KR102011253B1 - 촉매층이 코팅된 리튬설퍼전지용 다층구조 분리막 및 이를 이용한 리튬설퍼전지 - Google Patents

촉매층이 코팅된 리튬설퍼전지용 다층구조 분리막 및 이를 이용한 리튬설퍼전지 Download PDF

Info

Publication number
KR102011253B1
KR102011253B1 KR1020170100382A KR20170100382A KR102011253B1 KR 102011253 B1 KR102011253 B1 KR 102011253B1 KR 1020170100382 A KR1020170100382 A KR 1020170100382A KR 20170100382 A KR20170100382 A KR 20170100382A KR 102011253 B1 KR102011253 B1 KR 102011253B1
Authority
KR
South Korea
Prior art keywords
layer
separator
catalyst
sulfur battery
lithium sulfur
Prior art date
Application number
KR1020170100382A
Other languages
English (en)
Other versions
KR20180020096A (ko
Inventor
김용태
최지환
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to PCT/KR2017/008938 priority Critical patent/WO2018034501A1/ko
Publication of KR20180020096A publication Critical patent/KR20180020096A/ko
Application granted granted Critical
Publication of KR102011253B1 publication Critical patent/KR102011253B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M2/1686
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 서로 대향 배치되는 양극과 음극; 상기 양극과 상기 음극 사이에 위치하는 분리막; 및 전해질을 포함하며, 상기 분리막은, 베이스 기재층 및 상기 베이스 기재층에 코팅되는 촉매층을 포함하는 리튬설퍼전지에 관한 것으로, 본 발명에 따른 분리막을 사용하면 그러한 현상들에 대한 억제가 작용하며, 분리막 표면에 코팅된 촉매물질에 의해 전지의 용량 및 사이클 특성을 개선시킬 수 있다.

Description

촉매층이 코팅된 리튬설퍼전지용 다층구조 분리막 및 이를 이용한 리튬설퍼전지{separator for lithium sulfur batteries with catalyst coating}
본 발명은 촉매층이 코팅된 리튬설퍼전지용 다층구조 분리막 및 이를 이용한 리튬설퍼전지에 관한 것으로, 더욱 상세하게는 셔틀현상을 억제하여, 전지의 용량 및 사이클 특성을 개선할 수 있는 리튬설퍼전지용 분리막 및 이를 이용한 리튬설퍼전지에 관한 것이다.
리튬이차전지는 니켈카드뮴 전지, 니켈수소전지 등보다 에너지밀도가 높고, 수명이 길어, 최근 컴퓨터, 휴대기기등 다양한 분야에 널리 이용되고 있으며, 향후 전자기기 뿐만아니라 전기자동차용 중대형 이차전지 소재로서도 주목을 받고 있다.
이러한 리튬이차전지의 중요 부품중 분리막은 전지의 양극과 음극의 단락을 방지하며, 이온 전달이 잘 이루어지게 하여 전지안정성에 큰 영향을 미친다. 최근 이차전지의 높은 에너지 밀도와 수명이 요구되고 있으며 이에 따라, 분리막 또한 높은 안정성 뿐만아니라 우수한 성능이 요구되고 있다.
한편, 리튬설퍼전지는 양극이 황을 포함하고, 음극으로는 리튬 금속이 사용된다.
상기 리튬설퍼전지는 방전시 양극에 있는 환원된 황이 음극으로부터 이동되어 온 리튬 이온과 결합하여 최종적으로 Li2S(2Li+ + 2e- + S ↔ Li2S)를 형성하는 반응을 수반하며 1672 mAh/g)의 이론적 용량을 나타낸다.
이러한 리튬설퍼전지는 양극을 이루고 있는 황과 반응 최종 생성물인 LiS가 전기적으로 부도체 성격을 갖고 있으며, 따라서 유전율이 강한 전해질을 사용하게 된다.
이로 인해 용해성 폴리설파이드가 전해질에 용해되어 양극과 음극을 왕복하게 되면서, 이 과정에서 생성되는 불용성 Li2S와 Li2S2 등이 음극 표면과 그 외의 분리막 계면에 축적되어, 전지의 성능 저하, 즉, 전지의 용량 및 사이클 특성의 저하가 발생하는 셔틀 메커니즘 문제가 발생한다.
이를 해결하기 위한 방안으로, 전해질을 개선하여 황의 용출을 막아주는 방법이 개발되고 있으나, 그 진전은 미미한 상태이다.
한국공개특허 10-2016-0089954
본 발명이 해결하고자 하는 과제는 리튬설퍼전지에서의 셔틀현상을 억제하여, 전지의 용량 및 사이클 특성을 개선할 수 있는 촉매층이 코팅된 리튬설퍼전지용 다층구조 분리막 및 이를 이용한 리튬설퍼전지를 제공하는 것이다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 지적된 문제점을 해결하기 위해서 본 발명은 리튬설퍼전지용 분리막에 있어서, 상기 분리막은, 베이스 기재층 및 상기 베이스 기재층에 코팅되는 촉매층을 포함하는 리튬설퍼전지용 분리막을 제공한다.
또한, 본 발명은 상기 촉매층의 양은 단위면적당 2 내지 4 mg/㎠인 것을 특징으로 하는 리튬설퍼전지용 분리막을 제공한다.
또한, 본 발명은 리튬설퍼전지용 분리막에 있어서, 상기 분리막은, 베이스 기재층 및 상기 베이스 기재층에 코팅되는 촉매물질과 카본물질의 혼합층을 포함하는 리튬설퍼전지용 분리막을 제공한다.
또한, 본 발명은 상기 촉매물질과 상기 카본물질의 혼합 양 100% 대비 촉매물질의 비율은 10 내지 30% 인 것을 특징으로 하는 리튬설퍼전지용 분리막을 제공한다.
또한, 본 발명은 리튬설퍼전지용 분리막에 있어서, 상기 분리막은, 제1베이스 기재층의 상부에 촉매층이 코팅된 제1분리막과 제2베이스 기재층의 상부에 카본층이 코팅된 제2분리막의 적층 형태인 것을 특징으로 하는 리튬설퍼전지용 분리막을 제공한다.
또한, 본 발명은 서로 대향 배치되는 양극과 음극; 상기 양극과 상기 음극 사이에 위치하는 분리막; 및 전해질을 포함하며, 상기 분리막은, 베이스 기재층 및 상기 베이스 기재층에 코팅되는 촉매층을 포함하는 리튬설퍼전지를 제공한다.
또한, 본 발명은 상기 촉매층의 양은 단위면적당 2 내지 4 mg/㎠인 것을 특징으로 하는 리튬설퍼전지를 제공한다.
또한, 본 발명은 서로 대향 배치되는 양극과 음극; 상기 양극과 상기 음극 사이에 위치하는 분리막; 및 전해질을 포함하며, 상기 분리막은, 베이스 기재층 및 상기 베이스 기재층에 코팅되는 촉매물질과 카본물질의 혼합층을 포함하는 리튬설퍼전지를 제공한다.
또한, 본 발명은 상기 촉매물질과 상기 카본물질의 혼합 양 100% 대비 촉매물질의 비율은 10 내지 30% 인 것을 특징으로 하는 리튬설퍼전지를 제공한다.
또한, 본 발명은 서로 대향 배치되는 양극과 음극; 상기 양극과 상기 음극 사이에 위치하는 분리막; 및 전해질을 포함하며, 상기 분리막은, 제1베이스 기재층의 상부에 촉매층이 코팅된 제1분리막과 제2베이스 기재층의 상부에 카본층이 코팅된 제2분리막의 적층 형태인 것을 특징으로 하는 리튬설퍼전지를 제공한다.
이상과 같은 본 발명에 따르면, 리튬설퍼전지에서의 셔틀현상을 억제하여, 전지의 용량 및 사이클 특성을 개선할 수 있는 리튬설퍼전지를 제공할 수 있다.
즉, 기존 리튬-유황전지에서는 충방전 시 유황양극에서 polysulfide가 녹아나 양극과 음극사이를 이동하는 shuttle현상이 발생하여 전지의 용량 및 사이클 특성에 큰 문제를 일으키게 된다.
하지만, 본 발명에 따른 분리막을 사용하면 그러한 현상들에 대한 억제가 작용하며, 분리막 표면에 코팅된 촉매물질에 의해 전지의 용량 및 사이클 특성을 개선시킬 수 있다.
도 1은 본 발명에 따른 리튬설퍼전지를 도시하는 개략적인 모식도이다.
도 2a는 본 발명에 따른 분리막의 예시적인 형태를 도시하는 개략적인 그래프이다.
도 2b는 단위면적당 촉매 로딩량에 따른 용량특성을 도시한 그래프이다.
도 2c는 촉매물질과 카본물질의 혼합 양 100% 대비 촉매물질의 비율에 따른 용량특성을 도시한 그래프이다.
도 3은 실시예 1 내지 3, 비교예에 따라 제조된 전지 성능을 비교한 그래프이다.
도 4는 카본층의 두께변화에 따른 전지를 용량 특성을 도시하는 그래프이다.
도 5는 비표면적이 다른 각각의 탄소의 구조를 비교하기 위한 전자주사현미경(SEM) 이미지이다.
도 6a 내지 도 6c는 실험예에 따른 리튬설퍼전지의 사이클 동안의 충방전 곡선의 변화를 도시한 그래프이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
아래 첨부된 도면을 참조하여 본 발명의 실시를 위한 구체적인 내용을 상세히 설명한다. 도면에 관계없이 동일한 부재번호는 동일한 구성요소를 지칭하며, "및/또는"은 언급된 아이템들의 각각 및 하나 이상의 모든 조합을 포함한다.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 구성 요소와 다른 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작시 구성요소들의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들면, 도면에 도시되어 있는 구성요소를 뒤집을 경우, 다른 구성요소의 "아래(below)" 또는 "아래(beneath)"로 기술된 구성요소는 다른 구성요소의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 구성요소는 다른 방향으로도 배향될 수 있고, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명에 따른 리튬설퍼전지를 도시하는 개략적인 모식도이다.
도 1을 참조하면, 본 발명에 따른 리튬설퍼전지(100)는 서로 대향 배치되는 양극(110)과 음극(120); 상기 양극(110)과 음극(120) 사이에 위치하는 분리막(130); 및 전해질(미도시)을 포함한다.
보다 구체적으로, 먼저, 상기 양극(110)은 양극집전체(111) 및 상기 양극집전체(111) 상에 위치하며, 양극활물질과 선택적으로 도전재 및 바인더를 포함하는 양극활물질층(112)을 포함할 수 있다.
이때, 상기 양극집전체(111)는 본 기술분야에서 집전체로 사용될 수 있는 것이라면 모두 가능하고, 구체적으로 우수한 도전성을 갖는 발포 알루미늄, 발포 니켈 등을 사용할 수 있다.
상기 양극활물질은 황 원소(elemental sulfur, S8), 황 계열 화합물 또는 이들의 혼합물을 포함할 수 있다.
상기 황 계열 화합물은 구체적으로, Li2Sn(n≥1), 유기황 화합물 또는 탄소-황 폴리머((C2Sx)n: x=2.5∼50, n≥2) 등일 수 있다.
또한, 상기 도전재는 도전성을 갖는 물질이라면 제한 없이 사용할 수 있으며, 예를 들어 상기 도전성 재료로는 금속 섬유, 금속 메쉬 등의 금속성 도전성 재료; 구리, 은, 니켈, 알루미늄 등의 금속성 분말; 또는 폴리페닐렌 유도체 등의 유기 도전성 재료도 사용할 수 있다.
또한, 상기 도전재는 다공성을 갖는 탄소계 물질을 사용할 수 있으며, 이와 같은 탄소계 물질로는 카본 블랙, 그래파이트, 그라펜, 활성탄, 탄소섬유 등을 사용할 수 있다.
이때, 상기 도전성 재료들은 단독 또는 혼합하여 사용될 수 있으며, 상기 도전재는 양극활물질층 총 중량에 대하여 5 내지 20 중량%로 포함되는 것이 바람직하다.
상기 도전재의 함량이 5 중량% 미만이면 도전재 사용에 다른 도전성 향상효과가 미미하고, 반면 20 중량%를 초과하면 양극활물질의 함량이 상대적으로 적어 용량 특성이 저하될 우려가 있다.
또한, 상기 바인더는 열가소성 수지 또는 열경화성 수지를 포함할 수 있다. 예를 들어, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로 에틸렌(PTFE), 폴리불화비닐리덴(PVDF), 스티렌-부타디엔 고무, 테트라플루오로에틸렌-퍼플루오로알킬비닐에테르 공중합체, 불화비닐리덴-헥사 플루오로프로필렌 공중합체, 불화비닐리덴-클로로트리플루오로에틸렌 공중합체, 에틸렌-테트라플루오로에틸렌 공중합체, 폴리클로로트리플루오로에틸렌, 불화비니리덴-펜타프루오로 프로필렌 공중하체, 프로필렌-테트라플루오로에틸렌 공중합체, 에틸렌-클로로트리플루오로에틸렌 공중합체, 불화비닐리덴-헥사플루오로프로필렌-테트라 플루오로에틸렌 공중합체, 불화비닐리덴-퍼플루오로메틸비닐에테르-테트라플루오로 에틸렌 공중합체, 에틸렌-아크릴산 공중합제 등을 단독 또는 혼합하여 사용할 수 있으나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 바인더로 사용될 수 있는 것이라면 모두 가능하다.
이때, 상기와 같은 양극(110)은 통상의 방법에 따라 제조될 수 있으며, 구체적으로는 양극활물질과 도전재 및 바인더를 유기 용매 상에서 혼합하여 제조한 양극 활물질층 형성용 조성물을, 집전체 위에 도포 및 건조하고, 선택적으로 전극밀도의 향상을 위하여 집전체에 압축성형하여 제조할 수 있다.
이때 상기 유기용매로는 양극활물질, 바인더 및 도전재를 균일하게 분산시킬 수 있고, 쉽게 증발되는 것을 사용하는 것이 바람직하다.
구체적으로, 상기 유기용매는 아세토니트릴, 메탄올, 에탄올, 테트라하이드로퓨란, 물, 이소프로필알코올 등을 들 수 있다.
다음으로, 상기 음극(120)은 음극집전체(121) 및 상기 음극집전체(121) 상에 위치하며, 음극활물질과 선택적으로 도전재 및 바인더를 포함하는 음극활물질층(122)을 포함할 수 있다.
이때, 상기 음극집전체(121)는 본 기술분야에서 집전체로 사용될 수 있는 것이라면 모두 가능하고, 구체적으로 구리, 스테인리스스틸, 티타늄, 은, 팔라듐, 니켈, 이들의 합금 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있다.
또한, 상기 음극활물질로서 리튬 이온을 가역적으로 인터칼레이션 또는 디인터칼레이션할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 및 리튬 합금으로 이루어진 군에서 선택되는 것을 포함할 수 있다.
상기 리튬이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질로는 탄소 물질로서, 리튬 황 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 구체적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다.
또한, 상기 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질의 대표적인 예로는 산화 주석(SnO2), 티타늄 나이트레이트, 실리콘(Si) 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기 리튬 금속의 합금은 구체적으로 리튬과 Si, Ge, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, 또는 Cd의 금속과의 합금일 수 있다.
이때, 상기 음극(120)은 상기한 음극활물질과 함께 선택적으로 바인더를 더 포함할 수 있다.
상기 바인더는 음극활물질의 페이스트화, 활물질간 상호 접착, 활물질과 집전체와의 접착, 활물질 팽창 및 수축에 대한 완충 효과 등의 역할을 할 수 있으며, 이러한 바인더의 종류는 상술한 앙극에서의 바인더와 동일할 수 있으므로, 이하 구체적인 설명은 생략하기로 한다.
한편, 상기 음극(120)은 리튬 또는 리튬합금일 수 있다. 비제한적인 예로, 상기 리튬 합금은 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al 및/또는 Sn 등의 금속과의 합금일 수 있다.
또한, 상기 음극(120)은 리튬금속의 박막일 수도 있다.
통상 리튬 황 전지를 충방전하는 과정에서, 양극활물질로 사용되는 황이 비활성 물질로 변환되어 리튬 또는 리튬합금의 음극(120)표면에 부착될 수 있다.
이와 같은 비활성 황(inactive sulfur)은 황이 여러 가지 전기화학적 또는 화학적 반응을 거쳐 양극의 전기화학 반응에 더 이상 참여할 수 없는 상태의 황이다.
그러나, 리튬 음극 표면에 형성된 비활성 황은 리튬 음극의 보호막(protective layer)으로서의 역할을 할 수도 있으며, 그 결과, 리튬 금속과 상기 리튬 금속 위에 형성된 비활성 황, 예를 들어 리튬 설파이드를 음극으로 사용할 수도 있다.
계속해서, 도 1을 참조하면, 상술한 바와 같이, 본 발명에 따른 리튬설퍼전지(100)는 상기 양극(110)과 음극(120) 사이에 위치하는 분리막(130)을 포함한다.
상기 분리막(130)은 상기 양극(110)과 상기 음극(120)을 물리적으로 분리하는 기능을 하는 것으로, 베이스 기재층(132) 및 상기 베이스 기재층(132)에 코팅되는 촉매층(131)을 포함한다.
상기 베이스 기재층(132)은 통상의 리튬설퍼전지에서 일반적으로 사용되는 분리막에 해당하는 것으로, 상기 베이스 기재층(132)은 다공성 고분자 필름일 수 있으며, 예를 들어, 상기 베이스 기재층(132)은 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는, 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 촉매층(131)은, Pt, Ir, Ru, Ni, Mn, Co, Fe, Ti, Re, Nb, V, S, W, Zr, Ta 및 Mo 금속 및 상기 금속의 산화물, 질화물, 탄화물, 인화물, 황화물로 이루어지는 군에서 선택되는 적어도 어느 하나의 촉매로 이루어질 수 있으며, 다만, 본 발명에서 상기 촉매층(131)의 재질을 제한하는 것은 아니다.
이때, 본 발명에 따른 촉매층의 양은 단위면적당 2 내지 4 mg/㎠인 것이 바람직하다. 이에 대해서는 후술하기로 한다.
상술한 바와 같이, 종래의 리튬설퍼전지의 경우, 용해성 폴리설파이드가 전해질에 용해되어 양극과 음극을 왕복하게 되면서, 이 과정에서 생성되는 불용성 Li2S와 Li2S2 등이 음극 표면과 그 외의 분리막 계면에 축적되어, 전지의 성능 저하, 즉, 전지의 용량 및 사이클 특성의 저하가 발생하는 셔틀 메커니즘 문제가 발생한다.
따라서, 종래에는 이를 해결하기 위한 방안으로, 전해질을 개선하여 황의 용출을 막아주는 방법이 개발되고 있으나, 그 진전은 미미한 상태이다.
하지만, 본 발명에서는, 통상의 리튬설퍼전지에서 일반적으로 사용되는 분리막에 해당하는 상기 베이스 기재층(132)의 상부에 촉매층(131)을 코팅함으로써, 리튬설퍼전지에서의 셔틀현상을 억제하여, 전지의 용량 및 사이클 특성을 개선할 수 있다.
한편, 본 발명에 따른 분리막은 다음과 같은 형태로도 변형될 수 있다.
도 2a는 본 발명에 따른 분리막의 예시적인 형태를 도시하는 개략적인 그래프이다. 이때, 도 2a에서는 Coin Cell의 기본 조립구조에서의 분리막의 예시적인 형태를 도시하고 있으며, 다만, 본 발명에서 상기 Coin Cell의 기본 조립구조를 제한하는 것은 아니다.
도 2a를 참조하면, 본 발명에 따른 분리막은, 상술한 도 1에서와 같은 베이스 기재층의 상부에 코팅된 촉매층을 포함하는 분리막의 형태에 해당할 수 있다.
이때, 베이스 기재층의 상부에 코팅된 촉매층을 포함하는 분리막의 형태의 경우, 본 발명에 따른 촉매층의 양은 단위면적당 2 내지 4 mg/㎠인 것이 바람직하다.
표 1은 단위면적당 촉매 로딩량을 도시한 표이다.
구분 Sample A Sample B Sample C Sample D Sample E
촉매로딩량 0mg/㎠ 2.2mg/㎠ 3.1mg/㎠ 5.8mg/㎠ 7.2mg/㎠
도 2b는 단위면적당 촉매 로딩량에 따른 용량특성을 도시한 그래프이다.
도 2b를 참조하면, 단위면적당 촉매 로딩량이 2.2 mg/㎠인 Sample B와 3.1 mg/㎠인 Sample C의 경우, 단위면적당 촉매 로딩량이 0 mg/㎠인 Sample A와 비교하여, 용량특성이 향상된 것을 확인할 수 있다.
하지만, 단위면적당 촉매 로딩량이 5.8 mg/㎠인 Sample D와 7.2 mg/㎠인 Sample E의 경우, 단위면적당 촉매 로딩량이 0 mg/㎠인 Sample A와 비교하여, 오히려 용량특성이 좋지 않음을 확인할 수 있다.
따라서, 본 발명에서는 촉매층의 양은 단위면적당 2 내지 4 mg/㎠인 것이 바람직하다.
또한, 이와는 달리, 도 2a를 참조하면, 본 발명에 따른 분리막은, 베이스 기재층의 상부에 촉매물질과 카본물질을 혼합한 혼합층이 코팅된 분리막의 형태에 해당할 수 있다.
상기 카본물질은 카본블랙, 탄소나노튜브, 그래핀, 그라파이트, 비정질 카본, 나노그라파이트 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나 일 수 있고, 구체적인 상품으로는 슈퍼 P(super P), 덴카 블랙(denka black) 또는 케첸 블랙(ketjen black) 등을 일 수 있으며, 다만, 본 발명에서 상기 카본물질의 재질을 제한하는 것은 아니다.
이때, 상기 촉매물질과 상기 카본물질이 혼합된 혼합층을 통해 전도성을 향상시킬 수 있으며, 상기 촉매물질과 상기 카본물질의 혼합 양 100% 대비 촉매물질의 비율은 10 내지 30% 인 것이 바람직하다.
표 2는 상기 촉매물질과 상기 카본물질의 혼합 양 100% 대비 촉매물질의 비율을 도시한 표이다. 단, 하기 표 2에서는 바인더의 함량을 제외한, 촉매물질과 상기 카본물질의 혼합 양을 100%로 기준하였다.
구분 Sample A Sample B Sample C Sample D Sample E
촉매(%) 0 8 20 40 80
카본(%) 80 72 60 40 0
바인더(%) 20 20 20 20 20
(촉매+카본)
대비
촉매비율(%)
0 10 25 50 100
도 2c는 촉매물질과 카본물질의 혼합 양 100% 대비 촉매물질의 비율에 따른 용량특성을 도시한 그래프이다.
도 2c를 참조하면, 촉매비율이 10%인 Sample B와 촉매비율이 25%인 Sample C의 경우, 촉매비율이 0%인 Sample A와 비교하여, 용량특성이 향상된 것을 확인할 수 있다.
하지만, 촉매비율이 50%인 Sample D와 촉매비율이 100%인 Sample E의 경우, 촉매비율이 0%인 Sample A와 비교하여, 오히려 용량특성이 좋지 않음을 확인할 수 있다.
따라서, 베이스 기재층의 상부에 촉매물질과 카본물질을 혼합한 혼합층이 코팅된 분리막의 형태에 있어서는, 상기 촉매물질과 상기 카본물질의 혼합 양 100% 대비 촉매물질의 비율은 10 내지 30% 인 것이 바람직하다.
또한, 이와는 달리, 도 2a를 참조하면, 본 발명에 따른 분리막은, 제1베이스 기재층의 상부에 촉매층이 코팅된 제1분리막과 제2베이스 기재층의 상부에 카본층이 코팅된 제2분리막의 적층 형태에 해당할 수 있다.
상기 카본층의 재질은 카본블랙, 탄소나노튜브, 그래핀, 그라파이트, 비정질 카본, 나노그라파이트 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나 일 수 있고, 구체적인 상품으로는 슈퍼 P(super P), 덴카 블랙(denka black) 또는 케첸 블랙(ketjen black) 등을 일 수 있으며, 다만, 본 발명에서 상기 카본층의 재질을 제한하는 것은 아니다.
이때, 본 발명에서 상기 카본층은 후막(厚膜)으로, 70㎛ 내지 120㎛인 것이 바람직하고, 더욱 바람직하게는, 상기 카본층은 75㎛ 내지 110㎛인 것이 바람직하다.
상기 카본층의 두께가 70㎛ 미만인 경우는 전지의 용량을 개선하는 효과가 없고, 또한, 상기 카본층의 두께가 120㎛를 초과하는 경우에는 오히려 전지의 용량이 감소하는 경향이 나타나므로, 따라서, 본 발명에서 상기 카본층은 70㎛ 내지 120㎛인 것이 바람직하다. 이에 대해서는 후술하기로 한다.
한편, 상기 카본층은 다공성의 코팅층에 해당한다.
이때, 본 발명에서 상기 카본층의 하기 수학식 (1)에 따른 전해질 흡수율(%)은 40 내지 70%인 것이 바람직하다.
Figure 112017076410639-pat00001
..... 수학식 (1)
(단, 상기 수학식 (1)에서 W1은 코팅층의 초기 질량이고, W2는 상기 코팅층에 전해질이 함침된 후의 질량임.)
상기 전해질 흡수율(%)은 상기 카본층의 다공성 특성에 기인하는 것으로, 상기 전해질 흡수율(%)이 40% 미만인 경우, 상기 카본층 내의 기공량이 너무 작아 오히려 물질전달이 방해되므로 전지 성능이 감소하며, 또한, 상기 전해질 흡수율(%)이 70%를 초과하는 경우, 상기 카본층이 후술하는 폴리설파이드를 붙잡는 역할을 원활히 할 수 없으므로, 상기 카본층의 전해질 흡수율(%)은 40 내지 70%인 것이 바람직하다.
이러한 전해질 흡수율에 대해서는 후술하기로 한다.
상기 카본층의 경우, 물리적으로 상술한 폴리설파이드를 붙잡을 뿐만 아니라, 전자의 이동을 용이하게 한다.
또한, 상기 카본층의 경우, 다공성의 특성을 지니게 되는데, 상기 다공성의 카본층에 리튬이 플레이팅 되면서 리튬 음극의 비표면적인 넓어져 전자의 균일한 분포를 유도함으로써 리튬 금속의 덴드라이트 성장을 억제하고, 안정적인 전기화학 반응을 유도할 수 있다.
계속해서, 도 1을 참조하면, 본 발명에 따른 리튬설퍼전지의 상기 전해질(미도시)은 유기 용매 상에 분산된 리튬염을 포함하는 것으로서, 상기 양극(110), 상기 음극(120) 및 상기 분리막(130)에 함침된 상태로 리튬설퍼전지에 포함된다.
상기 리튬염은 리튬 전지에 통상적으로 적용 가능한 것이 특별한 제한 없이 사용될 수 있다.
구체적으로, 상기 리튬염은 LiSCN, LiBr, LiI, LiNO3, LiPF6, LiBF4, LiSbF6, LiAsF6, LiCH3SO3, LiCF3SO3, LiClO4, Li(Ph)4, LiC(CF3SO2)3, Li[N(SO2CF3)2], LiN(CF3SO2)2, LiN(C2F5SO2)2 및 LiN(CF3CF2SO2)2로 이루어진 군에서 선택된 1종 이상의 화합물일 수 있다.
또한, 상기 리튬염의 농도는 이온 전도도 등을 고려하여 결정될 수 있으며, 바람직하게는 0.2 내지 4.0M, 또는 0.5 내지 1.6M 일 수 있다.
상기 유기 용매로는 단일 용매 또는 2 이상의 혼합 용매가 사용될 수 있다. 상기 유기 용매로 혼합 용매를 사용하는 경우, 약한 극성 용매 그룹, 강한 극성 용매 그룹, 및 리튬 보호 용매 그룹 중 두 개 이상의 그룹에서 각각 하나 이상의 용매를 선택하여 사용하는 것이 전지의 성능 발현에 유리할 수 있다.
이때, 상기 약한 극성 용매는 아릴 화합물, 바이사이클릭 에테르, 및 비환형 카보네이트 중에서 유전 상수가 15 보다 작은 용매이고; 상기 강한 극성 용매는 비환형 카보네이트, 설폭사이드, 락톤, 케톤, 에스테르, 설페이트, 설파이드 중에서 유전 상수가 15 보다 큰 용매이고; 상기 리튬 보호 용매는 포화 에스테르, 불포화 에스테르, 헤테로 고리 화합물 등과 같이 리튬 금속에 안정하고 solid electrolyte interface를 형성하는 용매를 의미한다.
구체적으로, 상기 약한 극성 용매로는 자일렌, 디메톡시에탄, 2-메틸테트라하이드로퓨란, 디메틸 카보네이트, 디에틸 카보네이트, 톨루엔, 디메틸 에테르, 디에틸 에테르, 디글라임, 테트라글라임 등을 예로 들 수 있다.
또한, 상기 강한 극성 용매로는 헥사메틸 포스포릭 트리아마이드, 감마-부티로락톤, 아세토니트릴, 에틸렌 카보네이트, 프로필렌 카보네이트, N-메틸피롤리돈, 3-메틸-2-옥사졸리돈, 디메틸 포름아마이드, 설포란, 디메틸 아세트아마이드, 디메틸 설폭사이드, 디메틸 설페이트, 에틸렌 글리콜 디아세테이트, 디메틸 설파이트, 에틸렌 글리콜 설파이트 등을 예로 들 수 있다.
또한, 상기 리튬 보호 용매로는 테트라하이드로 퓨란, 에틸렌옥사이드, 디옥솔란, 3,5-디메틸 이속사졸, 퓨란, 2-메틸 푸란, 1,4-옥산, 4-메틸디옥솔란 등을 예로 들 수 있다.
상기 전해질은 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 요량 향상 등을 목적으로 일반적으로 전해질에 사용될 수 있는 첨가제(이하, '기타 첨가제'라 함)를 더 포함할 수 있다.
이하에서는 본 발명의 구체적인 실험예를 제시한다. 다만, 하기에 기재된 실험예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 따라서, 본 발명은 하기 실험예에 제한되는 것은 아니다.
[실시예 1]
원소 황(S):도전재(탄소):바인더를 75:20:5의 중량비로 혼합한 후 1 시간 동안 볼밀링을 하여 양극 활물질 슬러리를 제조 하였다.
상기 바인더로는 PVdF 및 NMP를 사용하였으며, 상기 바인더 내 PVdF의 함량은 전체 바인더를 100중량%로 하였을 때 5중량%였다.
상기 제조된 양극 슬러리를 알루미늄 박막(Al foil)에 코팅한 후, 오븐에서 80℃로 건조하여 양극을 제조하였다.
음극은 산화되지 않은 리튬 금속 호일을 사용하였고, 상기 제조된 양극과, 상대 전극인 리튬 금속 호일의 사이에 분리막을 위치시켜, 코인셀(Coin cell) 평가용 전지로 제조하였다.
상기 분리막은, 폴리에틸렌으로 이루어지는 베이스 기재층의 상부에 Pt의 촉매층을 코팅하여 제조하였다.
[실시예 2]
상기 분리막으로, 폴리에틸렌으로 이루어지는 베이스 기재층의 상부에 Pt의 촉매물질과 acetylene black (Denka black, Denki Kagaku Kogyo)의 카본물질을 혼합한 혼합층을 코팅하여 제조한 것을 제외하고는 실시예 1과 동일하게 실시하였다.
[실시예 3]
상기 분리막으로, 폴리에틸렌으로 이루어지는 제1베이스 기재층의 상부에 Pt의 촉매층을 코팅한 제1분리막과 폴리에틸렌으로 이루어지는 제2베이스 기재층의 상부에 acetylene black (Denka black, Denki Kagaku Kogyo)의 카본층을 코팅한 제2분리막의 적층 구조로 제조한 것을 제외하고는 실시예 1과 동일하게 실시하였다.
[비교예]
상기 분리막으로, 폴리에틸렌으로 이루어지는 베이스 기재층을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였다.
도 3은 실시예 1 내지 3, 비교예에 따라 제조된 전지 성능을 비교한 그래프이다.
구체적으로 도 3(a)는 촉매물질을 코팅한 분리막과 일반적인 리튬유황전지를 비교한 그래프이고(실시예 1과 비교예의 비교), 도 3(b)는 촉매물질과 카본을 일정 비율로 혼합한 뒤, 이를 코팅한 분리막과 일반적인 리튬유황전지를 비교한 그래프이고(실시예 2와 비교예의 비교), 도 3(c)는 카본이 코팅된 분리막과 촉매물질이 코팅된 분리막을 각각 제작한 뒤 이를 적층한 것을 일반적인 리튬유황전지를 비교한 그래프이다(실시예 3과 비교예의 비교).
도 3의 사이클 특성을 도시하는 그래프를 참조하면, 실시예 1 내지 실시예 3의 경우, 비교예와 비교하여, 전지성능이 더 뛰어난 것을 확인할 수 있다.
특히 실시예 3의 경우, 비교예와 비교하여, Discharge Capacity가 월등히 향상하는 것을 확인할 수 있다.
따라서, 본 발명에서는, 베이스 기재층에 촉매층을 코팅함으로써, 리튬설퍼전지의 사이클 특성을 개선시킬 수 있으며, 특히, 본 발명에서는, 베이스 기재층에 카본물질을 포함하거나, 또는 촉매층과 함께 카본층을 코팅함으로써, 리튬설퍼전지의 사이클 특성을 개선시킬 수 있다.
이하에서는 본 발명에 따른 분리막의 카본층의 코팅 두께에 따른 전지 특성을 설명하기로 한다.
즉, 상술한 바와 같이, 베이스 기재층에 촉매층만을 코팅한 경우(실시예 1)보다, 촉매층에 카본물질을 포함하는 경우(실시예 2)의 전지성능이 더 우수하고, 또한, 촉매층과 함께 카본층을 코팅한 경우(실시예 3)의 전지성능이 더욱더 우수하므로, 이하에서는 분리막의 카본층의 코팅 두께에 따른 전지 특성을 확인하고자 한다.
[추가 실험예]
원소 황(S):도전재(탄소):바인더를 75:20:5의 중량비로 혼합한 후 1 시간 동안 볼밀링을 하여 양극 활물질 슬러리를 제조 하였다.
상기 바인더로는 PVdF 및 NMP를 사용하였으며, 상기 바인더 내 PVdF의 함량은 전체 바인더를 100중량%로 하였을 때 5중량%였다.
상기 제조된 양극 슬러리를 알루미늄 박막(Al foil)에 코팅한 후, 오븐에서 80℃로 건조하여 양극을 제조하였다.
음극은 산화되지 않은 리튬 금속 호일을 사용하였고, 상기 제조된 양극과, 상대 전극인 리튬 금속 호일의 사이에 분리막을 위치시켜, 코인셀(Coin cell) 평가용 전지로 제조하였다.
상기 분리막은 폴리에틸렌으로 이루어지는 베이스 기재층의 상부에 acetylene black (Denka black, Denki Kagaku Kogyo)의 카본층을 코팅하여 제조하였다.
이때, 상기 카본층의 두께를 각각 75㎛, 90㎛, 110㎛, 35㎛, 55㎛, 138㎛로 변화시키면서 전지의 용량특성을 측정하였다.
도 4는 카본층의 두께변화에 따른 전지를 용량 특성을 도시하는 그래프이다.
도 4를 참조하면, 카본층의 두께가 각각 75㎛, 90㎛, 110㎛인 경우, 카본층의 두께가 각각 35㎛, 55㎛에 비하여, 전지의 용량특성이 매우 크게 향상하였음을 확인할 수 있다.
한편, 카본층의 두께가 138㎛에 해당하는 경우, 전지의 용량특성은 카본층의 두께가 각각 75㎛, 90㎛, 110㎛인 경우보다 저하됨을 확인할 수 있다.
따라서, 본 발명에서 상기 카본층은 후막(厚膜)으로, 70㎛ 내지 120㎛인 것이 바람직하고, 더욱 바람직하게는, 상기 카본층은 75㎛ 내지 110㎛인 것이 바람직하다.
즉, 상기 카본층의 두께가 70㎛ 미만인 경우는 전지의 용량을 개선하는 효과가 없고, 또한, 상기 카본층의 두께가 120㎛를 초과하는 경우에는 오히려 전지의 용량이 감소하는 경향이 나타나므로, 따라서, 본 발명에서 상기 카본층)은 70㎛ 내지 120㎛인 것이 바람직하다.
이하에서는 본 발명에 따른 카본층의 전해질 흡수율에 대해 설명하기로 한다.
상술한 바와 같이, 본 발명의 상기 카본층은 다공성의 코팅층에 해당하며, 이때, 상기 카본층의 하기 수학식 (1)에 따른 전해질 흡수율(%)은 40 내지 70%인 것이 바람직하다.
Figure 112017076410639-pat00002
..... 수학식 (1)
(단, 상기 수학식 (1)에서 W1은 코팅층의 초기 질량이고, W2는 상기 코팅층에 전해질이 함침된 후의 질량임.)
본 출원인은 하기의 실험을 통하여, 본 발명에 따른 탄소층의 전해질 흡수율에 따른 전지 성능의 특성을 비교하였다.
먼저, 본 출원인은 비표면적 큰 acetylene black(Denka black, Denki Kagaku Kogyo)과 비표면적이 작은 meso carbon micro beads(MCMB, Osaka Gas)를 각각 sheet로 만들어 실험하였다.
상기 Denka black과 MCMB의 탄소의 구조를 보기 위해 전자주사현미경(SEM)으로 관찰하였고, 각각의 carbon sheet의 전해질 흡수율을 보기 위하여 전해질흡수 실험을 하였다.
도 5는 비표면적이 다른 각각의 탄소의 구조를 비교하기 위한 전자주사현미경(SEM) 이미지이다. 이때, 도 5에서 (a)는 Denka black powder를, (b)는 MCMB powder를, (c)는 Denka black sheet를, (d) MCMB sheet를 각각 도시하고 있다.
도 5를 참조하면, Denka black powder는 약 0.1㎛의 일정한 입자크기를 가지고 있는 반면에, MCMB powder는 0.5 내지 1㎛의 입자크기를 가지고 있어, denka black보다 입자크기가 더 큼을 확인할 수 있다.
이때, 이를 파우더를 각각 sheet로 제작한 경우, Denka black sheet는 입자가 약 0.1㎛ 이하의 크기이며, 원래의 입자크기와 형태를 유지하면서 일부분은 서로 뭉쳐있는 형상을 하고 있다.
또한, MCMB sheet는 입자들이 뭉개져 있어서 Original powder에 비해 입자크기와 형태가 많이 다른 것을 보여준다.
즉, MCMB sheet는 전체적으로 서로 뭉쳐있는 형태로 Denka black과 같은 양의 바인더를 사용했음에도 불구하고, 기공이 보이지 않고 막혀있는 상태임을 확인할 수 있다.
MCMB 탄소는 Denka black 탄소 보다 입자크기가 크기 때문에 구형의 큰 MCMB 탄소 입자들이 서로 뭉쳐서 기공이 보이지 않는 것으로 생각된다.
상술한 SEM의 표면형상결과로부터, 각 sheet들은 기공에 많은 차이가 있을 것으로 보여지며, 기공률이 다르면 전해질 흡수율이 달라질 수 있기 때문에 이러한 탄소 sheet들이 전해질을 얼마나 흡수하는지 알아보기 위하여, 각 sheet들의 전해질 흡수율을 측정하였다.
상기 전해질 흡수율 측정은 각 탄소시트들을 전해질 내에 일정 시간 함침한 뒤 꺼내어 무게를 재는 방식을 통해 측정하였으며, 상술한 수학식 (1)에 의해 계산하였다.
실험결과, Denka black sheet의 초기 무게는 0.0198g, MCMB sheet의 초기 무게는 0.0464g으로 측정되었으며, 각 탄소시트들을 전해질에 함침한 후 꺼내어 무게를 살펴본 결과, Denka black sheet의 무게는 0.0428g, MCMB sheet의 무게는 0.0482g으로 나타났다.
상기 수학식 (1)에 의한 계산 결과 Denka black-sheet는 흡수율이 약 53.73%이고, MCMB-sheet는 약 3.73%에 해당하였다.
이 결과로부터 Denka black sheet는 MCMB sheet보다 전해질 흡수율이 약 14배정도 뛰어난 것을 확인할 수 있으며, 비표면적이 크고 기공이 없는 형태로 보이는 MCMB sheet는 전해질을 잘 흡수하지 못하는 것을 보여준다.
도 6a 내지 도 6c는 실험예에 따른 리튬설퍼전지의 사이클 동안의 충방전 곡선의 변화를 도시한 그래프이다.
즉, 각 탄소 sheet들의 특성을 알아보기 위하여, 각 탄소 sheet들이 리튬설퍼전지에 적용되었을 때 어떠한 영향을 미치는지 셀을 만들어 전기화학평가를 시행하였다.
이때, 도 6a는 분리막에 탄소 sheet를 포함하지 않는 경우를 도시하고 있으며, 도 6b는 분리막에 Denka black sheet를 포함한 경우를 도시하고 있고, 도 6c는 분리막에 MCMB sheet를 포함한 경우를 도시하고 있다.
먼저, 도 6a를 참조하면, 분리막에 탄소 sheet를 포함하지 않는 경우는, 초기 용량이 이론 용량의 59%인 1002mAh/g의 방전 용량을 보였고, 50사이클에서는 초기방전용량의 54%인 547mAh/g의 용량을 나타내고 있다.
이에 반하여, 도 6b를 참조하면, 분리막에 Denka black sheet를 포함한 경우는, 초기용량이 이론용량의 89%인 1491mAh/g, 50사이클에서는 초기방전용량의 71%인 1062mAh/g의 용량을 나타내고 있다.
한편, 도 6c를 참조하면, 분리막에 MCMB sheet를 포함한 경우는, 초기용량이 이론용량의 6.3%인 106mAh/g, 50사이클에서는 초기방전용량보다 증가한 239mAh/g의 방전용량을 나타내고 있다.
도 6b와 도 6c의 결과를 바탕으로 판단시, MCMB sheet는 전해질 흡수율이 Denka black sheet보다 매우 낮기 때문에, 결국, 전해질 흡수율이 낮은 MCMB sheet의 경우, 리튬이온의 이동을 방해하여 유황과의 반응에 악영향을 준 것으로 판단된다.
결국, 상기 전해질 흡수율(%)은 상기 카본층의 다공성 특성에 기인하는 것으로, 본 발명에서는 상기 전해질 흡수율(%)이 40% 미만인 경우, 상기 카본층 내의 기공량이 너무 작아 오히려 물질전달이 방해되므로 전지 성능이 감소하며, 또한, 상기 전해질 흡수율(%)이 70%를 초과하는 경우, 상기 카본층이 폴리설파이드를 붙잡는 역할을 원활히 할 수 없으므로, 상기 카본층의 전해질 흡수율(%)은 40 내지 70%인 것이 바람직하다.
이상과 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (14)

  1. 리튬설퍼전지용 분리막에 있어서,
    상기 분리막은, 베이스 기재층 및 상기 베이스 기재층에 코팅되는 촉매층을 포함하고,
    상기 촉매층은 Pt, Ir, Ru, Ni, Mn, Co, Fe, Ti, Re, Nb, V, S, W, Zr, Ta 및 Mo 금속 및 상기 금속의 산화물, 질화물, 탄화물, 인화물, 황화물로 이루어지는 군에서 선택되는 적어도 어느 하나의 촉매로 이루어지며,
    상기 촉매층은 리튬설퍼전지에서 셔틀현상을 억제하는 리튬설퍼전지용 분리막.
  2. 제 1 항에 있어서,
    상기 촉매층의 양은 단위면적당 2 내지 4 mg/㎠인 것을 특징으로 하는 리튬설퍼전지용 분리막.
  3. 리튬설퍼전지용 분리막에 있어서,
    상기 분리막은, 베이스 기재층 및 상기 베이스 기재층에 코팅되는 촉매물질과 카본물질의 혼합층을 포함하고,
    상기 촉매물질은 Pt, Ir, Ru, Ni, Mn, Co, Fe, Ti, Re, Nb, V, S, W, Zr, Ta 및 Mo 금속 및 상기 금속의 산화물, 질화물, 탄화물, 인화물, 황화물로 이루어지는 군에서 선택되는 적어도 어느 하나의 촉매로 이루어지며,
    상기 촉매물질은 리튬설퍼전지에서 셔틀현상을 억제하는 리튬설퍼전지용 분리막.
  4. 제 3 항에 있어서,
    상기 촉매물질과 상기 카본물질의 혼합 양 100% 대비 촉매물질의 비율은 10 내지 30% 인 것을 특징으로 하는 리튬설퍼전지용 분리막.
  5. 리튬설퍼전지용 분리막에 있어서,
    상기 분리막은, 제1베이스 기재층의 상부에 촉매층이 코팅된 제1분리막과 제2베이스 기재층의 상부에 카본층이 코팅된 제2분리막의 적층 형태인 것을 특징으로 하고,
    상기 촉매층은 Pt, Ir, Ru, Ni, Mn, Co, Fe, Ti, Re, Nb, V, S, W, Zr, Ta 및 Mo 금속 및 상기 금속의 산화물, 질화물, 탄화물, 인화물, 황화물로 이루어지는 군에서 선택되는 적어도 어느 하나의 촉매로 이루어지며,
    상기 촉매층은 리튬설퍼전지에서 셔틀현상을 억제하는 리튬설퍼전지용 분리막.
  6. 제 5 항에 있어서,
    상기 카본층의 두께는 70㎛ 내지 120㎛인 것을 특징으로 하는 리튬설퍼전지용 분리막.
  7. 제 5 항에 있어서,
    상기 카본층의 하기 수학식 (1)에 따른 전해질 흡수율(%)은 40 내지 70%인 것을 특징으로 하는 리튬설퍼전지용 분리막.
    Figure 112017076410639-pat00003
    ..... 수학식 (1)
    (단, 상기 수학식 (1)에서 W1은 코팅층의 초기 질량이고, W2는 상기 코팅층에 전해질이 함침된 후의 질량임.)
  8. 서로 대향 배치되는 양극과 음극;
    상기 양극과 상기 음극 사이에 위치하는 분리막; 및
    전해질을 포함하며,
    상기 분리막은, 베이스 기재층 및 상기 베이스 기재층에 코팅되는 촉매층을 포함하고,
    상기 촉매층은 Pt, Ir, Ru, Ni, Mn, Co, Fe, Ti, Re, Nb, V, S, W, Zr, Ta 및 Mo 금속 및 상기 금속의 산화물, 질화물, 탄화물, 인화물, 황화물로 이루어지는 군에서 선택되는 적어도 어느 하나의 촉매로 이루어지며,
    상기 촉매층은 리튬설퍼전지에서 셔틀현상을 억제하는 리튬설퍼전지.
  9. 제 8 항에 있어서,
    상기 촉매층의 양은 단위면적당 2 내지 4 mg/㎠인 것을 특징으로 하는 리튬설퍼전지.
  10. 서로 대향 배치되는 양극과 음극;
    상기 양극과 상기 음극 사이에 위치하는 분리막; 및
    전해질을 포함하며,
    상기 분리막은, 베이스 기재층 및 상기 베이스 기재층에 코팅되는 촉매물질과 카본물질의 혼합층을 포함하고,
    상기 촉매물질은 Pt, Ir, Ru, Ni, Mn, Co, Fe, Ti, Re, Nb, V, S, W, Zr, Ta 및 Mo 금속 및 상기 금속의 산화물, 질화물, 탄화물, 인화물, 황화물로 이루어지는 군에서 선택되는 적어도 어느 하나의 촉매로 이루어지며,
    상기 촉매물질은 리튬설퍼전지에서 셔틀현상을 억제하는 리튬설퍼전지.
  11. 제 10 항에 있어서,
    상기 촉매물질과 상기 카본물질의 혼합 양 100% 대비 촉매물질의 비율은 10 내지 30% 인 것을 특징으로 하는 리튬설퍼전지.
  12. 서로 대향 배치되는 양극과 음극;
    상기 양극과 상기 음극 사이에 위치하는 분리막; 및
    전해질을 포함하며,
    상기 분리막은, 제1베이스 기재층의 상부에 촉매층이 코팅된 제1분리막과 제2베이스 기재층의 상부에 카본층이 코팅된 제2분리막의 적층 형태인 것을 특징으로 하고,
    상기 촉매층은 Pt, Ir, Ru, Ni, Mn, Co, Fe, Ti, Re, Nb, V, S, W, Zr, Ta 및 Mo 금속 및 상기 금속의 산화물, 질화물, 탄화물, 인화물, 황화물로 이루어지는 군에서 선택되는 적어도 어느 하나의 촉매로 이루어지며,
    상기 촉매층은 리튬설퍼전지에서 셔틀현상을 억제하는 리튬설퍼전지.
  13. 제 12 항에 있어서,
    상기 카본층의 두께는 70㎛ 내지 120㎛인 것을 특징으로 하는 리튬설퍼전지.
  14. 제 12 항에 있어서,
    상기 카본층의 하기 수학식 (1)에 따른 전해질 흡수율(%)은 40 내지 70%인 것을 특징으로 하는 리튬설퍼전지.
    Figure 112017076410639-pat00004
    ..... 수학식 (1)
    (단, 상기 수학식 (1)에서 W1은 코팅층의 초기 질량이고, W2는 상기 코팅층에 전해질이 함침된 후의 질량임.)
KR1020170100382A 2016-08-17 2017-08-08 촉매층이 코팅된 리튬설퍼전지용 다층구조 분리막 및 이를 이용한 리튬설퍼전지 KR102011253B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/008938 WO2018034501A1 (ko) 2016-08-17 2017-08-17 촉매층이 코팅된 리튬설퍼전지용 다층구조 분리막 및 이를 이용한 리튬설퍼전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160104253 2016-08-17
KR1020160104253 2016-08-17

Publications (2)

Publication Number Publication Date
KR20180020096A KR20180020096A (ko) 2018-02-27
KR102011253B1 true KR102011253B1 (ko) 2019-08-16

Family

ID=61394634

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170100382A KR102011253B1 (ko) 2016-08-17 2017-08-08 촉매층이 코팅된 리튬설퍼전지용 다층구조 분리막 및 이를 이용한 리튬설퍼전지

Country Status (1)

Country Link
KR (1) KR102011253B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230138667A (ko) 2022-03-24 2023-10-05 울산과학기술원 리튬이차전지 및 리튬이차전지의 분리막 제조방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7176135B2 (ja) 2019-05-03 2022-11-21 エルジー エナジー ソリューション リミテッド リチウム-硫黄電池用分離膜及びこれを含むリチウム-硫黄電池
WO2020226321A1 (ko) 2019-05-03 2020-11-12 주식회사 엘지화학 리튬 이차전지용 분리막 및 이를 포함하는 리튬 이차전지
KR20200127864A (ko) 2019-05-03 2020-11-11 주식회사 엘지화학 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
KR20200127873A (ko) 2019-05-03 2020-11-11 주식회사 엘지화학 리튬 이차전지용 분리막 및 이를 포함하는 리튬 이차전지
KR102459711B1 (ko) * 2019-05-17 2022-10-27 한양대학교 산학협력단 리튬-황 전지용 양극, 이의 제조방법 및 이를 포함하는 리튬-황 전지
KR20200145333A (ko) 2019-06-21 2020-12-30 주식회사 엘지화학 리튬 이차전지 구조체 및 이를 포함하는 리튬 이차전지
KR20210004734A (ko) 2019-07-05 2021-01-13 주식회사 엘지화학 리튬 이차전지
KR20210014430A (ko) 2019-07-30 2021-02-09 주식회사 엘지화학 리튬 이차전지용 분리막 및 이를 포함하는 리튬 이차전지

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367577B1 (ko) 2012-07-20 2014-02-26 경기대학교 산학협력단 폴리도파민을 이용한 카본/촉매 복합체의 제조방법과, 이에 따라 제조되는 카본/촉매 복합체 및 이를 공기극으로 이용한 리튬/공기 이차전지

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3059784B1 (en) * 2013-10-18 2018-07-11 LG Chem, Ltd. Separation membrane and lithium-sulfur battery comprising same
KR101719048B1 (ko) 2015-01-20 2017-03-23 포항공과대학교 산학협력단 리튬-황 전지용 양극 활물질 및 그 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367577B1 (ko) 2012-07-20 2014-02-26 경기대학교 산학협력단 폴리도파민을 이용한 카본/촉매 복합체의 제조방법과, 이에 따라 제조되는 카본/촉매 복합체 및 이를 공기극으로 이용한 리튬/공기 이차전지

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230138667A (ko) 2022-03-24 2023-10-05 울산과학기술원 리튬이차전지 및 리튬이차전지의 분리막 제조방법

Also Published As

Publication number Publication date
KR20180020096A (ko) 2018-02-27

Similar Documents

Publication Publication Date Title
KR102011253B1 (ko) 촉매층이 코팅된 리튬설퍼전지용 다층구조 분리막 및 이를 이용한 리튬설퍼전지
US10862130B2 (en) Cathode for lithium-sulfur battery and manufacturing method therefor
KR102201335B1 (ko) 전기화학소자용 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 이를 포함하는 전기화학소자
EP2927996B1 (en) Cathode active material for lithium-sulfur battery and manufacturing method therefor
US9722275B2 (en) Anode protective layer compositions for lithium metal batteries
US10361432B2 (en) Non-aqueous secondary battery
US20160013480A1 (en) Multi-layer battery electrode design for enabling thicker electrode fabrication
KR101994877B1 (ko) 리튬 황 전지 및 이의 제조방법
KR102126249B1 (ko) 리튬 황 전지 및 이의 제조 방법
KR20170032190A (ko) 리튬 황 전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 황 전지
KR102202013B1 (ko) 전기화학소자용 전극 및 이를 제조하는 방법
KR20180055230A (ko) 다층 구조의 리튬-황 전지용 양극 및 이의 제조방법
KR20120074206A (ko) 음극 활물질 및 이를 이용한 이차전지
KR20150143224A (ko) 리튬-황 전지용 양극 활물질, 이의 제조방법 및 이를 포함한 리튬-황 전지
KR20180020083A (ko) 탄소층이 코팅된 리튬설퍼전지용 분리막 및 이를 이용한 리튬설퍼전지
KR102651783B1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
KR101995064B1 (ko) 다공성 물질의 박막을 포함하는 리튬 이차전지
US20230253556A1 (en) Negative electrode and lithium secondary battery comprising same
KR102207523B1 (ko) 리튬 이차전지
KR20230126262A (ko) 음극 및 상기 음극을 포함하는 이차전지
KR20240056446A (ko) 리튬 이차 전지용 집전체 및 이를 포함하는 전극과 리튬 이차 전지
KR20230032159A (ko) 복합체를 포함하는 리튬이차전지용 음극
KR20220150210A (ko) 리튬 메탈 전지용 음극 및 이를 포함하는 리튬 메탈 전지
KR20230089021A (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
KR20230092449A (ko) 복합 황 양극 및 그를 포함하는 리튬-황 이차전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right