KR101874678B1 - 연료 전지의 반응 가스의 누설을 검출하는 방법 및 연료 전지 시스템 - Google Patents

연료 전지의 반응 가스의 누설을 검출하는 방법 및 연료 전지 시스템 Download PDF

Info

Publication number
KR101874678B1
KR101874678B1 KR1020150153265A KR20150153265A KR101874678B1 KR 101874678 B1 KR101874678 B1 KR 101874678B1 KR 1020150153265 A KR1020150153265 A KR 1020150153265A KR 20150153265 A KR20150153265 A KR 20150153265A KR 101874678 B1 KR101874678 B1 KR 101874678B1
Authority
KR
South Korea
Prior art keywords
pressure
fuel cell
reaction gas
supply pipe
detecting
Prior art date
Application number
KR1020150153265A
Other languages
English (en)
Other versions
KR20160057317A (ko
Inventor
히로유키 이마니시
마사시 도이다
Original Assignee
도요타지도샤가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도요타지도샤가부시키가이샤 filed Critical 도요타지도샤가부시키가이샤
Publication of KR20160057317A publication Critical patent/KR20160057317A/ko
Application granted granted Critical
Publication of KR101874678B1 publication Critical patent/KR101874678B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

연료 전지 시스템에 있어서의 연료 가스의 누설을 신속하게 검출 가능한 기술을 제공한다. 이를 해결하기 위하여, 연료 전지 시스템은, 제어부와, 연료 전지와, 애노드 가스 급배 순환부를 구비한다. 제어부는 연료 전지 시스템의 기동 시에, 압력 계측부에 의해, 애노드 가스 배관의 저압 구간에 있어서의 압력을 검출한다. 제어부는 저압 구간 의 압력의 검출값과, 미리 설정되어 있는 소정의 역치에 기초하여, 저압 구간에 있어서의 수소의 누설의 발생을 검출하는 제1 수소 누설 검출 처리를 실행한다.

Description

연료 전지의 반응 가스의 누설을 검출하는 방법 및 연료 전지 시스템{METHOD OF DETECTING LEAKAGE OF REACTIVE GAS OF FUEL CELL AND FUEL CELL SYSTEM}
본원은, 2014년 11월 13일에 출원된 일본 특허 출원 제2014-230861호의 일본 특허 출원에 기초하는 우선권을 주장하고, 그 개시된 모두가 참조에 의해 본원에 포함된다.
본 발명은 연료 전지의 반응 가스의 누설을 검출하는 방법 및 연료 전지 시스템에 관한 것이다.
고체 고분자형 연료 전지(이하, 간단히 「연료 전지」라고도 칭함)는, 연료 가스로서 수소의 공급을 받고, 산화제 가스로서 산소(공기)의 공급을 받아 발전한다. 연료 전지 시스템에 있어서는, 수소의 누설의 검출에 관한 여러 기술이 제안되어 있다(예를 들어, 일본 특허 공개 제2010-272433호 공보, 일본 특허 공개 제2012-151125호 공보 등).
연료 전지 시스템의 기동 시에 있어서는, 상기 공보 등에 개시되어 있는 바와 같이, 연료 전지의 발전이 개시되기 전에, 수소의 누설을 확실하게 검출할 수 있는 것이 바람직하다. 한편, 연료 전지 시스템의 기동 시에는 연료 전지의 운전이 개시될 때까지의 시간이 단축되는 것이 바람직하다.
본 발명은, 상술한 과제의 적어도 일부를 해결하기 위해서 이루어진 것이며, 예를 들어 이하의 형태로서 실현하는 것이 가능하다. 본 발명의 일형태는 연료 전지에 공급되는 반응 가스의 누설을 상기 연료 전지의 기동시에 검출하는 방법이며, 상기 연료 전지에 공급 배관을 개재하여 상기 반응 가스를 공급하기 전에, 상기 공급 배관 내의 압력을 검출하는 압력 검출 공정과, 상기 압력 검출 공정에 있어서 취득한 압력 계측값을 사용하여, 상기 반응 가스의 누설 유무를 판정하는 판정 공정을 구비하고, 상기 판정 공정은 제1 조건과, 제2 조건 중 적어도 한쪽의 판정 조건을 사용하는 공정이며, 상기 판정 조건이 만족되고 있을 경우에 상기 연료 전지의 발전 정지중에 상기 반응 가스의 누설이 없다고 판정되고, 상기 제1 조건은 상기 압력 계측값이 상기 연료 전지의 운전을 종료시킬 때의 상기 공급 배관의 압력보다도 낮고, 대기압보다도 높은 소정의 제1 압력값 이상일 때에 만족 되고, 상기 제2 조건은 상기 압력 계측값이 대기압보다도 낮은 소정의 제2 압력값 이하일 때에 만족되는 방법이어도 좋다.
[1] 본 발명의 제1 형태에 의하면, 연료 전지에 공급되는 반응 가스의 누설을, 상기 연료 전지의 기동 시에 검출하는 방법이 제공된다. 이 방법은, 압력 검출 공정과, 판정 공정을 마련해도 된다. 상기 압력 검출 공정은, 상기 연료 전지에 공급 배관을 통하여 상기 반응 가스를 공급하기 전에, 상기 공급 배관 내의 압력을 검출하는 공정이어도 된다. 상기 판정 공정은, 상기 압력 검출 공정에 있어서 취득한 압력 계측값을 사용하여 상기 반응 가스의 누설의 유무를 판정하는 공정이며, 상기 압력 계측값이, 소정의 역치 압력 이상인 경우에, 상기 연료 전지의 발전 정지 중에 상기 반응 가스의 누설이 없다고 판정하는 공정이어도 된다. 상기 역치 압력은, 상기 연료 전지의 운전을 종료시킬 때의 상기 공급 배관의 압력보다도 낮고, 대기압보다도 높은 값이어도 된다. 이 형태의 방법에 의하면, 예를 들어 공급 배관에 반응 가스를 공급하여 가압하는 등의 반응 가스의 누설을 검출하기 위한 준비 처리를 행하지 않고, 반응 가스의 누설의 유무를 판정할 수도 있기 때문에, 연료 전지의 발전 개시 전에 반응 가스의 누설을 신속하게 검출할 수 있다.
[2] 상기 제1 형태의 방법에서는, 상기 판정 공정에 있어서, 상기 압력 계측값이 상기 역치 압력보다 낮은 경우에는, 상기 공급 배관에 상기 반응 가스를 공급하여 가압하고, 가압 후의 상기 공급 배관 내의 압력 변화에 기초하여 상기 반응 가스의 누설을 검출하는 가압 누설 검출 공정이 더 실행되어도 된다. 이 형태의 방법에 의하면, 연료 전지의 발전 개시 전에, 보다 확실하게 반응 가스의 누설을 검출할 수 있다.
[3] 본 발명의 제2 형태에 의하면, 연료 전지에 공급되는 반응 가스의 누설을, 상기 연료 전지의 기동 시에 검출하는 방법이 제공된다. 이 방법은, 압력 검출 공정과, 판정 공정을 마련해도 된다. 상기 압력 검출 공정은, 상기 연료 전지에 공급 배관을 통하여 상기 반응 가스를 공급하기 전에, 상기 공급 배관 내의 압력을 검출하는 공정이어도 된다. 상기 판정 공정은, 상기 압력 검출 공정에 있어서 취득한 압력 계측값을 사용하여 상기 반응 가스의 누설의 유무를 판정하는 공정이며, 상기 압력 계측값이 소정의 역치 압력 이하인 경우에, 상기 연료 전지의 정지 중에 상기 반응 가스의 누설이 없다고 판정하는 공정이어도 된다. 상기 역치 압력은 대기압보다도 낮은 값이어도 된다. 이 형태의 방법에 의하면, 예를 들어 공급 배관에 반응 가스를 공급하여 가압하는 등의 반응 가스의 누설을 검출하기 위한 준비 처리를 행하지 않고, 반응 가스의 누설의 유무를 판정할 수도 있기 때문에, 연료 전지의 발전 개시 전에 반응 가스의 누설을 신속하게 검출할 수 있다.
[4] 상기 제2 형태의 방법에서는, 상기 판정 공정에 있어서, 상기 압력 계측값이 상기 역치 압력보다 높은 경우에는, 상기 공급 배관에 상기 반응 가스를 공급하여 가압하고, 가압 후의 상기 공급 배관 내의 압력 변화에 기초하여 상기 반응 가스의 누설을 검출하는 가압 누설 검출 공정이 더 실행되어도 된다. 이 형태의 방법에 의하면, 연료 전지의 발전 개시 전에, 보다 확실하게 반응 가스의 누설을 검출할 수 있다.
[5] 본 발명의 제3 형태에 의하면, 연료 전지에 공급되는 반응 가스의 누설을, 상기 연료 전지의 기동 시에 검출하는 방법이 제공된다. 이 방법은, 압력 검출 공정과, 판정 공정을 마련해도 된다. 상기 압력 검출 공정은, 상기 연료 전지에 공급 배관을 통하여 상기 반응 가스를 공급하기 전에, 상기 공급 배관 내의 압력을 검출하는 공정이어도 된다. 상기 판정 공정은, 상기 압력 검출 공정에 있어서 취득한 압력 계측값을 사용하여 상기 반응 가스의 누설의 유무를 판정하는 공정이어도 되고, 상기 압력 계측값이 소정의 역치 압력의 범위 내에 없는 경우에, 상기 연료 전지의 발전 정지 중에 상기 공급 배관으로부터의 상기 반응 가스의 누설이 없다고 판정하는 공정이어도 된다. 상기 역치 압력의 범위의 상한값은, 상기 연료 전지의 운전을 종료시킬 때의 상기 공급 배관의 압력보다도 낮고, 대기압보다도 높은 값이며, 상기 역치 압력의 범위의 하한값은, 대기압보다도 낮은 값이어도 된다. 이 형태의 방법에 의하면, 예를 들어 공급 배관에 반응 가스를 공급하여 가압하는 등의 반응 가스의 누설을 검출하기 위한 준비 처리를 행하지 않고, 반응 가스의 누설의 유무를 판정할 수도 있기 때문에, 연료 전지의 발전 개시 전에 반응 가스의 누설을 신속하게 검출할 수 있다.
[6] 상기 제3 형태의 방법에서는, 상기 판정 공정에 있어서, 상기 압력 계측값이, 상기 소정의 역치 압력의 범위 내인 경우에는, 상기 공급 배관에 상기 반응 가스를 공급하여 가압하고, 가압 후의 상기 공급 배관 내의 압력 변화에 기초하여 상기 반응 가스의 누설을 검출하는 가압 누설 검출 공정이 더 실행되어도 된다. 이 형태의 방법에 의하면, 연료 전지의 발전 개시 전에, 보다 확실하게 반응 가스의 누설을 검출할 수 있다.
[7] 본 발명의 제4 형태에 의하면, 연료 전지 시스템이 제공된다. 이 연료 전지 시스템은, 연료 전지와, 반응 가스 공급부와, 압력 검출부와, 제어부를 구비해도 된다. 상기 반응 가스 공급부는, 상기 연료 전지에 접속되어 있는 공급 배관을 구비하고, 상기 공급 배관을 통하여 상기 연료 전지에 반응 가스를 공급해도 된다. 상기 압력 검출부는, 상기 공급 배관 내의 압력을 검출 가능해도 된다. 상기 제어부는, 상기 연료 전지에 대한 상기 반응 가스의 공급을 제어하여 상기 연료 전지의 운전을 제어해도 된다. 상기 제어부는, 상기 연료 전지에 상기 반응 가스를 공급하여 발전을 개시시키기 전에, 상기 압력 검출부에 의해 상기 공급 배관 내의 압력의 검출값을 취득하여, 상기 검출값이, 소정의 역치 압력 이상인 경우에는, 상기 연료 전지에 발전을 개시시키기 위한 처리를 개시하고, 상기 검출값이 상기 역치 압력보다 낮은 경우에는, 상기 반응 가스의 누설을 검출하기 위한 처리를 개시해도 된다. 상기 역치 압력은, 상기 연료 전지의 운전을 종료시킬 때의 상기 공급 배관의 압력보다도 낮고, 대기압보다도 높은 값이어도 된다. 이 형태의 연료 전지 시스템에 의하면, 예를 들어 공급 배관에 반응 가스를 공급하여 가압하는 등의 반응 가스의 누설을 검출하기 위한 준비 처리를 생략할 수도 있기 때문에, 연료 전지의 발전 개시까지의 기동 시간을 단축할 수 있다.
[8] 본 발명의 제5 형태에 의하면, 연료 전지 시스템이 제공된다. 이 연료 전지 시스템은, 연료 전지와, 반응 가스 공급부와, 압력 검출부와, 제어부를 구비해도 된다. 상기 반응 가스 공급부는, 상기 연료 전지에 접속되어 있는 공급 배관을 구비하고, 상기 공급 배관을 통하여 상기 연료 전지에 반응 가스를 공급해도 된다. 상기 압력 검출부는, 상기 공급 배관 내의 압력을 검출 가능해도 된다. 상기 제어부는, 상기 연료 전지에 대한 상기 반응 가스의 공급을 제어하여 상기 연료 전지의 운전을 제어해도 된다. 상기 제어부는, 상기 연료 전지에 상기 반응 가스를 공급하여 발전을 개시시키기 전에, 상기 압력 검출부에 의해 상기 공급 배관 내의 압력의 검출값을 취득하여, 상기 검출값이, 소정의 역치 압력 이하인 경우에는, 상기 연료 전지에 발전을 개시시키기 위한 처리를 개시하고, 상기 검출값이 상기 역치 압력보다 높은 경우에는, 상기 반응 가스의 누설을 검출하기 위한 처리를 개시해도 된다. 상기 역치 압력은 대기압보다도 낮은 값이어도 된다. 이 형태의 연료 전지 시스템에 의하면, 예를 들어 공급 배관에 반응 가스를 공급하여 가압하는 등의 반응 가스의 누설을 검출하기 위한 준비 처리를 생략할 수도 있기 때문에, 연료 전지의 발전 개시까지의 기동 시간을 단축할 수 있다.
[9] 본 발명의 제6 형태에 의하면, 연료 전지 시스템이 제공된다. 이 연료 전지 시스템은, 연료 전지와, 반응 가스 공급부와, 압력 검출부와, 제어부를 구비해도 된다. 상기 반응 가스 공급부는, 상기 연료 전지에 접속되어 있는 공급 배관을 구비하고, 상기 공급 배관을 통하여 상기 연료 전지에 반응 가스를 공급해도 된다. 상기 압력 검출부는, 상기 공급 배관 내의 압력을 검출 가능해도 된다. 상기 제어부는, 상기 연료 전지에 대한 상기 반응 가스의 공급을 제어하여 상기 연료 전지의 운전을 제어해도 된다. 상기 제어부는, 상기 연료 전지에 상기 반응 가스를 공급하여 발전을 개시시키기 전에, 상기 압력 검출부에 의해 상기 공급 배관 내의 압력의 검출값을 취득하여, 상기 검출값이, 소정의 역치 압력의 범위 내에 없는 경우에는, 상기 연료 전지에 발전을 개시시키기 위한 처리를 개시하고, 상기 검출값이, 상기 역치 압력의 범위 내인 경우에는, 상기 반응 가스의 누설을 검출하기 위한 처리를 개시해도 된다. 상기 역치 압력의 범위의 상한값은, 상기 연료 전지의 운전을 종료시킬 때의 상기 공급 배관의 압력보다도 낮고, 대기압보다도 높은 값이며, 상기 역치 압력의 범위의 하한값은, 대기압보다도 낮은 값이어도 된다. 이 형태의 연료 전지 시스템에 의하면, 예를 들어 공급 배관에 반응 가스를 공급하여 가압하는 등의 반응 가스의 누설을 검출하기 위한 준비 처리를 생략할 수도 있기 때문에, 연료 전지의 발전 개시까지의 기동 시간을 단축할 수 있다.
상술한 본 발명의 각 형태가 갖는 복수의 구성 요소는 모두가 필수적인 것은 아니고, 상술한 과제의 일부 또는 전부를 해결하기 위하여, 혹은 본 명세서에 기재된 효과의 일부 또는 전부를 달성하기 위하여, 적절히 상기 복수의 구성 요소의 일부의 구성 요소에 대하여, 그 변경, 삭제, 새로운 다른 구성 요소와의 교체, 한정 내용의 일부 삭제를 행하는 것이 가능하다. 또한, 상술한 과제의 일부 또는 전부를 해결하기 위하여, 혹은, 본 명세서에 기재된 효과의 일부 또는 전부를 달성하기 위하여, 상술한 본 발명의 일 형태에 포함되는 기술적 특징의 일부 또는 전부를 상술한 본 발명의 다른 형태에 포함되는 기술적 특징의 일부 또는 전부와 조합하여, 본 발명의 독립된 일 형태로 하는 것도 가능하다.
본 발명은, 연료 전지의 반응 가스의 누설을 검출하는 방법이나 연료 전지 시스템 이외의 다양한 형태로 실현하는 것도 가능하다. 예를 들어, 연료 전지 시스템을 탑재하는 연료 전지 차량 등의 이동체, 연료 전지 시스템의 기동 방법이나 제어 방법, 그들의 방법을 실현하는 컴퓨터 프로그램, 그 컴퓨터 프로그램을 기록한 일시적이지 않은 기록 매체 등의 형태로 실현할 수 있다.
도 1은 연료 전지 시스템의 구성을 도시하는 개략도.
도 2는 제1 실시 형태의 제1 수소 누설 검출 처리의 플로우를 도시하는 설명도.
도 3은 제1 실시 형태의 제1 수소 누설 검출 처리에 있어서의 판정 처리를 설명하기 위한 설명도.
도 4는 제2 수소 누설 검출 처리의 플로우를 도시하는 설명도.
도 5는 제2 실시 형태에 있어서의 제1 수소 누설 검출 처리의 플로우를 도시하는 설명도.
도 6은 제2 실시 형태의 제1 수소 누설 검출 처리에 있어서의 판정 처리를 설명하기 위한 설명도.
도 7은 제3 실시 형태에 있어서의 제1 수소 누설 검출 처리의 플로우를 도시하는 설명도.
도 8은 제3 실시 형태의 제1 수소 누설 검출 처리에 있어서의 판정 처리를 설명하기 위한 설명도.
A. 제1 실시 형태:
[연료 전지 시스템의 구성]
도 1은 본 발명의 제1 실시 형태로서의 연료 전지 시스템(100)의 구성을 도시하는 개략도이다. 이 연료 전지 시스템(100)은, 연료 전지 차량에 탑재되고, 운전자로부터의 요구에 따라, 구동력으로서 사용되는 전력을 출력한다. 연료 전지 시스템(100)은, 제어부(10)와, 연료 전지(20)와, 캐소드 가스 급배부(30)와, 애노드 가스 급배 순환부(50)를 구비한다.
제어부(10)는 중앙 처리 장치와 주기억 장치를 구비하는 마이크로 컴퓨터에 의해 구성되고, 주기억 장치 상에 프로그램을 읽어들여 실행함으로써, 다양한 기능을 발휘한다. 제어부(10)는 연료 전지 시스템(100)의 운전 중에, 이하에 설명하는 각 구성부를 제어하여, 연료 전지(20)에 출력 요구에 따른 전력을 발전시키는 연료 전지(20)의 운전 제어를 실행한다. 또한, 제어부(10)는 연료 전지(20)의 발전을 개시하기 전에, 연료 전지 시스템(100) 내에 있어서의 수소의 누설을 검출하는 수소 누설 검출 처리를 실행한다. 수소 누설 검출 처리에 대해서는 후술한다.
연료 전지(20)는 반응 가스로서 수소(애노드 가스)와 공기(캐소드 가스)의 공급을 받아 발전하는 고체 고분자형 연료 전지이다. 연료 전지(20)는 복수의 단셀(21)이 적층된 스택 구조를 갖는다. 각 단셀(21)은, 각각이 단체이어도 발전 가능한 발전 요소이며, 전해질막의 양면에 전극을 배치한 발전체인 막전극 접합체와, 막전극 접합체를 사이에 두는 2매의 세퍼레이터(도시하지 않음)를 갖는다. 전해질막은, 내부에 수분을 포함한 습윤 상태일 때에 양호한 프로톤 전도성을 나타내는 고체 고분자 박막에 의해 구성된다.
캐소드 가스 급배부(30)는 연료 전지(20)에 캐소드 가스를 공급하는 기능과, 연료 전지(20)의 캐소드로부터 배출되는 캐소드 배기 가스 및 배수를 연료 전지 시스템(100)의 외부로 배출하는 기능을 갖는다. 캐소드 가스 급배부(30)는 에어 콤프레셔(도시는 생략)에 의해 외기를 도입하여 압축한 공기를, 캐소드 가스로서, 연료 전지(20)의 캐소드측의 입구에 접속된 배관을 통하여 연료 전지(20)에 공급한다. 또한, 캐소드 가스 급배부(30)는 연료 전지(20)의 캐소드측의 출구에 접속된 배관을 통하여, 캐소드 배기 가스 및 배수를 연료 전지 시스템(100)의 외부로 배출한다.
애노드 가스 급배 순환부(50)는 연료 전지(20)에 애노드 가스를 공급하는 기능을 갖는다. 또한, 애노드 가스 급배 순환부(50)는 연료 전지(20)의 애노드로부터 배출되는 애노드 배기 가스 및 배수를 연료 전지 시스템(100)의 외부로 배출하는 기능과, 애노드 배기 가스를 연료 전지 시스템(100) 내에서 순환시키는 기능을 갖는다. 애노드 가스 급배 순환부(50)는 본 발명에 있어서의 반응 가스 공급부의 하위 개념에 상당한다.
애노드 가스 급배 순환부(50)는 연료 전지(20)의 상류측에, 애노드 가스 배관(51)과, 수소 탱크(52)와, 주정지 밸브(53)와, 레귤레이터(54)와, 수소 공급 장치(55)와, 압력 계측부(56)를 구비한다. 수소 탱크(52)에는 연료 전지(20)에 공급하기 위한 고압 수소가 충전되어 있다. 수소 탱크(52)는 애노드 가스 배관(51)을 개재하여 연료 전지(20)의 애노드측의 입구에 접속되어 있다.
애노드 가스 배관(51)에는, 주정지 밸브(53)와, 레귤레이터(54)와, 수소 공급 장치(55)와, 압력 계측부(56)가, 이 순서로, 상류측인 수소 탱크(52)측부터 설치되어 있다. 주정지 밸브(53)는 개폐 밸브에 의해 구성되어 있다. 제어부(10)는 주정지 밸브(53)의 개폐를 제어함으로써, 수소 탱크(52)로부터 수소 공급 장치(55)의 상류측으로의 수소의 유입을 제어한다. 제어부(10)는 연료 전지 시스템(100)의 운전 종료 시에는 주정지 밸브(53)를 폐쇄하고, 연료 전지(20)의 발전을 개시시킬 때에 주정지 밸브(53)를 개방한다. 레귤레이터(54)는 수소 공급 장치(55)의 상류측에 있어서의 수소의 압력을 조정하기 위한 감압 밸브이며, 그 개방도가 제어부(10)에 의해 제어되고 있다. 수소 공급 장치(55)는 예를 들어 전자 구동식의 개폐 밸브인 인젝터에 의해 구성된다.
애노드 가스 배관(51)의 수소 압력은, 주정지 밸브(53)와 레귤레이터(54) 사이의 구간에 있어서 고압(예를 들어, 500KPa 정도)으로 되고, 레귤레이터(54)와 수소 공급 장치(55) 사이의 구간에 있어서 중압(예를 들어, 350KPa 정도)으로 된다. 또한, 수소 공급 장치(55)와 연료 전지(20) 사이의 구간에 있어서 저압(예를 들어, 200KPa 정도)으로 된다. 이하에서는, 애노드 가스 배관(51)에 있어서의 수소 공급 장치(55)와 연료 전지(20) 사이의 구간을, 특히 「저압 구간 LPZ」라고도 칭한다. 저압 구간 LPZ에 있어서의 애노드 가스 배관(51)이 본 발명의 공급 배관의 하위 개념에 상당한다.
압력 계측부(56)는 수소 공급 장치(55)의 하류측의 저압 구간 LPZ에 있어서의 수소의 압력을 계측하여, 제어부(10)에 송신한다. 제어부(10)는 연료 전지(20)의 운전 중에는, 압력 계측부(56)의 계측값에 기초하여, 수소 공급 장치(55)의 개폐 타이밍을 나타내는 구동 주기를 제어함으로써, 연료 전지(20)에 공급되는 수소량을 제어한다. 또한, 제어부(10)는 연료 전지(20)의 운전을 개시하기 전의 수소 누설 검출 처리에 있어서, 압력 계측부(56)의 계측값을 사용한다(후술). 압력 계측부(56)는 본 발명에 있어서의 압력 검출부의 하위 개념에 상당한다.
애노드 가스 급배 순환부(50)는 연료 전지(20)의 하류측에, 애노드 배기 가스 배관(61)과, 기액 분리부(62)와, 애노드 가스 순환 배관(63)과, 수소 펌프(64)와, 애노드 배수 배관(65)과, 배수 밸브(66)를 구비한다. 애노드 배기 가스 배관(61)은 연료 전지(20)의 애노드측의 출구와 기액 분리부(62)에 접속되어 있다.
기액 분리부(62)는 애노드 가스 순환 배관(63)과, 애노드 배수 배관(65)에 접속되어 있다. 애노드 배기 가스 배관(61)을 통하여 기액 분리부(62)에 유입된 애노드 배기 가스는, 기액 분리부(62)에 의해 기체 성분과 수분으로 분리된다. 기액 분리부(62) 내에서, 애노드 배기 가스의 기체 성분은 애노드 가스 순환 배관(63)으로 유도되고, 수분은 애노드 배수 배관(65)으로 유도된다.
애노드 가스 순환 배관(63)은, 애노드 가스 배관(51)의 저압 구간 LPZ에 접속되어 있다. 애노드 가스 순환 배관(63)에는, 수소 펌프(64)가 설치되어 있다. 수소 펌프(64)는 기액 분리부(62)에 있어서 분리된 기체 성분에 포함되는 수소를 애노드 가스 배관(51)으로 송출하는 순환 펌프로서 기능한다. 이와 같이, 애노드 가스 급배 순환부(50)에는, 애노드 가스 배관(51)의 저압 구간 LPZ와, 연료 전지(20)의 애노드와, 애노드 배기 가스 배관(61)과, 애노드 가스 순환 배관(63)으로 수소의 순환 경로가 구성되어 있다.
애노드 배수 배관(65)에는 개폐 밸브인 배수 밸브(66)가 설치되어 있다. 배수 밸브(66)는 제어부(10)로부터의 명령에 따라 개폐한다. 제어부(10)는 통상 배수 밸브(66)를 폐쇄해 두고, 미리 설정된 소정의 배수 타이밍이나, 애노드 배기 가스 중의 불활성 가스의 배출 타이밍에 배수 밸브(66)를 개방한다. 제어부(10)는 연료 전지 시스템(100)의 종료 시에는 배수 밸브(66)는 폐쇄된 상태로 한다.
기타, 연료 전지 시스템(100)은, 연료 전지(20)의 온도를 제어하기 위한 냉매를 연료 전지(20)의 각 단셀(21)에 공급하는 냉매 공급부를 구비한다(도시 및 상세한 설명은 생략). 또한, 연료 전지 시스템(100)은, 전기적 구성부로서, 적어도 이차 전지와, DC/DC 컨버터를 구비한다(도시는 생략). 이차 전지는, 연료 전지(20)가 출력하는 전력이나 회생 전력을 축전하여, 연료 전지(20)와 함께 전력원으로서 기능한다. DC/DC 컨버터는, 이차 전지의 충방전이나 연료 전지(20)의 출력 전압을 제어할 수 있다. 제어부(10)는 연료 전지(20)의 운전 개시 전에는, 이차 전지의 전력을 사용하여, 연료 전지 시스템(100)을 가동시킨다.
[수소 누설 검출 처리]
도 2 내지 도 4를 참조하여, 제어부(10)가 연료 전지 시스템(100)의 기동 시에 실행하는 수소 누설 검출 처리를 설명한다. 연료 전지 시스템(100)은, 연료 전지 차량의 운전자가 이그니션 온의 조작을 행했을 때에 기동한다. 제어부(10)는 그 기동 시에, 수소 누설 검출 처리로서, 먼저 제1 수소 누설 검출 처리를 실행하고, 제1 수소 누설 검출 처리에 있어서의 판정 결과에 따라, 제2 수소 누설 검출 처리를 실행한다.
도 2는 제1 수소 누설 검출 처리의 플로우를 도시하는 설명도이다. 스텝 S10에서는, 제어부(10)는 연료 전지(20)에 대한 반응 가스의 공급을 개시하기 전에, 압력 계측부(56)에 의해, 저압 구간 LPZ에 있어서의 압력을 검출한다. 스텝 S10의 공정이 본 발명에 있어서의 압력 검출 공정의 하위 개념에 상당한다. 스텝 S20에서는, 제어부(10)는 스텝 S10에 있어서 취득된 압력의 검출값을 사용하여, 수소의 누설이 발생할 가능성의 유무를 판정한다. 스텝 S20은, 본 발명에 있어서의 판정 공정의 하위 개념에 상당한다.
도 3은 제1 수소 누설 검출 처리에 있어서의 스텝 S20의 판정 처리를 설명하기 위한 설명도이다. 본 실시 형태에서는, 제어부(10)는 스텝 S20에 있어서, 압력의 검출값 Pm이, 미리 설정되어 있는 소정의 역치 압력 Pta(이하, 「제1 역치 압력 Pta」라고도 칭함) 이상인지 여부를 판정한다. 즉, 제어부(10)는 Pm≥Pt의 관계가 충족되어 있는지 여부를 판정한다. 본 실시 형태에서는, 역치 압력 Pta로서는, 연료 전지 시스템(100)의 운전 종료 시에 있어서의 저압 구간 LPZ에 있어서의 압력 Pe보다도 낮은 값이며, 대기압 AP보다도 높은 값이 설정되어 있다.
여기서, 본 실시 형태에서는, 제어부(10)는 캐소드 가스 급배부(30)나 애노드 가스 급배 순환부(50)가 갖는 밸브를 폐쇄하고, 저압 구간 LPZ가 소정의 압력(예를 들어, 180KPa 이상)으로 가압되어, 밀봉된 상태에서 연료 전지 시스템(100)의 운전을 종료한다. 이하에서는, 연료 전지 시스템(100)의 운전 종료 시에 있어서의 저압 구간 LPZ에 있어서의 압력 Pe를 「운전 종료 시 압력 Pe」라고도 칭한다. 제어부(10)는 저압 구간 LPZ의 압력이 소정의 운전 종료 시 압력 Pe보다 낮은 경우에는, 수소 공급 장치(55)를 구동하고, 운전 종료 시 압력 Pe까지 가압한 후 연료 전지 시스템(100)의 운전을 종료해도 된다.
저압 구간 LPZ를 포함하는 수소의 순환 경로로부터의 수소의 누설이 발생하는 경우에는 연료 전지 시스템(100)의 운전 정지 시간이 단시간(예를 들어, 수분 이내)이어도, 저압 구간 LPZ의 압력은, 대기압 AP의 근방 혹은 대기압 AP 이하까지 저하된다. 본 실시 형태에서는, 제1 역치 압력 Pta로서, 대기압 AP+α(0<α<10)KPa의 값이 설정되어 있다(다음의 식 (A)).
Pta=AP+α...(A)
α는 실험적으로 미리 정해진 값이면 되며, 예를 들어 6KPa 정도로 해도 된다.
스텝 S20(도 2)에 있어서, 압력의 검출값 Pm이 제1 역치 압력 Pta 이상인 경우, 즉, Pm≥Pta인 경우에는 제어부(10)는 연료 전지 시스템(100)의 저압 구간 LPZ를 포함하는 수소의 순환 경로로부터의 수소의 누설 가능성은 없다고 하여, 제1 수소 누설 검출 처리를 종료한다. 이 경우에는 제어부(10)는 연료 전지(20)에 발전을 개시시키기 위한 기동 처리를 개시하고, 연료 전지(20)의 운전을 개시한다. 한편, 압력의 검출값 Pm이 제1 역치 압력 Pta보다 작은 경우, 즉 Pm<Pta인 경우에는 제어부(10)는 수소의 누설이 발생할 가능성이 있다고 하여, 제2 수소 누설 검출 처리를 개시한다(스텝 S30).
도 4는 제2 수소 누설 검출 처리의 플로우를 도시하는 설명도이다. 이하에 설명하는 제2 수소 누설 검출 처리에 있어서의 일련의 공정이 본 발명에 있어서의 가압 누설 검출 공정의 하위 개념에 상당한다. 스텝 S50에서는, 제어부(10)는 저압 구간 LPZ의 압력을 높이는 가압 처리를 실행한다. 구체적으로는, 제어부(10)는 주정지 밸브(53)를 개방함과 함께, 레귤레이터(54)를 소정의 개방도로 하여, 수소 공급 장치(55)를 구동한다. 스텝 S50에서는, 저압 구간 LPZ의 압력은, 예를 들어 180KPa 이상까지 높아진다.
스텝 S60에서는, 제어부(10)는 수소 공급 장치(55)의 구동을 정지함과 함께, 배수 밸브(66)를 폐쇄한 상태로 하여, 소정의 기간(예를 들어 수초 정도)만, 대기한다. 스텝 S70에서는, 제어부(10)는 압력 계측부(56)에 의해, 저압 구간 LPZ에 있어서의 압력을 검출한다. 스텝 S80에서는, 제어부(10)는 스텝 S70에 있어서 취득한 저압 구간 LPZ의 압력의 검출값 Pm이 소정의 역치 압력 Ptb(「제2 역치 압력 Ptb」라고도 칭함) 이상인지 여부를 판정한다. 제2 역치 압력 Ptb는, 예를 들어 100kPa 정도로 설정되어 있다. 제2 역치 압력 Ptb는, 다른 값이어도 되고, 수소의 누설을 검출 가능하도록 미리 실험적으로 정해진 값이면 된다.
스텝 S80에 있어서, 압력의 검출값 Pm이 제2 역치 압력 Ptb 이상인 경우, 즉, Pm≥Ptb인 경우에는, 제어부(10)는 저압 구간 LPZ를 포함하는 수소의 순환 경로에 있어서의 수소의 누설의 가능성은 없다고 하여, 제2 수소 누설 검출 처리를 종료한다. 이 경우에는, 제어부(10)는 연료 전지(20)에 발전을 개시시키기 위한 기동 처리를 개시하고, 연료 전지(20)의 운전을 개시한다.
한편, 압력의 검출값 Pm이 제2 역치 압력 Ptb보다 작은 경우, 즉 Pm<Ptb인 경우에는 제어부(10)는 수소의 누설이 발생할 가능성이 있다고 하여, 수소의 누설에 대응하기 위한 처리를 개시한다(스텝 S90). 구체적으로는, 제어부(10)는 주정지 밸브(53)를 폐쇄하고, 연료 전지 차량의 운전자에 대하여, 수소 누설의 발생 가능성을 통지하기 위한 통지 처리(예를 들어, 인디케이터의 점등이나 경보음의 발생 등)를 행한다.
[제1 실시 형태의 정리]
본 실시 형태의 연료 전지 시스템(100)에 의하면, 반응 가스 공급 전의 저압 구간 LPZ를 포함하는 수소의 순환 경로에 있어서의 압력 검출을 행하는 제1 수소 누설 검출 처리에 의해, 수소의 누설 발생의 가능성의 판정이 간이하면서도 또한 신속하게 가능하다. 따라서, 수소의 누설의 발생의 검출을 위한 처리 시간이 단축화된다. 또한, 제1 수소 누설 검출 처리에 있어서 수소의 누설의 가능성이 있다고 판정된 경우에는, 제2 수소 누설 검출 처리가 실행되어, 이중의 검사 처리에 의해 수소의 누설의 발생이 보다 확실하게 검출된다. 따라서, 연료 전지 시스템(100)의 기동 개시 전에, 보다 확실하게 수소의 누설의 발생의 검출이 가능하다.
B. 제2 실시 형태:
도 5, 도 6을 참조하여, 제2 실시 형태의 수소 누설 검출 처리를 설명한다. 제2 실시 형태의 수소 누설 검출 처리는, 제1 실시 형태에서 설명한 것과 거의 동일한 구성의 연료 전지 시스템(100)에 있어서 실행 가능하다(도 1). 제2 실시 형태에서는, 제1 실시 형태와 마찬가지로, 제어부(10)는 연료 전지 시스템(100)의 기동 시에, 수소 누설 검출 처리로서, 먼저, 제1 수소 누설 검출 처리를 실행하고, 제1 수소 누설 검출 처리에 있어서의 판정 결과에 따라, 제2 수소 누설 검출 처리를 실행한다. 제2 실시 형태에 있어서의 제1 수소 누설 검출 처리는, 이하에 설명한 바와 같이, 판정 조건이 상이한 점 이외는, 제1 실시 형태에 있어서의 제1 수소 누설 검출 처리와 거의 동일하다. 또한, 제2 실시 형태에 있어서의 제2 수소 누설 검출 처리는, 제1 실시 형태의 제2 수소 누설 검출 처리(도 4)와 동일하기 때문에, 그 설명은 생략한다.
도 5는 제2 실시 형태에 있어서의 제1 수소 누설 검출 처리의 플로우를 도시하는 설명도이다. 제2 실시 형태의 제1 수소 누설 검출 처리는, 스텝 S20A의 판정 처리에 있어서의 판정 조건이 상이한 점 이외는, 제1 실시 형태의 제1 수소 누설 검출 처리와 동일하다. 도 6은 제1 수소 누설 검출 처리에 있어서의 스텝 S20A의 판정 처리를 설명하기 위한 설명도이다.
제2 실시 형태의 제1 수소 누설 검출 처리에서는, 제어부(10)는 스텝 S10에 있어서 취득된 압력의 검출값 Pm이, 미리 설정되어 있는 소정의 제1 역치 압력 Ptc 이하인지 여부를 판정한다. 즉, 제어부(10)는, Pm≤Ptc의 관계가 충족되어 있는지 여부를 판정한다. 제2 실시 형태에서는, 스텝 S20A의 판정 조건인 제1 역치 압력 Ptc로서, 대기압 AP-β(0<β<10)KPa의 값이 설정되어 있다(다음의 식 (B)).
Ptc=AP-β...(B)
β는 실험적으로 미리 정해진 값이면 되며, 예를 들어 6KPa 정도로 해도 된다.
연료 전지 시스템(100)의 운전이 정지되고, 반응 가스의 경로가 밀봉된 상태에 있어서, 장시간(예를 들어 수시간 이상), 연료 전지(20)가 방치된 경우에는 연료 전지(20)의 애노드의 압력은 부압까지 저하될 가능성이 높다. 이 압력의 저하는, 연료 전지(20)의 온도 저하에 의한 수증기 분압의 저하나, 연료 전지(20) 내에 잔류되어 있는 수소와 산소의 반응에 의한 소비 등이 원인으로 야기된다. 저압 구간 LPZ를 포함하는 수소의 순환 경로에 있어서 수소의 누설 경로가 형성되어 있는 경우에는, 그 누설 경로로부터 외기가 진입하기 때문에, 연료 전지(20)의 애노드 및 저압 구간 LPZ를 포함하는 수소의 순환 경로에 있어서의 압력은, 대기압 AP, 혹은 대기압 AP 근방의 부압으로 될 가능성이 높다.
제어부(10)는 저압 구간 LPZ에 있어서의 압력의 검출값 Pm이 제1 역치 압력 Ptc 이하인 경우에는 연료 전지(20)의 애노드 및 저압 구간 LPZ에 대한 외기의 진입이 없어, 수소의 누설 발생의 가능성이 없다고 판정한다. 이 경우에는 제어부(10)는 연료 전지(20)에 발전을 개시시키기 위한 기동 처리를 개시한다. 한편, 제어부(10)는 압력의 검출값 Pm이 제1 역치 압력 Ptc보다 큰 경우, 즉 Pm>Ptc인 경우에는, 수소의 누설 경로가 형성되어 외기가 진입할 가능성이 있다고 하여, 제2 수소 누설 검출 처리를 개시한다.
이상과 같이, 제2 실시 형태의 수소 누설 검출 처리이면, 연료 전지(20)의 발전 정지 후의 온도 저하나 잔류 반응 가스의 소비가 반영된 수소 누설 검출 처리의 판정 조건에 의해, 수소의 누설 발생의 가능성을 신속하게 검출할 수 있다. 기타, 제2 실시 형태의 연료 전지 시스템(100) 및 수소 누설 검출 처리이면, 제1 실시 형태의 연료 전지 시스템(100)에서 설명한 것과 마찬가지의 작용 효과를 발휘할 수 있다.
C. 제3 실시 형태:
도 7, 도 8을 참조하여, 제3 실시 형태의 수소 누설 검출 처리를 설명한다. 제3 실시 형태의 수소 누설 검출 처리는, 제1 실시 형태에서 설명한 것과 거의 동일한 구성의 연료 전지 시스템(100)에 있어서 실행 가능하다(도 1). 제3 실시 형태에서는, 제1 실시 형태와 마찬가지로, 제어부(10)는 연료 전지 시스템(100)의 기동 시에, 수소 누설 검출 처리로서, 먼저 제1 수소 누설 검출 처리를 실행하고, 제1 수소 누설 검출 처리에 있어서의 판정 결과에 따라, 제2 수소 누설 검출 처리를 실행한다. 제3 실시 형태에 있어서의 제1 수소 누설 검출 처리는, 이하에 설명한 바와 같이, 판정 조건이 상이한 점 이외는, 제1 실시 형태에 있어서의 제1 수소 누설 검출 처리와 거의 동일하다. 또한, 제3 실시 형태에 있어서의 제2 수소 누설 검출 처리는, 제1 실시 형태의 제2 수소 누설 검출 처리(도 4)와 동일하기 때문에, 그 설명은 생략한다.
도 7은 제3 실시 형태에 있어서의 제1 수소 누설 검출 처리의 플로우를 도시하는 설명도이다. 제3 실시 형태의 제1 수소 누설 검출 처리는, 스텝 S20B의 판정 처리에 있어서의 판정 조건이 상이한 점 이외는, 제1 실시 형태의 제1 수소 누설 검출 처리와 동일하다. 도 8은 제1 수소 누설 검출 처리에 있어서의 스텝 S20B의 판정 처리를 설명하기 위한 설명도이다.
제3 실시 형태의 제1 수소 누설 검출 처리에서는, 제어부(10)는 스텝 S10에 있어서 취득된 압력의 검출값 Pm이, 미리 설정되어 있는 소정의 역치 범위 밖인지 여부를 판정한다(스텝 S20B). 스텝 S20B의 판정 조건인 역치 범위의 상한값 Ptd는, 제1 실시 형태의 제1 역치 압력 Pta와 마찬가지로, 운전 종료 시 압력 Pe보다도 낮고, 대기압 AP보다도 높은 값으로 설정되어 있다(다음의 식 (C)).
Pte=AP+α, 0<α<10KPa ...(C)
역치 범위의 하한값 Pte는, 제2 실시 형태의 제1 역치 압력 Ptc와 마찬가지로, 대기압 AP보다도 낮은 값으로 설정되어 있다(다음의 식 (D)).
Ptd=AP-β, 0<β<10KPa ...(D)
α, β는 실험적으로 정해진 값이면 되며, 예를 들어 양쪽 모두 6KPa 정도로 해도 된다. α, β는, 상이한 값이 설정되어도 된다.
스텝 S10에 있어서 취득된 저압 구간 LPZ에 있어서의 압력의 검출값 Pm이 역치 범위의 상한값 Ptd 이상인 경우에는, 제1 실시 형태에서 설명한 바와 같이, 수소의 누설에 기인하는 압력의 저하가 발생하지 않는다고 생각되어진다. 한편, 압력의 검출값 Pm이 역치 범위의 하한값 Pte 이하인 경우에는 제2 실시 형태에서 설명한 바와 같이, 저압 구간 LPZ를 포함하는 수소의 순환 경로에 외기가 진입하지 않아, 저압 구간 LPZ에 있어서의 수소의 압력이, 예기되는 대로의 부압 상태로 되어 있다고 생각되어진다.
제어부(10)는 압력의 검출값 Pm이, 역치 범위의 상한값 Ptd 이상, 즉, Pm≥Ptd인 경우 또는 하한값 Pte 이하, 즉 Pm≤Pte인 경우에는 수소의 누설이 발생할 가능성이 없다고 판정한다(스텝 S20B의 "예"). 이 경우에는, 제어부(10)는 제2 수소 누설 검출 처리를 실행하지 않고, 연료 전지(20)의 발전 개시를 위한 기동 처리를 개시한다. 한편, 압력의 검출값 Pm이, 역치 범위의 상한값 Ptd보다 작고, 하한값 Pte보다 큰 경우 즉, Pte<Pm<Ptd인 경우에는 수소의 누설이 발생할 가능성이 있다고 판정한다(스텝 S20B의 "아니오"). 이 경우에는, 제어부(10)는 제2 수소 누설 검출 처리의 실행을 개시한다.
연료 전지 시스템(100)의 운전 종료 시부터 재기동까지의 시간이 단시간(예를 들어, 수분 정도)밖에 경과하고 있지 않을 때에는, 제1 실시 형태의 제1 수소 누설 검출 처리의 판정 조건 쪽이, 판정 정밀도가 높다. 한편, 연료 전지 시스템(100)의 운전 종료 시부터 장시간(예를 들어, 수시간 정도)이 경과하고 있을 때에는, 제2 실시 형태의 제1 수소 누설 검출 처리의 판정 조건 쪽이, 판정 정밀도가 높다. 제3 실시 형태의 제1 수소 누설 검출 처리이면, 그 양쪽의 판정 조건이 조합되어 있어, 연료 전지 시스템(100)이 운전을 정지하고 있는 시간과 관계 없이, 높은 판정 정밀도를 얻는 것이 가능하다.
이상과 같이, 제3 실시 형태의 제1 수소 누설 검출 처리이면, 제1 실시 형태에서 설명한 판정 조건과 제2 실시 형태에서 설명한 판정 조건이 조합되어 있기 때문에, 저압 구간 LPZ에 있어서의 수소의 누설을 보다 적확하게 검출하는 것이 가능하다. 기타, 제3 실시 형태의 연료 전지 시스템(100) 및 수소 누설 검출 처리이면, 제1 실시 형태 및 제2 실시 형태에서 설명한 것과 마찬가지의 작용 효과를 발휘할 수 있다.
D. 변형예:
D 1. 변형예 1:
상기 각 실시 형태에서는, 제1 수소 누설 검출 처리에 있어서, 수소의 누설 발생의 가능성이 있다고 판정된 경우에는(스텝 S20, S20A, S20B의 "아니오"), 제2 수소 누설 검출 처리가 실행되어 있다. 이에 대하여, 제2 수소 누설 검출 처리는 생략되어도 된다. 이 경우에는, 제어부(10)는 제2 수소 누설 검출 처리를 실행하지 않고, 수소의 누설 가능성을 운전자에게 통지 처리나, 연료 전지 시스템(100)의 기동을 캔슬하는 처리를 실행해도 된다. 반대로, 제1 수소 누설 검출 처리에 있어서, 수소의 누설 발생의 가능성이 없다고 판정된 경우에도 제2 수소 누설 검출 처리가 실행되어도 된다.
D2. 변형예 2:
상기 각 실시 형태의 제2 수소 누설 검출 처리에서는, 제어부(10)는 저압 구간 LPZ의 가압 후의 압력 저하를 검출함으로써, 저압 구간 LPZ에 있어서의 수소의 누설의 발생을 검출하고 있다. 이에 대하여, 제어부(10)는 저압 구간 LPZ의 가압 시의 압력 상승의 변화에 기초하여 저압 구간 LPZ에 있어서의 수소의 누설의 발생을 검출해도 된다. 보다 구체적으로는, 제어부(10)는 저압 구간 LPZ의 가압 시의 압력 상승의 속도가 소정의 역치 이하일 때에, 저압 구간 LPZ에 수소의 누설이 발생하고 있다고 판정해도 된다. 혹은, 제어부(10)는 저압 구간 LPZ의 가압 후에, 압력이 소정의 하한값까지 저하될 때까지의 시간을 계측하여, 그 시간에 기초하여 수소의 누설의 발생을 검출해도 된다.
D3. 변형예 3:
상기 실시 형태에서는, 연료 전지 시스템(100)은 연료 전지 차량에 탑재되어 있다. 이에 대하여, 연료 전지 시스템(100)은, 연료 전지 차량 이외의 이동체에 탑재되어도 되고, 이동체에 탑재되지 않고, 건조물이나 대지 등에 고정적으로 설치되어도 된다.
본 발명은, 상술한 실시 형태나 실시예, 변형예에 한정되는 것은 아니고, 그 취지를 일탈하지 않는 범위에서 다양한 구성으로 실현할 수 있다. 예를 들어, [발명의 내용]의 란에 기재한 각 형태 중의 기술적 특징에 대응하는 실시 형태, 실시예, 변형예 중의 기술적 특징은, 상술한 과제의 일부 또는 전부를 해결하기 위하여, 혹은, 상술한 효과의 일부 또는 전부를 달성하기 위하여, 적절히 바꾸기나, 조합을 행하는 것이 가능하다. 또한, 그 기술적 특징이 본 명세서 중에 필수적인 것으로서 설명되어 있지 않으면, 적절히 삭제하는 것이 가능하다. 또한, 상기한 각 실시 형태 및 변형예에 있어서, 소프트웨어에 의해 실현되어 있는 기능 및 처리의 일부 또는 전부는, 하드웨어에 의해 실현되어도 된다. 또한, 하드웨어에 의해 실현되어 있는 기능 및 처리의 일부 또는 전부는, 소프트웨어에 의해 실현되어도 된다. 하드웨어로서는, 예를 들어 집적 회로, 디스크리트 회로, 그들의 회로를 조합한 회로 모듈 등, 각종 회로를 사용할 수 있다.
10: 제어부
20: 연료 전지
21: 단셀
30: 캐소드 가스 급배부
50: 애노드 가스 급배 순환부
51: 애노드 가스 배관
52: 수소 탱크
53: 주정지 밸브
54: 레귤레이터
55: 수소 공급 장치
56: 압력 계측부
61: 애노드 배기 가스 배관
62: 기액 분리부
63: 애노드 가스 순환 배관
64: 수소 펌프
65: 애노드 배수 배관
66: 배수 밸브
LPZ: 저압 구간

Claims (10)

  1. 연료 전지에 공급되는 반응 가스의 누설을, 상기 연료 전지의 기동 시에 검출하는 방법에 있어서,
    상기 연료 전지에 공급 배관을 통하여 상기 반응 가스를 공급하기 전에, 상기 공급 배관 내의 압력을 검출하는 압력 검출 공정과,
    상기 압력 검출 공정에 있어서 취득한 압력 계측값을 사용하여 상기 반응 가스의 누설의 유무를 판정하는 판정 공정을 구비하고,
    상기 판정 공정은, 상기 압력 계측값이, 소정의 역치 압력 이상인 경우에, 상기 연료 전지의 발전 정지 중에 상기 반응 가스의 누설이 없다고 판정하는 공정이며,
    상기 역치 압력은, 상기 연료 전지의 운전을 종료시킬 때의 상기 공급 배관의 압력보다도 낮고, 대기압보다도 높은 값이며,
    상기 판정 공정에 있어서, 상기 압력 계측값이 상기 역치 압력보다 낮은 경우에는, 상기 공급 배관에 상기 반응 가스를 공급하여 가압하고, 가압 후의 상기 공급 배관 내의 압력 변화에 기초하여 상기 반응 가스의 누설을 검출하는 가압 누설 검출 공정이 더 실행되는, 방법.
  2. 삭제
  3. 연료 전지에 공급되는 반응 가스의 누설을, 상기 연료 전지의 기동 시에 검출하는 방법에 있어서,
    상기 연료 전지에 공급 배관을 통하여 상기 반응 가스를 공급하기 전에, 상기 공급 배관 내의 압력을 검출하는 압력 검출 공정과,
    상기 압력 검출 공정에 있어서 취득한 압력 계측값을 사용하여 상기 반응 가스의 누설의 유무를 판정하는 판정 공정을 구비하고,
    상기 판정 공정은, 상기 압력 계측값이 소정의 역치 압력 이하인 경우에, 상기 연료 전지의 정지 중에 상기 반응 가스의 누설이 없다고 판정하는 공정이며,
    상기 역치 압력은 대기압보다도 낮은 값이고,
    상기 판정 공정에 있어서, 상기 압력 계측값이 상기 역치 압력보다 높은 경우에는, 상기 공급 배관에 상기 반응 가스를 공급하여 가압하고, 가압 후의 상기 공급 배관 내의 압력 변화에 기초하여 상기 반응 가스의 누설을 검출하는 가압 누설 검출 공정이 더 실행되는, 방법.
  4. 삭제
  5. 연료 전지에 공급되는 반응 가스의 누설을, 상기 연료 전지의 기동 시에 검출하는 방법에 있어서,
    상기 연료 전지에 공급 배관을 통하여 상기 반응 가스를 공급하기 전에, 상기 공급 배관 내의 압력을 검출하는 압력 검출 공정과,
    상기 압력 검출 공정에 있어서 취득한 압력 계측값을 사용하여 상기 반응 가스의 누설의 유무를 판정하는 판정 공정을 구비하고,
    상기 판정 공정은, 상기 압력 계측값이 소정의 역치 압력의 범위 내에 없는 경우에, 상기 연료 전지의 발전 정지 중에 상기 공급 배관으로부터의 상기 반응 가스의 누설이 없다고 판정하는 공정이며,
    상기 역치 압력의 범위의 상한값은, 상기 연료 전지의 운전을 종료시킬 때의 상기 공급 배관의 압력보다도 낮고, 대기압보다도 높은 값이며,
    상기 역치 압력의 범위의 하한값은, 대기압보다도 낮은 값이고,
    상기 판정 공정에 있어서, 상기 압력 계측값이, 상기 소정의 역치 압력의 범위 내인 경우에는, 상기 공급 배관에 상기 반응 가스를 공급하여 가압하고, 가압 후의 상기 공급 배관 내의 압력 변화에 기초하여 상기 반응 가스의 누설을 검출하는 가압 누설 검출 공정이 더 실행되는, 방법.
  6. 삭제
  7. 연료 전지 시스템에 있어서,
    연료 전지와,
    상기 연료 전지에 접속되어 있는 공급 배관을 구비하고, 상기 공급 배관을 통하여 상기 연료 전지에 반응 가스를 공급하는 반응 가스 공급부와,
    상기 공급 배관 내의 압력을 검출 가능한 압력 검출부와,
    상기 연료 전지에 대한 상기 반응 가스의 공급을 제어하여 상기 연료 전지의 운전을 제어하는 제어부를 구비하고,
    상기 제어부는, 상기 연료 전지에 상기 반응 가스를 공급하여 발전을 개시시키기 전에, 상기 압력 검출부에 의해 상기 공급 배관 내의 압력의 검출값을 취득하여, 상기 검출값이, 소정의 역치 압력 이상인 경우에는, 상기 연료 전지에 발전을 개시시키기 위한 처리를 개시하고, 상기 검출값이 상기 역치 압력보다 낮은 경우에는, 상기 반응 가스의 누설을 검출하기 위한 처리를 개시하고,
    상기 역치 압력은, 상기 연료 전지의 운전을 종료시킬 때의 상기 공급 배관의 압력보다도 낮고, 대기압보다도 높은 값인, 연료 전지 시스템.
  8. 연료 전지 시스템에 있어서,
    연료 전지와,
    상기 연료 전지에 접속되어 있는 공급 배관을 구비하고, 상기 공급 배관을 통하여 상기 연료 전지에 반응 가스를 공급하는 반응 가스 공급부와,
    상기 공급 배관 내의 압력을 검출 가능한 압력 검출부와,
    상기 연료 전지에 대한 상기 반응 가스의 공급을 제어하여 상기 연료 전지의 운전을 제어하는 제어부를 구비하고,
    상기 제어부는, 상기 연료 전지에 상기 반응 가스를 공급하여 발전을 개시시키기 전에, 상기 압력 검출부에 의해 상기 공급 배관 내의 압력의 검출값을 취득하여, 상기 검출값이, 소정의 역치 압력 이하인 경우에는, 상기 연료 전지에 발전을 개시시키기 위한 처리를 개시하고, 상기 검출값이 상기 역치 압력보다 높은 경우에는 상기 반응 가스의 누설을 검출하기 위한 처리를 개시하고,
    상기 역치 압력은 대기압보다도 낮은 값인, 연료 전지 시스템.
  9. 연료 전지 시스템에 있어서,
    연료 전지와,
    상기 연료 전지에 접속되어 있는 공급 배관을 구비하고, 상기 공급 배관을 통하여 상기 연료 전지에 반응 가스를 공급하는 반응 가스 공급부와,
    상기 공급 배관 내의 압력을 검출 가능한 압력 검출부와,
    상기 연료 전지에 대한 상기 반응 가스의 공급을 제어하여 상기 연료 전지의 운전을 제어하는 제어부를 구비하고,
    상기 제어부는, 상기 연료 전지에 상기 반응 가스를 공급하여 발전을 개시시키기 전에, 상기 압력 검출부에 의해 상기 공급 배관 내의 압력의 검출값을 취득하여, 상기 검출값이, 소정의 역치 압력의 범위 내에 없는 경우에는, 상기 연료 전지에 발전을 개시시키기 위한 처리를 개시하고, 상기 검출값이, 상기 역치 압력의 범위 내인 경우에는, 상기 반응 가스의 누설을 검출하기 위한 처리를 개시하고,
    상기 역치 압력의 범위의 상한값은, 상기 연료 전지의 운전을 종료시킬 때의 상기 공급 배관의 압력보다도 낮고, 대기압보다도 높은 값이며,
    상기 역치 압력의 범위의 하한값은, 대기압보다도 낮은 값인, 연료 전지 시스템.
  10. 제7항 내지 제9항 중 어느 한 항에 있어서, 상기 반응 가스의 누설을 검출하기 위한 처리는, 상기 공급 배관에 상기 반응 가스를 공급하여 가압하고, 가압 후의 상기 공급 배관의 압력 변화에 기초하여, 상기 반응 가스의 누설을 검출하는 처리인, 연료 전지 시스템.
KR1020150153265A 2014-11-13 2015-11-02 연료 전지의 반응 가스의 누설을 검출하는 방법 및 연료 전지 시스템 KR101874678B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014230861A JP6137128B2 (ja) 2014-11-13 2014-11-13 燃料電池の反応ガスの漏洩を検出する方法および燃料電池システム
JPJP-P-2014-230861 2014-11-13

Publications (2)

Publication Number Publication Date
KR20160057317A KR20160057317A (ko) 2016-05-23
KR101874678B1 true KR101874678B1 (ko) 2018-07-04

Family

ID=55855551

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150153265A KR101874678B1 (ko) 2014-11-13 2015-11-02 연료 전지의 반응 가스의 누설을 검출하는 방법 및 연료 전지 시스템

Country Status (6)

Country Link
US (1) US10079397B2 (ko)
JP (1) JP6137128B2 (ko)
KR (1) KR101874678B1 (ko)
CN (1) CN105609832B (ko)
CA (1) CA2909867C (ko)
DE (1) DE102015118793B4 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102540876B1 (ko) * 2017-12-19 2023-06-07 현대자동차주식회사 연료 전지 고장 진단 장치 및 방법
JP7062993B2 (ja) * 2018-02-13 2022-05-09 トヨタ自動車株式会社 燃料電池の検査方法および検査システム
CN110865248B (zh) * 2018-08-27 2023-03-03 上海汽车集团股份有限公司 一种膜电极性能测试系统和方法
KR20200056188A (ko) * 2018-11-14 2020-05-22 현대자동차주식회사 연료전지 시스템 및 그의 제어방법
US11404710B2 (en) * 2018-12-17 2022-08-02 Cummins Enterprise Llc Assembled portion of a solid oxide fuel cell and methods for inspecting the same
JP7103246B2 (ja) * 2019-01-30 2022-07-20 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの制御方法
CN113054224B (zh) * 2019-12-27 2022-08-26 未势能源科技有限公司 用于燃料电池供氢模块的控制方法、控制装置及燃料电池
US11251447B2 (en) * 2020-02-12 2022-02-15 GM Global Technology Operations LLC Process and system for detecting low-level fuel injector leakage in a fuel cell system
JP7420650B2 (ja) * 2020-06-04 2024-01-23 本田技研工業株式会社 ガス供給システム
CN111916790A (zh) * 2020-07-20 2020-11-10 东风汽车集团有限公司 一种高压储氢系统的控制方法
CN114520351B (zh) * 2020-11-18 2023-07-07 宇通客车股份有限公司 一种燃料电池系统及其故障检测方法、氢气泄漏检测方法
CN112659899B (zh) * 2020-12-15 2022-08-23 江苏大学 一种车载供氢系统的泄露融合检测系统及方法
CN114142063B (zh) * 2021-11-30 2023-08-15 深蓝汽车科技有限公司 燃料电池空气系统的管路泄漏诊断方法及系统、车辆
CN115172820A (zh) * 2022-08-15 2022-10-11 上海重塑能源科技有限公司 一种氢气泄露检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004192919A (ja) * 2002-12-10 2004-07-08 Toyota Motor Corp 燃料電池システム
JP2010272433A (ja) * 2009-05-25 2010-12-02 Toyota Motor Corp 燃料電池システム
JP2012133997A (ja) * 2010-12-21 2012-07-12 Honda Motor Co Ltd 燃料電池のクロスリーク判定方法と燃料電池システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317236A (ja) 1997-12-22 1999-11-16 Aqueous Reserch:Kk 燃料電池システム
JP4876369B2 (ja) 2003-06-19 2012-02-15 トヨタ自動車株式会社 燃料電池システムおよびガス漏洩検知方法
JP5483130B2 (ja) 2004-10-08 2014-05-07 トヨタ自動車株式会社 燃料電池システム及びガス漏れ検知方法
JP2006209996A (ja) * 2005-01-25 2006-08-10 Nissan Motor Co Ltd 燃料電池システム
US7127937B1 (en) 2005-06-01 2006-10-31 Gm Global Technology Operations, Inc. Method for leak detection in gas feeding systems with redundant valves
JP5196209B2 (ja) * 2005-08-09 2013-05-15 トヨタ自動車株式会社 燃料電池システム、および燃料電池システムにおける燃料ガス漏れ判定方法
JP2009037884A (ja) * 2007-08-02 2009-02-19 Honda Motor Co Ltd 燃料電池システム
JP4353296B2 (ja) * 2007-10-10 2009-10-28 トヨタ自動車株式会社 燃料電池システムおよび燃料電池の起動方法
JP5881787B2 (ja) 2014-08-05 2016-03-09 株式会社三共 遊技機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004192919A (ja) * 2002-12-10 2004-07-08 Toyota Motor Corp 燃料電池システム
JP2010272433A (ja) * 2009-05-25 2010-12-02 Toyota Motor Corp 燃料電池システム
JP2012133997A (ja) * 2010-12-21 2012-07-12 Honda Motor Co Ltd 燃料電池のクロスリーク判定方法と燃料電池システム

Also Published As

Publication number Publication date
JP2016095983A (ja) 2016-05-26
CN105609832A (zh) 2016-05-25
CA2909867C (en) 2019-09-17
DE102015118793A1 (de) 2016-05-19
DE102015118793B4 (de) 2023-02-16
CA2909867A1 (en) 2016-05-13
JP6137128B2 (ja) 2017-05-31
US10079397B2 (en) 2018-09-18
CN105609832B (zh) 2018-12-07
KR20160057317A (ko) 2016-05-23
US20160141677A1 (en) 2016-05-19

Similar Documents

Publication Publication Date Title
KR101874678B1 (ko) 연료 전지의 반응 가스의 누설을 검출하는 방법 및 연료 전지 시스템
KR101958119B1 (ko) 연료 전지 시스템 및 연료 전지 시스템에 있어서의 수소 누설 판정 방법
JP5196209B2 (ja) 燃料電池システム、および燃料電池システムにおける燃料ガス漏れ判定方法
JP5070685B2 (ja) 燃料電池システム、ガス漏れ検知装置およびガス漏れ検知方法
JP4506644B2 (ja) 燃料ガス消費システム、および燃料ガス消費システムのガス漏れ検出方法
US10411280B2 (en) Fuel cell system and method of shutting down the same
CN109768303B (zh) 燃料电池系统和控制燃料电池系统的方法
US20180269499A1 (en) Fuel cell system and control method therefor
CN109786788B (zh) 燃料电池系统
JP2020017435A (ja) 燃料電池システム
JP2004079451A (ja) ガス利用機関の停止方法
CN110911710B (zh) 气体供给系统、具备气体供给系统的燃料电池系统、气体供给系统的控制方法
US10388974B2 (en) Fuel cell system and emergency stop method
JP5370484B2 (ja) 水素濃度測定装置、および燃料電池システム
JP2018195374A (ja) 燃料電池システム
JP2006134647A (ja) 燃料電池システム
CN113675438B (zh) 燃料电池系统
JP5377845B2 (ja) 燃料電池システム及びその掃気方法
JP5418872B2 (ja) 燃料電池システム
JP2012123914A (ja) 燃料電池システム
US20220006109A1 (en) Method for Reducing the Carbon Corrosion in a Fuel Cell Stack, and Motor Vehicle
JP2009146658A (ja) 燃料電池システム及び燃料ガス漏れ検知方法
WO2006070917A1 (ja) 燃料電池の異常検知装置、運転装置及び運転方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant