 하나 이상의 상기 텅스텐-함유 화합물이 없는 동일한 윤활유 조성물로 윤활되는 동일한 엔진에서의 저속 조기-점화 이벤트 회수와 비교할 때, 상기 윤활유 조성물로 윤활되는 배력 내부 연소 엔진에서 저속 조기-점화 이벤트를 줄이는데 효과적인, 윤활유 조성물.
  2. 제1항에 있어서, 하나 이상의 상기 과염기성 칼슘-함유 세제는 과염기성 칼슘 술포네이트 세제, 과염기성 칼슘 페네이트 세제, 및 과염기성 칼슘 살리실레이트 세제에서 선택되는 화합물을 포함하는, 윤활유 조성물.
  3. 제1항에 있어서, 상기 윤활유 조성물은 하나 이상의 유용성 티타늄-함유 화합물을 포함하는, 윤활유 조성물.
  4. 제3항에 있어서, 하나 이상의 상기 유용성 티타늄-함유 화합물은 티타늄 이소프로폭시드 및 네오데칸산의 반응 생성물; 티타늄 이소프로폭시드; 티타늄-함유 분산제 및 이의 혼합물로 이루어진 군에서 선택되는, 윤활유 조성물.
  5. 제3항에 있어서, 하나 이상의 상기 유용성 티타늄-함유 화합물은 중량 기준으로 상기 윤활유 조성물의 전체 중량에 대하여 25 ppm 내지 1000 ppm의 티타늄을 상기 윤활유 조성물에 제공하는, 윤활유 조성물.
  6. 제1항에 있어서, 상기 윤활유 조성물은 하나 이상의 텅스텐-함유 화합물을 포함하는, 윤활유 조성물.
  7. 제6항에 있어서, 하나 이상의 상기 텅스텐-함유 화합물은 알킬 또는 아릴-치환된 암모늄 텅스테이트이고, 상기 알킬기 및 아릴기 각각은 6-30 개의 탄소 원자를 가지는, 윤활유 조성물.
  8. 제1항에 있어서, 마찰 개질제, 항마모제, 분산제, 항산화제, 및 점도 지수 개선제로 이루어진 군에서 선택되는 하나 이상의 성분들을 더욱 포함하는, 윤활유 조성물.
  9. 제1항에 있어서, 상기 50 wt.% 초과의 기유는 그룹 II, 그룹 III, 그룹 IV, 그룹 V 기유들, 및 둘 이상의 상기 기유들의 조합으로 이루어진 군에서 선택되고, 상기 50 wt.% 초과분의 기유는 상기 조성물에서 첨가제 성분들 또는 점도 지수 개선제의 제공으로 인한 희석 오일 외의 것인, 윤활유 조성물.
  10. 제1항에 있어서, 상기 윤활유 조성물은 1.0 wt.% 미만의 황산화 회분 및 중량 기준으로 상기 윤활유 조성물의 전체 중량에 대하여 1200 ppm 내지 1800 ppm 미만의 칼슘을 상기 윤활유 조성물에 제공하기 위한 하나 이상의 상기 과염기성 칼슘-함유 세제를 가지는, 윤활유 조성물.
  11. 제1항에 있어서, ASTM D-2896 방법으로 측정될 때 최대 175 mg KOH/g의 전체 염기 수를 가지는 적어도 0.2 wt.%의 저염기성/중성 세제를 포함하는, 윤활유 조성물.
  12. 제11항에 있어서, 상기 저염기성/중성 세제는 칼슘 술포네이트 세제를 포함하는, 윤활유 조성물.
  13. 제1항에 있어서, 상기 저속 조기-점화 이벤트는 25,000회 엔진 사이클 동안의 저속 조기-점화 카운트이고, 상기 엔진은 분당 2000 회전수로 작동되고, 제동 평균 유효압력은18,000 kPA인, 윤활유 조성물.
  14. 배력 내부 연소 엔진에서 저속 조기-점화 이벤트를 감소시키는 방법으로서,
    윤활유 조성물로 배력 내부 연소 엔진을 윤활하는 단계; 및
    상기 윤활유 조성물로 윤활되는 상기 엔진을 작동하는 단계를 포함하되, 상기 윤활유 조성물은,
    50 wt.% 초과의 윤활 점도의 기유,
    중량 기준으로 상기 윤활유 조성물의 전체 중량에 대하여 1100 ppm 내지 1800 ppm 미만의 칼슘을 윤활유 조성물에 제공하기에 충분한 함량의 ASTM D-2896 방법으로 측정될 때 225 mg KOH/g 초과의 전체 염기 수를 가지는 하나 이상의 과염기성 칼슘-함유 세제, 및
    추가로 다음 a), b), 또는 c) 중 하나를 포함하는 첨가제 조성물을 포함하고:
    (a) 중량 기준으로 상기 윤활유 조성물의 전체 중량에 대하여, 윤활유 조성물에 10 ppm 내지 1500 ppm의 티타늄을 제공하기에 충분한 함량의 하나 이상의 유용성 티타늄-함유 화합물, 및 ASTM D-2896 방법으로 측정될 때 최대 175 mg KOH/g의 전체 염기 수를 가지는 적어도 0.2 wt.%의 적어도 하나의 저염기성/중성 세제, 및 선택적으로 윤활유 조성물에 125 내지 1000 ppm의 텅스텐을 제공하기에 충분한 함량의 하나 이상의 텅스텐-함유 화합물,
    (b) 중량 기준으로 상기 윤활유 조성물의 전체 중량에 대하여, 윤활유 조성물에 300 ppm 내지 1500 ppm의 티타늄을 제공하기에 충분한 함량의 하나 이상의 유용성 티타늄-함유 화합물, 및 선택적으로 윤활유 조성물에 125 내지 1000 ppm의 텅스텐을 제공하기에 충분한 함량의 하나 이상의 텅스텐-함유 화합물, 및
    (c) 상기 윤활유 조성물의 전체 중량에 대하여 윤활유 조성물에 125 ppm 내지 1000 ppm의 텅스텐을 제공하기에 충분한 함량의 하나 이상의 텅스텐-함유 화합물, 및 중량 기준으로 상기 윤활유 조성물의 전체 중량에 대하여 윤활유 조성물에 0.5 ppm 내지 300 ppm의 몰리브데늄을 제공하기에 충분한 함량의 하나 이상의 몰리브데늄-함유 화합물,
    이로써 하나 이상의 상기 유용성 티타늄-함유 및/또는 하나 이상의 상기 텅스텐-함유 화합물이 없는 동일한 윤활유 조성물로 윤활되는 동일한 엔진에서의 저속 조기-점화 이벤트 회수와 비교할 때, 상기 윤활유 조성물로 윤활되는 상기 배력 내부 연소 엔진에서 상기 저속 조기-점화 이벤트가 감소되는, 방법.
  15. 제14항에 있어서, 상기 윤활유 조성물은 1.0 wt.% 미만의 황산화 회분 및 중량 기준으로 상기 윤활유 조성물의 전체 중량에 대하여 1200 ppm 내지 1800 ppm 미만의 칼슘을 상기 윤활유 조성물에 제공하기 위한 하나 이상의 상기 과염기성 칼슘-함유 세제를 가지는, 방법.
  16. 제14항에 있어서, 상기 저속 조기-점화 이벤트는 25,000회 엔진 사이클 동안의 저속 조기-점화 카운트이고, 상기 엔진은 분당 2000 회전수로 작동되고, 제동 평균 유효압력은 18,000 kPa인, 방법.
  17. 제14항에 있어서, 상기 윤활유 조성물은 하나 이상의 유용성 티타늄-함유 화합물을 포함하는, 방법.
  18. 제14항에 있어서, 상기 윤활유 조성물은 하나 이상의 텅스텐-함유 화합물을 포함하는, 방법.
  19. 제14항에 있어서, 상기 첨가제 조성물은 ASTM D-2896 방법으로 측정될 때 최대 175 mg KOH/g의 전체 염기 수를 가지는 저염기성/중성 세제를 포함하고, 상기 저염기성/중성 세제는 칼슘-함유 세제를 포함하고, 상기 과염기성 칼슘-함유 세제 및 상기 저염기성/중성 세제로부터의 전체 칼슘 함량 범위는 중량 기준으로 윤활유 조성물의 전체 중량에 대하여 1100 ppm 초과 내지 2400 ppm 미만이고, 상기 저염기성/중성 세제는 상기 윤활유 조성물의 적어도 0.2 wt.%를 포함하는, 방법.
  20. 제14항에 있어서, 하나 이상의 상기 과염기성 칼슘-함유 세제는 과염기성 칼슘 술포네이트 세제, 과염기성 칼슘 페네이트 세제, 및 과염기성 칼슘 살리실레이트 세제에서 선택되는 화합물을 포함하는, 방법.
  21. 삭제
  22. 삭제
  23. 삭제
KR1020187003417A 2015-07-16 2016-07-14 티타늄 및/또는 텅스텐을 갖는 윤활제 및 저속 조기-점화 개선을 위한 이의 용도 KR102140386B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562193297P 2015-07-16 2015-07-16
US62/193,297 2015-07-16
US15/147,464 2016-05-05
US15/147,464 US10550349B2 (en) 2015-07-16 2016-05-05 Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition
PCT/US2016/042334 WO2017011689A1 (en) 2015-07-16 2016-07-14 Lubricants with titanium and/or tungsten and their use for improving low speed pre-ignition

Publications (2)

Publication Number Publication Date
KR20180053295A KR20180053295A (ko) 2018-05-21
KR102140386B1 true KR102140386B1 (ko) 2020-07-31

Family

ID=56551003

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187003417A KR102140386B1 (ko) 2015-07-16 2016-07-14 티타늄 및/또는 텅스텐을 갖는 윤활제 및 저속 조기-점화 개선을 위한 이의 용도

Country Status (10)

Country Link
US (1) US10550349B2 (ko)
EP (2) EP3943581B1 (ko)
JP (1) JP6763012B2 (ko)
KR (1) KR102140386B1 (ko)
CN (1) CN107820514B (ko)
BR (1) BR112017028384B1 (ko)
CA (1) CA2991788C (ko)
MX (1) MX2018000153A (ko)
RU (1) RU2719479C2 (ko)
WO (1) WO2017011689A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2016003612A (es) * 2013-09-19 2016-06-02 Lubrizol Corp Composiciones lubricantes para motores de inyeccion directa.
US20160272915A1 (en) 2015-03-18 2016-09-22 The Lubrizol Corporation Lubricant compositions for direct injection engines
JP6781709B2 (ja) 2015-03-25 2020-11-04 ザ ルブリゾル コーポレイションThe Lubrizol Corporation 直噴エンジン用潤滑剤組成物
WO2017147380A1 (en) * 2016-02-24 2017-08-31 The Lubrizol Corporation Lubricant compositions for direct injection engines
WO2019112711A1 (en) * 2017-12-04 2019-06-13 Exxonmobil Research And Enginerring Company Method for preventing or reducing low speed pre-ignition
US20200277541A1 (en) * 2019-02-28 2020-09-03 Afton Chemical Corporation Lubricating compositions for diesel particulate filter performance
WO2024014993A1 (ru) * 2022-07-15 2024-01-18 Павел Николаевич КАНЦЕРЕВ Многокомпонентная охлаждающая наножидкость

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1795582A2 (en) 2005-12-09 2007-06-13 Afton Chemical Corporation Titanium-containing lubricating oil composition
US20140274840A1 (en) * 2013-03-13 2014-09-18 Pantere Gmbh & Co. Kg Lubricant composition
US20150175924A1 (en) 2013-12-23 2015-06-25 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency

Family Cites Families (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2737932A (en) * 1956-03-13 thomas
DE1248643B (de) 1959-03-30 1967-08-31 The Lubrizol Corporation, Cleveland, Ohio (V. St. A.) Verfahren zur Herstellung von öllöslichen aeylierten Aminen
US3366569A (en) 1959-03-30 1968-01-30 Lubrizol Corp Lubricating compositions containing the reaction product of a substituted succinic acid-producing compound, an amino compound, and an alkenyl cyanide
US3256185A (en) 1961-06-12 1966-06-14 Lubrizol Corp Lubricant containing acylated aminecarbon disulfide product
US3178663A (en) 1961-06-26 1965-04-13 Bendix Corp Single speed and multispeed unitary synchro structure
US3185647A (en) 1962-09-28 1965-05-25 California Research Corp Lubricant composition
US3458530A (en) 1962-11-21 1969-07-29 Exxon Research Engineering Co Multi-purpose polyalkenyl succinic acid derivative
NL302077A (ko) 1962-12-19
GB1054276A (ko) 1963-05-17
GB1054093A (ko) 1963-06-17
GB1065595A (en) 1963-07-22 1967-04-19 Monsanto Co Imidazolines and imidazolidines and oil compositions containing the same
US3312619A (en) 1963-10-14 1967-04-04 Monsanto Co 2-substituted imidazolidines and their lubricant compositions
US3390086A (en) 1964-12-29 1968-06-25 Exxon Research Engineering Co Sulfur containing ashless disperant
GB1162175A (en) 1966-10-01 1969-08-20 Orobis Ltd Novel Compounds and their use as Lubricant Additives
US3519564A (en) 1967-08-25 1970-07-07 Lubrizol Corp Heterocyclic nitrogen-sulfur compositions and lubricants containing them
US3718663A (en) 1967-11-24 1973-02-27 Standard Oil Co Preparation of oil-soluble boron derivatives of an alkylene polyamine-urea or thiourea-succinic anhydride addition product
US3865813A (en) 1968-01-08 1975-02-11 Lubrizol Corp Thiourea-acylated polyamine reaction product
US3634515A (en) 1968-11-08 1972-01-11 Standard Oil Co Alkylene polyamide formaldehyde
US3573205A (en) 1968-12-17 1971-03-30 Chevron Res Diisocyanate modified polyisobutenyl-succinimides as lubricating oil detergents
US3859318A (en) 1969-05-19 1975-01-07 Lubrizol Corp Products produced by post-treating oil-soluble esters of mono- or polycarboxylic acids and polyhydric alcohols with epoxides
US3649229A (en) 1969-12-17 1972-03-14 Mobil Oil Corp Liquid hydrocarbon fuels containing high molecular weight mannich bases
US3708522A (en) 1969-12-29 1973-01-02 Lubrizol Corp Reaction products of high molecular weight carboxylic acid esters and certain carboxylic acid acylating reactants
US3749695A (en) 1971-08-30 1973-07-31 Chevron Res Lubricating oil additives
US3865740A (en) 1972-05-22 1975-02-11 Chevron Res Multifunctional lubricating oil additive
US3954639A (en) 1974-03-14 1976-05-04 Chevron Research Company Lubricating oil composition containing sulfate rust inhibitors
DE2702604C2 (de) 1977-01-22 1984-08-30 Basf Ag, 6700 Ludwigshafen Polyisobutene
US4234435A (en) 1979-02-23 1980-11-18 The Lubrizol Corporation Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation
US4285822A (en) 1979-06-28 1981-08-25 Chevron Research Company Process for preparing a sulfurized molybdenum-containing composition and lubricating oil containing the composition
US4261843A (en) 1979-06-28 1981-04-14 Chevron Research Company Reaction product of acidic molybdenum compound with basic nitrogen compound and lubricants containing same
US4259195A (en) 1979-06-28 1981-03-31 Chevron Research Company Reaction product of acidic molybdenum compound with basic nitrogen compound and lubricants containing same
US4272387A (en) 1979-06-28 1981-06-09 Chevron Research Company Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same
US4265773A (en) 1979-06-28 1981-05-05 Chevron Research Company Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same
US4283295A (en) 1979-06-28 1981-08-11 Chevron Research Company Process for preparing a sulfurized molybdenum-containing composition and lubricating oil containing said composition
US4263152A (en) 1979-06-28 1981-04-21 Chevron Research Company Process of preparing molybdenum complexes, the complexes so-produced and lubricants containing same
US4259194A (en) 1979-06-28 1981-03-31 Chevron Research Company Reaction product of ammonium tetrathiomolybdate with basic nitrogen compounds and lubricants containing same
US4338205A (en) 1980-08-25 1982-07-06 Exxon Research & Engineering Co. Lubricating oil with improved diesel dispersancy
US4379064A (en) 1981-03-20 1983-04-05 Standard Oil Company (Indiana) Oxidative passivation of polyamine-dispersants
JPS58193149U (ja) 1982-06-21 1983-12-22 本田技研工業株式会社 トルクコンバ−タ用クラツチのダンパ装置
US4482464A (en) 1983-02-14 1984-11-13 Texaco Inc. Hydrocarbyl-substituted mono- and bis-succinimide having polyamine chain linked hydroxyacyl radicals and mineral oil compositions containing same
US4648980A (en) 1983-09-22 1987-03-10 Chevron Research Company Hydrocarbon soluble nitrogen containing dispersant - fluorophosphoric acid adducts
US4579675A (en) 1983-11-09 1986-04-01 Texaco Inc. N-substituted enaminones and oleaginous compositions containing same
US4521318A (en) 1983-11-14 1985-06-04 Texaco Inc. Lubricant compositions containing both hydrocarbyl substituted mono and bissuccinimide having polyamine chain linked hydroxacyl radicals, and neopentyl derivative
US4554086A (en) 1984-04-26 1985-11-19 Texaco Inc. Borate esters of hydrocarbyl-substituted mono- and bis-succinimides containing polyamine chain linked hydroxyacyl groups and lubricating oil compositions containing same
US4612132A (en) 1984-07-20 1986-09-16 Chevron Research Company Modified succinimides
US4617137A (en) 1984-11-21 1986-10-14 Chevron Research Company Glycidol modified succinimides
US4614603A (en) 1985-04-12 1986-09-30 Chevron Research Company Modified succinimides (III)
US4617138A (en) 1985-04-12 1986-10-14 Chevron Research Company Modified succinimides (II)
US4648886A (en) 1985-04-12 1987-03-10 Chevron Research Company Modified succinimides (V)
US4666460A (en) 1985-04-12 1987-05-19 Chevron Research Company Modified succinimides (III)
US4647390A (en) 1985-04-12 1987-03-03 Chevron Research Company Lubricating oil compositions containing modified succinimides (V)
US4670170A (en) 1985-04-12 1987-06-02 Chevron Research Company Modified succinimides (VIII)
US4614522A (en) 1985-04-12 1986-09-30 Chevron Research Company Fuel compositions containing modified succinimides (VI)
US4668246A (en) 1985-04-12 1987-05-26 Chevron Research Company Modified succinimides (IV)
US4645515A (en) 1985-04-12 1987-02-24 Chevron Research Company Modified succinimides (II)
US4663062A (en) 1985-04-12 1987-05-05 Chevron Research Company Lubricating oil compositions containing modified succinimides (VII)
US4636322A (en) 1985-11-04 1987-01-13 Texaco Inc. Lubricating oil dispersant and viton seal additives
US4663064A (en) 1986-03-28 1987-05-05 Texaco Inc. Dibaisic acid lubricating oil dispersant and viton seal additives
US4652387A (en) 1986-07-30 1987-03-24 Mobil Oil Corporation Borated reaction products of succinic compounds as lubricant dispersants and antioxidants
US4713189A (en) 1986-08-20 1987-12-15 Texaco, Inc. Precoupled mono-succinimide lubricating oil dispersants and viton seal additives
US4699724A (en) 1986-08-20 1987-10-13 Texaco Inc. Post-coupled mono-succinimide lubricating oil dispersant and viton seal additives
US4963275A (en) 1986-10-07 1990-10-16 Exxon Chemical Patents Inc. Dispersant additives derived from lactone modified amido-amine adducts
US4713191A (en) 1986-12-29 1987-12-15 Texaco Inc. Diiscyanate acid lubricating oil dispersant and viton seal additives
US4971711A (en) 1987-07-24 1990-11-20 Exxon Chemical Patents, Inc. Lactone-modified, mannich base dispersant additives useful in oleaginous compositions
US5026495A (en) 1987-11-19 1991-06-25 Exxon Chemical Patents Inc. Oil soluble dispersant additives useful in oleaginous compositions
CA1337293C (en) 1987-11-20 1995-10-10 Emil Joseph Meny Lubricant compositions for low-temperature internal combustion engines
CA2011367C (en) 1988-08-30 1997-07-08 Henry Ashjian Reaction products of alkenyl succinimides with ethylenediamine carboxy acids as fuel detergents
US4857214A (en) 1988-09-16 1989-08-15 Ethylk Petroleum Additives, Inc. Oil-soluble phosphorus antiwear additives for lubricants
US4948386A (en) 1988-11-07 1990-08-14 Texaco Inc. Middle distillate containing storage stability additive
US4963278A (en) 1988-12-29 1990-10-16 Mobil Oil Corporation Lubricant and fuel compositions containing reaction products of polyalkenyl succinimides, aldehydes, and triazoles
US5204012A (en) 1989-01-31 1993-04-20 Ethyl Corporation Supplemental rust inhibitors and rust inhibition in internal combustion engines
US4981492A (en) 1989-12-13 1991-01-01 Mobil Oil Corporation Borated triazole-substituted polyalkenyl succinimides as multifunctional lubricant and fuel additives
US4973412A (en) 1990-05-07 1990-11-27 Texaco Inc. Multifunctional lubricant additive with Viton seal capability
US5241003A (en) 1990-05-17 1993-08-31 Ethyl Petroleum Additives, Inc. Ashless dispersants formed from substituted acylating agents and their production and use
US5039307A (en) 1990-10-01 1991-08-13 Texaco Inc. Diesel fuel detergent additive
US5030249A (en) 1990-10-01 1991-07-09 Texaco Inc. Gasoline detergent additive
US5137647A (en) 1991-12-09 1992-08-11 R. T. Vanderbilt Company, Inc. Organic molybdenum complexes
JP3495043B2 (ja) 1992-09-11 2004-02-09 シェブロン リサーチ アンド テクノロジー カンパニー 2サイクルエンジン用燃料組成物
BR9400270A (pt) 1993-02-18 1994-11-01 Lubrizol Corp Composição líquida e méthodo para lubrificar um compressor
US5334321A (en) 1993-03-09 1994-08-02 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Modified high molecular weight succinimides
GB2280907B (en) 1993-08-13 1997-04-30 Ethyl Petroleum Additives Ltd Motor oil compositions,additive concentrates for producing such motor oils,and the use thereof
US6004910A (en) 1994-04-28 1999-12-21 Exxon Chemical Patents Inc. Crankcase lubricant for modern heavy duty diesel and gasoline fueled engines
US5498355A (en) 1994-09-20 1996-03-12 Ethyl Corporation Lubricant compositions of enhanced performance capabilities
EP0799291B1 (en) 1994-12-20 2002-03-20 ExxonMobil Research and Engineering Company Engine oil with improved fuel economy properties
FR2730496B1 (fr) 1995-02-15 1997-04-25 Inst Francais Du Petrole Procede de fabrication d'anhydride alkenyls ou polyalkenylsucciniques sans formation de resines
US5650381A (en) 1995-11-20 1997-07-22 Ethyl Corporation Lubricant containing molybdenum compound and secondary diarylamine
USRE38929E1 (en) 1995-11-20 2006-01-03 Afton Chemical Intangibles Llc Lubricant containing molybdenum compound and secondary diarylamine
ZA97222B (en) 1996-01-16 1998-02-18 Lubrizol Corp Lubricating compositions.
US5804537A (en) 1997-11-21 1998-09-08 Exxon Chemical Patents, Inc. Crankcase lubricant compositions and method of improving engine deposit performance
US6034040A (en) 1998-08-03 2000-03-07 Ethyl Corporation Lubricating oil formulations
US6300291B1 (en) 1999-05-19 2001-10-09 Infineum Usa L.P. Lubricating oil composition
US6140282A (en) 1999-12-15 2000-10-31 Exxonmobil Research And Engineering Company Long life lubricating oil composition using particular detergent mixture
US6569818B2 (en) 2000-06-02 2003-05-27 Chevron Oronite Company, Llc Lubricating oil composition
US20020151441A1 (en) 2001-02-14 2002-10-17 Sanjay Srinivasan Automatic transmission fluids with improved anti-shudder properties
JP4185307B2 (ja) 2001-09-20 2008-11-26 新日本石油株式会社 内燃機関用潤滑油組成物
US6723685B2 (en) 2002-04-05 2004-04-20 Infineum International Ltd. Lubricating oil composition
US20040209783A1 (en) 2003-04-18 2004-10-21 Wells Paul P. Lacquer reducing lubricating oil composition and method of use of same
BRPI0409648A (pt) 2003-04-22 2006-10-31 Vanderbilt Co R T compostos de tungstato e molibdato de amÈnio orgánico e processo para preparação dos mesmos
US20050101494A1 (en) 2003-11-10 2005-05-12 Iyer Ramnath N. Lubricant compositions for power transmitting fluids
US7214649B2 (en) 2003-12-31 2007-05-08 Afton Chemical Corporation Hydrocarbyl dispersants including pendant polar functional groups
US8415282B2 (en) 2004-09-27 2013-04-09 Nippon Oil Corporation Lubricant composition
WO2006043606A1 (ja) 2004-10-19 2006-04-27 Nippon Oil Corporation 潤滑油組成物及び酸化防止剤組成物
US7732390B2 (en) 2004-11-24 2010-06-08 Afton Chemical Corporation Phenolic dimers, the process of preparing same and the use thereof
ATE552327T1 (de) 2004-11-30 2012-04-15 Infineum Int Ltd Schmierölzusammensetzungen
US7550415B2 (en) * 2004-12-10 2009-06-23 Shell Oil Company Lubricating oil composition
US7645726B2 (en) 2004-12-10 2010-01-12 Afton Chemical Corporation Dispersant reaction product with antioxidant capability
CN101151353A (zh) * 2005-03-28 2008-03-26 卢布里佐尔公司 钛化合物和络合物作为润滑剂中的添加剂
US7482312B2 (en) 2005-04-01 2009-01-27 Shell Oil Company Engine oils for racing applications and method of making same
WO2007030157A2 (en) 2005-05-03 2007-03-15 Southwest Research Institute Mixed base phenates and sulfonates
JP5513703B2 (ja) 2005-05-27 2014-06-04 出光興産株式会社 潤滑油組成物
US20060276352A1 (en) 2005-06-02 2006-12-07 James N. Vinci Oil composition and its use in a transmission
WO2007009022A2 (en) 2005-07-12 2007-01-18 King Industries, Inc. Amine tungstates and lubricant compositions
US20070119390A1 (en) 2005-11-30 2007-05-31 Herrmann Mark L System and method for operating an internal combustion engine
GB0614987D0 (en) 2006-07-28 2006-09-06 Mcalpine & Co Ltd Waste Outlet
US20080110797A1 (en) 2006-10-27 2008-05-15 Fyfe Kim E Formulated lubricants meeting 0W and 5W low temperature performance specifications made from a mixture of base stocks obtained by different final wax processing routes
US7897696B2 (en) 2007-02-01 2011-03-01 Afton Chemical Corporation Process for the preparation of polyalkenyl succinic anhydrides
US7897548B2 (en) 2007-03-15 2011-03-01 Afton Chemical Corporation Additives and lubricant formulations for improved antiwear properties
US7867957B2 (en) 2007-03-30 2011-01-11 Nippon Oil Corporation Lubricating oil composition
US8048834B2 (en) * 2007-05-08 2011-11-01 Afton Chemical Corporation Additives and lubricant formulations for improved catalyst performance
JP5432152B2 (ja) * 2007-09-26 2014-03-05 ザ ルブリゾル コーポレイション 潤滑剤における添加剤としてのチタン化合物およびチタン錯体
US8008237B2 (en) 2008-06-18 2011-08-30 Afton Chemical Corporation Method for making a titanium-containing lubricant additive
EP2154230A1 (en) 2008-08-08 2010-02-17 Afton Chemical Corporation Lubricant additive compositions having improved viscosity index increasing properties
JP5432493B2 (ja) 2008-10-09 2014-03-05 出光興産株式会社 内燃機関用潤滑油組成物
US8415284B2 (en) * 2009-11-05 2013-04-09 Afton Chemical Corporation Olefin copolymer VI improvers and lubricant compositions and uses thereof
EP2371934B1 (en) 2010-03-31 2017-03-15 Infineum International Limited Lubricating oil composition
US8999905B2 (en) 2010-10-25 2015-04-07 Afton Chemical Corporation Lubricant additive
CN103459359A (zh) 2011-02-04 2013-12-18 洛德公司 多元醇及其在烃类润滑液和钻井液中的应用
DE102011102540B4 (de) * 2011-05-26 2013-12-12 KLüBER LUBRICATION MüNCHEN KG Hochtemperaturöl
CN104145109B (zh) 2012-03-07 2016-10-26 丰田自动车株式会社 内燃机的控制装置
WO2013182581A1 (en) 2012-06-06 2013-12-12 Evonik Oil Additives Gmbh Fuel efficient lubricating oils
JP2014152301A (ja) 2013-02-13 2014-08-25 Idemitsu Kosan Co Ltd 直噴ターボ機構搭載エンジン用潤滑油組成物
WO2015023559A1 (en) 2013-08-12 2015-02-19 Shell Oil Company Methods for modifying auto-ignition properties of a base oil or lubricant composition
CA2924890C (en) 2013-09-19 2022-03-22 The Lubrizol Corporation Lubricant compositions for direct injection engines
MX2016003612A (es) 2013-09-19 2016-06-02 Lubrizol Corp Composiciones lubricantes para motores de inyeccion directa.
CN105765043A (zh) 2013-09-19 2016-07-13 路博润公司 用于直喷式发动机的润滑剂组合物
WO2015106090A1 (en) 2014-01-10 2015-07-16 The Lubrizol Corporation Method of lubricating an internal combustion engine
JP6300686B2 (ja) 2014-01-31 2018-03-28 Emgルブリカンツ合同会社 潤滑油組成物
JP6420964B2 (ja) 2014-03-31 2018-11-07 出光興産株式会社 内燃機関用潤滑油組成物
US11034912B2 (en) 2014-04-29 2021-06-15 Infineum International Limited Lubricating oil compositions
US20150322367A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
US20150322368A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
US20150322369A1 (en) 2014-05-09 2015-11-12 Exxonmobil Research And Engineering Company Method for preventing or reducing low speed pre-ignition
EP3196278B1 (en) 2014-09-19 2023-12-06 Idemitsu Kosan Co., Ltd Lubricating oil composition and method for manufacturing said lubricating oil composition
US9528074B2 (en) 2015-02-13 2016-12-27 Chevron Oronite Technology B.V. Lubricating oil compositions with enhanced piston cleanliness
US20180044610A1 (en) 2015-03-09 2018-02-15 The Lubrizol Corporation Method Of Lubricating An Internal Combustion Engine
CN109913293B (zh) 2015-03-24 2022-09-27 出光兴产株式会社 汽油发动机用润滑油组合物及其制造方法
JP6781709B2 (ja) 2015-03-25 2020-11-04 ザ ルブリゾル コーポレイションThe Lubrizol Corporation 直噴エンジン用潤滑剤組成物
EP3279298B1 (en) 2015-03-31 2022-03-16 Idemitsu Kosan Co.,Ltd. Lubricating oil composition and method for reducing friction in internal combustion engines
US10280383B2 (en) 2015-07-16 2019-05-07 Afton Chemical Corporation Lubricants with molybdenum and their use for improving low speed pre-ignition
US10421922B2 (en) 2015-07-16 2019-09-24 Afton Chemical Corporation Lubricants with magnesium and their use for improving low speed pre-ignition
JP6334503B2 (ja) 2015-12-07 2018-05-30 出光興産株式会社 潤滑油組成物及びその製造方法
WO2017147380A1 (en) * 2016-02-24 2017-08-31 The Lubrizol Corporation Lubricant compositions for direct injection engines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1795582A2 (en) 2005-12-09 2007-06-13 Afton Chemical Corporation Titanium-containing lubricating oil composition
US20140274840A1 (en) * 2013-03-13 2014-09-18 Pantere Gmbh & Co. Kg Lubricant composition
US20150175924A1 (en) 2013-12-23 2015-06-25 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency

Also Published As

Publication number Publication date
EP3322785A1 (en) 2018-05-23
WO2017011689A1 (en) 2017-01-19
RU2719479C2 (ru) 2020-04-17
CA2991788C (en) 2021-01-26
CA2991788A1 (en) 2017-01-19
BR112017028384A2 (pt) 2018-08-28
MX2018000153A (es) 2018-03-26
EP3943581B1 (en) 2022-09-07
RU2018104033A3 (ko) 2019-12-24
RU2018104033A (ru) 2019-08-05
BR112017028384B1 (pt) 2021-11-16
US20170015928A1 (en) 2017-01-19
KR20180053295A (ko) 2018-05-21
EP3943581A1 (en) 2022-01-26
JP6763012B2 (ja) 2020-09-30
CN107820514A (zh) 2018-03-20
US10550349B2 (en) 2020-02-04
EP3322785B1 (en) 2024-05-08
CN107820514B (zh) 2021-06-01
JP2018520243A (ja) 2018-07-26

Similar Documents

Publication Publication Date Title
KR102271650B1 (ko) 마그네슘을 갖는 윤활제 및 저속 조기-점화 개선을 위한 이의 용도
KR102078948B1 (ko) 아연 디알킬 디티오포스페이트를 갖는 윤활제 및 배력 내부 연소 엔진에서 이의 용도
EP3322783B1 (en) Methods and uses of lubricants with molybdenum for improving low speed pre-ignition
KR102140386B1 (ko) 티타늄 및/또는 텅스텐을 갖는 윤활제 및 저속 조기-점화 개선을 위한 이의 용도
US10336959B2 (en) Lubricants with calcium-containing detergent and their use for improving low speed pre-ignition
KR102104763B1 (ko) 과염기화된 칼슘 및 과염기화된 마그네슘 세제를 갖는 윤활제 및 저속 조기 점화 개선 방법
KR102104764B1 (ko) 칼슘 및 마그네슘 함유 세제를 갖는 윤활유, 및 저속 조기 점화 및 내식성을 개선하기 위한 그의 용도
KR102103653B1 (ko) 칼슘-함유 세제를 갖는 윤활제 및 저속 조기-점화 개선을 위한 이의 용도
KR102140415B1 (ko) 칼슘 함유 세제를 갖는 윤활유 및 저속 조기 점화 개선을 위한 이의 용도
KR102352639B1 (ko) 배력 엔진용 윤활제
JP6682004B2 (ja) ブーストされるエンジンで使用するための潤滑剤

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant