KR102094802B1 - 소변 대사체 분석을 이용한 베체트병의 진단방법 - Google Patents

소변 대사체 분석을 이용한 베체트병의 진단방법 Download PDF

Info

Publication number
KR102094802B1
KR102094802B1 KR1020180123343A KR20180123343A KR102094802B1 KR 102094802 B1 KR102094802 B1 KR 102094802B1 KR 1020180123343 A KR1020180123343 A KR 1020180123343A KR 20180123343 A KR20180123343 A KR 20180123343A KR 102094802 B1 KR102094802 B1 KR 102094802B1
Authority
KR
South Korea
Prior art keywords
disease
behcet
urine
metabolite
metabolites
Prior art date
Application number
KR1020180123343A
Other languages
English (en)
Other versions
KR20190045841A (ko
Inventor
김경헌
차훈석
안중경
김정연
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to PCT/KR2018/012280 priority Critical patent/WO2019083220A1/ko
Priority to CN201880069264.9A priority patent/CN111279193B/zh
Publication of KR20190045841A publication Critical patent/KR20190045841A/ko
Application granted granted Critical
Publication of KR102094802B1 publication Critical patent/KR102094802B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/493Physical analysis of biological material of liquid biological material urine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2570/00Omics, e.g. proteomics, glycomics or lipidomics; Methods of analysis focusing on the entire complement of classes of biological molecules or subsets thereof, i.e. focusing on proteomes, glycomes or lipidomes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/32Cardiovascular disorders
    • G01N2800/328Vasculitis, i.e. inflammation of blood vessels

Abstract

본 발명은 소변 대사체 분석을 이용한 베체트병 진단방법에 관한 것으로, 대사체학을 이용하여 베체트병을 효과적으로 진단할 수 있는 바이오마커를 제공하며, 이는 베체트병 치료제 개발에도 적용할 수 있다.

Description

소변 대사체 분석을 이용한 베체트병의 진단방법{Method for diagnosing Behcet's disease by using urine metabolomics}
본 발명은 소변 대사체 분석을 통해 베체트병을 진단하는 방법에 관한 것이다.
베체트병은 전신적인 혈관염으로, 구강이나 성기 등의 피부점막 부위의 궤양, 관절염부터 혈관 및 중추 신경계 등의 중요 장기 침범 등의 증상을 특징으로 하는 원인미상의 질병이다. 즉, 혈액이 흐르는 어디든 발생할 수 있는 전신성 혈관염으로, 다양한 임상 증상 및 중증도의 증상을 보인다. 베체트병은 한국, 중국, 일본, 터키 등 지중해 연안부터 극동 아시아에 이르는 지역에 그 발병 빈도가 매우 높다. 베체트병은 다양한 임상 양상을 보이며, 일부에서는 심각한 합병증과 장애를 유발할 수 있으므로, 베체트병을 조기에 진단하는 것은 매우 중요하다. 베체트병의 발병률이 높은 것으로 알려진 터키를 기준으로, 매년 환자 1인당 일반적인 베체트병의 치료에 약 3,300 달러의 경비가 소요되며, 신경학적 증상을 보이는 베체트병 환자는 약 5,000 달러의 경비가 소요되는 것으로 보고되었다. 특히 20대에서 40대에서 가장 높은 질병의 활성도를 보이기 때문에, 젊은 연령에서 심각한 합병증의 발생으로 인한 경제적, 사회적 손실이 매우 클 수 있다. 또한, 베체트병 환자의 약 42%는 연중 120일 가량을 일을 하지 못하는 것으로 추산된다. 우리나라에서도 베체트병은 매우 흔한 질환이기에, 베체트병을 인한 직간접적인 의료비로 인해 지출해야 하는 경비가 매우 클 것으로 예상된다.
따라서 베체트병을 신속, 정확하게 감별 진단할 수 있는 생체표지자의 발굴은 의학뿐만 아니라, 사회경제적으로 매우 중요할 것으로 생각된다.
현재 베체트병 환자와 건강한 사람을 구분할 수 있는 객관적인 진단용 생체표지자가 없으므로, 베체트병의 진단은 주로 임상적인 증상에 의존한다. 그러나 베체트병은 다양한 임상 증상을 보이기에, 임상적 증상에 기반한 진단은 낮은 민감도 및 특이성을 보인다. 또한, 발병 후 베체트병의 확진까지 오랜 시간이 걸리는 문제점이 있다. 이를 극복하기 위해서, 객관적인 진단적 생체표지자를 발명하는 것은 매우 중요하다. 그러므로 베체트병을 진단할 수 있는 객관적인 진단적 생체표지자를 발굴할 수 있으면, 베체트병을 조기에 진단함으로써, 확진에 걸리는 시간을 줄이고, 질병 수준에 적절한 맞춤형 치료를 가능하게 하여, 증상 악화 및 고가의 불필요한 치료를 피할 수 있다. 또한, 질환 관련 예후에 정확한 정보를 제공하여 더 좋은 치료 성적을 거둘 수 있다.
최근 다양한 질환에서 생체표지자 발굴을 위해서 대사체학적 접근 방법은 많은 각광을 받고 있다. 현재까지 문헌 보고에 따르면 베체트병을 진단하기 위한 생체표지자를 찾기 위해 단백질체학을 이용한 시도가 있었으나, 단백질 생체표지자는 대사물질 생체표지자 보다 검출의 신속성 및 편리성이 떨어져 실제 진단에 이용되기는 어렵다는 문제점이 있다. 또한, 베체트병을 진단하기 위해 혈액에서 대사체학적 접근 방법을 이용하여 생체표지자를 발굴한 바 있다. 소변에서 대사체학적 접근법에 의해 발굴된 생체표지자를 동시에 이용한다면, 더욱 적절한 진단을 할 수 있을 것으로 예상된다. 또한, 소변은 비침습적 방법을 통해 보다 쉽고 용이하게 채취할 수 있으므로, 베체트병의 진단을 위해 적절한 검체로 이용할 수 있을 것으로 예상된다.
베체트병은 유전적, 환경적 요인을 포함한 다양한 원인에 의해 면역계가 활성화되어 다양한 임상을 보이는 매우 복합적인 질환이므로, 대사체학적 접근은 베체트병에서 생체표지자를 발굴하는 데 유용하고 적합한 방법이라 생각되며 연구자들이 아는 한 베체트병의 감별 진단을 위해 소변을 이용하여 대사체학적 접근법을 시도한 연구는 없었다. 베체트병 진단과 관련된 선행기술은 다음과 같다.
베체트병에서 생체표지자 발굴을 위해 현재까지 보고된 기술들은 주로 단백질체학적 접근이었지만, 그 결과가 뚜렷하지 못하거나 실제 베체트병 진단에 사용되기는 어려웠다[비특허문헌 1].
비특허문헌 2는 베체트병에 의한 관절염과 다른 혈청음성 염증관절염의 활막액의 대사체 차이를 통해 감별 진단하고자 하는 연구로, 베체트병 환자와 일반인을 구분하여 진단하는 것이 아니라 관절염 환자 들 중 베체트병 관절염을 진단해 내기 위한 것이었다. 또한, 비특허문헌 3은 혈청양성 류마티스관절염과 베체트병을 포함한 다른 염증관절염의 활막액의 대사체 비교를 통해 혈청양성 류마티스관절염의 진단을 위한 생체표지자를 발굴하고자 하였으며, 베체트병 진단이 아닌 류마티스 관절염 환자 들 중 베체트병 관절염을 진단해 내기 위한 것이었다.
비특허문헌 2와 3과 같이, 활막액 대사체를 사용하는 경우에는 활막액 시료의 채취에 특수한 침습적 접근이 필요하여 일반 검진에서 진단용으로 채취가 어렵고 특정 질병의 subgroup 구분에서만 유용하게 이용될 수 있어 일반적 진단에 사용되기 어려운 문제가 있다.
비특허문헌 4는 베체트병 환자 및 건강한 사람의 혈액 검체 내의 대사체 차이를 이용하여 베체트병을 진단하고자 하였다. 혈액 시료의 경우에는 침습적 접근이 필요하여 채취에 허가된 전문 인력을 필요로 하며, 따라서 피시험자가 직접 샘플을 채취하여 자가 진단을 할 수 없는 문제가 있다.
Seido et al. Proteomic surveillance of autoantigens in patients with Behcet's disease by a proteomic approach. (2010) Microbiol Immunol 54:354-361. Ahn J et al. A comparative metabolomic evaluation of Behcet's disease with arthritis and seronegative arthritis using synovial fluid. (2015) PLOS ONE 10:e0135856 Kim s et al. Global metabolite profiling of synovial fluid for the specific diagnosis of rheumatoid arthritis from other inflammatory arthritis. (2014) PLOS ONE 9:e97501 Ahn J et al. Potential metabolomic biomarkers for reliable diagnosis of Behcet's disease using gas chromatography with time-of-flight mass spectrometry. (2018) Joint Bone Spine 95:337-343
본 발명자들은 베체트병 환자를 특이적으로 감별 진단하기 위해 대사체학적 접근을 통하여 신속하고 정확하고 편리한 진단을 위한 비침습적 방법으로 채취가 가능한 소변 샘플을 통해 베체트병을 진단 할 수 있는 생체표지자를 발굴하였다. GC/TOF MS를 이용하여 베체트병 환자와 일반인의 소변 내 대사체 분석을 통해 110개의 대사체를 검출하였다. 이 중 urea를 제외한 109개의 대사물질에 대해서 직교부분최소제곱회귀법(OPLS-DA)과 variable importance for projection (VIP) 값, Receiver operating characteristic (ROC) curve의 area under the 3curve (AUC)의 값, fold change, p-value 등을 산출하여 10개의 강력한 베체트병 환자의 소변 내 대사물질 생체표지자(guanine, 3-hydroxypyridine, hypoxanthine, L-citrulline, isothreonate, pyrrole-2-carboxylate, galactonate, gluconic acid lactone, sedoheptulose, mannose) 를 제시하였다. 또한 10 개의 생체표지자를 동시에 이용한 강력한 베체트병 진단 panel을 만들었으며, 이를 외부 검체(validation set)를 이용하여 임상적 타당성을 검증하였다.
따라서, 본 발명은 소변 대사체 분석을 통해 베체트병을 진단하기 위한 키트를 제공하는데 그 목적이 있다.
또한, 본 발명은 베체트병을 진단하기 위한 대사체 차별성을 분석하는 방법을 제공하는데 목적이 있다.
본 발명은 구아닌(guanine), 3-하이드록시피리딘(3-hydroxypyridine), 하이폭산틴(hypoxanthine), L-시툴린(L-citrulline), 이소트레오네이트(isothreonate), 피롤-2-카르복실레이트(pyrrole-2-carboxylate), 갈락토네이트(galactonate), 글루콘산 락톤(gluconic acid lactone), 세도헵툴로오스(sedoheptulose) 및 만노오스(mannose)로 이루어진 군에서 선택된 하나 이상의 소변 대사체에 대한 정량 장치를 포함하는 베체트병 진단 키트를 제공한다.
또한, 본 발명은 정상 대조군과 베체트병에서 얻은 소변 간의 대사체 차별성을 검출하는 방법으로,
(1) GC/TOF MS(gas chromatography/time-of-flight mass spectrometry)를 이용한 대사체 분석 단계;
(2) GC/TOF MS에서 동정된 대사체에 대해 부분최소자승판별분석(PLS-DA)를 이용하여 대사체 프로파일의 차이를 확인하는 단계;
(3) PLS-DA에서 도출된 대사체의 VIP(Variable Importance for Projection) 값이 1.0 이상인 값을 대사체 바이오마커 후보물질로 선정하고, PLS-DA의 로딩 값을 통해 대사체 바이오마커 후보물질의 증감 확인하는 단계;
(4) ROC 곡선(Receiver Operating Characteristic curve)을 이용하여 대사체 바이오마커를 검증하는 단계
를 순차적으로 적용하여, 소변으로부터 대사체 바이오마커를 분석하는 것을 포함하는 정상 대조군과 베체트병에서 얻은 소변 간의 대사체 차별성 분석 방법을 제공한다.
본 발명을 통하여 대사체학을 소변 분석에 이용해 베체트병을 특이적으로 진단할 수 있는 생체표지자를 최초로 규명하였다. 이는 아직까지 완전히 밝혀져 있지 않은 베체트병의 발병 기전을 밝히는 연구의 기반이 될 수 있다. 또한, 다양한 임상 증상에 최적화된 치료제 개발에 응용될 수 있다. 베체트병의 진단을 용이하게 하는 생체표지자의 발견은 베체트병 환자를 신속하고 정확하게 진단하고, 임상적 진단에 걸리는 긴 시간을 크게 줄여서 맞춤형 치료를 빠르게 제공하여 일상생활로 복귀를 빠르게 하는 등의 사회 경제적 파급 효과도 상당할 것으로 기대된다. 특히, 기존의 혈액 샘플을 이용하여 베체트병을 진단하는 경우와 달리 피시험자가 직접 소변 샘플을 비침습적으로 채취하여 자가진단이 가능하다. 또한, 혈액 샘플과 소변 샘플 모두를 이용하여 진단한다면 특이성을 보다 높일 수 있다.
도 1은 OPLS-DA를 이용하여 베체트병 환자와 건강한 대조군의 소변 내 대사체 프로파일링 차이 비교한 것으로,
A는 OPLS-DA로 만들어진 다변량 통계 모델의 score plot으로, 베체트병 환자와 건강한 대조군의 대사체가 확연한 차이를 보임을 나타내며,
B는 OPLS-DA로 만들어진 다변량 통계 모델의 loading plot으로 만들어진 모델(표 2)에 각 대사물질의 abundance가 어떻게 기여하는지 보여주고,
C는 OPLS-DA 모델의 permutation 결과로, OPLS-DA 모델이 오버피팅 되지 않았으며, 분석에 사용된 샘플에 국한되지 않고 외부 샘플 분석에도 이용될 수 있음을 나타낸다[BD: 베체트병 환자; HC: 건강한 대조군].
도 2는 베체트병에서 유의미하게 증가한 3개 대사물질(A)과 유의미하게 감소한 7개 대사물질(B)의 수준 비교 그래프이다.
도 3은 베체트병 환자 내 steroid, colchicine, azathioprine 투여 그룹과 비투여 그룹 간의 대사체적 차이를 PLS-DA로 나타낸 결과이다[각각의 약물투여 그룹과 비투여 그룹 간의 차이가 Q 2 값이 매우 낮아 재현성이 없고, 통계학적으로 그룹 간의 대사체적 차이가 없음을 보임].
도 4는 베체트병에서 유의미하게 증가한 3개 대사물질 구아닌, 피롤-2-카르복실레이트, 3-하이드록시피리딘과 유의미하게 감소한 7개 대사물질(하이폭산틴(hypoxanthine), L-시툴린(L-citrulline), 이소트레오네이트(isothreonate), 갈락토네이트(galactonate), 글루콘산 락톤(gluconic acid lactone), 세도헵툴로오스(sedoheptulose), 만노오스(mannose))을 이용해 베체트병을 진단하는 대사체적 생체표지자 panel을 OPLS-DA를 통해 분석한 결과이다[t[1] 하나의 축을 이용하였을 때, R 2 Y 값이 0.650로 적절하게 구분됨을 보였으며, Q 2 값이 0.600로 모델이 재현성이 있음을 확인함].
도 5는 소변 검체를 이용한 베체트병 진단을 위한 대사체적 진단 panel의 ROC(receiver operating characteristic curve) 결과이다[10개의 대사체 조합을 이용한 생체표지자 panel이 베체트병의 진단에 있어 sensitivity 96.7%, specificity 93.3%, AUC 0.974의 결과를 보임].
도 6은 소변 검체를 이용한 베체트병 진단을 위한 대사체적 진단 panel의 외부 검체 검증 결과이다[주성분 분석에서 14개의 베체트병 환자 및 11개의 건강한 대조군의 소변 샘플 중 11개의 베체트병 환자 및 11개의 건강한 대조군을 정확하게 예측할 수 있음을 보임].
이하, 본 발명의 구성을 구체적으로 설명한다.
본 발명은 구아닌(guanine), 3-하이드록시피리딘(3-hydroxypyridine), 하이폭산틴(hypoxanthine), L-시툴린(L-citrulline), 이소트레오네이트(isothreonate), 피롤-2-카르복실레이트(pyrrole-2-carboxylate), 갈락토네이트(galactonate), 글루콘산 락톤(gluconic acid lactone), 세도헵툴로오스(sedoheptulose) 및 만노오스(mannose)로 이루어진 군에서 선택된 하나 이상의 혈액 대사체에 대한 정량 장치를 포함하는 베체트병 진단 키트에 관한 것이다.
본 발명자들은 베체트병의 바이오마커를 찾기 위해 환자들의 소변으로부터 샘플을 채취하여 메탄올로 추출하고 GC/TOF MS를 이용하여 베체트병 환자들과 정상인들의 대사체 프로파일 차이를 비교 분석하고, 이 차이를 이용하여 베체트병 환자들을 진단할 수 있는 바이오마커 발굴 연구를 수행하였다.
그 결과, 총 110개의 대사체를 동정하였고, 이 중 유기산류가 가장 많이 검출되었으며, 그 다음으로 아미노산류, 당류, 지방산류, 아민류, 인산류 등의 순서로 검출되었다.
Urea를 제외한 109개의 대사 물질을 통계분석에 이용하였으며, 30명의 베체트병 환자와 30명의 건강한 대조군의 소변을 비교하였을 때, 직교부분최소제곱회귀법(OPLS-DA)을 통해 베체트병 환자들과 건강한 대조군의 소변 내 대사체가 분명한 차이를 보임을 확인하였으며, VIP 값이 1.0 이상, fold change 1.5 이상, AUC 0.800 이상, p-value 0.01 미만의 10개의 대사물질을 신규 생체표지자 후보 물질로 선정하였다. 또한, 베체트병의 특이적 대사체 프로파일과 후보 생체표지자가 베체트병 치료를 위해 투여한 약물에 의한 영향이 아니라는 것을 확인하기 위해 베체트병에서 투여한 약물에 따라 그룹을 나누어 PLS-DA 분석을 시행하였다, 그 결과 베체트병에서 투여한 약물에 따른 대사체적 차이가 없음을 확인하였다.
또한, 보다 쉽고 강력한 진단을 위하여, 후보 생체표지자로 선정된 10개의 대사물질로 구성된 베체트병을 감별하는 대사체적 생체표지자 panel을 생성하였다. 10개 대사체의 생체표지자 panel이 베체트병의 진단적 목적의 이용 가능성을 확인하기 위해 ROC curve를 이용하여 검증하였으며, sensitivity가 96.7%, specificity가 93.3%, AUC 값 0.974로 베체트병을 진단하는 데 매우 우수한 결과를 보였다. 또한, 이 모델의 적정성을 확인하기 위해 다시 외부에서 받은 14개의 베체트병 환자와 11개의 건강한 대조군의 소변을 이용하여 10개 대사체 생체표지자 panel의 외부 샘플 진단 가능 여부를 살펴보았다. 그 결과 우리가 발견한 10개의 대사물질을 이용한 생체표지자 panel이 베체트병 진단에 적절함을 검증할 수 있었다.
보다 바람직하게는 fold change가 2.0 이상인 만노오스(mannose), 시툴린(L-citrulline), 하이폭산틴(hypoxanthine), 글루콘산 락톤(gluconic acid lactone), 구아닌(guanine) 및 3-하이드록시피리딘(3-hydroxypyrydine)으로 구성되는 군으로부터 선택된 하나 이상의 대사물질을 사용하여 베체트병을 진단할 수 있다.
본 명세서에서 용어 "진단"은 특정 질병 또는 질환에 대한 한 객체의 감수성(susceptibility)을 판정하는 것, 한 객체가 특정 질병 또는 질환을 현재 가지고 있는지 여부를 판정하는 것(예컨대, 베체트병 의 동정), 특정 질병 또는 질환에 걸린 한 객체의 예후(prognosis)를 판정하는 것, 또는 테라메트릭스(therametrics)(예컨대, 치료 효능에 대한 정보를 제공하기 위하여 객체의 상태를 모니터링 하는 것)을 포함한다.
본 발명의 진단 키트에 포함된 정량 장치는 크로마토그래피/질량분석기일 수 있다.
본 발명에서 이용되는 크로마토그래피는 가스 크로마토그래피(Gas Chromatography), 액체-고체 크로마토그래피(Liquid-Solid Chromatography, LSC), 종이 크로마토그래피(Paper Chromatography, PC), 박층 크로마토그래피(Thin-Layer Chromatography, TLC), 기체-고체 크로마토그래피(Gas-Solid Chromatography, GSC), 액체-액체 크로마토그래피(Liquid-Liquid Chromatography, LLC), 포말 크로마토그래피(Foam Chromatography, FC), 유화 크로마토그래피(Emulsion Chromatography, EC), 기체-액체 크로마토그래피(Gas-Liquid Chromatography, GLC), 이온 크로마토그래피(Ion Chromatography, IC), 겔 여과 크로마토그래피(Gel Filtration Chromatograhy, GFC) 또는 겔 투과 크로마토그래피(Gel Permeation Chromatography, GPC)를 포함하나, 이에 제한되지 않고 당업계에서 통상적으로 사용되는 모든 정량용 크로마토그래피를 사용할 수 있다. 바람직하게는, 본 발명에서 이용되는 크로마토그래피는 가스 크로마토그래피이다. 더불어 본 발명에서 이용되는 질량분석기는 MALDI-TOF MS 또는 TOF MS이고, 보다 바람직하게는 TOF MS이다.
본 발명의 소변 대사체는 가스 크로마토그래피에서 각 성분들이 분리되며, Q-TOF MS를 거쳐 얻어진 정보를 이용하여 정확한 분자량 정보뿐만 아니라 구조 정보(elemental composition)를 통해 구성 성분을 확인한다.
본 발명의 바람직한 구현예에 따르면, 구아닌, 피롤-2-카르복실레이트 및 3-하이드록시피리딘으로 이루어진 군에서 선택된 하나 이상의 농도가 증가되는 경우, 베체트병을 나타내고 하이폭산틴(hypoxanthine), L-시툴린(L-citrulline), 이소트레오네이트(isothreonate), 갈락토네이트(galactonate), 글루콘산 락톤(gluconic acid lactone), 세도헵툴로오스(sedoheptulose) 및 만노오스(mannose)로 이루어진 군에서 선택된 하나 이상의 농도가 감소되는 경우, 베체트병을 나타낸다.
본 명세서에서, 용어 "소변 대사체 농도의 증가"는 건강한 정상인에 비해 베체트병 환자의 소변 대사체 농도가 측정 가능할 정도로 유의하게 증가된 것을 의미하며, 바람직하게는 70% 이상 증가된 것을 의미하고, 보다 바람직하게는 30% 이상 증가된 것을 의미한다.
본 명세서에서, 용어 "소변 대사체 농도의 감소"는 건강한 정상인에 비해 베체트병 환자의 소변 대사체 농도가 측정 가능할 정도로 유의하게 감소된 것을 의미하며, 바람직하게는 40% 이상 감소된 것을 의미하고, 보다 바람직하게는 20% 이상 감소된 것을 의미한다.
본 발명에 따르면, 구아닌, 피롤-2-카르복실레이트 및 3-하이드록시피리딘으로 이루어진 군에서 선택된 하나 이상은 건강한 정상인에 비해 베체트병 환자에서 유의하게 증가된 농도를 나타내고, 하이폭산틴(hypoxanthine), L-시툴린(L-citrulline), 이소트레오네이트(isothreonate), 갈락토네이트(galactonate), 글루콘산 락톤(gluconic acid lactone), 세도헵툴로오스(sedoheptulose) 및 만노오스(mannose)로 이루어진 군에서 선택된 하나 이상은 건강한 정상인에 비해 베체트병 환자에서 유의하게 감소된 농도를 나타낸다(표 3).
본 발명은 또한 정상 대조군과 베체트병에서 얻은 소변 간의 대사체 차별성을 검출하는 방법으로,
(1) GC/TOF MS(gas chromatography/time-of-flight mass spectrometry)를 이용한 대사체 분석 단계;
(2) GC/TOF MS에서 동정된 대사체에 대해 부분최소자승판별분석(PLS-DA)를 이용하여 대사체 프로파일의 차이를 확인하는 단계;
(3) PLS-DA에서 도출된 대사체의 VIP(Variable Importance for Projection) 값이 1.0 이상인 값을 대사체 바이오마커 후보물질로 선정하고, PLS-DA의 로딩 값을 통해 대사체 바이오마커 후보물질의 증감 확인하는 단계; 및
(4) ROC 곡선(Receiver Operating Characteristic curve)을 이용하여 대사체 바이오마커를 검증하는 단계;
를 순차적으로 적용하여, 소변으로부터 대사체 바이오마커를 분석하는 것을 포함하는 정상 대조군과 베체트병에서 얻은 소변 간의 대사체 차별성 분석 방법에 관한 것이다.
본 발명의 두 생체시료군 간의 대사체 차별성 분석 방법은 베체트병과 정상군에서 얻은 소변 시료군 간의 대사체 차별성을 분석하는 방법을 예로 들어 구체적으로 설명한다.
우선, 정산인과 베체트병 환자에서 채취한 소변 샘플을 100% 메탄올로 추출한 후 GC/TOF MS 분석에 사용할 수 있도록 공지 기술을 이용하여 유도체화 과정을 거친다.
상기 GC/TOF MS를 이용한 소변의 대사체 분석 방법은 소변 추출물을 GC/TOF MS 기기로 분석하고, 분석 결과를 통계처리 가능한 수치로 변환한 다음, 변환된 수치를 이용하여 통계학적으로 두 생체시료군의 차별성을 검증하는 것을 포함한다.
GC/TOF MS 분석 결과를 통계처리 가능한 수치로 변환하는 것은 총 분석시간을 단위시간 간격으로 나누어 단위시간 동안 나타난 크로마토그램 피크의 면적 또는 높이 중 가장 큰 수치를 단위시간 동안의 대표값으로 정하는 것일 수 있다.
본 발명의 일 구현예에 따르면, GC/TOF MS 분석 결과 총 110개의 대사체를 동정하였고, 이 중 유기산류가 가장 많이 검출 되었으며, 그 다음으로 아미노산류, 당류, 지방산류, 아민류, 인산류 등의 순서로 검출 되었다.
상기 GC/TOF MS 분석 결과 나온 대사체의 강도를 총 동정된 대사체의 강도 합으로 나누어 각 대사체를 표준화하고, PLS-DA 분석을 실시한다.
대사체의 PLS-DA 로딩 값과 VIP 값으로 구성된 V-plot를 작성하고, VIP 값이 1.0 이상인 값을 대사체 바이오마커 후보물질로 선정하고, PLS-DA의 로딩 값의 증감을 확인하며, 이때 로딩 값이 양수인 것은 대사체의 증가 경향을, 로딩 값이 음수인 것은 대사체의 감소 경향을 나타내는 것이다.
GC/TOF MS에서 분석된 혈액의 대사체의 강도를 이용하여 대사체의 증감을 확인할 수 있다.
ROC 곡선을 통해 상기 대사체 바이오마커를 검증한다.
본 발명의 일 구현예에 따르면, 베체트병을 진단하기 위한 바이오마커로, 구아닌(guanine), 3-하이드록시피리딘(3-hydroxypyridine), 하이폭산틴(hypoxanthine), L-시툴린(L-citrulline), 이소트레오네이트(isothreonate), 피롤-2-카르복실레이트(pyrrole-2-carboxylate), 갈락토네이트(galactonate), 글루콘산 락톤(gluconic acid lactone), 세도헵툴로오스(sedoheptulose) 및 만노오스(mannose)로 이루어진 군에서 선택된 하나 이상을 사용할 수 있다.
본 발명의 정상군과 베체트병에서 얻은 소변 시료군 간의 대사체 차별성 분석 방법을 통해 보다 일관성 있고 신뢰도 높은 정확한 베체트병을 진단할 수 있고, 이를 치료제 개발에 적용할 수 있다.
이하, 본 발명에 따르는 실시예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
[ 실시예 ]
실시예 1: GC / TOF MS를 이용한 대사체 동정
베체트병 환자 및 건강한 대조군 각각의 소변 10μl에 순수 메탄올 990μl을 섞고 강하게 볼텍싱 한 후에 원심분리하여 대사체를 추출하였다.
GC/TOF MS 분석을 위한 유도체화 과정은 다음과 같다.
추출한 검체를 스피드 백으로 건조시킨 후에 5μl의 40%(w/v) 농도의 O-methylhydroxylamine hydrochloride/pyridine을 넣고 30℃ 200 rpm에서 90분간 반응을 시켰다. 그리고 45 μl의 N-methyl-N-(trimethylsilyl)trifluoroacetamide를 넣고 37℃ 200 rpm에서 30분간 반응을 실시하였다.
GC/TOF MS 분석을 위한 기기 조건은 다음과 같다.
분석할 때 사용한 컬럼은 RTX-5Sil MS capillary column (30 m length, 0.25 mm film thickness, 및 25 mm inner diameter)이며, GC 컬럼 온도 조건은 먼저 50℃에서 5분간 유지시킨 후 330℃까지 승온시킨 다음 1분간 유지하였다. 1μl의 샘플을 비분할법(splitless)으로 주입(injection)하였다. Transfer line 온도와 Ion source 온도는 각각 280℃, 250℃로 유지시켰다. GC/TOF MS 결과를 보유하고 있는 라이브러리에서 찾아 110개의 대사체를 동정하였으며, 기기 검출 영역 이상으로 고농도인 urea가 통계 분석에 악영향을 미칠 수 있으므로 109개의 대사체를 분석에 사용하였다(표 1).
하기 표 1은 베체트병 환자와 건강한 대조군의 소변 검체를 이용하여 대사체 분석 결과 확인된 109개 대사체를 나타낸 것으로, 각각의 대사체군별로 분류하였을 때, 유기산 23.6%, 아미노산 21.8%, 당 21.8%, 지방산 12.7%, 아민 11.8%, 인 1.8%, 기타 6.4%로 나타났다.
Identified metabolites
Amines
3-hydroxypyridine 5'-deoxy-5'-methylthioadenosine Adenosine
benzamide guanine hypoxanthine
inosine O-phosphorylethanolamine putrescine
spermidine thymine xanthine
Amino acids
5-aminovalerate alanine asparagine
asparagine dehydrated glutamate glycine
isoleucine isothreonate L-citrulline
L-cysteine L-homoserine lysine
methionine N-methylalanine ornithine
oxoproline phenylalanine proline
serine threonine tryptophan
tyrosine valine β-alanine
Fatty acids
1-monopalmitin arachidic acid arachidonic acid
capric acid heptadecanoic acid lauric acid
lignoceric acid myristic acid octadecanol
oleic acid palmitic acid pelargonic acid
pentadecanoic acid stearic acid
Organic acids
2-hydroxyvalerate 2-ketoadipate 3-hydroxypropionate
3-phenyllactate adipate aminomalonate
aspartate citramalate citrate
fumarate galactonate galacturonate
gluconate gluconic acid lactone glycerate
glycolate hexonate isocitrate
lactate malate malonate
N-carbamoylaspartate oxalate pyrrole-2-carboxylate
succinate α-ketoglutarate
Sugars and sugar alcohols
1,5-anhydroglucitol arabitol cellobiose
fructose galactinol galactose
glucose glycerol lactulose
lyxose maltotriose mannitol
mannose melezitose melibiose
myo-inositol palatinitol phytol
ribose sedoheptulose sedoheptulose anhydrous
threitol threose xylose
Phosphates
phosphate sedoheptulose-7-phopsphate
Others
indole-3-lactate nicotinamide salicylaldehyde
taurine uracil uric acid
xanthurenic acid
실시예 2: OPLS - DA를 이용한 베체트병 환자와 건강한 대조군의 소변 내 대사체 프로파일 차이
실시예 1로부터 나온 대사체의 강도(intensity)를 총 동정된 대사체의 강도 합으로 나누어 각 대사체를 표준화하였다. 그 후 SIMCA-P+ (ver. 14.1)를 이용하여 OPLS-DA 분석을 실시하였다.
도 1에 나타낸 바와 같이, 베체트병 환자와 건강한 대조군의 소변 내 대사체 프로파일링이 명확하게 차이가 나는 것을 확인하였다.
표 2에 각 대사체가 모델에 미치는 영향의 정도를 나타내는 지표인 loading 및 VIP values를 표시하였다.
Metabolites Loading values VIP values Metabolites Loading values VIP values
1,5-anhydroglucitol -0.0593 0.7113 lignoceric acid -0.0642 1.0590
1-monopalmitin -0.1023 1.4834 lysine -0.0013 0.8195
2-hydroxypyridine -0.0192 0.2700 lyxose -0.0551 0.7533
2-hydroxyvalerate 0.1232 1.2138 malate -0.0845 1.0576
2-ketoadipate -0.1000 1.3208 malonate -0.0948 0.9821
3-hydroxypropionate -0.0196 0.3913 maltotriose -0.1108 1.3878
3-hydroxypyridine -0.1188 1.1866 mannitol -0.0519 0.5484
3-phenyllactate -0.0726 0.7635 mannose 0.1883 1.8823
5-aminovalerate -0.0015 0.1858 melezitose -0.1391 1.5541
5'-deoxy-5'-methylthioadenosine 0.0656 0.6751 melibiose -0.1041 1.0622
adenosine 0.0988 0.9730 methionine -0.0280 0.3681
adipate 0.0634 0.6578 myo-inositol 0.0037 0.4271
alanine -0.0434 0.5891 myristic acid -0.1031 1.3964
alpha-keto glutarate 0.0748 0.8083 N-carbamoylaspartate -0.0447 0.4426
aminomalonate 0.0129 0.5310 nicotinamide 0.1371 1.3656
arabitol 0.0306 0.7338 N-methylalanine 0.1127 1.1333
arachidic acid -0.1367 1.6301 octadecanol -0.1541 1.7112
arachidonic acid -0.0296 0.3509 oleic acid -0.0252 0.6095
asparagine -0.0419 0.6707 O-phosphorylethanolamine 0.0082 0.2112
asparagine dehydrated -0.0549 0.6539 ornithine -0.0078 0.6479
aspartic acid -0.0002 0.1325 oxalate 0.0866 0.9415
benzamide -0.0668 0.6704 oxoproline 0.1214 1.2978
capric acid 0.0742 0.8457 palatinitol 0.0074 0.1672
cellobiose -0.0088 0.3257 palmitic acid -0.1548 1.8311
citramalate 0.1169 1.1789 pelargonic acid -0.0562 1.0990
citrate 0.1425 1.4614 pentadecanoic acid 0.0351 0.3500
fructose -0.0652 0.7439 phenylalanine -0.0275 0.2835
fumarate -0.0495 0.5353 phosphate -0.0275 0.3971
galactinol 0.0753 0.7605 phytol -0.0349 0.4157
galactonate 0.1909 1.9495 proline -0.0106 0.3257
galactose 0.1039 1.1282 putrescine -0.0598 0.6729
galacturonate 0.0993 1.0650 pyrrole-2-carboxylate -0.1471 1.5941
gluconate 0.1226 1.2099 ribose 0.0683 0.7309
gluconic acid lactone 0.1264 1.2758 salicylaldehyde -0.0550 1.1026
glucose -0.0077 0.3953 sedoheptulose 0.1692 1.7424
glutamate 0.0298 0.3166 sedoheptulose anhydrous 0.0275 0.9273
glycerate 0.1072 1.1258 sedoheptulose-7-phopsphate -0.0626 0.6228
glycerol -0.0282 0.7482 serine -0.0072 0.3837
glycine -0.0204 0.6732 spermidine -0.0049 0.0542
glycolate 0.0528 0.7763 stearic acid -0.1473 1.7348
guanine -0.1303 1.3016 succinate 0.0158 0.3017
heptadecanoic acid -0.1045 1.3528 taurine 0.0173 0.5294
hexonate 0.0093 0.6113 threitol 0.1315 1.4346
hypoxanthine 0.1535 1.5140 threonine -0.0198 0.7759
indole-3-lactate -0.0149 0.6259 threose -0.1359 1.6001
inosine -0.0190 0.4995 thymine 0.0791 0.7797
isocitrate 0.1425 1.4583 tryptophan 0.0488 0.9356
isoleucine -0.0178 0.2488 tyrosine 0.0619 1.0672
isothreonate 0.1931 1.9892 uracil 0.0176 0.2551
lactate -0.0555 1.1998 uric acid -0.0388 0.4579
lactulose -0.0436 0.4362 valine -0.0324 0.4396
lauric acid -0.0764 1.1532 xanthine 0.0361 0.4511
L-citrulline 0.1917 2.0143 xanthurenic acid 0.0834 0.9389
L-cysteine 0.0807 1.1293 xylose -0.0548 0.8691
L-homoserine -0.0861 0.9158 β-alanine 0.0237 0.3000
실시예 3: 베체트병 환자에 특이적인 생체표지자 대사물질들의 선별
베체트병 환자에서 특이적으로 증감한 생체표지자를 찾기 위해서, 각각의 대사물질로부터 실시예 2로부터 도출된 대사체 프로파일링의 차이에 영향을 미치는 VIP 값과 fold channge, AUC, p-value를 구하였다. VIP 값이 1.0 이상, fold change 1.5 이상, AUC 0.800 이상, p-value 0.01 미만의 기준을 각각의 대사물질에 대해 구하였고, 10개의 대사물질이 베체트병 진단에 적절함을 보였다(표 3).
하기 표 3은 베체트병 진단을 위한 잠재적 생체표지자로 선정된 10개의 대사물질의 VIP, AUC, fold change, p-value 값[BD, 베체트병 환자; control, 건강한 대조군]을 나타낸 것이다.
또한, 이 대사물질들의 절대적 intensity를 박스 플롯을 이용하여 그룹별로 비교하였다 (도 2).
Metabolite VIP Fold AUC p - value
Metabolites with higher abundances in the BD group than in the control group
guanine 1.63 2.33 0.834 3.68E-05
pyrrole-2-carboxylate 1.40 1.95 0.806 1.01E-04
3-hydroxypyridine 1.36 2.25 0.846 2.75E-03
Metabolites with higher abundances in the control group than in the BD group
mannose 2.02 3.28 0.860 1.11E-08
L-citrulline 1.87 2.08 0.884 2.19E-08
galactonate 1.79 1.78 0.856 1.54E-07
isothreonate 1.79 1.76 0.862 1.38E-07
sedoheptulose 1.55 1.69 0.820 9.53E-06
hypoxanthine 1.48 2.25 0.849 1.06E-04
gluconic acid lactone 1.24 2.07 0.818 8.33E-04
AUC, area under the ROC curve; BD, Behcet's disease; VIP, variable importance on projection
실시예 4: PLS - DA를 이용한 베체트병 환자에서 증감한 대사물질에 약물 효과 존재 유무 검증
베체트병 환자에서 특이적으로 증감한 생체표지자가 약물에 의해 증감한 물질이 아님을 보이기 위해서, 각각의 약물투여 그룹 vs. 약물비투여 그룹을 PLS-DA를 이용해 비교한 결과, 분리 수준이 적절하지 않고 재현성이 없는 것으로 나타났다. 3개의 투여된 약물 그룹 steroid, colchicine, azathioprine에서 각각 재현성이 없는 결과를 보였으며, 약물에 따른 차이가 통계적으로 유의미하지 않았다.
따라서, 실시예 3에서 보인 베체트병에서 증감한 대사물질이 질병 자체에 의한 변화이므로 생체표지자로 적절함을 확인하였다(도 3).
실시예 5: 소변 검체를 통한 베체트병의 진단을 위해 10개의 대사물질을 이용한 대사체적 진단 panel의 생성
실시예 3으로부터 선정된 베체트병에서 유의미하게 증가한 3개 대사물질(구아닌, 피롤-2-카르복실레이트, 3-하이드록시피리딘)과 유의미하게 감소한 7개 대사물질(하이폭산틴(hypoxanthine), L-시툴린(L-citrulline), 이소트레오네이트(isothreonate), 갈락토네이트(galactonate), 글루콘산 락톤(gluconic acid lactone), 세도헵툴로오스(sedoheptulose), 만노오스(mannose))의 베체트병 진단을 위한 생체표지자 10개를 동시에 사용하여 베체트병을 진단할 수 있는 대사체적 진단 panel을 OPLS-DA를 통해 생성시켰다.
t[1] 하나의 축을 이용했을 때, R 2 X 값이 0.592, R 2 Y 값이 0.650, Q 2 값이 0.600으로 통계학적으로 유의미한 모델을 통하여 베체트병 환자와 건강한 대조군을 적절하고 재현성 있게 구분하였다(도 4).
실시예 6: 소변 검체를 이용한 베체트병의 진단을 위한 대사체적 진단 panel의 ROC 및 외부 검체 검증을 통한 모델 검증
실시예 5를 통해 생성된 소변 검체 내 10개의 바이오마커를 통한 베체트병 진단용 대사체적 생체표지자 panel이 진단에 적절한지 살펴보기 위하여 모델 내 각 검체의 PC1 score를 이용해서 ROC(receiver operating characteristic) 곡선을 그렸다. 그 결과, sensitivity가 96.7%, specificity가 93.3%, AUC값이 0.974으로 모델이 베체트병 진단에 매우 적합함을 보였다(도 5).
또한, 이 panel이 외부 검체를 이용하여 베체트 질환의 진단을 예측할 수 있는지 살펴보기 위하여, 베체트병 환자의 소변검체 14개와 건강한 대조군의 소변 검체 11개, 총 25개의 검체를 panel에 집어넣어 예측에 이용하였다. 그 결과, 건강한 대조군 소변 검체 11개는 모두 건강한 대조군의 값을 (모델 내에서 양수) 가져서 건강한 대조군에 속하도록 예측하였으며, 베체트병 환자 소변 검체 14개 중 11개가 베체트병 환자의 값을 (모델 내에서 음수) 가져 베체트병 환자임을 예측하였다. 따라서 25개의 외부 검체 중 22개의 검체를 정확하게 베체트병 환자 혹은 건강한 대조군으로 예측할 수 있음을 나타내어, 10개의 대사체 생체표지자 panel이 외부 검체의 베체트병 진단에도 적절함을 나타내었다 (도 6).

Claims (10)

  1. 구아닌(guanine), 하이폭산틴(hypoxanthine) 및 만노오스(mannose)로 이루어진 군에서 선택된 하나 이상의 소변 대사체에 대한 정량 장치를 포함하되,
    구아닌(guanine)의 농도가 증가되거나, 하이폭산틴(hypoxanthine) 및 만노오스(mannose)로 이루어진 군에서 선택된 하나 이상의 농도가 감소하는 경우, 베체트병을 나타내는 베체트병 진단 키트.
  2. 삭제
  3. 제 1 항에 있어서,
    정량 장치는 크로마토그래피/질량분석기인 베체트병 진단 키트.
  4. 제 1 항에 있어서,
    3-하이드록시피리딘(3-hydroxypyridine), L-시툴린(L-citrulline), 이소트레오네이트(isothreonate), 피롤-2-카르복실레이트(pyrrole-2-carboxylate), 갈락토네이트(galactonate), 글루콘산 락톤(gluconic acid lactone) 및 세도헵툴로오스(sedoheptulose)로 이루어진 군에서 선택된 하나 이상의 소변 대사체에 대한 정량 장치를 추가로 포함하되,
    피롤-2-카르복실레이트(pyrrole-2-carboxylate) 및 3-하이드록시피리딘(3-hydroxypyridine)으로 이루어진 군에서 선택된 하나 이상의 농도가 증가되거나,
    L-시툴린(L-citrulline), 이소트레오네이트(isothreonate), 갈락토네이트(galactonate), 글루콘산 락톤(gluconic acid lactone) 및 세도헵툴로오스(sedoheptulose)로 이루어진 군에서 선택된 하나 이상의 농도가 감소하는 경우, 베체트병을 나타내는 베체트병 진단 키트.
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
KR1020180123343A 2017-10-24 2018-10-16 소변 대사체 분석을 이용한 베체트병의 진단방법 KR102094802B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2018/012280 WO2019083220A1 (ko) 2017-10-24 2018-10-17 소변 대사체 분석을 이용한 베체트병의 진단방법
CN201880069264.9A CN111279193B (zh) 2017-10-24 2018-10-17 白塞氏病诊断试剂盒及检测尿中代谢物差异的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170138535 2017-10-24
KR20170138535 2017-10-24

Publications (2)

Publication Number Publication Date
KR20190045841A KR20190045841A (ko) 2019-05-03
KR102094802B1 true KR102094802B1 (ko) 2020-03-31

Family

ID=66582765

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180123343A KR102094802B1 (ko) 2017-10-24 2018-10-16 소변 대사체 분석을 이용한 베체트병의 진단방법

Country Status (2)

Country Link
KR (1) KR102094802B1 (ko)
CN (1) CN111279193B (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112180007B (zh) * 2020-09-16 2023-08-18 上海市皮肤病医院 基于代谢组学的泛发性脓疱型银屑病诊断标志物及其应用
KR20230110362A (ko) * 2020-12-07 2023-07-21 킴벌리-클라크 월드와이드, 인크. 대사산물을 검출하기 위한 방법 및 소비자 제품
CN117590007B (zh) * 2024-01-19 2024-03-29 天津医科大学眼科医院 生物标志物在制备诊断白塞氏病葡萄膜炎的产品中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013525786A (ja) * 2010-04-19 2013-06-20 バイオマーカー ストラテジーズ リミテッド ライアビリティ カンパニー 薬物感受性、薬物抵抗性および疾患進行の予測のための組成物および方法
KR101516086B1 (ko) 2013-10-25 2015-05-07 고려대학교 산학협력단 대사체 분석을 이용한 류마티스 관절염 진단방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057525A1 (fr) * 2000-02-03 2001-08-09 Hidetoshi Inoko Remedes contre la maladie de behcet
KR100448488B1 (ko) * 2001-09-03 2004-09-13 (주)프로테옴텍 베체트병의 질병 표시인자로서의 아포리포프로테인에이-1을 이용한 진단 시스템
EP2617837A3 (en) * 2007-06-08 2013-10-23 Biogen Idec MA Inc. Biomarkers for predicting anti-TNF responsiveness or non-responsiveness
JP5809415B2 (ja) * 2007-11-09 2015-11-10 ペレグリン ファーマシューティカルズ,インコーポレーテッド 抗vegf抗体の組成物および方法
EP2454281B1 (en) * 2009-07-17 2018-11-14 Omeros Corporation Masp isoforms as inhibitors of complement activation
CA2874987A1 (en) * 2012-06-01 2013-12-05 Takeda Pharmaceutical Company Limited Heterocyclic compound
US20140303901A1 (en) * 2013-04-08 2014-10-09 Ilan Sadeh Method and system for predicting a disease
KR101536697B1 (ko) * 2013-11-29 2015-07-14 아주대학교산학협력단 베체트병 진단용 조성물
KR101806136B1 (ko) * 2015-05-28 2017-12-08 고려대학교 산학협력단 대사체 분석을 이용한 베체트병 관절염의 진단방법
KR101946884B1 (ko) * 2017-04-25 2019-02-13 고려대학교 산학협력단 대사체 분석을 이용한 베체트병의 진단방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013525786A (ja) * 2010-04-19 2013-06-20 バイオマーカー ストラテジーズ リミテッド ライアビリティ カンパニー 薬物感受性、薬物抵抗性および疾患進行の予測のための組成物および方法
KR101516086B1 (ko) 2013-10-25 2015-05-07 고려대학교 산학협력단 대사체 분석을 이용한 류마티스 관절염 진단방법

Also Published As

Publication number Publication date
CN111279193B (zh) 2022-10-04
CN111279193A (zh) 2020-06-12
KR20190045841A (ko) 2019-05-03

Similar Documents

Publication Publication Date Title
KR102094802B1 (ko) 소변 대사체 분석을 이용한 베체트병의 진단방법
CA2911204A1 (en) Biomarkers related to kidney function and methods using the same
KR101946884B1 (ko) 대사체 분석을 이용한 베체트병의 진단방법
CN109791133B (zh) 用于诊断直结肠癌的装置
CN112305121B (zh) 代谢标志物在动脉粥样硬化性脑梗死中的应用
Harshman et al. Rate normalization for sweat metabolomics biomarker discovery
KR102332309B1 (ko) 대사체 분석을 이용한 류마티스 관절염 중증도 예측 또는 구분용 바이오마커
CN112183616A (zh) 一种脑胶质瘤诊断的诊断标志物、试剂盒及筛选方法和脑胶质瘤诊断模型的构建方法
KR101516086B1 (ko) 대사체 분석을 이용한 류마티스 관절염 진단방법
KR101806136B1 (ko) 대사체 분석을 이용한 베체트병 관절염의 진단방법
CN112669958B (zh) 代谢物作为疾病诊断的生物标志物
KR102253363B1 (ko) 결핵에 대한 신규한 대사체 마커 및 이를 이용한 결핵의 진단방법
US20140162903A1 (en) Metabolite Biomarkers For Forecasting The Outcome of Preoperative Chemotherapy For Breast Cancer Treatment
Chen et al. Targeting amine-and phenol-containing metabolites in urine by dansylation isotope labeling and liquid chromatography mass spectrometry for evaluation of bladder cancer biomarkers
CN114280202B (zh) 一种用于诊断镉中毒的生物标志物及其应用
WO2019083220A1 (ko) 소변 대사체 분석을 이용한 베체트병의 진단방법
CN113552228A (zh) 一组用于诊断儿童毛细支气管炎的联合标志物及其应用和检测试剂盒
US20120107955A1 (en) Metabolite biomarkers for the detection of esophageal cancer using ms
CN111562321B (zh) 用于检测活动性肺结核的粪便代谢物及其检测系统
CN111650287B (zh) 用于检测活动性肺结核的粪便中小肽及其检测系统
US20230080918A1 (en) Biomarkers and uses thereof
CN114047263A (zh) 代谢标志物在制备用于诊断ais的检测试剂或检测物的用途及试剂盒
CN116990405A (zh) 一组用于预测氯胺酮治疗抑郁症疗效的标志物、其筛选方法及应用
US8021886B1 (en) Method for determining whether or not a mammal is affected with a lung cancer
WO2023185709A1 (zh) 结直肠进展期肿瘤诊断标志物组合及其应用

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant