KR102056098B1 - 금속폼의 제조 방법 - Google Patents

금속폼의 제조 방법 Download PDF

Info

Publication number
KR102056098B1
KR102056098B1 KR1020170040972A KR20170040972A KR102056098B1 KR 102056098 B1 KR102056098 B1 KR 102056098B1 KR 1020170040972 A KR1020170040972 A KR 1020170040972A KR 20170040972 A KR20170040972 A KR 20170040972A KR 102056098 B1 KR102056098 B1 KR 102056098B1
Authority
KR
South Korea
Prior art keywords
metal
less
metal foam
weight
electromagnetic field
Prior art date
Application number
KR1020170040972A
Other languages
English (en)
Other versions
KR20170113414A (ko
Inventor
유동우
이진규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/089,191 priority Critical patent/US11141786B2/en
Priority to JP2018551154A priority patent/JP6852858B2/ja
Priority to CN201780022262.XA priority patent/CN109070225B/zh
Priority to PCT/KR2017/003614 priority patent/WO2017171511A1/ko
Priority to EP17775935.4A priority patent/EP3437767B1/en
Publication of KR20170113414A publication Critical patent/KR20170113414A/ko
Application granted granted Critical
Publication of KR102056098B1 publication Critical patent/KR102056098B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1053Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by induction
    • B22F2003/1121
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • B22F2003/1131Foaming in a liquid suspension and decomposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/05Use of magnetic field

Abstract

본 출원은 금속폼의 제조 방법을 제공한다. 본 출원에서는, 균일하게 형성된 기공을 포함하고, 목적하는 기공도를 가지면서, 기계적 특성이 우수한 금속폼을 형성할 수 있는 금속폼의 제조 방법과 상기와 같은 특성을 가지는 금속폼을 제공할 수 있다. 또한, 본 출원에서는 얇은 두께의 필름 또는 시트 형태이면서도 상기 언급한 물성이 확보되는 금속폼을 빠른 공정 시간 내에 형성할 수 있는 방법 및 그러한 금속폼을 제공할 수 있다.

Description

금속폼의 제조 방법{PREPARATION METHOD FOR METAL FOAM}
본 출원은 금속폼의 제조 방법에 대한 것이다.
금속폼(metal foam)은 경량성, 에너지 흡수성, 단열성, 내화성 또는 친환경 등의 다양하고 유용한 특성을 구비함으로써, 경량 구조물, 수송 기계, 건축 자재 또는 에너지 흡수 장치 등을 포함하는 다양한 분야에 적용될 수 있다. 또한, 금속폼은, 높은 비표면적을 가질 뿐만 아니라 액체, 기체 등의 유체 또는 전자의 흐름을 보다 향상시킬 수 있으므로, 열 교환 장치용 기판, 촉매, 센서, 액츄에이터, 2차 전지, 연료전지, 가스 확산층(GDL: gas diffusion layer) 또는 미세유체 흐름 제어기(microfluidic flow controller) 등에 적용되어 유용하게 사용될 수도 있다.
본 출원은, 균일한 기공을 포함하고, 목적하는 기공도를 가지면서도 기계적 강도가 우수한 금속폼을 제조할 수 있는 방법을 제공하는 것을 목적으로 한다.
본 명세서에서 용어 금속폼 또는 금속 골격은, 금속을 주성분으로 포함하는 다공성 구조체를 의미한다. 상기에서 금속을 주성분으로 한다는 것은, 금속폼 또는 금속 골격의 전체 중량을 기준으로 금속의 비율이 55 중량% 이상, 60 중량% 이상, 65 중량% 이상, 70 중량% 이상, 75 중량% 이상, 80 중량% 이상, 85 중량% 이상, 90 중량% 이상 또는 95 중량% 이상인 경우를 의미한다. 상기 주성분으로 포함되는 금속의 비율의 상한은 특별히 제한되지 않으며, 예를 들면, 100 중량%, 99 중량% 또는 98 중량% 정도일 수 있다.
본 명세서에서 용어 다공성은, 기공도(porosity)가 적어도 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 75% 이상 또는 80% 이상인 경우를 의미할 수 있다. 상기 기공도의 상한은 특별히 제한되지 않으며, 예를 들면, 약 100% 미만, 약 99% 이하 또는 약 98% 이하 정도일 수 있다. 상기 기공도는 금속폼 등의 밀도를 계산하여 공지의 방식으로 산출할 수 있다.
본 출원의 금속폼의 제조 방법은, 금속 성분을 포함하는 구조체를 소결하는 단계를 포함할 수 있다. 본 출원에서 용어 구조체는, 상기 소결 등과 같이 금속폼을 형성하기 위해 수행되는 공정을 거치기 전의 구조체, 즉 금속폼이 생성되기 전의 구조체를 의미한다. 또한, 상기 구조체는, 다공성 구조체라고 호칭되더라도 반드시 그 자체로 다공성일 필요는 없으며, 최종적으로 다공성의 금속 구조체인 금속폼을 형성할 수 있는 것이라면, 편의상 다공성 구조체라고 호칭될 수 있다.
본 출원에서 상기 구조체는, 금속 성분과 유기 바인더를 포함할 수 있고, 상기 금속 성분과 유기 바인더를 포함하는 혼합물을 성형하여 상기 구조체를 형성할 수 있다.
일 예시에서 상기 금속 성분은, 소정 상대 투자율과 전도도를 가지는 금속을 적어도 포함할 수 있다. 이러한 금속의 적용은, 본 출원의 하나의 예시에 따라서 상기 소결로서 후술하는 유도 가열 방식이 적용될 경우에 해당 방식에 따른 소결이 원활하게 수행되도록 할 수 있다.
예를 들면, 상기 금속으로는, 상대 투자율이 90 이상인 금속이 사용될 수 있다. 상대 투자율(μr)은, 해당 물질의 투자율(μ)과 진공속의 투자율(μ0)의 비율(μ/μ0)이다. 상기 금속은 상대 투자율이 95 이상, 100 이상, 110 이상, 120 이상, 130 이상, 140 이상, 150 이상, 160 이상, 170 이상, 180 이상, 190 이상, 200 이상, 210 이상, 220 이상, 230 이상, 240 이상, 250 이상, 260 이상, 270 이상, 280 이상, 290 이상, 300 이상, 310 이상, 320 이상, 330 이상, 340 이상, 350 이상, 360 이상, 370 이상, 380 이상, 390 이상, 400 이상, 410 이상, 420 이상, 430 이상, 440 이상, 450 이상, 460 이상, 470 이상, 480 이상, 490 이상, 500 이상, 510 이상, 520 이상, 530 이상, 540 이상, 550 이상, 560 이상, 570 이상, 580 이상 또는 590 이상일 수 있다. 상대 투자율이 높을 수록 후술하는 유도 가열을 위한 전자기장의 인가 시에 보다 높은 열을 발생하게 되므로 그 상한은 특별히 제한되지 않는다. 일 예시에서 상기 상대 투자율의 상한은 예를 들면, 약 300,000 이하일 수 있다.
상기 금속은 전도성 금속일 수 있다. 용어 전도성 금속은 20℃에서의 전도도가 약 8 MS/m 이상, 9 MS/m 이상, 10 MS/m 이상, 11 MS/m 이상, 12 MS/m 이상, 13 MS/m 이상 또는 14.5 MS/m 이상인 금속 또는 그러한 합금을 의미할 수 있다. 상기 전도도의 상한은 특별히 제한되지 않으며, 예를 들면, 상기 전도도는, 약 30 MS/m 이하, 25 MS/m 이하 또는 20 MS/m 이하일 수 있다.
본 출원에서 상기와 같은 상대 투자율과 전도도를 가지는 금속은 단순하게 전도성 자성 금속으로도 호칭될 수 있다.
상기 전도성 자성 금속을 적용함으로써, 후술하는 유도 가열 공정이 진행될 경우에 소결을 보다 효과적으로 진행할 수 있다. 이와 같은 금속으로는 니켈, 철 또는 코발트 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
금속 성분은, 필요한 경우에 상기 전도성 자성 금속과 함께 상기 금속과는 다른 제 2 금속을 포함할 수 있다. 이러한 경우에는, 금속폼이 금속 합금으로 형성될 수 있다. 상기 제 2 금속으로는 상기 언급한 전도성 자성 금속과 같은 범위의 상대 투자율 및/또는 전도도를 가지는 금속이 사용될 수도 있고, 그러한 범위 외의 상대 투자율 및/또는 전도도를 가지는 금속이 사용될 수 있다. 또한, 제 2 금속은 1종이 포함될 수도 있고, 2종 이상이 포함될 수도 있다. 이러한 제 2 금속의 종류는 적용되는 전도성 자성 금속과 다른 종류인 한 특별히 제한되지 않으며, 예를 들면, 구리, 인, 몰리브덴, 아연, 망간, 크롬, 인듐, 주석, 은, 백금, 금, 알루미늄 또는 마그네슘 등에서 전도성 자성 금속과 다른 금속 1종 이상이 적용될 수 있지만, 이에 제한되는 것은 아니다.
금속 성분 또는 구조체 내에서 상기 전도성 자성 금속의 비율은 특별히 제한되지 않는다. 예를 들어, 상기 비율은, 후술하는 유도 가열 공법의 적용 시에 적절한 줄열을 발생시킬 수 있도록 비율이 조절될 수 있다. 예를 들면, 상기 금속 성분 또는 구조체는, 상기 전도성 자성 금속을 전체 금속 성분의 중량을 기준으로 30 중량% 이상 포함할 수 있다. 다른 예시에서 상기 금속 성분 또는 구조체 내의 상기 전도성 자성 금속의 비율은, 약 35 중량% 이상, 약 40 중량% 이상, 약 45 중량% 이상, 약 50 중량% 이상, 약 55 중량% 이상, 60 중량% 이상, 65 중량% 이상, 70 중량% 이상, 75 중량% 이상, 80 중량% 이상, 85 중량% 이상 또는 90 중량% 이상일 수 있다. 상기 전도성 자성 금속 비율의 상한은 특별히 제한되지 않으며, 예를 들면, 상기 금속 성분 또는 구조체 내에서 상기 전도성 자성 금속의 비율은, 약 100 중량% 미만 또는 95 중량% 이하일 수 있다. 그러나, 상기 비율은 예시적인 비율이다. 예를 들어, 전자기장의 인가에 의한 유도 가열에 의해 발생하는 열은, 가해주는 전자기장의 세기, 금속의 전기 전도도와 저항 등에 따라 조절이 가능하기 때문에, 상기 비율은 구체적인 조건에 따라서 변경될 수 있다.
구조체를 형성하는 금속 성분은 분말(powder) 형태일 수 있다. 예를 들면, 상기 금속 성분 내의 금속들은, 평균 입경이 약 0.1 μm 내지 약 200 μm의 범위 내에 있을 수 있다. 상기 평균 입경은 다른 예시에서 약 0.5 μm 이상, 약 1 μm 이상, 약 2 μm 이상, 약 3 μm 이상, 약 4 μm 이상, 약 5 μm 이상, 약 6 μm 이상, 약 7 μm 이상 또는 약 8 μm 이상일 수 있다. 상기 평균 입경은 다른 예시에서 약 150 μm 이하, 100 μm 이하, 90 μm 이하, 80 μm 이하, 70 μm 이하, 60 μm 이하, 50 μm 이하, 40 μm 이하, 30 μm 이하 또는 20 μm 이하일 수 있다. 금속 성분 내의 금속으로는 서로 평균 입경이 상이한 것을 적용할 수도 있다. 상기 평균 입경은, 목적하는 금속폼의 형태, 예를 들면, 금속폼의 두께나 기공도 등을 고려하여 적절한 범위를 선택할 수 있다.
구조체는 상기 금속 성분과 함께 유기 바인더를 포함할 수 있다. 예를 들어, 상기 금속 성분과 유기 바인더를 포함하는 슬러리 등을 성형하여 상기 구조체를 제조할 수 있다.
본 출원에서 적용될 수 있는 유기 바인더의 종류는 특별히 제한되지 않는다. 유기 바인더로는, 예를 들면, 메틸 셀룰로오스 또는 에틸 셀룰로오스 등의 탄소수 1 내지 8의 알킬기를 가지는 알킬 셀룰로오스, 폴리프로필렌 카보네이트 또는 폴리에틸렌 카보네이트 등의 탄소수 1 내지 8의 알킬렌 단위를 가지는 폴리알킬렌 카보네이트 또는 폴리비닐알코올 또는 폴리비닐아세테이트 등의 폴리비닐알코올계 바인더; 폴리에틸렌옥시드 또는 폴리프로필렌옥시드 등의 탄소수 1 내지 8의 알킬렌기를 포함하는 폴리알킬렌옥시드 등이 예시될 수 있으나, 이에 제한되는 것은 아니다.
구조체 내에서 유기 바인더는, 예를 들면, 상기 금속 성분 100 중량부 대비 약 10 중량부 내지 400 중량부의 비율로 포함되어 있을 수 있다. 상기 비율을 10 중량부 이상으로 하여 최종적으로 적절한 기공도를 확보할 수 있고, 400 중량부 이하로 하여 금속 성분간의 소성을 효율적으로 진행시켜 폼 형태를 안정적으로 유지할 수 있다. 상기 바인더의 비율은 다른 예시에서 약 20 중량부 이상, 약 30 중량부 이상, 약 40 중량부 이상, 약 50 중량부 이상, 약 60 중량부 이상, 약 70 중량부 이상, 약 80 중량부 이상 또는 약 90 중량부 이상이거나, 약 350 중량부 이하, 약 300 중량부 이하, 약 250 중량부 이하, 약 200 중량부 이하 또는 약 150 중량부 이하일 수 있다.
구조체는, 상기 언급한 성분 외에 추가적으로 필요한 공지의 첨가제를 포함할 수도 있다. 이러한 첨가제의 예로는, 용매나 바인더 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.
상기 구조체를 형성하는 방식은 특별히 제한되지 않는다. 금속폼의 제조 분야에서는 구조체를 형성하기 위한 다양한 방식이 공지되어 있고, 본 출원에서는 이와 같은 방식이 모두 적용될 수 있다. 예를 들면, 상기 구조체는, 적정한 틀(template)에 상기 금속 성분과 유기 바인더를 포함하는 슬러리를 유지하거나, 혹은 상기 혼합물을 적정한 방식으로 코팅하여 형성할 수 있다.
이와 같은 구조체의 형태는 목적하는 금속폼에 따라 정해지는 것으로 특별히 제한되지 않는다. 하나의 예시에서 상기 구조체는, 필름 또는 시트 형태일 수 있다. 예를 들면, 상기 구조체가 필름 또는 시트 형태일 때에 그 두께는 5,000 μm 이하, 3,500 μm 이하, 2,000 μm 이하, 1000 μm 이하, 800 μm 이하, 700 μm 이하500 μm 이하일 수 있다. 금속폼은, 다공성인 구조적 특징상 일반적으로 브리틀한 특성을 가지고, 따라서 필름 또는 시트 형태, 특히 얇은 두께의 필름 또는 시트 형태로 제작이 어렵고, 제작하게 되어도 쉽게 부스러지는 문제가 있다. 그렇지만, 본 출원의 방식에 의해서는, 얇은 두께이면서도, 내부에 균일하게 기공이 형성되고, 기계적 특성이 우수한 금속폼의 형성이 가능하다.
상기에서 구조체의 두께의 하한은 특별히 제한되지 않는다. 예를 들면, 상기 필름 또는 시트 형태의 구조체의 두께는 약 10 μm 이상, 50 μm 이상 또는 약 100 μm 이상일 수 있다.
상기와 같은 방식으로 형성된 구조체를 소결하여 금속폼을 제조할 수 있다. 이러한 경우에 상기 금속폼을 제조하기 위한 소결을 수행하는 방식은 특별히 제한되지 않으며, 공지의 소결법을 적용할 수 있다. 즉, 적절한 방식으로 상기 구조체에 적정한 양의 열을 인가하는 방식으로 상기 소결을 진행할 수 있다.
상기 기존의 공지 방식과는 다른 방식으로서, 본 출원에서는 상기 소결을 유도 가열 방식으로 수행할 수 있다. 즉, 전술한 바와 같이 금속 성분이 소정 투자율과 전도도의 전도성 자성 금속을 포함하기 때문에, 유도 가열 방식이 적용될 수 있다. 이러한 방식에 의해서 균일하게 형성된 기공을 포함하면서, 기계적 특성이 우수하며, 기공도도 목적하는 수준으로 조절된 금속폼의 제조가 보다 원활하게 될 수 있다.
상기에서 유도 가열은, 전자기장이 인가되면 특정 금속에서 열이 발생하는 현상이다. 예를 들어, 적절한 전도성과 투자율을 가지는 금속에 전자기장을 인가하면, 금속에 와전류(eddy currents)가 발생하고, 금속의 저항에 의해 줄열(Joule heating)이 발생한다. 본 출원에서는 이러한 현상을 통한 소결 공정을 수행할 수 있다. 본 출원에서는 이와 같은 방식을 적용하여 금속폼의 소결을 단시간 내에 수행할 수 있어서 공정성을 확보하고, 동시에 기공도가 높은 박막 형태이면서도 기계적 강도가 우수한 금속폼을 제조할 수 있다.
상기 소결 공정은, 상기 구조체에 전자기장을 인가하는 단계를 포함할 수 있다. 상기 전자기장의 인가에 의해 상기 금속 성분의 전도성 자성 금속에서 유도 가열 현상에 의해서 줄열이 발생하고, 이에 의해 구조체는 소결될 수 있다. 이 때 전자기장을 인가하는 조건은 구조체 내의 전도성 자성 금속의 종류 및 비율 등에 따라서 결정되는 것으로 특별히 제한되지 않는다.
예를 들면, 상기 유도 가열은, 코일 등의 형태로 형성된 유도 가열기를 사용하여 진행할 수 있다.
유도 가열은, 예를 들면, 100A 내지 1,000A 정도의 전류를 인가하여 수행할 수 있다. 상기 가해지는 전류의 크기는 다른 예시에서, 900A 이하, 800 A 이하, 700 A 이하, 600 A 이하, 500 A 이하 또는 400 A 이하일 수 있다. 상기 전류의 크기는 다른 예시에서 약 150 A 이상, 약 200 A 이상 또는 약 250 A 이상일 수 있다.
유도 가열은, 예를 들면, 약 100kHz 내지 1,000kHz의 주파수로 수행할 수 있다. 상기 주파수는, 다른 예시에서, 900 kHz 이하, 800 kHz 이하, 700 kHz 이하, 600 kHz 이하, 500 kHz 이하 또는 450 kHz 이하일 수 있다. 상기 주파수는, 다른 예시에서 약 150 kHz 이상, 약 200 kHz 이상 또는 약 250 kHz 이상일 수 있다.
상기 유도 가열을 위한 전자기장의 인가는 예를 들면, 약 1분 내지 10시간의 범위 내에서 수행할 수 있다. 상기 인가 시간은, 다른 예시에서, 약 9시간 이하, 약 8 시간 이하, 약 7 시간 이하, 약 6 시간 이하, 약 5 시간 이하, 약 4 시간 이하, 약 3 시간 이하, 약 2 시간 이하, 약 1 시간 이하 또는 약 30분 이하일 수 있다.
상기 언급한 유도 가열 조건, 예를 들면, 인가 전류, 주파수 및 인가 시간 등은 전술한 바와 같이 전도성 자성 금속의 종류 및 비율 등을 고려하여 변경될 수 있다.
상기 구조체의 소결은, 상기 언급한 유도 가열에 의해서만 수행하거나, 필요한 경우에 상기 유도 가열, 즉 전자기장의 인가와 함께 적절한 열을 인가하면서 수행할 수도 있다.
상기와 같은 소결 과정에서 발생된 열에 의해 구조체 내의 유기 바인더가 제거되면서 금속 성분이 소결되어 금속폼이 형성될 수 있다.
본 출원은 또한, 금속폼에 대한 것이다. 상기 금속폼은 전술한 방법에 의해 제조된 것일 수 있다. 이러한 금속폼은, 예를 들면, 전술한 전도성 자성 금속을 적어도 포함할 수 있다. 금속폼은 상기 전도성 자성 금속을 중량을 기준으로 30 중량% 이상, 35 중량% 이상, 40 중량% 이상, 45 중량% 이상 또는 50 중량% 이상 포함할 수 있다. 다른 예시에서 상기 금속폼 내의 전도성 자성 금속의 비율은, 약 55 중량% 이상, 60 중량% 이상, 65 중량% 이상, 70 중량% 이상, 75 중량% 이상, 80 중량% 이상, 85 중량% 이상 또는 90 중량% 이상일 수 있다. 상기 전도성 자성 금속의 비율의 상한은 특별히 제한되지 않으며, 예를 들면, 약 100 중량% 미만 또는 95 중량% 이하일 수 있다.
상기 금속폼은, 기공도(porosity)가 약 40% 내지 99%의 범위 내일 수 있다. 언급한 바와 같이, 본 출원의 방법에 의하면, 균일하게 형성된 기공을 포함하면서, 기공도와 기계적 강도를 조절할 수 있다. 상기 기공도는, 50% 이상, 60% 이상, 70% 이상, 75% 이상 또는 80% 이상이거나, 95% 이하 또는 90% 이하일 수 있다.
상기 금속폼은 박막의 필름 또는 시트 형태로도 존재할 수 있다. 하나의 예시에서 금속폼은 필름 또는 시트 형태일 수 있다. 이러한 필름 또는 시트 형태의 금속폼은, 두께가 2,000μm 이하, 1,500μm 이하, 1,000μm 이하, 900μm 이하, 800μm 이하, 700μm 이하, 600μm 이하, 500μm 이하, 400μm 이하, 300μm 이하, 200μm 이하, 150μm 이하, 약 100μm 이하, 약 90μm 이하, 약 80μm 이하, 약 70μm 이하, 약 60μm 이하 또는 약 55μm 이하일 수 있다. 상기 필름 또는 시트 형태의 금속폼의 두께는 약 10μm 이상, 약 20μm 이상, 약 30μm 이상, 약 40μm 이상, 약 50μm 이상, 약 100μm 이상, 약 150μm 이상, 약 200μm 이상, 약 250μm 이상, 약 300μm 이상, 약 350μm 이상, 약 400μm 이상, 약 450μm 이상 또는 약 500μm 이상일 수 있지만, 이에 제한되는 것은 아니다.
상기 금속폼은, 다공성의 금속 구조체가 필요한 다양한 용도에서 활용될 수 있다. 특히, 본 출원의 방식에 따르면, 전술한 바와 같이 목적하는 수준의 기공도를 가지면서도 기계적 강도가 우수한 얇은 필름 또는 시트 형태의 금속폼의 제조가 가능하여, 기존 대비 금속폼의 용도를 확대할 수 있다.
본 출원에서는, 균일하게 형성된 기공을 포함하고, 목적하는 기공도를 가지면서, 기계적 특성이 우수한 금속폼을 형성할 수 있는 금속폼의 제조 방법과 상기와 같은 특성을 가지는 금속폼을 제공할 수 있다. 또한, 본 출원에서는 얇은 두께의 필름 또는 시트 형태이면서도 상기 언급한 물성이 확보되는 금속폼을 형성할 수 있는 방법 및 그러한 금속폼을 제공할 수 있다.
도 1 및 2는, 각각 실시예 1 및 2에서 형성된 금속폼에 대한 SEM 사진이다.
이하 실시예 및 비교예를 통하여 본 출원을 구체적으로 설명하지만, 본 출원의 범위가 하기 실시예에 제한되는 것은 아니다.
실시예 1.
니켈 분말(전도도가 약 14.5 MS/m이고, 상대 투자율이 약 600 정도이며, 평균 입경이 약 10 내지 20μm 정도)과 에틸 셀룰로오스를 약 1:1의 중량 비율로 메틸렌 클로라이드에 넣고, 공자전믹서를 사용하여 혼합함으로써 슬러리를 제조하였다. 상기 제조된 혼합물을 약 200 μm 정도의 두께로 quartz 플레이트상에 코팅하여 구조체를 제조하고, 코일 형태의 유도 가열기로 전자기장을 상기 구조체에 인가하여 소결함으로써 금속폼을 제조하였다. 이 때 전자기장은 약 350 A의 전류를 약 380 kHz의 주파수로 인가하여 형성하였고, 인가 시간은 약 3 분 정도였다. 상기 제조된 금속폼의 기공도는 약 65%였고, 그 SEM 사진은 도 1에 나타내었다.
실시예 2.
에틸 셀룰로오스 대신 폴리에틸렌 카보네이트를 사용한 것을 제외하고는 실시예 1과 동일하게 금속폼을 제조하였다. 제조된 금속폼의 기공도는 약 45%였으며, 그 SEM 사진은 도 2에 나타내었다.
실시예 3.
에틸 셀룰로오스 대신 폴리비닐알코올을 적용하고, 메틸렌클로라이드 대신 물을 적용한 것을 제외하고는 실시예 1과 동일하게 금속폼을 제조하였다. 제조된 금속폼의 기공도는 약 52%였다.
실시예 4.
폴리에틸렌옥시드를 에틸 셀룰로오스 대신 사용한 것을 제외하고는 실시예 1과 동일하게 금속폼을 제조하였다. 제조된 금속폼의 기공도는 약 57%였다.

Claims (14)

  1. 상대 투자율이 90 이상인 전도성 금속을 포함하는 금속 성분 및 유기 바인더를 포함하는 구조체를 소결하는 단계를 포함하고,
    상기 구조체 내의 금속 성분은 분말 형태이며,
    상기 구조체의 소결은 상기 구조체에 전자기장을 인가하며 수행하고,
    상기 전도성 금속은, 니켈, 철 또는 코발트이며,
    상기 유기 바인더는, 알킬 셀룰로오스, 폴리알킬렌카보네이트, 폴리비닐알코올, 폴리알킬렌옥시드 또는 폴리비닐아세테이트인 금속폼의 제조 방법.
  2. 제 1 항에 있어서, 전도성 금속은 20℃에서의 전도도가 8 MS/m 이상인 금속폼의 제조 방법.
  3. 삭제
  4. 제 1 항에 있어서, 구조체는, 전도성 금속을 중량을 기준으로 30 중량% 이상 포함하는 금속폼의 제조 방법.
  5. 제 1 항에 있어서, 전도성 금속은 평균 입경이 5 μm 내지 100 μm의 범위 내에 있는 금속폼의 제조 방법.
  6. 삭제
  7. 제 1 항에 있어서, 구조체는, 금속 성분 100 중량부 대비 10 내지 400 중량부의 유기 바인더를 포함하는 금속폼의 제조 방법.
  8. 제 1 항에 있어서, 구조체는, 금속 성분과 유기 바인더를 포함하는 슬러리를 사용하여 제조하는 금속폼의 제조 방법.
  9. 제 1 항에 있어서, 구조체는, 필름 또는 시트 형상인 금속폼의 제조 방법.
  10. 제 9 항에 있어서, 필름 또는 시트의 두께가 5,000 μm 이하인 금속폼의 제조 방법.
  11. 삭제
  12. 제 1 항에 있어서, 전자기장은, 100A 내지 1,000A 범위 내의 전류를 인가하여 형성하는 금속폼의 제조 방법.
  13. 제 1 항에 있어서, 전자기장은, 100kHz 내지 1,000kHz 범위 내의 주파수로 전류를 인가하여 형성하는 금속폼의 제조 방법.
  14. 제 1 항에 있어서, 전자기장은 1분 내지 10 시간의 범위 내의 시간 동안 인가하는 금속폼의 제조 방법.
KR1020170040972A 2016-04-01 2017-03-30 금속폼의 제조 방법 KR102056098B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/089,191 US11141786B2 (en) 2016-04-01 2017-04-03 Method for manufacturing metal foam
JP2018551154A JP6852858B2 (ja) 2016-04-01 2017-04-03 金属フォームの製造方法
CN201780022262.XA CN109070225B (zh) 2016-04-01 2017-04-03 用于制造金属泡沫的方法
PCT/KR2017/003614 WO2017171511A1 (ko) 2016-04-01 2017-04-03 금속폼의 제조 방법
EP17775935.4A EP3437767B1 (en) 2016-04-01 2017-04-03 Method for producing metal foam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160040362 2016-04-01
KR20160040362 2016-04-01

Publications (2)

Publication Number Publication Date
KR20170113414A KR20170113414A (ko) 2017-10-12
KR102056098B1 true KR102056098B1 (ko) 2019-12-17

Family

ID=60140724

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170040972A KR102056098B1 (ko) 2016-04-01 2017-03-30 금속폼의 제조 방법

Country Status (5)

Country Link
US (1) US11141786B2 (ko)
EP (1) EP3437767B1 (ko)
JP (1) JP6852858B2 (ko)
KR (1) KR102056098B1 (ko)
CN (1) CN109070225B (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102056100B1 (ko) * 2016-04-01 2019-12-17 주식회사 엘지화학 3d 프린팅 방법
KR102218854B1 (ko) * 2016-11-30 2021-02-23 주식회사 엘지화학 금속폼의 제조 방법
KR102159504B1 (ko) 2017-07-06 2020-09-24 주식회사 엘지화학 복합재
KR102316016B1 (ko) * 2017-09-22 2021-10-22 주식회사 엘지화학 필름 및 히트 파이프의 제조 방법
JP7286753B2 (ja) 2018-08-06 2023-06-05 エルジー・ケム・リミテッド 非対称複合材
KR102522183B1 (ko) * 2018-09-28 2023-04-14 주식회사 엘지화학 근거리 무선 통신 소자 및 이를 포함하는 근거리 무선 통신 장치
CN112438078B (zh) 2018-09-28 2024-04-12 株式会社Lg化学 复合材料
CN112635783B (zh) * 2020-12-21 2022-07-12 天津大学 基于渗透率差异化金属泡沫不含气体扩散层的燃料电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290494A (ja) * 2004-03-31 2005-10-20 National Institute Of Advanced Industrial & Technology 発泡焼結体の製造方法
JP2009102701A (ja) * 2007-10-24 2009-05-14 Mitsubishi Materials Corp 多孔質チタン焼結体の製造方法および多孔質チタン焼結体の製造装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3266893A (en) * 1965-06-17 1966-08-16 Electric Storage Battery Co Method for manufacturing porous sinterable articles
US3647721A (en) * 1970-07-13 1972-03-07 Atomic Energy Commission Porous structure and method
CA962326A (en) 1970-11-05 1975-02-04 Sherritt Gordon Mines Limited Process for making porous electrode plates
JPH02254106A (ja) * 1989-03-28 1990-10-12 Nippon Steel Corp 無機質多孔体の製造方法
JPH0436409A (ja) * 1990-05-31 1992-02-06 Toshiba Corp 多孔質体及びその製造方法
JPH05163082A (ja) * 1991-12-16 1993-06-29 Tokin Corp 多孔質焼結体の製造方法
JPH06287608A (ja) * 1993-04-01 1994-10-11 Uemura Michio 金属多孔質材料の製造方法
KR100445314B1 (ko) 2002-11-14 2004-08-18 삼성전자주식회사 유기금속 화합물에 의한 고전도 금속의 배선 형성방법
JP4178246B2 (ja) * 2004-03-31 2008-11-12 独立行政法人産業技術総合研究所 高気孔率発泡焼結体の製造方法
US20070274854A1 (en) 2006-05-23 2007-11-29 General Electric Company Method of making metallic composite foam components
JP4837703B2 (ja) * 2007-05-10 2011-12-14 サムソン エレクトロ−メカニックス カンパニーリミテッド. 印刷回路基板の配線形成方法
EP2050527A1 (en) * 2007-10-16 2009-04-22 Lhoucine Azzi Method of producing open-cell inorganic foam
US20110070491A1 (en) * 2009-08-28 2011-03-24 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
US9034935B2 (en) * 2010-03-30 2015-05-19 Sumitomo Riko Company Limited Urethane foam molded product and method for producing the same
JP5662743B2 (ja) * 2010-08-31 2015-02-04 住友理工株式会社 ウレタン発泡成形体およびその製造方法
CN102140599B (zh) * 2011-02-15 2013-01-23 江苏大学 一种电流与磁场复合作用下合成颗粒增强复合材料的方法
KR20140038795A (ko) * 2012-09-21 2014-03-31 한국전력공사 복합혼합전도층이 코팅된 지지체 및 복합혼합전도층이 코팅된 지지체의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290494A (ja) * 2004-03-31 2005-10-20 National Institute Of Advanced Industrial & Technology 発泡焼結体の製造方法
JP2009102701A (ja) * 2007-10-24 2009-05-14 Mitsubishi Materials Corp 多孔質チタン焼結体の製造方法および多孔質チタン焼結体の製造装置

Also Published As

Publication number Publication date
JP2019511635A (ja) 2019-04-25
EP3437767A1 (en) 2019-02-06
US11141786B2 (en) 2021-10-12
EP3437767A4 (en) 2019-03-20
CN109070225A (zh) 2018-12-21
KR20170113414A (ko) 2017-10-12
CN109070225B (zh) 2021-02-26
JP6852858B2 (ja) 2021-03-31
US20200009658A1 (en) 2020-01-09
EP3437767B1 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
KR102056098B1 (ko) 금속폼의 제조 방법
KR102218854B1 (ko) 금속폼의 제조 방법
KR102040462B1 (ko) 금속폼의 제조 방법
KR102166464B1 (ko) 금속폼의 제조 방법
KR102218856B1 (ko) 금속폼의 제조 방법
KR20180125900A (ko) 히트파이프의 제조 방법
KR20180125903A (ko) 금속폼의 제조 방법
KR102063049B1 (ko) 금속폼의 제조 방법
KR20190005793A (ko) 금속폼의 제조 방법
KR20200002456A (ko) 금속폼의 제조 방법
JP6803975B2 (ja) 金属合金フォームの製造方法
WO2017171511A1 (ko) 금속폼의 제조 방법
KR102136551B1 (ko) 금속합금폼의 제조 방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant