KR102012441B1 - 연속반응을 이용한 생분해성 고분자 미세 입자의 제조 방법, 이를 포함하는 주사제의 제조 방법, 및 생분해성 고분자 미세 입자의 제조용 반응기 - Google Patents

연속반응을 이용한 생분해성 고분자 미세 입자의 제조 방법, 이를 포함하는 주사제의 제조 방법, 및 생분해성 고분자 미세 입자의 제조용 반응기 Download PDF

Info

Publication number
KR102012441B1
KR102012441B1 KR1020170161178A KR20170161178A KR102012441B1 KR 102012441 B1 KR102012441 B1 KR 102012441B1 KR 1020170161178 A KR1020170161178 A KR 1020170161178A KR 20170161178 A KR20170161178 A KR 20170161178A KR 102012441 B1 KR102012441 B1 KR 102012441B1
Authority
KR
South Korea
Prior art keywords
biodegradable polymer
fine particles
solution
polymer microparticles
polymer fine
Prior art date
Application number
KR1020170161178A
Other languages
English (en)
Other versions
KR20190062709A (ko
Inventor
권한진
문호상
정민욱
Original Assignee
주식회사 울트라브이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 울트라브이 filed Critical 주식회사 울트라브이
Priority to KR1020170161178A priority Critical patent/KR102012441B1/ko
Publication of KR20190062709A publication Critical patent/KR20190062709A/ko
Application granted granted Critical
Publication of KR102012441B1 publication Critical patent/KR102012441B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/124Treatment for improving the free-flowing characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

생분해성 고분자 미세 입자의 제조 방법은 연속 반응기에, 생분해성 고분자가 분산된 분산 용액을 주입하는 단계, 유화 용액을 상기 연속 반응기에 주입하여, 쿠에트 테일러 유체 흐름으로 생분해성 고분자 미세 입자를 생성하는 단계, 상기 연속 반응기에서 상기 생분해성 고분자 미세 입자를 포함하는 토출액을 토출하고, 안정화액이 교반된 반응기에 상기 토출액을 주입하여, 상기 생분해성 고분자 미세 입자를 안정화하는 단계, 및 상기 생분해성 고분자 미세 입자를 분리하는 단계를 포함한다.

Description

연속반응을 이용한 생분해성 고분자 미세 입자의 제조 방법, 이를 포함하는 주사제의 제조 방법, 및 생분해성 고분자 미세 입자의 제조용 반응기{THE FABRICATION METHOD OF FINE PARTICLE OF BIODEGRADABLE POLYMER, THE FABRICATION METHOD OF INJECTION INCLUDING THE SAME, AND REACTOR FOR MANUFACTURING FINE PARTICLE OF BIODEGRADABLE POLYMER}
본 발명은 생분해성 고분자 미세 입자의 제조 방법, 이를 포함하는 주사제의 제조 방법, 및 생분해성 고분자 미세 입자의 제조용 반응기에 관한 것으로, 더욱 상세하게는 대량 생산이 용이하고, 생분해성 고분자 미세 입자의 크기와 형태의 조절이 용이한 생분해성 고분자 미세 입자의 제조 방법, 이를 포함하는 주사제의 제조 방법, 및 생분해성 고분자 미세 입자의 제조용 반응기에 관한 것이다.
현재 이용되는 주사제용 생분해성 고분자 미세 입자의 제조방법은 유화 용매 증발법(Emulsification Solvent Evaporation Method), 스프레이 건조법(Spray dry Method), 기계적 분쇄 방법(Mechanical milling Method) 등이 있다.
유화 용매 증발법(Emulsification-Solvent Evaporation Method)은 유기 용매에 고분자를 녹인 분산 용액과 계면활성제가 포함된 유화 용액을 강하게 교반시켜 미세 입자를 형성하는 방법이다. 에멀젼은 열역학적으로 불안정한 상태이기 때문에 뭉침(Coalescence), 융합(Fusion), 상분리(Creaming) 등의 과정을 거쳐 수상과 유기상이 서로 분리되려고 하기 때문에 강력한 교반력이 필요하기 때문에 회분식 반응으로는 대량합성이 어려운 단점이 있다.
한국 특허 번호 제10-1418888호를 참조하면, 지방족 폴리에스테르 고분자를 녹인 유기상에 발포성 염을 녹인 수용액을 첨가하여 친수성 계면활성제를 포함하는 수용액에 재분산, 유화시키는 이중 유화단계를 포함하는 미립 담체 제조방법도 알려져 있다 다만, 상기 미립 담체는 생분해성, 높은 공극율을 가지고 있으나 기계적 강도가 약하고, 강력한 교반력이 필요하여 회분식반응(Batch reaction)을 이용한 양산 공정의 적용에 어려움이 있다.
한국 특허 번호 제10-1725279를 참조하면, 공업적으로 대량 생산이 가능한 방법으로 스프레이 드라이(Spray dry) 방법이 이용되고 있다. 생분해성 고분자를 DMSO(Dimethyl Sulfoxide)에 용해시킨 후 저온의 탄화수소 용액에 분사시켜 DMSO 및고분자 용액을 냉동시킨 후 저온의 염 수용액에서 DMSO를 제거함으로서 생분해성 고분자 미세 입자를 제조하는 방법이다. 다만 상기 생분해성 고분자 미세 입자는 높은 공극율, 우수한 기계적 강도를 가지고 있으나 과량의 유기 용매를 사용하여 제조 원가가 매우 높고 넓은 입도분포를 가지고 있어 입자 크기의 제어가 어렵다는 문제를 가지고 있다.
따라서, 생체 적합성, 생분해성, 입자모양, 입자크기, 기계적 강도가 우수한 고분자 미세 입자를 보다 쉽고 저렴하게 제조할 수 있는 대량합성 공정개발이 요구되어 왔다.
현재까지 생분해성 고분자 미세 입자들은 주로 회분식 공정(batch process)으로 제조되고 있고 있는데, 이는 목적하는 크기, 가교도 및 구조를 가지는 단분산 고분자 입자를 제조하기에는 제약이 크다.
예를 들면, 미국 등록 특허 제5863996호는 고분자 입자의 회분식 제조 공정을 개시하고 있다. 이와 같은 고분자 입자의 회분식 제조 공정에서는 목적물을 얻기 위하여, 단량체 또는 단량체를 포함하는 반응물을 회분식 반응기 내로 공급하고, 중합 반응을 수행하는 공정에 이어서, 중합체의 냉각, 제거 및 세척 공정 등의 등의 다수의 공정이 필요하다. 이에 따라, 회분식 공정에서는 고분자 입자를 제조하는 데에 장시간이 소요될 뿐만 아니라, 제조 단가도 크게 상승한다.
고분자 입자가 각종 용도에 효과적으로 적용되기 위해서는 단분산성(monodispersity) 등의 물성이 우수할 필요가 있다. 그러나, 종래 공정에서는 다분산 입자가 생성되는 등 제조된 입자의 물성을 균일하게 유지하는 것이 곤란하다.
또한 기술적으로 원하는 모양과 크기의 입자를 결정하는 유화 단계에서 회분식반응기의 일반적인 교반 방법으로는 제조하기 어렵다는 단점을 가진다. 이러한 문제를 일으키는 가장 큰 원인은 유기 용제에 용해된 고분자 용액과 물에 녹여진 유화 용액이 균일한 상태를 유지하지 못하고 분리되는 현상에서 주 원인을 찾을 수 있다. 이는 유기용매와 물이 빠르게 섞이지 못하고 분리되며, 일부가 유화되지 못해 입자를 생성하지 못하거나 모양이 일그러지기 때문이다.
한국 특허 번호 제10-1418888호 한국 특허 번호 제10-1725279호 미국 등록 특허 제5863996호
M. Kanouni, H. L. Rosano, N. Naouli, Adv. Colloid Interface Sci. 99 (2002) 229-254; A. J. Webster, M. E. Cates, Langmuir, 14 (1998) 2068-2079
본 발명의 목적은 생분해성 고분자 미세 입자의 대량 생산이 용이하고, 생분해성 고분자 미세 입자의 크기와 형태의 조절이 용이한 생분해성 고분자 미세 입자의 제조 방법을 제공하는 것이다.
본 발명의 목적은 대량 생산이 용이하고, 생분해성 고분자 미세 입자의 크기와 형태의 조절이 용이한 생분해성 고분자 미세 입자를 포함하는 주사제의 제조 방법을 제공하는 것이다.
본 발명의 목적은 대량 생산이 용이하고, 생분해성 고분자 미세 입자의 크기와 형태의 조절이 용이한 생분해성 고분자 미세 입자를 제조할 수 있는 생분해성 고분자 미세 입자의 제조용 반응기를 제공하는 것이다.
본 발명의 일 실시예에 따른 생분해성 고분자 미세 입자의 제조 방법은 연속 반응기에, 생분해성 고분자가 분산된 분산 용액을 주입하는 단계, 유화 용액을 상기 연속 반응기에 주입하여, 쿠에트 테일러 유체 흐름으로 생분해성 고분자 미세 입자를 생성하는 단계, 상기 연속 반응기에서 상기 생분해성 고분자 미세 입자를 포함하는 토출액을 토출하고, 안정화액이 교반된 반응기에 상기 토출액을 주입하여, 상기 생분해성 고분자 미세 입자를 안정화하는 단계, 및 상기 생분해성 고분자 미세 입자를 분리하는 단계를 포함한다.
상기 분산 용액을 주입하는 단계에서, 상기 생분해성 고분자는 폴리디옥사논(Polydioxanone, PDO), 폴리락트산(Polylactic acid, PLA) 및 그 이성질체, 폴리글리콜산(Polyglycolic acid, PGA) 및 폴리카프로락톤(Polycarprolactone, PCL) 중에서 선택되고, 상기 생분해성 고분자의 수평균 분자량은 50,000 내지 300,000인 것일 수 있다.
상기 분산 용액을 주입하는 단계에서, 상기 분산 용액은 용매를 포함한다. 상기 용매는 과불소알콜, DMF (N,N-Dimethylforamide), DMSO (Dimethyl sulfoxide), 염소화탄화수소, 탄화수소 및 알킬알콜 중 적어도 하나를 포함한다. 상기 생분해성 고분자의 함량은, 상기 분산 용액을 기준으로, 1 내지 20 중량%인 것일 수 있다.
상기 분산 용액을 주입하는 단계에서, 상기 분산 용액은 폴리에틸렌옥사이드-폴리프로필렌옥사이드-폴리에틸렌옥사이드 삼원 공중합체를 더 포함한다. 상기 삼원 공중합체의의 수평균분자량은 7,000 내지 15,000이고, 상기 삼원 공중합체의 함량은, 상기 분산 용액을 기준으로, 1 내지 20 중량%인 것일 수 있다.
상기 생분해성 고분자 미세 입자를 생성하는 단계에서, 상기 생분해성 고분자 미세 입자의 크기는 1 내지 300㎛인 것일 수 있다.
상기 생분해성 고분자 미세 입자는 안면 성형 필러, 남성 보형물, 또는 요실금 치료제에 사용되는 것일 수 있다.
상기 생분해성 고분자 미세 입자를 생성하는 단계에서, 상기 유화 용액은 폴리비닐알콜(Polyvinyl alcohol), 폴리옥시에틸렌 솔비탄 및 그 염, 대두 레시틴(soybean Lecithin), 및 모노글리세리드(monoglyceride 중 적어도 하나를 포함하는 것일 수 있다.
상기 생분해성 고분자 미세 입자를 안정화하는 단계에서, 상기 안정화액은 폴리비닐알콜(Polyvinyl alcohol), 폴리옥시에틸렌 솔비탄 및 그 염, 대두 레시틴(soybean Lecithin), 및 모노글리세리드(monoglyceride 중 적어도 하나를 포함하는 것
본 발명의 일 실시예에 따른 주사제의 제조 방법은 생분해성 고분자 미세 입자를 포함하는 수용액을 준비하는 단계, 및 상기 수용액에 알긴산(Alginic acid) 및 그 염, 히알루론산(Hyalurinic acid) 및 그 염, 카르복시메틸 셀룰로오스(Carboxylmethyl cellulose) 및 그 염, 덱스트란(Dextran) 및 그 염, 콜라겐(collagen), 젤라틴(Gelatin), 및 엘라스틴(Elastin) 중 적어도 하나를 제공하고, 동결 건조하는 단계를 포함한다. 상기 수용액을 준비하는 단계는 연속 반응기에, 생분해성 고분자가 분산된 분산 용액을 주입하는 단계, 유화 용액을 상기 연속 반응기에 주입하여, 쿠에트 테일러 유체 흐름으로 생분해성 고분자 미세 입자를 생성하는 단계, 상기 연속 반응기에서 상기 생분해성 고분자 미세 입자를 포함하는 토출액을 토출하고, 안정화액이 교반된 반응기에 상기 토출액을 주입하여, 상기 생분해성 고분자 미세 입자를 안정화하는 단계, 및 상기 생분해성 고분자 미세 입자를 분리하는 단계를 포함한다.
상기 수용액을 준비하는 단계에서, 상기 생분해성 고분자 미세 입자는 상기 수용액을 기준으로 10 내지 80 중량% 포함되는 것일 수 있다.
상기 수용액에 카르복시메틸 셀룰로오스를 제공할 때, 상기 생분해성 고분자 미세 입자는 상기 카르복시메틸 셀룰로오스가 포함된 상기 수용액을 기준으로, 30 내지 60 중량% 포함되는 것일 수 있다.
상기 생분해성 고분자 미세 입자의 크기는 10 내지 300㎛인 것일 수 있다.
상기 동결 건조한 생분해성 고분자 미세 입자를 멸균하는 단계를 더 포함한다. 상기 멸균하는 단계는 감마선 멸균, 에틸렌옥사이드 멸균, 또는 감압 멸균으로 수행되는 것일 수 있다.
상기 주사제는 안면 성형 필러, 남성 보형물, 또는 요실금 치료제로 사용되는 것일 수 있다.
본 발명의 일 실시예에 따른 생분해성 고분자 미세 입자의 제조용 반응기는 쿠에트 테일러 유체 흐름으로 생분해성 고분자 미세 입자가 형성되는 연속 반응기, 유화 용액을 상기 연속 반응기에 투입하는 제1 투입구, 생분해성 고분자가 분산된 분산 용액을 상기 연속 반응기에 투입하는 제2 투입구, 상기 연속 반응기에서 생성된 생분해성 고분자 미세 입자를 포함하는 반응액을 토출하는 반응액 토출부, 및 상기 반응액에서 상기 생분해성 고분자 미세 입자를 분리하는 연속 원심 분리기를 포함한다.
상기 연속 반응기는 상기 생분해성 고분자 미세 입자가 생성되는 반응부, 상기 실린더의 일측에 배치되는 교반 모터, 및 상기 반응부와 이격되고, 상기 교반 모터에 의해 구동되는 교반봉을 포함한다.
상기 교반 모터는 10 내지 2000rpm의 회전 속도를 갖는 것일 수 있다.
상기 제1 투입구는 상기 반응부의 1/4 지점에 배치되는 것일 수 있다.
본 발명의 일 실시예에 따른 생분해성 고분자 미세 입자의 제조 방법에 의하면, 생분해성 고분자 미세 입자의 대량 생산이 용이하고, 생분해성 고분자 미세 입자의 크기와 형태의 조절이 용이하다.
본 발명의 일 실시예에 따른 주사제의 제조 방법에 의하면 대량 생산이 용이하고, 생분해성 고분자 미세 입자의 크기와 형태의 조절이 용이한 생분해성 고분자 미세 입자를 주사제에 활용할 수 있다.
본 발명의 일 실시예에 따른 생분해성 고분자 미세 입자의 제조용 반응기에 의하면 생분해성 고분자 미세 입자의 대량 생산이 용이하고, 생분해성 고분자 미세 입자의 크기와 형태의 조절이 용이하다.
도 1은 본 발명의 일 실시예에 따른 주사제의 제조 방법을 개략적으로 나타낸 순서도이다.
도 2는 본 발명의 일 실시예에 따른 생분해성 고분자 미세 입자의 제조 방법을 개략적으로 나타낸 순서도이다.
도 3은 본 발명의 일 실시예에 따른 생분해성 고분자 미세 입자의 제조용 반응기를 개략적으로 나타낸 단면도이다.
도 4는 실시예 1 내지 3의 생분해성 고분자 미세 입자를 촬영한 전자 현미경 사진이다.
도 5는 연속 반응기 내에서의 체류 시간에 따른 생분해성 고분자 미세 입자를 촬영한 전자 현미경 사진이다.
도 6은 교반 속도에 따른 생분해성 고분자 미세 입자를 촬영한 사진이다.
도 7은 본 발명의 실시예 1에 따라 제조된 생분해성 고분자 미세 입자의 x200 배율의 전자현미경으로 촬영한 사진이다.
도 8은 본 발명의 실시예 1에 따라 제조된 생분해성 고분자 미세 입자의 x1,000 배율의 전자현미경으로 촬영한 사진이다.
도 9는 본 발명의 실시예 1에 따라 제조된 생분해성 고분자 미세 입자의 x5,000 배율의 전자현미경으로 촬영한 사진이다.
도 10은 본 발명의 실시예 1에 따라 제조된 생분해성 고분자 미세 입자의 x10,000 배율의 전자현미경으로 촬영한 사진이다.
이상의 본 발명의 목적들, 다른 목적들, 특징들 및 이점들은 첨부된 도면과 관련된 이하의 바람직한 실시예들을 통해서 쉽게 이해될 것이다. 그러나 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 위하여 실제보다 확대하여 도시한 것이다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하부에" 있다고 할 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
달리 명시되지 않는 한, 본 명세서에서 사용된 성분, 반응 조건, 폴리머 조성물 및 배합물의 양을 표현하는 모든 숫자, 값 및/또는 표현은, 이러한 숫자들이 본질적으로 다른 것들 중에서 이러한 값을 얻는 데 발생하는 측정의 다양한 불확실성이 반영된 근사치들이므로, 모든 경우 "약"이라는 용어에 의해 수식되는 것으로 이해되어야 한다. 또한, 본 기재에서 수치범위가 개시되는 경우, 이러한 범위는 연속적이며, 달리 지적되지 않는 한 이러한 범 위의 최소값으로부터 최대값이 포함된 상기 최대값까지의 모든 값을 포함한다. 더 나아가, 이러한 범위가 정수를 지칭하는 경우, 달리 지적되지 않는 한 최소값으로부터 최대값이 포함된 상기 최대값까지를 포함하는 모든 정수가 포함된다.
본 명세서에 있어서, 범위가 변수에 대해 기재되는 경우, 상기 변수는 상기 범위의 기재된 종료점들을 포함하는 기재된 범위 내의 모든 값들을 포함하는 것으로 이해될 것이다. 예를 들면, "5 내지 10"의 범위는 5, 6, 7, 8, 9, 및 10의 값들뿐만 아니라 6 내지 10, 7 내지 10, 6 내지 9, 7 내지 9 등의 임의의 하위 범위를 포함하고, 5.5, 6.5, 7.5, 5.5 내지 8.5 및 6.5 내지 9 등과 같은 기재된 범위의 범주에 타당한 정수들 사이의 임의의 값도 포함하는 것으로 이해될 것이다. 또한 예를 들면, "10% 내지 30%"의 범위는 10%, 11%, 12%, 13% 등의 값들과 30%까지를 포함하는 모든 정수들뿐만 아니라 10% 내지 15%, 12% 내지 18%, 20% 내지 30% 등의 임의의 하위 범위를 포함하고, 10.5%, 15.5%, 25.5% 등과 같이 기재된 범위의 범주 내의 타당한 정수들 사이의 임의의 값도 포함하는 것으로 이해될 것이다.
먼저, 생분해성 고분자 미세 입자의 제조 방법, 이를 포함하는 주사제의 제조 방법에 대하여 설명한다.
도 1은 본 발명의 일 실시예에 따른 주사제의 제조 방법을 개략적으로 나타낸 순서도이다. 도 2는 본 발명의 일 실시예에 따른 생분해성 고분자 미세 입자의 제조 방법을 개략적으로 나타낸 순서도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 주사제의 제조 방법은 생분해성 고분자 미세 입자를 포함하는 수용액을 준비하는 단계(S10), 및 수용액에 알긴산(Alginic acid) 및 그 염, 히알루론산(Hyalurinic acid) 및 그 염, 카르복시메틸 셀룰로오스(Carboxylmethyl cellulose) 및 그 염, 덱스트란(Dextran) 및 그 염, 콜라겐(collagen), 젤라틴(Gelatin), 및 엘라스틴(Elastin) 중 적어도 하나를 제공하고, 동결 건조하는 단계(S20)를 포함한다. 수용액을 준비하는 단계(S10)는 생분해성 고분자 미세 입자를 준비하는 단계를 포함한다. 도 1 및 도 2를 참조하면, 생분해성 고분자 미세 입자를 준비하는 단계는 연속 반응기에, 생분해성 고분자가 분산된 분산 용액을 주입하는 단계(S100), 유화 용액을 연속 반응기에 주입하여, 쿠에트 테일러 유체 흐름으로 생분해성 고분자 미세 입자를 생성하는 단계(S200), 연속 반응기에서 생분해성 고분자 미세 입자를 포함하는 토출액을 토출하고, 안정화액이 교반된 반응기에 토출액을 주입하여, 생분해성 고분자 미세 입자를 안정화하는 단계(S300), 및 생분해성 고분자 미세 입자를 분리하는 단계(S400)를 포함한다.
먼저, 연속 반응기에, 생분해성 고분자가 분산된 분산 용액을 주입한다(S100).
분산 용액을 주입하는 단계(S100)에서, 생분해성 고분자는 폴리디옥사논(Polydioxanone, PDO), 폴리락트산(Polylactic acid, PLA) 및 그 이성질체, 폴리글리콜산(Polyglycolic acid, PGA) 및 폴리카프로락톤(Polycarprolactone, PCL) 중에서 선택된다. 폴리디옥사논(Polydioxanone)은 과불소알콜류에 녹일 수 있다. 과불소알콜은 불소원자가 3 내지 13개 치환된 탄소수 1 내지 6의 알콜화합물로, 예를 들면 1,1,1,3,3,3-헥사플루오로-2-프로판올이 포함될 수 있다.
생분해성 고분자의 수평균 분자량은 50,000 내지 300,000인 것일 수 있다. 생분해성 고분자의 수평균 분자량은 50,000 미만이면 분해 속도가 빨라 필러용 생체소재로서의 가치가 떨어지고, 생분해성 고분자의 수평균 분자량은 300,000 초과이면 높은 점탄성으로 인해 가공이 어려운 관계로 균일한 크기와 품질의 입자를 만들기 어렵다.
생분해성 고분자의 함량은, 분산 용액을 기준으로, 1 내지 20 중량%인 것일 수 있다. 상기 범위를 벗어나면, 높은 점도로 인해 유화 용액과 교반시 쿠에트 테일러 유체 흐름을 만들기 어렵거나 유화 농도가 낮을 경우 입자를 형성하지 못한다.
분산 용액을 주입하는 단계(S100)에서, 분산 용액은 용매를 포함한다. 용매는 과불소알콜, DMF (N,N-Dimethylforamide), DMSO (Dimethyl sulfoxide), 염소화탄화수소, 탄화수소 및 알킬알콜 중 적어도 하나를 포함한다.
분산 용액을 주입하는 단계(S100)에서, 분산 용액은 폴리에틸렌옥사이드-폴리프로필렌옥사이드-폴리에틸렌옥사이드 삼원 공중합체를 더 포함한다. 삼원 공중합체의의 수평균 분자량은 7,000 내지 15,000일 수 있다. 삼원 공중합체의 수평균 분자량은 7,000 미만이면 입자의 표면이 고르지 않고, 삼원 공중합체의 수평균 분자량은 15,000 초과이면 높은 점도로 인해 구형의 미세입자 제조가 어렵다. 삼원 공중합체의 함량은, 분산 용액을 기준으로, 1 내지 20 중량%인 것일 수 있다. 상기 범위를 벗어나면, 입자내의 침투성과 점도의 차이로 인해 생성되는 생분해성 고분자 미세 입자의 형상을 제어하기 어렵다.
삼원 공중합체는 생분해성 미세 입자의 형태를 결정할 수 있다. 삼원 공중합체는 생성되는 생분해성 미세 입자의 표면에 흡착되어 입자 사이에서 흡착막을 생성하여 입자간의 응집을 막아준다.
다음으로, 유화 용액을 연속 반응기에 주입하여, 쿠에트 테일러 유체 흐름으로 생분해성 고분자 미세 입자를 생성한다(S200).
유화 용액은 폴리비닐알콜(Polyvinyl alcohol), 폴리옥시에틸렌 솔비탄 및 그 염, 대두 레시틴(soybean Lecithin), 및 모노글리세리드(monoglyceride 중 적어도 하나를 포함하는 것일 수 있다.
유화 용액이 폴리비닐알콜을 포함할 때, 유화 용액은 폴리비닐알콜을 물 또는 물과 알킬알콜 혼합 용액에 용해하여 사용할 수 있다. 이 때 폴리비닐알콜의 함량은 유화 용액을 기준으로 1 내지 10 중량% 포함될 수 있다. 상기 범위를 벗어나면, 계면활성제로 작용하는 PVA의 유화작용이 약화되어 미세입자를 만들기 어렵다.
폴리비닐알콜은 50,000 내지 200,000의 수평균 분자량을 갖는 것일 수 있다. 삼원 공중합체의 수평균 분자량은 50,000 미만이면 유화작용이 매우 떨어지며, 삼원 공중합체의 수평균 분자량이 200,000 초과이면 높은 농도로 인해 테일러 흐름을 원활히 형성하기 어렵다.
유화 용액은 계면 활성제를 포함할 수 있다. 계면 활성제로는 음이온성, 양이온성 또는 양쪽성의 계면 활성제를 모두 사용할 수 있다. 계면 활성제는 예를 들어, 폴리옥시에틸렌 솔비탄모노라우레이트 (트윈 20 상품), 폴리옥시에틸렌 솔비탄 모노팔미테이트 (트윈 40 상품), 폴리옥시에틸렌 솔비탄 모노스테아레이트(트윈 60 상품), 폴리옥시에틸렌 솔비탄 모노올레에이트 (트윈 80 상품), 및 폴리옥시에틸렌 솔비탄 트리올레에이트(트윈 85 상품) 중 적어도 하나를 포함할 수 있다.
유화 용액을 분산 용액이 주입된 연속 반응기에 제공되면, 유화가 일어난다. 이 때 유화는 1 내지 30 분간 유화하는 것일 수 있다. 1분 미만으로 유화가 진행되면 생분해성 고분자 미세 입자가 충분히 생성되지 않고, 30분 초과로 유화가 진행되면 제공되는 외력 대비 생분해성 고분자 미세 입자의 생산성이 떨어진다.
이 때, 생분해성 고분자 미세 입자가 생성되고, 이는 일반적인 기계적 교반법, 예를 들어 마그네틱 바를 이용한 교반법, 기계적 시트어(mechanical stirrer) 또는 균질기를 사용한 교반법이 아닌 쿠에트 테일러 유체 흐름을 적용한 방법이다. 쿠에트 테일르 유체 흐름은 회분식 교반법에 비하여, 강력한 교반력을 갖고, 회분식 반응과는 다르게 반응시간과 연속 반응기 내부를 통과하는 시간과 비례한다는 장점을 가지고 있다.
안정화액이 교반된 반응기에 토출액을 주입하여, 생분해성 고분자 미세 입자를 안정화한다(S300). 안정화액은 폴리비닐알콜(Polyvinyl alcohol) 또는 계면 활성제를 물 또는 물과 알킬알콜 혼합용액에 용해하여 제조할 수 있다. 안정화액이 폴리비닐알콜을 포함할 때, 폴리비닐알콜의 함량은 안정화액을 기준으로 0.1 내지 5 중량%의 포함되는 것일 수 있다.
안정화액은 10,000 내지 100,000 의 수평균 분자량을 갖는 폴리비닐알콜을 포함할 수 있다. 폴리비닐알콜의 수평균 분자량이 10,000 미만이면 입자의 형태를 유지하기 어렵고, 폴리비닐알콜의 수평균 분자량이 100,000 초과이면 세척과정에서 제거가 어려운 문제가 있다. 안정화액은 단일 성분의 수용액 또는 계면 활성제와 알킬알콜의 혼합 용액을 포함할 수도 있다.
연속 반응기를 통과한 토출액은 이미 제조된 안정화 용액이 교반되고 있는 반응기로 연속적으로 주입이 되어 안정화 과정을 거친다. 토출액은 생분해성 고분자 미세 입자를 포함한다. 연속 반응기는 감압 장치를 포함할 수 있고, 감압 장치에 의해 유기 용매를 제거할 수 있다.
생분해성 고분자 미세 입자를 분리한다(S400). 연속형 원심분리기 또는 고속 교반 원심분리기를 사용하여 생분해성 고분자 미세 입자와 용액을 분리한다. 알킬알콜과 물 또는 물 단독으로 생분해성 고분자 미세 입자를 세척할 수 있다. 알킬알콜은 예를 들어, 에탄올을 사용할 수 있다.
생분해성 고분자 미세 입자는 크기별로 분류할 수도 있다. 용액과 분리된 생분해성 고분자 미세 입자를 분체기를 사용하여 크기별로 분류할 수 있다. 예를 들어, 크기 체별(size sieving)기를 사용하여 건식 또는 습식으로 생분해성 고분자 미세 입자를 크기별로 분류할 수 있다.
습식으로 분체할 경우, 동결 건조를 추가적으로 시행하여, 수분을 제거한 후, 분류할 수도 있다.
생분해성 고분자 미세 입자의 크기는 1 내지 300㎛인 것일 수 있다. 생분해성 고분자 미세 입자의 크기란 예를 들어, 생분해성 고분자 미세 입자의 입경을 의미하는 것일 수 있다.
생분해성 고분자 미세 입자의 크기가 1㎛ 미만이면, 생분해성 고분자 미세 입자를 제조할 때, 크기를 제어하기 어렵고, 생분해성 고분자 미세 입자의 크기가 300㎛ 초과이면, 주사제용으로 사용되기 적합하지 않다.
앞서 언급한 바와 같이, 본 발명의 일 실시예에 따른 주사제의 제조 방법은 생분해성 고분자 미세 입자를 포함하는 수용액에 부형제를 제공하는 단계를 포함한다. 부형제는 예를 들어, 알긴산(Alginic acid) 및 그 염, 히알루론산(Hyalurinic acid) 및 그 염, 카르복시메틸 셀룰로오스(Carboxylmethyl cellulose) 및 그 염, 덱스트란(Dextran) 및 그 염, 콜라겐(collagen), 젤라틴(Gelatin), 및 엘라스틴(Elastin) 중 적어도 하나를 포함할 수 있다. 본 발명의 일 실시예에 따른 주사제의 제조 방법은 생분해성 고분자 미세 입자를 포함하는 수용액에 부형제를 제공하고, 동결 건조하는 단계(S20)를 포함한다.
수용액을 준비하는 단계(S10)에서, 생분해성 고분자 미세 입자는 수용액을 기준으로 10 내지 80 중량% 포함되는 것일 수 있다. 생분해성 고분자 미세 입자의 함량이 10 중량% 미만이면 농도가 낮아 고르게 분산시키기 어렵고, 80 중량% 초과이면 낮은 수분 함량으로 동결 건조 및 부형제와의 혼합이 어렵다.
상기 수용액에 따라혼합액의 생분해성 고분자 미세 입자와 부형제의 비율은 2:8 내지 8:2의 중량비%일 수 있다. 상기 범위를 벗어나면 부형제의 함량을 조절할 수 있는 범위를 벗어나 생분해성 고분자 미세입자들을 적정 농도로 고르게 분산 시키기 어렵다.
이 때, 3롤밀(Three roll mill)을 사용하여 높은 점도의 혼합액을 고르게 분산시킬 수 있다.
본 발명의 일 실시예에 따른 주사제의 제조 방법은 동결 건조한 생분해성 고분자 미세 입자를 멸균하는 단계를 더 포함할 수 있다. 멸균하는 단계는 예를 들어, 감마선 멸균, 에틸렌옥사이드 멸균, 또는 감압 멸균으로 수행되는 것일 수 있다.
주사제는 안면 성형 필러, 남성 보형물, 또는 요실금 치료제로 사용되는 것일 수 있다. 안면 성형 필러에 사용되는 생분해성 고분자 미세 입자의 크기는 10 내지 100㎛일 수 있다. 남성 보형물 또는 요실금 치료제에 사용되는 생분해성 고분자 미세 입자의 크기는 100 내지 300㎛일 수 있다.
본 발명의 일 실시예에 따른 주사제의 제조 방법 및 본 발명의 일 실시예에 따른 생분해성 고분자 미세 입자의 제조 방법은 쿠에트 테일러 유체 흐름을 사용하여, 생분해성 고분자 미세 입자의 대량 생산이 용이하고, 생분해성 고분자 미세 입자의 크기와 형태의 조절이 용이하다.
이하에서는 본 발명의 일 실시예에 따른 생분해성 고분자 미세 입자의 제조용 반응기에 대하여 설명한다. 이하에서는 본 발명의 일 실시예에 따른 주사제의 제조 방법 및 본 발명의 일 실시예에 따른 생분해성 고분자 미세 입자의 제조 방법과의 차이점에 대하여 설명하고, 동일 또는 유사한 것은 생략한다.
도 3은 본 발명의 일 실시예에 따른 생분해성 고분자 미세 입자의 제조용 반응기를 개략적으로 나타낸 단면도이다.
도 3을 참조하면, 본 발명의 일 실시예에 따른 생분해성 고분자 미세 입자의 제조용 반응기(100)는 제1 투입구(9), 제2 투입구(10), 연속 반응기(100), 반응액 토출부(11), 및 연속 원심 분리기(12)를 포함한다. 본 발명의 일 실시예에 따른 생분해성 고분자 미세 입자의 제조용 반응기(100)는 유화 용액 보관소(1), 분산 용액 보관소(2), 폐액 배출구(13), 생분해성 고분자 미세 입자 회수부(14)를 더 포함한다.
연속 반응기(100)에서는 쿠에트 테일러 유체 흐름으로 생분해성 고분자 미세 입자가 형성된다. 코에트 테일러 유체 흐름은 제1 투입구(9)로부터 제공된 유화 용액 및 제2 투입구(10)로부터 제공된 생분해성 고분자가 분산된 분산 용액이 서로 교반되어 형성된다. 제1 투입구(9)는 유화 용액 보관소(1)와 연결된다. 제2 투입구(10)는 분산 용액 보관소(2)와 연결된다.
연속 반응기(100)에서 생성된 생분해성 고분자 미세 입자를 포함하는 반응액은 반응액 토출부(11)로 토출된다. 반응액 토출부(11)로 토출된 반응액은 연속 원심 분리기(12)에서 폐액과 생분해성 고분자 미세 입자로 분리된다. 폐액은 폐액 배출구(13)로 배출된다. 생분해성 고분자 미세 입자는 생분해성 고분자 미세 입자 회수부(14)에서 회수된다.
연속 반응기(100)는 내부 실린더(5), 온도 조절부, 외부 실린더(7), 및 반응부(8)를 포함한다. 내부 실린더(5)는 고속으로 회전되어 반응액을 교반시키는 역할을 한다. 외부 실린더(7)에는 주입구 토출구 등이 장착되어있고 반응내부를 보호하는 역할 을 한다. 온도 조절부(6)는 반응부(8)와 외부 실린더(7) 사이에 냉각장치가 연결되어 온도를 조절할 수 있다. 반응부(8)는 반응액이 채워지는 빈 공간으로서 코에트 테일러 유체 흐름에 의해 생분해성 고분자 미세 입자가 형성된다.
연속 반응기(100)는 교반 모터(3), 구동축(4), 교반봉을 더 포함한다. 교반 모터(3)는 교반봉을 회전 시키는 것일 수 있다. 교반봉은 교반 모터(3)에 의해 구동된다. 교반봉은 내부 실린더(5)에 제공된 유화 용액과 분산 용액을 교반한다. 교반봉은 구동축(4)에 중심으로, 교반 모터(3)에서 외력을 제공받아 구동된다. 교반봉은 반응부(8)와 이격된다.
교반 모터(3)는 10 내지 2000 rpm의 회전 속도를 갖는 것일 수 있다. 10 rpm 미만이면 유화 용액과 분산 용액이 충분히 교반되지 않고, 2000 rpm 초과이면 제공되는 외력대비 교반 효율이 높지 않다.
제1 투입구(9)는 반응부(8)의 1/4 지점에 배치되는 것일 수 있으며, 충분한 회전력을 받는 지점에서 투입되어 강력한 교반력에 의해 구형의 미세입자를 형성하기 위함이다.
본 발명의 일 실시예에 따른 생분해성 고분자 미세 입자의 제조용 반응기는 쿠에트 테일러 유체 흐름을 사용하여, 생분해성 고분자 미세 입자의 대량 생산이 용이하고, 생분해성 고분자 미세 입자의 크기와 형태의 조절이 용이하다.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.
실시예 1: 폴리디옥사논 미세 입자의 제조
평균 분자량이 100,000인 폴리디옥사논(Polydioxanone) 90g과 삼원 공중합체 F-127(바스프사 제품, 평균분자량 12,600), 삼원 공중합체 F-68(바스프사 제품, 평균분자량 8,400) 60g을 헥사플루오로이소프로파놀(Hexafluoroisopropanol) 1500mL에 투입한 후 교반하여 혼합하였다.
상기 폴리디옥사논 분산 용액을 쿠에트 테일러 유체 흐름을 이용한 연속반응기에 10mL/min의 속도로 투입하면서 5% PVA(평균분자량 130,000) 용액 7,500mL를 동시에 50mL/mL의 속도로 투입하였다. 반응기 내 체류시간은 10분을 유지한 후 반응액이 토출될 수 있도록 조절하였다.
토출되는 반응액을 1% PVA(평균분자량 93,500) 7,500mL 용액에 투입하면서 교반시켰다. 토출액을 모두 투입한 후 감압 하에 24시간 교반시키면서 헥사플루오로이소프로파놀을 제거하여 생성된 생분해성 고분자 미세 입자를 안정화시켰다.
생분해성 고분자 미세 입자가 포함된 반응액을 원심 분리기로 고액 분리하여 불순불이 제거된 폴리디옥사논 미세 입자를 얻었다. 이를 다시 900 mL 증류수로 5회 세척 후 원심 분리를 진행하여 잔류 불순물을 완전히 제거하고 동결건조하여 생분해성 고분자 미세 입자인 폴리디옥사논 미세 입자를 완성하였다.
이 때, 연속 반응기의 유속을 500rpm, 1500rpm, 2000rpm으로 변화시키면서 생분해성 고분자 입자를 제조하였다.
또한, 연속 반응기에 투입되는 고분자 분산 용액과 유화 용액의 반응기 내 체류시간을 1 내지 10분까지 변화시키면서 생분해성 고분자 입자를 제조하였다.
실시예 2: 폴리락틴산 미세 입자의 제조
폴리디옥사논 대신 폴리락틱산(Polylactic acid), 헥사플루오로이소프로파놀 대신 다이클로로메탄(Dichloromethane)을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였다.
실시예 3: 폴리락틴산 미세 입자의 제조
폴리디옥사논 대신 폴리카프로락톤(Poly caprolactone), 헥사플루오로이소프로파놀 대신 다이클로로메탄(Dichloromethane)을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였다.
물성 측정
1. 도 4는 실시예 1 내지 3의 생분해성 고분자 미세 입자를 촬영한 전자 현미경 사진이다. 도 4를 참조하면, 본 발명의 제조 방법에 의해 생분해성 고분자 미세 입자를 제조할 경우, 생분해성 고분자의 종류에 상관 없이 동일한 형태의 생분해성 고분자 미세 입자를 형성할 수 있는 것을 확인할 수 있었다.
2. 도 5는 연속 반응기 내에서의 체류 시간에 따른 생분해성 고분자 미세 입자를 촬영한 전자 현미경 사진이다. 체류시간이 길수록 생분해성 고분자 미세 입자를 원활히 제조할 수 있는 것을 확인할 수 있었다.
3. 도 6은 교반 속도에 따른 생분해성 고분자 미세 입자를 촬영한 사진이다. 교반 속도가 빠를수록 생분해성 고분자 미세 입자를 원활히 제조할 수 있는 것을 확인할 수 있었다.
4. 도 7은 본 발명의 실시예 1에 따라 제조된 생분해성 고분자 미세 입자의 x200 배율의 전자현미경으로 촬영한 사진이다. 도 8은 본 발명의 실시예 1에 따라 제조된 생분해성 고분자 미세 입자의 x1,000 배율의 전자현미경으로 촬영한 사진이다. 도 9는 본 발명의 실시예 1에 따라 제조된 생분해성 고분자 미세 입자의 x5,000 배율의 전자현미경으로 촬영한 사진이다. 도 10은 본 발명의 실시예 1에 따라 제조된 생분해성 고분자 미세 입자의 x10,000 배율의 전자현미경으로 촬영한 사진이다.
도 7 내지 도 10을 참조하면, 본 발명의 일 실시예의 생분해성 고분자 미세 입자의 제조 방법에 의해 제조된 생분해성 고분자 미세 입자는 대량으로 생산하여도 크기와 형태의 조절이 용이한 것을 확인할 수 있다.
이상, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징으로 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
1: 유화 용액 보관소 2: 분산 용액 보관소
3: 교반 모터 4: 구동축
5: 내부 실린더 6: 온도 조절부
7: 외부 실린더 8: 반응부
9: 제1 투입구 10: 제2 투입구
11: 반응액 토출부 12: 연속 원심 분리기
13: 폐액 배출구 14: 생분해성 고분자 미세 입자 회수부

Claims (18)

  1. 연속 반응기에, 생분해성 고분자가 분산된 분산 용액을 주입하는 단계;
    유화 용액을 상기 연속 반응기에 주입하여, 쿠에트 테일러 유체 흐름으로 생분해성 고분자 미세 입자를 생성하는 단계;
    상기 연속 반응기에서 상기 생분해성 고분자 미세 입자를 포함하는 토출액을 토출하고, 안정화액이 교반된 반응기에 상기 토출액을 주입하여, 상기 생분해성 고분자 미세 입자를 안정화하는 단계; 및
    상기 생분해성 고분자 미세 입자를 분리하는 단계;를 포함하며,
    상기 생분해성 고분자는 폴리디옥사논(Polydioxanone, PDO) 또는 폴리락트산(Polylactic acid, PLA)이며,
    상기 유화 용액 및 상기 안정화액은 폴리비닐알콜(Polyvinyl alcohol)을 포함하며,
    상기 유화 용액이 산 첨가 없이 준비되며,
    상기 안정화액이 폴리비닐알콜(Polyvinyl alcohol) 0.1 내지 5중량%를 포함하며,
    상기 연속 반응기의 회전속도가 1000 내지 2000 rpm인 생분해성 고분자 미세 입자의 제조 방법.
  2. 제1항에 있어서,
    상기 분산 용액을 주입하는 단계에서,
    상기 생분해성 고분자의 수평균 분자량은 50,000 내지 300,000인 생분해성 고분자 미세 입자의 제조 방법.
  3. 제1항에 있어서,
    상기 분산 용액을 주입하는 단계에서,
    상기 분산 용액은 용매를 포함하고,
    상기 용매는
    과불소알콜, DMF (N,N-Dimethylforamide), DMSO (Dimethyl sulfoxide), 염소화탄화수소, 탄화수소 및 알킬알콜 중 적어도 하나를 포함하고,
    상기 생분해성 고분자의 함량은, 상기 분산 용액을 기준으로, 1 내지 20 중량%인 것인 생분해성 고분자 미세 입자의 제조 방법.
  4. 제1항에 있어서,
    상기 분산 용액을 주입하는 단계에서,
    상기 분산 용액은 폴리에틸렌옥사이드-폴리프로필렌옥사이드-폴리에틸렌옥사이드 삼원 공중합체를 더 포함하고,
    상기 삼원 공중합체의의 수평균분자량은 7,000 내지 15,000이고,
    상기 삼원 공중합체의 함량은, 상기 분산 용액을 기준으로, 1 내지 20 중량%인 것인 생분해성 고분자 미세 입자의 제조 방법.
  5. 제1항에 있어서,
    상기 생분해성 고분자 미세 입자를 생성하는 단계에서,
    상기 생분해성 고분자 미세 입자의 크기는 1 내지 300㎛인 것인 생분해성 고분자 미세 입자의 제조 방법.
  6. 제1항에 있어서,
    상기 생분해성 고분자 미세 입자는
    안면 성형 필러, 남성 보형물, 또는 요실금 치료제에 사용되는 것인 생분해성 고분자 미세 입자의 제조 방법.
  7. 삭제
  8. 삭제
  9. 제1항 내지 제6항 중 어느 한 항에 의해 제조된 생분해성 고분자 미세 입자를 포함하는 수용액을 준비하는 단계; 및
    상기 수용액에 알긴산(Alginic acid) 및 그 염, 히알루론산(Hyalurinic acid) 및 그 염, 카르복시메틸 셀룰로오스(Carboxylmethyl cellulose) 및 그 염, 덱스트란(Dextran) 및 그 염, 콜라겐(collagen), 젤라틴(Gelatin), 및 엘라스틴(Elastin) 중 적어도 하나를 제공하고, 동결 건조하는 단계를 포함하는 주사제의 제조 방법.
  10. 제9항에 있어서,
    상기 수용액을 준비하는 단계에서,
    상기 생분해성 고분자 미세 입자는 상기 수용액을 기준으로 10 내지 80 중량% 포함되는 것인 주사제의 제조 방법.
  11. 제9항에 있어서,
    상기 수용액에 카르복시메틸 셀룰로오스를 제공할 때,
    상기 생분해성 고분자 미세 입자는 상기 카르복시메틸 셀룰로오스가 포함된 상기 수용액을 기준으로, 30 내지 60 중량% 포함되는 것인 주사제의 제조 방법.
  12. 제9항에 있어서,
    상기 생분해성 고분자 미세 입자의 크기는 10 내지 300㎛인 것인 주사제의 제조 방법.
  13. 제9항에 있어서,
    상기 동결 건조한 생분해성 고분자 미세 입자를 멸균하는 단계를 더 포함하고,
    상기 멸균하는 단계는
    감마선 멸균, 에틸렌옥사이드 멸균, 또는 감압 멸균으로 수행되는 것인 주사제의 제조 방법.
  14. 제9항에 있어서,
    상기 주사제는 안면 성형 필러, 남성 보형물, 또는 요실금 치료제로 사용되는 것인 주사제의 제조 방법.
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
KR1020170161178A 2017-11-29 2017-11-29 연속반응을 이용한 생분해성 고분자 미세 입자의 제조 방법, 이를 포함하는 주사제의 제조 방법, 및 생분해성 고분자 미세 입자의 제조용 반응기 KR102012441B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170161178A KR102012441B1 (ko) 2017-11-29 2017-11-29 연속반응을 이용한 생분해성 고분자 미세 입자의 제조 방법, 이를 포함하는 주사제의 제조 방법, 및 생분해성 고분자 미세 입자의 제조용 반응기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170161178A KR102012441B1 (ko) 2017-11-29 2017-11-29 연속반응을 이용한 생분해성 고분자 미세 입자의 제조 방법, 이를 포함하는 주사제의 제조 방법, 및 생분해성 고분자 미세 입자의 제조용 반응기

Publications (2)

Publication Number Publication Date
KR20190062709A KR20190062709A (ko) 2019-06-07
KR102012441B1 true KR102012441B1 (ko) 2019-08-20

Family

ID=66849872

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170161178A KR102012441B1 (ko) 2017-11-29 2017-11-29 연속반응을 이용한 생분해성 고분자 미세 입자의 제조 방법, 이를 포함하는 주사제의 제조 방법, 및 생분해성 고분자 미세 입자의 제조용 반응기

Country Status (1)

Country Link
KR (1) KR102012441B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102173939B1 (ko) * 2020-03-25 2020-11-04 권한진 생분해성 고분자 미세입자의 혼합물로 구성된 성형용 필러 조성물의 제조방법
WO2024123070A1 (ko) * 2022-12-07 2024-06-13 주식회사 클레오 의료용 미세입자

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020122268A1 (ko) * 2018-12-11 2020-06-18 주식회사 울트라브이 연속반응을 이용한 생분해성 고분자 미세 입자의 제조 방법, 이를 포함하는 주사제의 제조 방법, 및 생분해성 고분자 미세 입자의 제조용 반응기
CN110051882A (zh) * 2019-06-11 2019-07-26 中国科学院长春应用化学研究所 一种聚乳酸微球、其制备方法及应用
KR102307897B1 (ko) * 2019-11-25 2021-10-05 (주)리젠바이오참 비 자발적 에멀전 확산법을 이용한 조직 재생용 지지체 조성물의 제조방법
CN111057351B (zh) * 2019-12-02 2022-03-18 苏州市新广益电子有限公司 一种pbt环保包装袋及其生产工艺
WO2022119008A1 (ko) * 2020-12-03 2022-06-09 (주)리젠바이오참 비 자발적 에멀전 확산법을 이용한 조직 재생용 지지체 조성물의 제조방법
CN112679926B (zh) * 2020-12-24 2022-04-29 海南赛诺实业有限公司 一种高结晶性的改性pga材料及其制备方法
KR102403559B1 (ko) * 2021-08-04 2022-06-02 주식회사 울트라브이 플라즈마 처리 기술을 이용한 친수화된 표면을 갖는 생분해성 고분자 미세입자 및 그 제조방법
KR102377283B1 (ko) * 2021-08-26 2022-03-22 정민욱 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140120169A1 (en) * 2012-10-26 2014-05-01 Board Of Trustees Of Michigan State University Device and method for encapsulation of hydrophilic materials
KR101501217B1 (ko) * 2014-07-17 2015-03-10 최명 필러용 폴리디옥사논 입자의 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145101A (en) 1980-12-30 1982-09-08 Nat Res Dev Polymerization
KR101418888B1 (ko) 2011-04-15 2014-07-17 서울대학교산학협력단 다공성 중공형 미립구 및 이의 제조 방법
KR101725279B1 (ko) 2015-10-27 2017-04-10 주식회사 바임 망상구조를 갖는 고분자 미세입자의 제조방법
KR101818132B1 (ko) * 2017-01-31 2018-01-12 재단법인 포항산업과학연구원 전구체 제조 장치와 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140120169A1 (en) * 2012-10-26 2014-05-01 Board Of Trustees Of Michigan State University Device and method for encapsulation of hydrophilic materials
KR101501217B1 (ko) * 2014-07-17 2015-03-10 최명 필러용 폴리디옥사논 입자의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Continuous Emulsion Polymerization(Journal of Applied Polymer Science, Vol. 80, 1931-1942 (2001))*

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102173939B1 (ko) * 2020-03-25 2020-11-04 권한진 생분해성 고분자 미세입자의 혼합물로 구성된 성형용 필러 조성물의 제조방법
WO2024123070A1 (ko) * 2022-12-07 2024-06-13 주식회사 클레오 의료용 미세입자

Also Published As

Publication number Publication date
KR20190062709A (ko) 2019-06-07

Similar Documents

Publication Publication Date Title
KR102012441B1 (ko) 연속반응을 이용한 생분해성 고분자 미세 입자의 제조 방법, 이를 포함하는 주사제의 제조 방법, 및 생분해성 고분자 미세 입자의 제조용 반응기
KR102051044B1 (ko) 생분해성 고분자 필러의 제조 방법, 및 이를 포함하는 주사제의 제조 방법
EP3586828B1 (en) Method for preparing biodegradable microspheres having improved stability and storage stability
Astete et al. Synthesis and characterization of PLGA nanoparticles
KR101423741B1 (ko) 인조 라텍스의 제조방법
CN115151282A (zh) 填充物用生物可降解聚合物微粒的制备方法,以及包括其的注射剂的制备方法
Li et al. Salt-induced reentrant hydrogel of poly (ethylene glycol)–poly (lactide-co-glycolide) block copolymers
KR101706254B1 (ko) 생체조직 수복 또는 재생용 고분자 미세입자의 제조방법
KR102377283B1 (ko) 생분해성 고분자 미립구의 제조를 위한 병렬식 막유화 방법과 장치, 및 이를 이용한 주사제의 제조방법
JP7047058B2 (ja) 生分解性高分子微粒子の製造方法及びそれにより製造される生分解性高分子微粒子
JP6117449B2 (ja) フィラー用ポリジオキサノン粒子の製造方法
Wang et al. Single-and Multicompartment Hollow Polyelectrolyte Capsules by One-Step Spraying
CN114931554B (zh) 一种可降解微球及其制备方法和应用
Sturesson et al. Preparation of biodegradable poly (lactic-co-glycolic) acid microspheres and their in vitro release of timolol maleate
Demina et al. Chitosan‐g‐Polyester Microspheres: Effect of Length and Composition of Grafted Chains
US11597834B2 (en) Biodegradable polymer microparticle for filler, manufacturing method thereof, freeze-dried body including the same, and filler injection including the same
KR102556294B1 (ko) Sls 3d 인쇄를 위한 설폰 중합체 미세입자의 제조 방법
EP2567936A1 (en) Procedure for the obtainment of nanocomposite materials
KR102266386B1 (ko) 필러용 동결 건조체, 그 제조방법 및 이를 포함하는 필러용 주사제
EP0934353A1 (en) Method for preparation of polymer microparticles free of organic solvent traces
Matthew et al. Mixing and flow-induced nanoprecipitation for morphology control of silk fibroin self-assembly
KR101537716B1 (ko) 원심 분리에 의한 고분자 지지체의 제조 방법 및 이에 의하여 제조된 고분자 지지체
CN109999000A (zh) 一种生物降解高分子多孔微球的制备方法
KR102072968B1 (ko) 생분해성 고분자 미세 입자의 제조 방법 및 조직 수복용 생분해성 재료
WO2020122268A1 (ko) 연속반응을 이용한 생분해성 고분자 미세 입자의 제조 방법, 이를 포함하는 주사제의 제조 방법, 및 생분해성 고분자 미세 입자의 제조용 반응기

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant