KR102107484B1 - 열팽창을 수용하기 위한 구성을 가진, 샤프트에 나사체결되는 터보차저 임펠러 - Google Patents

열팽창을 수용하기 위한 구성을 가진, 샤프트에 나사체결되는 터보차저 임펠러 Download PDF

Info

Publication number
KR102107484B1
KR102107484B1 KR1020157010630A KR20157010630A KR102107484B1 KR 102107484 B1 KR102107484 B1 KR 102107484B1 KR 1020157010630 A KR1020157010630 A KR 1020157010630A KR 20157010630 A KR20157010630 A KR 20157010630A KR 102107484 B1 KR102107484 B1 KR 102107484B1
Authority
KR
South Korea
Prior art keywords
shaft
impeller
connector
threaded
joint
Prior art date
Application number
KR1020157010630A
Other languages
English (en)
Other versions
KR20150087198A (ko
Inventor
이안 핑크니
이안 패트릭 클레어 브라운
매튜 엘리야 무어
스튜어트 마이클 포터
프란시스 조셉 제프리 헤이즈
Original Assignee
나피어 터보차저스 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나피어 터보차저스 리미티드 filed Critical 나피어 터보차저스 리미티드
Publication of KR20150087198A publication Critical patent/KR20150087198A/ko
Application granted granted Critical
Publication of KR102107484B1 publication Critical patent/KR102107484B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/025Fixing blade carrying members on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/601Mounting; Assembling; Disassembling specially adapted for elastic fluid pumps
    • F04D29/602Mounting in cavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
    • F01D5/048Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/266Rotors specially for elastic fluids mounting compressor rotors on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/076Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end by clamping together two faces perpendicular to the axis of rotation, e.g. with bolted flanges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/64Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
    • F05D2230/642Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins using maintaining alignment while permitting differential dilatation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/37Retaining components in desired mutual position by a press fit connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D2001/062Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end characterised by adaptors where hub bores being larger than the shaft

Abstract

연결된 임펠러와 샤프트가 제공된다. 샤프트는 임펠러의 대응하는 나사산 영역 상에 나사체결하는 나사산을 구비한 나사산 영역을 제공하는 제1 파트를 갖는다. 샤프트는 또한, 나사산 영역들이 함께 나사체결되어 임펠러와 샤프트 사이의 회전 고정식 연결을 제공하도록 나사산에 조임될 때 임펠러의 대응하는 접합면과 결합하기 위한 접합면을 제공하는 제2 파트를 갖는다. 제1 파트는 조인트에서 제2 파트에 대해 회전 고정된다. 샤프트의 나사산 영역은 샤프트의 접합면으로부터 제1 거리만큼 축방향으로 이격된다. 샤프트의 나사산 영역은 제1 거리보다 큰 제2 거리만큼 조인트로부터 축방향으로 이격된다. 샤프트의 나사산 영역과 조인트는 임펠러의 같은 편에 있다. 임펠러는 대응하는 나사산 영역과 대응하는 접합면을 제공하는 커넥터를 갖는다. 커넥터는 임펠러의 나머지 부분에 대해 회전 고정된다.

Description

열팽창을 수용하기 위한 구성을 가진, 샤프트에 나사체결되는 터보차저 임펠러{TURBOCHARGER IMPELLER SCREWED ONTO SHAFT WITH ARRANGEMENT FOR ACCOMMODATING THERMAL DILATATION}
본 발명은 임펠러에 연결하기 위한 샤프트에 관한 것이다.
터보차저 임펠러는 낮은 회전 관성(rotational inertia)을 제공하기 위해 통상적으로 알루미늄 합금으로 제조되며, 상업적으로 적합한 비용에서 적정한 강도를 지닌다. 강철 터보차저 샤프트에 임펠러를 부착하는 것은 다양한 방식으로 달성될 수 있다. 예를 들어, 알루미늄의 상대적인 연약성 및 샤프트의 작은 직경 때문에, 하나의 방안은, 샤프트에 나사결합될 수 있는 스크류 나사결합 소켓을 포함하는 강철 인서트를 가진 임펠러를 제공하는 것이다. 이러한 구성은 샤프트가 알루미늄 본체 내에 직접 나사결합되는 연결보다 높은 토크를 취할 수 있다(토크는 조인트를 통해 전달되는 동력에 비례하고, 그래서 임펠러는 직접 나사고정식 연결보다 더 높은 압력비에서 사용될 수 있다).
통상적으로, 이러한 인서트는 임펠러 내에 수축 피팅(shrink fitting)에 의해 끼워맞춤되고; 상기 임펠러의 알루미늄 바디는, 보어 내에 삽입하기 전에 예를 들어 액체 질소를 사용하여 인서트를 냉각하면서, 강철 인서트를 수용하도록 보어를 팽창시키도록 가열된다. 결과적인 간섭 연결(interference connection)은 알루미늄의 물성들이 영향을 받기 전까지 알루미늄이 가열될 수 있는 온도로 제한되며, 또한 강철이 냉각될 수 있는 온도로 제한된다.
EP1394387호는 이러한 유형의 인서트를 개시하고, 또한 알루미늄 임펠러와 인서트 사이의 마찰 접촉을 보강하는 외측의 강철 구속 링(steel constraining ring)을 제안한다. 터보차져가 가열됨에 따라 링은 임펠러 바디 만큼 팽창하지 않기 때문에, 임펠러와 인서트 사이의 그립 지점은 터보차저의 전체 작동 사이클 동안 링의 축방향 크기 내에서 유지되어, 인서트를 따라 임펠러가 "움직이려는(walk)" 경향을 방지한다. 그 결과, 터보차저의 작동 수명은 구속 링이 없는 통상의 터보차저에 비해 상당히 연장될 수 있다.
샤프트가 나사식으로 (예를 들어 전술한 바와 같은 인서트를 통해) 임펠러에 연결될 때, 샤프트와 임펠러의 나사산은, 임펠러와 샤프트 사이의 회전 고정 연결을 제공하도록 자체 조임(self tightening)될 수 있다.
임펠러가 샤프트 상에 나사체결될 때 결합되는 대응 접합면들을 갖도록 하여 회전 고정 연결을 제공하도록 나사산이 조임되는, 임펠러와 샤프트에 대한 다른 방안이 있다. 이러한 구조에서, 샤프트의 나사산 영역은 샤프트의 접합면으로부터 통상적으로 축방향 이격된다. 샤프트와 임펠러 사이에서 동작하는 디퍼렌셜 열적 팽창(differential thermal expansion)은, 샤프트의 나사산 영역과 접합면 사이에 발생하는 디퍼렌셜 열적 변형(differential thermal strain)을 야기할 수 있다. 이러한 변형은 샤프트와 임펠러의 나사산들에서 바람직하지 않은 정도의 응력을 생성할 수 있다.
따라서, 일 양태에서, 본 발명은 임펠러를 연결하기 위한 샤프트를 제공하고, 상기 샤프트는 상기 임펠러의 대응하는 나사산 영역 상에 나사체결하는 나사산을 갖는 나사산 영역 제공하는 제1 파트와, 나사산 영역이 함께 나사체결되어 임펠러와 샤프트 사이의 회전 고정식 연결을 제공하도록 나사산이 조여질 때, 상기 임펠러의 대응 접합면과 결합하기 위한 (예를 들어 샤프트의 견부에 의해 제공되는) 접합면을 제공하는 제2 파트를 가지며,
상기 제1 파트는 조인트에서 상기 제2 파트에 대해 회전 고정되고, 상기 샤프트의 나사산 영역이 상기 샤프트의 접합면으로부터 제1 거리만큼 축방향으로 이격되며, 상기 샤프트의 나사산 영역은 제1 거리보다 더 큰 제2 거리 만큼 조인트로부터 축방향 이격된다.
이러한 방식으로, 임펠러와 샤프트 사이에서 작용하는 임의의 디퍼렌셜 열적 팽창 효과에 의해 생성되는 어떤 디퍼렌셜 열적 변형은, 그렇지 않은 경우보다 샤프트의 보다 긴 거리 상에서 (즉, 제2 거리 상에서) 수용될 수 있다. 따라서 샤프트의 나사산과 임펠러의 나사산 영역의 응력은 감소될 수 있다.
본 발명의 제1 양태의 선택적인 특징이 이하에 설명된다. 이들은 단독으로 또는 임의의 조합으로 양립 가능한 정도까지 적용 가능하다.
샤프트는, 임펠러에 연결될 때, 조인트와 샤프트의 나사산 영역이 임펠러의 같은 쪽에 있도록 구성될 수 있다.
샤프트의 제1 파트는, 샤프트의 제2 파트에 형성된 중앙 캐비티 내에 위치하며 그로부터 돌출된 스터드(stud) 또는 타이 볼트(tie bolt)와 같은 신장 부재일 수 있다. 샤프트의 나사산 영역은 신장 부재의 돌출 단부에 제공될 수 있고, 조인트는 예를 들어 캐비티 내에서, 신장 부재의 대향 단부에 있을 수 있다.
그러나, 샤프트의 제1 파트 상에 지지되는 슬리브인 샤프트의 제2 파트에 대해 다른 방안이 있다. 샤프트의 접합면은 (예를 들어 샤프트의 나사산 영역의 근방의) 슬리브의 일단부에 있을 수 있고, 조인트는 (예를 들어 샤프트의 나사산 영역의 원위의) 슬리브의 타단부에 있을 수 있다.
조인트는, 나사산 연결, 스플라인 연결 또는 다른 종류의 로킹 연결과 같은, 제2 파트에 대해 제1 파트를 회전 고정하는 임의의 적절한 연결을 가질 수 있다. 실제로, 제1 및 제2 파트들은 일체로서 형성되는 것이 가능하지만, 일반적으로, 조인트에서 회전 고정되는 개별 바디로서 두 개의 파트로 형성하는 것이 보다 편리하다.
본 발명의 제2 양태는 제1 양태에 따른 샤프트에 연결되는 임펠러를 제공하며, 상기 임펠러는 대응하는 나사산 영역 및 대응하는 접합면을 갖는다.
본 발명의 제2 양태의 선택적 기능들이 아래에 제시된다. 이 기능들은 단독으로 또는 양용할 수 있는 한 조합하여 적용할 수 있다.
샤프트는 임펠러에 직접 나사식으로 연결될 수 있다. 그러나, 보다 특별하게는, 임펠러는 대응하는 나사산 영역에 대응하는 접합면을 제공하는 커넥터를 가질 수 있고, 상기 커넥터는 임펠러에 대해 회전 고정된다. 즉, 커넥터는 개별 본체로서, 즉 임펠러의 나머지 부분과는 비단일적으로 형성될 수 있고, 이는 임펠러의 나머지 부분에 대해 회전 고정될 수 있다. 그러나, 커넥터 자체는 단일체로서 형성될 수 있다. 커넥터의 플랜지부는 대응하는 접합면을 간편하게 제공할 수 있다. 커넥터의 나사산 영역에 의해 지지된 나사산은 커넥터에 끼워맞춤된 나선 형상부에 의해 보호될 수 있다. 커넥터의 재질은 샤프트의 재질보다 덜 튼튼할 수 있기 때문에, 나선 형상부가 커넥터의 나사산의 손상을 방지할 수 있다. 커넥터는 그의 반경 방향 외부면에서 주연 오일 스로워(circumferential oil thrower thrower)를 갖고 형성되거나 구비할 수 있다.
임펠러는, 임펠러의 대응 나사산 영역 상에 샤프트의 제1 파트의 나사산부가 나사체결될 수 있는, (예를 들어 블라인드 홀 형태일 수 있는 중앙 리세스를 갖는) 샤프트측 허브 연장부를 가질 수 있다. 전술한 커넥터의 표면은 허브 연장부의 표면과 마찰 연결될 수 있다. 커넥터의 표면과 허브 연장부의 표면 사이의 마찰 연결은, 사용 시에 샤프트와 임펠러 사이의 실질적으로 전체 토크를 전달할 수 있다.
따라서, 예를 들어 임펠러는 샤프트측 허브 연장부를 가질 수 있고, 커넥터의 내측 대향 표면은 (예를 들면, 피팅을 누르거나 수축시켜) 허브 연장부의 반경 방향 외부 표면과 마찰 연결할 수 있다. 커넥터의 내측 대향 표면과 허브 연장부의 반경 방향 외부 표면 사이의 마찰 연결은, 사용 시, 샤프트와 임펠러 사이의 전체 토크를 실질적으로 전달할 수 있다. 커넥터의 내측 대향 표면은 대략 원통형 형상일 수 있다. 내측 대향 표면과 마찰 연결되는 임펠러의 샤프트측 허브 연장부의 반경 방향 외부 표면은 그에 대응하여 대략 원통형일 수 있다. 샤프트측 허브 연장부는 중앙 리세스를 가질 수 있고, 커넥터는 리세스 내에 삽입될 수 있다. 이러한 방식으로, 커넥터의 나사산 영역은 중앙 리세스 내에 위치될 수 있고, 축방향으로 컴택트한 구성을 가능하게 한다. 중앙 리세스는 블라인드 홀(즉, 단부 표면을 갖는)일 수 있다.
그러나, 중앙 리세스(예를 들어, 블라인드 홀)를 갖는 샤프트측 허브 연장부를 갖는 임펠러에 대한 것이고, 그리고 허브 연장부의 반경 방향 내부 표면과 (예를 들어 가압 끼워맞춤 또는 수축 끼워맞춤에 의해) 커넥터의 마찰 연결하는 커넥터의 외측 대향 표면에 대한 것인 다른 방안이 있다. 커넥터의 외측 대향 표면과 허브 연장부의 반경 방향 내부 표면 사이의 마찰 연결은, 사용 시에 샤프트와 임펠러 사이의 토크의 실질적으로 전체 토크를 전달될 수 있다. 커넥터의 외측 대향 표면은 대략 원통형 형상을 가질 수 있다. 외측 대향 표면과 마찰 연결되는 임펠러의 샤프트측 허브 연장부의 반경 방향 내부 표면은 대응하여 대략 원통형일 수 있다.
이러한 방안에 따르면, 임펠러는 샤프트 재료보다 열팽창 계수가 큰 재료로 형성될 수 있고, 커넥터는 샤프트의 재료의 열팽창 계수보다 큰 열팽창 계수를 갖는 재료로 형성될 수 있다. 이러한 열팽창 계수를 갖는 재료로 커넥터를 형성함으로써, 임펠러를 "움직이게(walk)" 하는 디퍼렌셜 열적 힘(differential thermal force)을 감소시킬 수 있어서, 조인트의 토크 용량을 유지하면서 임펠러가 "움직이려하는(walk)" 경향을 감소시킨다. 커넥터 재료는, 샤프트와 동일한 재료로 형성된 종래의 커넥터보다 열팽창 계수가 높기 때문에, 끼워맞춤 동안 커넥터가 냉각되고 임펠러가 가열되는 온도를 유지하면서 특히 임펠러와의 단단한 간섭을 생성하기 위해 수축 끼워맞춤이 이용될 수 있다. 또한, 변형이 단지 제1 거리 상에서만 수용되면 샤프트와 커넥터의 나사산에서의 초과 응력의 문제가 격심해질 수 있는 문제 때문에, 제2 거리 상에서 샤프트의 나사산부와 접합면 사이의 디퍼렌셜 열 변형의 수용은 특히 유리할 수 있다. 조인트에서 회전 고정되는 샤프트의 제1 파트와 제2 파트가 개별 바디이면, 그리고 (통상적으로 이들이 동일한 재료로 형성될 수 있더라도) 두 개의 파트가 상이한 재료로 형성되면, 샤프트 재료의 열팽창 계수는 두 파트의 열팽창 계수의 평균값을 취할 수 있다.
커넥터가 샤프트의 재료의 열팽창 계수보다 큰 열팽창 계수를 갖는 재료로 형성되면, 커넥터는 임펠러의 재료보다 큰 강도를 갖는 재료로 형성될 수 있고, 그리고/또는 커넥터는 임펠러의 재료보다 낮은 열팽창 계수를 갖는 재료로 형성될 수 있다. 예를 들어, 샤프트의 두 개의 파트는, 통상적으로 약 11x10-6/K의 열팽창 계수를 갖는 강철(예를 들어 고강도 강철)로 형성될 수 있고, 임펠러는 통상적으로 약 22.7x10-6/K의 열팽창 계수를 갖는 알루미늄 합금으로 형성될 수 있다. 바람직하게는, 커넥터는 샤프트와 골링(galling)하는 것에 대해 저항성을 갖는다. 커넥터는 예를 들어, 마그네슘 합금, 청동, 놋쇠 또는 스테인리스 스틸로 형성될 수 있다. 일반적으로, 임펠러와 동일하거나 그에 근접한 커넥터의 열팽창 계수의 값이, 임펠러가 "움직이려(walk)" 하는 디퍼렌셜 열적 힘을 감소시키는 데 바람직하다. 따라서, 바람직하게는, (αc- αs)/(αi - αs)의 값은 0.2보다 크고, 보다 바람직하게는 0.3 또는 0.4보다 크고, 여기서 αc는 커넥터의 열팽창 계수이고, αi는 임펠러의 열팽창 계수이고, αs는 샤프트의 열팽창 계수이다. 그러나, 2개의 파트 형태의 샤프트에도 불구하고, 샤프트보다 큰 커넥터의 열팽창 계수의 위험성은 고온에서 샤프트의 최종적인 신장이 샤프트를 파단시키도록 할 수 있다는 것이다. 따라서, (각각 알루미늄 합금 및 스테인리스 스틸과 같은) 적어도 임펠러 및 샤프트에 대한 통상의 재료에 대해, 바람직하게는, (αc- αs)/(αi - αs)의 값은 0.9 미만이고, 보다 바람직하게는 0.8 또는 0.7 미만이다. 그러나, (αc- αs)/(αi - αs)의 값이 1 이상일 수 있다는 것을 배제하지는 않는다. 특히, (αi - αs)의 값이 감소되면, (αc- αs)/(αi - αs)의 최고값은 샤프트의 파단 위험없이 적합할 수 있다. 따라서, 실리콘 카바이드의 체적에 따라 통상적으로 14-17x10-6/K의 범위의 열팽창 계수를 갖는 실리콘 카바이드 보강 알루미늄 합금과 같은, 비교적 낮은 열팽창 계수를 갖는 재료로 임펠러를 형성하는 것이 하나의 방안이다. 이러한 경우, 커넥터에 대한 비교적 높은 열팽창 계수는 임펠러가 "움직이려" 하는 경향을 감소시킬 수 있지만, 커넥터와 허브 연장부 사이의 수축 끼워맞춤 마찰 연결의 제조를 조력할 수도 있다.
임펠러는, 샤프트축을 따라 배치되어 있는, 샤프트의 하나 이상의 센터링부, 샤프트의 나사산부 및 샤프트의 센터링부와 결합하는, 각각의 결합 표면을 갖는 (임펠러 및/또는 커넥터에 직접 제공될 수 있는) 하나 이상의 센터링부를 가질 수 있다.
일반적으로, 임펠러는 케이싱을 갖고, 커넥터 및/또는 허부 연장부는 케이싱의 영역과 함께 씨일을 형성할 수 있다. 예를 들어, 씨일은 케이싱 영역에 의해 운반될 수 있고 커넥터 및/또는 허브 연장부의 외부 표면 상에 형성된 대응하는 주연 리세스에 의해 수용될 수 있는 씨일 링을 포함할 수 있다. 씨일 링은 그 반경방향 내부면에 하나 이상의 환형 홈을 가질 수 있고, 리세스는 홈 내에 수용되는 대응하는 주연 리브를 가질 수 있다. 미로를 형성하는 케이싱 영역 및 커넥터 및/또는 허브 연장부의 대면 표면들에 형성되는 미로형 씨일을 포함하도록 하는 씨일에 대한 다른 방안이 있다.
본 발명의 제3 양태는 제2 양태의 연결된 임펠러와 샤프트를 갖는 터보차저를 제공하는 것이다. 따라서 임펠러는 샤프트의 일단부에 있을 수 있고, 배기가스 터빈은 샤프트의 대향 단부에 결합될 수 있다.
본 발명의 추가의 선택적인 특징은 이하에 서술한다.
본 발명의 실시예들이 첨부 도면을 참조하여 예로서 이하에 설명된다.
도 1은 본 발명의 실시예에 따른 샤프트에 결합된 터보차저 임펠러를 관통하는 단면도이다.
도 2는 도 1의 임펠러와 샤프트 사이의 조인트의 확대도이다.
도 3은 도 1의 임펠러의 케이싱의 영역과 임펠러의 허브 연장부 사이의 씨일의 확대 개략도이다.
도 4는 임펠러의 케이싱의 영역과 커넥터의 플랜지부 사이의 씨일의 확대 개략도이다.
도 5는 본 발명의 추가의 실시예에 따른 임펠러와 샤프트 사이의 조인트의 개략 단면도를 도시한다.
도 6은 본 발명의 다른 실시예에 따른 임펠러와 샤프트 사이의 조인트의 개략 단면도를 도시한다.
도 7은 본 발명의 실시예에 따른 샤프트에 결합한 다른 터보차저를 관통하는 단면도이다.
우선 도 1을 참조하면, 알루미늄 합금 임펠러(1)는 커넥터(3)에 의해 2-파트 스틸 터보차저 샤프트(2)에 끼워맞춤된다. 임펠러를 제조하는 합금("2618A"로 지정되어 미국 내에 공지됨)은 약 200℃에 이르는 사용을 위해 비교적 높은 강도를 가지며, 약 2.5중량%의 구리와 소량의 마그네슘을 지닌 알루미늄, 철, 및 니켈으로 이루어진 조성을 갖는다.
임펠러(1)를 이루는 합금은 약 22.7x10-6/K의 열팽창 계수를 가지며, 샤프트(2)를 이루는 스틸은 약 11x10-6/K의 열팽창 계수를 갖는다. 커넥터(3)의 재질은, 바람직하게는 (αcs)/(αis)의 값이 0.2보다 크며 보다 바람직하게는 0.3 또는 0.4보다 커지게 되는, 열팽창 계수를 갖는다. 예를 들어, 커넥터(3)는 마그네슘 합금(약 26x10-6/K의 열팽창 계수), 청동(약 18x10-6/K의 열팽창 계수, 그렇지만 망간-청동은 최대 20-21x10-6/K임), 놋쇠(약 18.7x10-6/K의 열팽창 계수) 또는 스테인리스 스틸(16-17.3x10-6/K의 열팽창 계수)로 제조될 수 있다. 이러한 합금은 또한 샤프트(2)를 이루는 스틸에 대한 골링(galling)에 저항성을 가질 수 있다.
커넥터(3)는 컵형 형상이고, 임펠러(1)과의 연결을 위한 외부 표면(14)과, 컵의 베이스를 형성하는 나사산 보어(11)를 갖는 나사산 영역(12)와, 컵의 마우스(mouth)를 둘러싸는 플랜지부(8)를 갖는다.
샤프트(2)는 그것의 임펠러 단부에 형성되며, 실린더형 센터링부(5)를 둘러싸는 제1 견부(4)와, 센터링부의 단부로부터 연장된 더 작은 직경의 나사산 영역(7)을 갖는다. 커넥터(3)는 허브 연장부(H)에 형성된 블라인드 센터링 리세스 내로 삽입되며, 커넥터(3)의 외부 표면(14)은 허브 연장부(H)의 반경 방향 내부 표면에 마찰식으로 연결된다. 커넥터(3)의 플랜지 영역(8)은 허브 연장부(H)의 샤프트측 단부면(9)에 대향 결합하여, 커넥터(3)와 허브 연장부(H)의 상대적인 축방향 위치들을 결정한다. 플랜지 영역(8)은 샤프트(2) 상의 견부(4)에 의해 그것의 타측에 결합된다. 샤프트의 센터링부(5)는 가까이 있는 커넥터의 대응하는 센터링부(10)에 수용되지만, 밀착하여 끼워맞춤되지는 않는다. 나사산 보어(11)는 샤프트의 나사산 영역(7)에 결합된다. 나사산 영역(12)은 상기 리세스의 단부로부터 작은 틈새를 갖는다.
커넥터(3)가 수축되도록 그것을 냉각하고 허브 연장부(H)가 팽창하도록 임펠러를 가열한 후 플랜지부(8)가 허브 연장부(H)의 단부면(9)에 접촉할 때까지 커넥터(3)를 허브 연장부(H)의 중앙 리세스 안으로 삽입함으로써, 커넥터(3)가 허브 연장부(H)에 끼워맞춤된다. 이들이 열적 외도(thermal excursion)로부터 돌아올 때, 커넥터(3)와 허브 연장부(H)는 커넥터(3)의 외부 표면(14)과 허브 연장부(H)의 반경 방향 내부 표면을 마찰식으로 부여잡는다. 외부 표면(14)은 허브 연장부(H)의 축방향 길이의 대부분과 마찰 접촉하며 그 내부에서 연장된다.
플랜지부(8)의 외경에는 오일 캡쳐/쓰로워 링(R)이 구비되며, 본 발명의 실시예에서 그것은 플랜지부(8) 내에 기계가공되어 있다. 그러나 링(R)을 별도의 부품으로 형성하는 다른 방안도 있다.
커넥터(3)가 허브 연장부(H)에 끼워맞춤된 후, 샤프트(2)의 나사산 영역(7)이 커넥터(3)의 나사산 영역(12)에 나사체결되며, 각각의 센터링부(5, 10)가 임펠러의 축과의 축 정렬을 보장한다. 상기 나사산들은 플랜지 영역(8)과 견부(4)의 대향 표면이 서로 접촉할 때까지 나사체결됨으로써, 나사산들이 조여지고 임펠러(1)와 샤프트(2) 간의 회전 고정 연결(rotationally fixed connection)을 제공한다.
유리하게는, 중간값의 열팽창 계수를 갖는 물질로 커넥터(3)를 형성함으로써, 커넥터(3)와 임펠러(1) 사이의 마찰 연결에 작용하는 디퍼렌셜 열적 힘들(differential thermal forces)은 샤프트의 열팽창 계수와 동일한 열팽창 계수를 갖는 재료로 형성된 커넥터에 비해서 감소될 수 있다. 이러한 방식으로, 임펠러가 "움직이려는(walk)" 경향이 또한 감소될 수 있고, 이는 보다 높은 토크로 임펠러가 구동되도록 하고, 이에 따라 임펠러의 최대 압력비를 증가시킨다. 또한, 허브 연장부(H)의 중앙 리세스에서 커넥터(3)와 샤프트(2) 사이의 나사산 연결을 포함함으로써, 축방향에서의 컴팩트한 구조 달성된다. 커넥터(3)와 임펠러 사이의 마찰 연결은 사용 시에 샤프트(2)와 임펠러(1) 사이의 실질적으로 토크 전체를 전달한다. 또한, 허브 연장부(H)에 EP1394387호에 개시된 종류의 구속 링(constraining ring)을 끼워맞춤을 필요가 없기 때문에, 커넥터(3)의 끼워맞춤 동안에 재연삭(regrinding) 작업이 회피될 수 있다.
임펠러(1)가 "움직이려는" 임의의 경향이 있는 경우, 이는 플랜지부(8)와 단부면(9) 사이에서 발생하는 틈새(gap)의 크기를 측정함으로써 모니터링될 수 있다는 점이 유리하다. 이에 따라, 플랜지부(8)와 단부면(9)이 커넥터(3)와 허브 연장부(H)의 상대 축방향 위치를 결정한다는 점은 바람직한 것이다. 서로 접합되어 상대 축방향 위치를 결정하도록 구성될 수 있는 대안적인 대향 구성들의 짝들(이를 테면, 나사산 영역(12)과 상기 리세스의 단부)은 검사용으로 덜 적합하다.
그러나, 샤프트보다 큰 열팽창 계수를 갖는 커넥터의 사용은, 샤프트의 나사산 영역(7)이 커넥터의 나사산 영역(12)에 나사체결되는 나사산들 상에서, 증대된 인장 응력을 야기할 수 있다. 나사산들 상에서의 응력을 감소시키기 위해, 샤프트는 도 1의 임펠러(1)와 샤프트(2) 사이의 조인트의 확대도인 도 2에 보다 잘 도시된 바와 같이, 두 개의 파트로 형성된다. 샤프트의 두 파트는 강철로 형성되며, 동일하거나 유사한 열팽창 계수를 갖는다.
블라인드 중앙 캐비티(22)는 상기 샤프트의 외측 파트(2b)에 형성되며, 그 캐비티의 바닥부에는 나사산(24)이 구비된다. 긴 스터드 형상의 샤프트의 내측 파트(2a)는 상기 캐비티 안에 배치되며, 상기 캐비티로부터 돌출된 스터드의 일단부를 갖는다. 내측 파트는 그것의 돌출 단부에서, 커넥터의 나사산 영역(12) 상에 나사체결되는 나사산 영역(7)을 갖는다. 내측 파트는 또한, 회전 고정된 관계로 샤프트의 두 개의 파트를 결합하기 위해 캐비티의 바닥부에서 나사산(24) 상에 나사체결되는 추가의 나사산부(26)를 반대편 단부에 구비한다. 내측 파트는 또한 캐비티의 스터드를 센터링하는 캐비티의 마우스부(mouth) 또는 그 부근의 센터링부(28)를 갖는다. 상기 스터드는 캐비티의 블라인드 단부에서 추가의 또는 대안적인 센터링부를 가질 수 있다.
샤프트의 외측 파트(2b)는 커넥터의 센터링부(10)와 결합하는 센터링부(5)를 가져서, 샤프트가 임펠러의 축과 정렬되는 것을 보장한다. 외측 파트는 또한, 커넥터의 플랜지부(8)와 접합하게 되는 견부(4)를 가짐으로써, 상기 나사산들이 조여지고 임펠러(1)와 샤프트(2) 사이의 회전 고정식 연결을 제공하도록 한다.
이러한 2-파트 구성에 의해, 나사산 영역(7)으로부터 견부(4)까지의 축방향 거리 d1은, 나사산 영역(7)으로부터 추가의 나사산 영역(26)과 나사산(24)에서의 샤프트의 2개의 파트 사이의 조인트까지의 축방향 거리 d2보다 작다. 따라서 커넥터(3)와 샤프트(2) 사이에서 형성되는 임의의 디퍼렌셜 열적 변형(differential thermal strain)은 그렇지 않은 경우보다 샤프트의 보다 긴 길이 d2 상에서 수용될 수 있다. 이러한 방식으로, 나사산 영역들(7, 12)의 나사산들에서의 인장 응력이 감소될 수 있다.
도 3에 보다 잘 도시된 바와 같이, 임펠러 케이싱의 영역(15)과 허브 연장부(H)의 외부 표면은 임펠러(1)와 케이싱 사이에서 회전 오일과 압력 밀봉을 제공하도록 조력하기 위해 그 부근에 근접해 있다. 그 밀봉을 향상시키기 위해, 허브 연장부(H)는 그것의 외측 표면 상에 리세스(13)를 구비하며, 상기 외측 표면은 그 일단부에서 커넥터의 제1 컴포넌트의 플랜지 영역(8)과 경계를 이루며 케이싱 영역(15)에 의해 지지되는 씨일 링(seal ring, 16)을 수용한다. 씨일 링(16)과 허브 연장부(H) 사이의 마모를 감소시키기 위해, 케이싱 영역(15)은 씨일 링(16)의 샤프트측(도 1의 우측)에 놓여 있는 씨일 링(16)에 대해 작은 접합면(20)을 갖는다. 개선된 밀봉을 제공하기 위해, 씨일 링(16)은 그의 반경 방향 내측면에서 환형 홈(18)을 가지며, 그 리세스는 EPA 1130220호에 개시된 바와 같이 홈 안에 수용되는 대응하는 주연 리브(17)를 갖는다. 그러나, 대안적으로, 씨일 링은 보통의 리세스(즉, 리브가 없는 리세스) 내에 수용되는 보통의 링(즉, 홈이 없는 링)일 수 있다. 씨일 링(16)은 케이싱 영역(15)과 함께 동작하고, 조립체의 샤프트측에 윤활유를 보유하도록 하며, 조립체의 임펠러측(도 1의 좌측)에 압축 공기를 제공하도록 한다. 임펠러(1)의 본체, 그의 씨일 링(16)을 갖는 허브 연장부(H) 및 임펠러 케이싱 사이에 압축 공기가 포함되며, 임펠러 조립체는 현수 베어링(overhung bearings) 상에서 회전하도록 그 임펠러 케이싱 내에 장착된다.
도 4는 다른 종류의 커넥터(3)의 플랜지부(8)와 임펠러의 케이싱의 일 영역 사이의 씨일(seal)에 대한 확대 개략도이다. 이러한 경우, 씨일 링에 의해 형성된 씨일 대신에, 일측에서의 허브 연장부(H)와 플랜지부(8) 및 다른 일측에서의 케이싱 영역(15)은 미로형 씨일(labyrinth seal)을 형성하기 위해 상호결합되는 기계 가공된 홈들의 각 세트를 지지하는 결합 표면(19)을 포함한다.
도 5는 축방향 거리 d2가 축방향 거리 d1에 비해 증가되는 본 발명의 다른 실시예에 따라, 샤프트에 연결된 도 1 및 2에 도시된 종류의 임펠러와 커넥터의 개략적 단면도를 도시한다. 이 실시예에서, 샤프트의 내측 파트(2a)는 그것이 타이-바아(tie-bar ) 형태를 취하며 상기 샤프트의 외측 파트(2b)의 양단부로부터 돌출하도록 길어진다. 따라서, 이러한 케이스의 캐비티(22)는 블라인드 홀이 아니라 관통 홀이다. 또한 임펠러(1)로부터 멀리 있는 샤프트의 외측 파트와 터보차저 배기가스 터빈(32) 사이의 수축-핏 연결(shrink-fit connection, 30)이 도시된다.
이 실시예에서, 타이-바아(2a)의 확장된 단부 영역(34)은 캐비티(22)의 터빈 단부 마우스부의 립부(36)에 대향되게 놓여지며, 나사산 영역(7)에 임펠러 조립체를 나사체결함으로써 샤프트의 외측 파트(2b) 내에 장력이 부여된다. 캐비티의 립부와 확장된 단부 영역 사이의 마찰 접촉이 외측 파트에 대해 타이-바아의 회전을 방지하는데 불충분하면, 이 특징부들은 회전을 방지하기 위해 스플라인(spline) 또는 키(key)와 같은 적절한 상호결합 형태(interlocking formation)를 가질 수 있다. 타이-바아의 터빈 단부가 샤프트의 외측 파트에 나사식으로 연결되는 다른 방안이 있다. 또 다른 방안은, 터빈(32)에 의해 영향을 받는 샤프트의 두 개의 파트들 사이에 조인트(joint)를 갖는 것이다. 예를 들어, 타이-바아는 터빈에 형성된 중심 구멍을 통해 보다 돌출하도록 연장될 수 있고, (예를 들어, 터빈으로부터 돌출되며 터빈의 측면에 대해 로킹되는 타이-바아의 나사산 단부 상에 나사체결되는 너트에 의해) 터빈에 연결될 수 있다.
도 6은 본 발명의 다른 실시예에 따른 샤프트(2)에 연결된 도 1 및 도 2에 도시된 종류의 임펠러 및 커넥터의 개략 단면도를 도시한다. 이 실시예에서, 샤프트의 내측 파트(2a)는 샤프트의 메인 파트이며, 임펠러(1)로부터 배기 가스 터빈(미도시)으로 연장되며, 외측 파트(2b)는 내측 파트에 지지되는 슬리브이다. 내측 파트의 나사산 영역(7)은 외측 파트로부터 돌출되는 내측 파트의 단부에 여전히 있다. 하지만, 커넥터(3)의 대응하는 센터링 영역(10)과 결합하는 샤프트의 센터링 영역(5)은 내측 파트(2a) 상에 있게 된다. 외측 파트는 내측 파트 상에 외측 파트를 센터링하는 임펠러 단부에 또는 그 근방에 센터링 영역(28')를 갖는다.
외측 파트(2b)의 임펠러 단부는 커넥터의 플랜지(8)와 접하는 견부(4)를 형성한다. 외측 파트의 대향 단부는 내측 파트(2a)의 다른 나사산 영역(26) 상에 나사체결되는 나사산(24)을 가져서, 두 개의 파트들을 서로에 대해 회전 고정시키는 조인트를 형성한다. 이러한 방식으로, 축방향 거리 d1에 대한 축방향 거리 d2의 비율은 도 1 및 2의 실시예의 것과 유사할 수 있다.
전술한 실시예에서, 커넥터(3)의 외측 대향 표면은 허브 연장부(H)의 반경 방향 내부 표면에 마찰식으로 연결된다. 그러나, 커넥터의 내측 대향 표면과 허브 연장부의 반경 방향 외부 표면 사이에 마찰 연결을 생성하는 다른 방안이 있다. 그러나, 2파트 샤프트(2)의 특징부들과 임펠러 구조에 대한 그것의 결합 방식은 전술한 실시예에 대해 설명한 것과 같을 수 있다. 도 7은 본 발명의 실시예에 따라 2파트 샤프트에 결합된 다른 터보차저 임펠러를 관통하는 단면도를 도시한다. 샤프트(2)는 도 1 및 2에 도시된 바와 같다. 그러나, 커넥터(3)는 허브 연장부(H)에 형성된 중앙 리세스 내에 삽입된 컵 형상의 삽입 파트(33)와, 허브 연장부(H)를 둘러싸는 원통형 슬리브 영역(34)을 갖는다. 슬리브 영역(14)의 임펠러측 단부에서의 접합 영역(31)은 허브 연장부(H)의 임펠러측 단부면(32)에 대향 결합되어, 슬리브 영역(14)과 허브 연장부(H)의 상대적인 축방향 위치들을 결정한다. 삽입 부품(33)의 마우스부 둘레의 립 영역(38)은 슬리브 영역(14)과 삽입 파트(33)를 결합시킨다. 립 영역(38)은 허브 연장부(H)의 샤프트측 단부면(9)으로부터 작은 간극을 갖지만, 샤프트(2)의 견부(4)에 의해 그것 타측 상에 결합된다. 샤프트의 센터링 영역(5)은 가까이 있는 삽입 파트(33)의 대응되는 센터링 영역(10)에 수용되는데, 타이트하지 않게 결합된다. 삽입 파트(33)의 단부는 샤프트의 나사산 영역(7)에 결합하는 나사산 보어(11)를 갖는 나사산 영역(12)을 형성한다. 나사산 영역(12)은 리세스의 단부로부터 작은 간극을 갖는다.
슬리브 영역(34)이 팽창하도록 커넥터(3)를 가열하고 그 다음 슬리브 영역(34)을 냉각중인 허브 연장부(H)의 원통형 외부 표면 상에서 미끄러지게 함으로써, 상기 슬리브 영역(34)이 허브 연장부(H)에 끼워맞춤되며, 냉가 중에 그것은 마찰식으로 부여잡는다. 슬리브 영역(34)은 허브 연장부(H)의 축방향 길이의 대부분 상에서 연장되어 이와 마찰식으로 접촉하지만, 다른 변경 예에서 슬리브 영역(34)은 축방향 길이의 일부분 상에서만 연장할 수 있고, 그리고/또는 슬리브 영역(34)과 허브 연장부(H) 사이에서 단지 슬리브 영역(34)과 허브 연장부(H) 간의 중첩 영역에 걸쳐서 마찰 접촉이 연장될 수 있다. 커넥터가 임펠러의 알루미늄 합금보다 낮은 열팽창 계수를 가짐으로써, 슬리브 영역(14)은 허브 연장부(H)의 온도가 상승하는 만큼 팽창하지는 않는다. 열팽창 계수의 이들 각각의 이러한 차이는 동작하는 동안, 임펠러 조립체가 가열됨에 따라 허브 연장부와 슬리브 사이의 조인트가 단단히 조여지게 하고, 원심력과 열 응력의 영향 하에서 임펠러와 커넥터 간의 상대 운동 가능성을 감소시키며, 조인트의 토크 용량을 증가시킨다.
임펠러 조립체는 다음과 같이 구축된다. 커넥터(3)가 가열되고, 그리고 허브 연장부(H)의 단부면(32)과 접합 영역(31)이 접촉할 때까지 슬리브 영역(34)이 허브 연장부(H)의 원통형 외부 표면 상에서 슬라이딩된다. 커넥터의 삽입 파트(33)는 허브 연장부(H)의 중앙 리세스 안으로 삽입된다. 커넥터가 냉각되면, 슬리브 영역(34)과 허브 연장부(H) 사이에 마찰 연결이 형성된다. 그러나, 삽입 파트(33)가 중앙 리세스의 측면과 접촉하는 것을 간극(C)이 방지하도록 커넥터의 크기가 정해진다. 샤프트(2)의 나사산 영역(7)은 커넥터의 나사산 영역(12)에 나사체결되고, 각각의 센터링 영역(5, 10)은 임펠러의 축에 대한 샤프트의 정렬을 보장한다. 상기 나사산들은 립 영역(38)과 견부(4)의 대향 표면이 접합될 때까지 나사체결되며, 이로써 나사산들이 조여지고 임펠러(1)와 샤프트(2) 사이의 회전 고정된 연결이 제공된다.
본 발명은 전술한 예시적인 실시예들과 함께 설명되었지만, 다수의 등가 변형 및 변경은 본 개시가 주어지면 해당 기술 분야의 당업자들에게 명백할 것이다. 예를 들어, 커넥터의 나사산 영역에 구비된 나사산은 샤프트의 더 강한 재료로부터 커넥터의 나사산이 손상되는 것을 방지하기 위해 나선 형상부에 의해 보호될 수 있다. 따라서, 위에서 개시한 본 발명의 예시적인 실시예는 도시를 고려한 것이며, 이를 제한하는 것이 아니다. 개시된 실시예에 대한 다양한 변경은 본 발명의 사상과 범주로부터 벗어남이 없이 이루어질 수 있다.
앞서 언급된 모든 참조문헌은 참조로서 본 출원에 포함된다.

Claims (13)

  1. 임펠러와 샤프트의 조립체로서,
    상기 샤프트는, 상기 임펠러의 대응하는 나사산 영역에 나사체결되는 나사산을 가진 나사산 영역을 제공하는 제1 파트와, 상기 임펠러와 상기 샤프트 간의 회전 고정식 연결을 제공하기 위해 상기 나사산 영역들이 서로 나사체결되어 상기 나사산들이 조여질 때 상기 임펠러의 대응하는 접합면과 결합하기 위한 접합면을 제공하는 제2 파트를 가지며,
    상기 제1 파트는 조인트에서 상기 제2 파트에 대해 회전 고정되며, 상기 샤프트의 나사산 영역은 상기 샤프트의 접합면으로부터 제1 거리만큼 축방향으로 이격되며, 상기 샤프트의 나사산 영역은 제1 거리보다 더 큰 제2 거리만큼 조인트로부터 축방향으로 이격되며, 상기 샤프트의 나사산 영역과 상기 조인트는 상기 임펠러의 같은 편에 있으며,
    상기 임펠러는 상기 대응하는 나사산 영역과 상기 대응하는 접합면을 제공하는 커넥터를 가지며, 상기 커넥터는 상기 임펠러의 나머지 부분에 대해 회전 고정되며, 그리고
    상기 임펠러는 중앙 리세스를 가진 샤프트측 허브 연장부를 가지며, 상기 커넥터의 내측 대향 표면은 상기 허브 연장부의 반경 방향 외부 표면과 마찰 연결되며, 상기 커넥터의 내측 대향 표면과 상기 허브 연장부의 반경 방향 외부 표면 사이의 마찰 연결은, 사용 시에, 상기 샤프트와 상기 임펠러 간의 토크의 전부를 전달하며,
    상기 커넥터는 상기 중앙 리세스 안으로 삽입되며, 그리고,
    상기 커넥터의 나사산 영역은 상기 중앙 리세스 내에 있는,
    임펠러와 샤프트의 조립체.
  2. 제1항에 있어서,
    상기 샤프트의 제1 파트는 상기 샤프트의 제2 파트에 형성된 중심 캐비티 내에 배치되며 상기 중심 캐비티로부터 돌출된 신장 부재이며, 상기 샤프트의 상기 나사산 영역은 상기 신장 부재의 돌출 단부에 제공되며, 상기 조인트는 상기 신장 부재의 반대편 단부에 있는,
    임펠러와 샤프트의 조립체.
  3. 제1항에 있어서,
    상기 샤프트의 제2 파트는 상기 샤프트의 제1 파트 상에 구비된 슬리브이고, 상기 샤프트의 상기 접합면은 상기 샤프트의 상기 나사산 영역에 근접 위치한 상기 슬리브의 단부에 있으며, 상기 조인트는 상기 샤프트의 나사산 영역으로부터 원위에 위치한 상기 슬리브의 단부에 있는,
    임펠러와 샤프트의 조립체.
  4. 제1항 내지 제3항 중 어느 한 항에 따른 임펠러와 샤프트의 조립체를 가진 터보차저.
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
KR1020157010630A 2012-11-28 2013-11-26 열팽창을 수용하기 위한 구성을 가진, 샤프트에 나사체결되는 터보차저 임펠러 KR102107484B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB1221429.2A GB201221429D0 (en) 2012-11-28 2012-11-28 Impeller shaft
GB1221429.2 2012-11-28
PCT/GB2013/053117 WO2014083325A1 (en) 2012-11-28 2013-11-26 Turbocharger impeller screwed onto shaft with arrangement for accommodating thermal dilatation

Publications (2)

Publication Number Publication Date
KR20150087198A KR20150087198A (ko) 2015-07-29
KR102107484B1 true KR102107484B1 (ko) 2020-05-07

Family

ID=47560838

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157010630A KR102107484B1 (ko) 2012-11-28 2013-11-26 열팽창을 수용하기 위한 구성을 가진, 샤프트에 나사체결되는 터보차저 임펠러

Country Status (7)

Country Link
US (1) US10018205B2 (ko)
EP (2) EP2906830B1 (ko)
JP (1) JP6294340B2 (ko)
KR (1) KR102107484B1 (ko)
CN (1) CN104781560B (ko)
GB (1) GB201221429D0 (ko)
WO (1) WO2014083325A1 (ko)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5932141B2 (ja) * 2013-04-15 2016-06-08 三菱電機株式会社 回転機械の回転子
CN203306224U (zh) * 2013-05-31 2013-11-27 深圳市大疆创新科技有限公司 螺旋桨及具有该螺旋桨的飞行器
US9835164B2 (en) * 2014-10-03 2017-12-05 Electro-Motive Diesel, Inc. Compressor impeller assembly for a turbocharger
CN105673548A (zh) * 2016-03-17 2016-06-15 高碑店市万盛源风机配件加工厂 一种高密封风机传动轴和风机传动系统
TWI568926B (zh) * 2016-04-01 2017-02-01 峰安車業股份有限公司 渦輪轉子及渦輪轉子的製造方法
GB2557958B (en) * 2016-12-20 2020-05-13 Dyson Technology Ltd A motor and a handheld product having a motor
CN110382839B (zh) * 2017-03-22 2021-05-28 株式会社Ihi 旋转体以及增压器
WO2019097611A1 (ja) 2017-11-15 2019-05-23 三菱重工エンジン&ターボチャージャ株式会社 コンプレッサインペラ、コンプレッサ及びターボチャージャ
KR102440659B1 (ko) * 2017-11-24 2022-09-05 한화파워시스템 주식회사 로터 조립체
DE112019002640B4 (de) * 2018-05-24 2023-01-05 Ihi Corporation Drehkörper und Turbolader
JP2020084917A (ja) * 2018-11-28 2020-06-04 株式会社豊田自動織機 ターボ式流体機械及びその製造方法
CN109538622A (zh) * 2018-12-27 2019-03-29 无锡市海星船舶动力有限公司 船舶用发动机叶轮轴总成
WO2020183736A1 (ja) * 2019-03-14 2020-09-17 三菱重工エンジン&ターボチャージャ株式会社 コンプレッサホイール装置および過給機
CN110529505A (zh) * 2019-09-09 2019-12-03 珠海格力电器股份有限公司 轴承安装结构及其安装、拆卸、检测方法和电机
US11560900B2 (en) 2020-06-09 2023-01-24 Emerson Climate Technologies, Inc. Compressor driveshaft assembly and compressor including same
KR102367002B1 (ko) 2020-08-28 2022-02-23 두산중공업 주식회사 타이로드의 인장 조립구조와 이를 포함하는 가스 터빈 및 타이로드의 인장 조립방법
BE1028803B1 (nl) * 2020-11-16 2022-06-14 Atlas Copco Airpower Nv Turbomachine
US11542836B2 (en) * 2021-06-03 2023-01-03 Pratt & Whitney Canada Corp. Bi-material joint for engine
US11781489B2 (en) 2021-11-11 2023-10-10 Progress Rail Locomotive Inc. Gear train joint
US11519423B1 (en) 2021-11-11 2022-12-06 Progress Rail Locomotive Inc. Compressor joint
US11719129B2 (en) 2021-11-11 2023-08-08 Progress Rail Locomotive Inc. Compressor housing
US11879348B2 (en) 2021-11-11 2024-01-23 Progress Rail Locomotive Inc. Bearing carrier
US11614001B1 (en) 2021-11-11 2023-03-28 Progress Rail Locomotive Inc. Turbine containment
US11739763B2 (en) * 2021-11-11 2023-08-29 Progress Rail Locomotive Inc. Impeller attach mechanism
US11754115B1 (en) * 2022-04-18 2023-09-12 Pratt & Whitney Canada Corp. Multi-material bushing for rotatably mounting a rotating structure to a stationary structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050169764A1 (en) 2002-08-24 2005-08-04 Geoffrey Heyes Francis J. Turbochargers

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH248083A (de) 1945-03-03 1947-04-15 Sulzer Ag Läufer für Turbomaschinen.
US2577134A (en) 1949-02-19 1951-12-04 Elliott Co Radial spline impeller drive for turbochargers
GB798480A (en) 1955-07-04 1958-07-23 Chrysler Corp Improvements in or relating to centrifugal compressors
GB866710A (en) 1956-09-06 1961-04-26 Birmingham Small Arms Co Ltd Improvements in or relating to elastic-fluid turbines
JPS5711298A (en) * 1980-06-25 1982-01-20 Meisei Chemical Works Ltd Oil resistant treatment of paper
JPS5711298U (ko) * 1980-06-25 1982-01-20
US4340317A (en) 1981-05-07 1982-07-20 Northern Research & Engineering Corp. Splineless coupling means
US4810918A (en) 1987-10-07 1989-03-07 Flint & Walling, Inc. Rotor shaft with corrosion resistant ferrule for pumps motor
JPH03122203U (ko) * 1990-03-28 1991-12-13
DE29702119U1 (de) 1997-02-07 1997-04-24 Kuehnle Kopp Kausch Ag Läuferwelle mit Verdichterrad
GB2359863B (en) 2000-03-04 2003-03-26 Alstom Turbocharger
US6499969B1 (en) 2000-05-10 2002-12-31 General Motors Corporation Conically jointed turbocharger rotor
US6481970B2 (en) * 2000-06-28 2002-11-19 Honeywell International Inc. Compressor wheel with prestressed hub and interference fit insert
US7374402B2 (en) * 2002-05-06 2008-05-20 Abb Turbo Systems Ag Fastening arrangement for an impeller on a shaft
US6896479B2 (en) * 2003-04-08 2005-05-24 General Motors Corporation Turbocharger rotor
DE102007044646A1 (de) * 2007-09-18 2009-03-26 Ksb Aktiengesellschaft Laufradbefestigung
DE102010020213A1 (de) 2010-05-12 2011-11-17 Bosch Mahle Turbo Systems Gmbh & Co. Kg Ladevorrichtung, insbesondere Abgasturbolader für ein Kraftfahrzeug
JP5589889B2 (ja) 2011-02-21 2014-09-17 株式会社Ihi ターボ機械
CN102444613A (zh) 2011-12-22 2012-05-09 镇江正汉泵业有限公司 一种泵叶轮反转防松机构
GB201122236D0 (en) * 2011-12-23 2012-02-01 Napier Turbochargers Ltd Connector
WO2013138143A1 (en) * 2012-03-15 2013-09-19 Borgwarner Inc. Exhaust-gas turbocharger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050169764A1 (en) 2002-08-24 2005-08-04 Geoffrey Heyes Francis J. Turbochargers

Also Published As

Publication number Publication date
EP2933499B1 (en) 2018-11-21
WO2014083325A1 (en) 2014-06-05
EP2906830B1 (en) 2019-09-18
US20150275921A1 (en) 2015-10-01
CN104781560A (zh) 2015-07-15
EP2906830A1 (en) 2015-08-19
CN104781560B (zh) 2018-09-04
JP2016500140A (ja) 2016-01-07
JP6294340B2 (ja) 2018-03-14
US10018205B2 (en) 2018-07-10
GB201221429D0 (en) 2013-01-09
KR20150087198A (ko) 2015-07-29
EP2933499A1 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
KR102107484B1 (ko) 열팽창을 수용하기 위한 구성을 가진, 샤프트에 나사체결되는 터보차저 임펠러
JP5731081B2 (ja) コネクタ
JP6002781B2 (ja) シャフトにインペラを接続するためのコネクターを有するターボチャージャ
US6948913B2 (en) Turbochargers
US10309300B2 (en) Electric rotor fit onto a turbomachine shaft
WO2013110922A1 (en) Connection system, corresponding impeller and turbocharger
GB2498361A (en) Silicon carbide reinforced aluminium alloy turbocharger impeller
CN103608610B (zh) 啮合部件及用于制造啮合部件的方法
KR101750737B1 (ko) 축 연결 장치 및 토크 리미터
GB2500167A (en) Impeller to shaft connector
EP2406503A1 (en) A sleeve
GB2498377A (en) Impeller to shaft connection
GB2498748A (en) Impeller to shaft connection system
JP5488021B2 (ja) 軸連結装置およびトルクリミッタ

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant