KR101873199B1 - 3단 열대류 장치 및 그 사용법 - Google Patents

3단 열대류 장치 및 그 사용법 Download PDF

Info

Publication number
KR101873199B1
KR101873199B1 KR1020127020988A KR20127020988A KR101873199B1 KR 101873199 B1 KR101873199 B1 KR 101873199B1 KR 1020127020988 A KR1020127020988 A KR 1020127020988A KR 20127020988 A KR20127020988 A KR 20127020988A KR 101873199 B1 KR101873199 B1 KR 101873199B1
Authority
KR
South Korea
Prior art keywords
delete delete
heat source
chamber
channel
temperature
Prior art date
Application number
KR1020127020988A
Other languages
English (en)
Other versions
KR20120138747A (ko
Inventor
황현진
Original Assignee
아람 바이오시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아람 바이오시스템 주식회사 filed Critical 아람 바이오시스템 주식회사
Publication of KR20120138747A publication Critical patent/KR20120138747A/ko
Application granted granted Critical
Publication of KR101873199B1 publication Critical patent/KR101873199B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • C12M1/38Temperature-responsive control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50851Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates specially adapted for heating or cooling samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/142Preventing evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/041Connecting closures to device or container
    • B01L2300/042Caps; Plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1838Means for temperature control using fluid heat transfer medium
    • B01L2300/1844Means for temperature control using fluid heat transfer medium using fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1883Means for temperature control using thermal insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0442Moving fluids with specific forces or mechanical means specific forces thermal energy, e.g. vaporisation, bubble jet
    • B01L2400/0445Natural or forced convection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5082Test tubes per se
    • B01L3/50825Closing or opening means, corks, bungs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Sustainable Development (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

다단 열 대류 장치 및 그의 사용법이 개시된다. 일 실시예에서, 본 발명은 열대류에 의해 중재된 중합효소연쇄반응(polymerase chain reaction(PCR))을 도와주는 온도 형상화 요소를 포함하는 3단 열대류 장치를 특징으로 한다. 본 발명은 많은 종래의 장치들과 관련된 거추장스럽고 고가인 하드웨어를 사용하지 않고 핵산을 증폭하는 것을 포함하는 다양한 응용들을 가진다. 일반적인 실시예에서, 본 장치는 휴대용이며, 작동하기가 간단하고, 그리고 저비용인 PCR 증폭 장치로서 사용되기 위해 사용자의 손바닥에 맞게 만들어질 수 있다.

Description

3단 열대류 장치 및 그 사용법{THREE-STAGE THERMAL CONVECTION APPARATUS AND USES THEREOF}
본 발명은 다단 열 대류 장치에 관한 것으로, 특히, 3단 열대류 장치 및 그 사용법에 관한 것이다. 본 장치는 중합효소연쇄반응(polymerase chain reaction(PCR))을 도와주는 적어도 하나의 온도 형상화 요소(temperature shaping element)를 포함한다. 본 발명은, 종래의 장치들에서의 거추장스럽고 종종 고비용인 하드웨어를 사용하지 않고, 주형 DNA를 증폭하는 것을 포함하는 매우 다양한 응용들을 포함한다. 일 실시예에서 본 장치는 휴대용 PCR 증폭 장치로서 사용되기 위해 사용자의 손바닥에 맞게 만들어질 수 있다.
중합효소연쇄반응(PCR)은 온도 변화 사이클이 완료될 때마다 폴리뉴클레오타이드 서열(polynucleotide sequence)을 증폭시키는 기술이다. 예를 들어 다음을 참조하라: PCR: A Practical Approach, by M. J. McPherson, et al., IRL Press (1991), PCR Protocols : A Guide to Methods and Applications, by Innis, et al., Academic Press (1990), and PCR Technology: Principals and Applications for DNA Amplification, H. A. Erlich, Stockton Press (1989). PCR은, U.S. Pat. Nos. 4,683,195; 4,683,202; 4,800,159; 4,965,188; 4,889,818; 5,075,216; 5,079,352; 5,104,792; 5,023,171; 5,091,310; and 5,066,584를 포함하는 많은 특허들에도 설명되어 있다.
많은 응용들에서, PCR은 관심의 대상이 되는 폴리뉴클레오타이드(주형(template))를 디네츄링(denaturing)한 후 디네츄링된 주형에 원하는 프라이머 올리고뉴클레오타이드(primer oligonucleotide)("프라이머")를 아닐링하는 것을 수반한다. 아닐링 후, 중합효소(polymerase)는 프라이머를 포함하여 연장되는 새로운 폴리뉴클레오타이드 가닥의 합성을 촉매한다. 디네츄레이션(denaturation), 프라이머 아닐링(primer annealing), 및 프라이머 연장(primer extension)의 일련의 단계들이 단일 PCR 사이클을 구성한다. 이 단계들은 PCR 증폭과정동안 수차례 반복된다.
사이클이 반복되면서, 새롭게 합성된 폴리뉴클레오타이드의 양은 기하급수적으로 증가한다. 많은 실시예들에서, 프라이머들은 주어진 이중 가닥 폴리뉴클레오타이드의 양쪽 가닥들에 아닐링 될수 있는 쌍으로 선택된다. 이 경우, 두 아닐링 지점 간의 영역이 증폭될 수 있다.
다중 사이클 PCR 실험 동안 반응 혼합물의 온도를 변화시킬 필요가 있다. 예를 들면, DNA의 디네츄레이션은 일반적으로 약 90℃ 내지 약 98℃ 또는 그 이상의 온도에서 일어나고, 프라이머가 디네츄레이션된 DNA에 아닐링 되는 것은 일반적으로 약45℃ 내지 약 65℃에서 수행되며, 아닐링된 프라이머들이 중합효소에 의해 연장되는 단계는 일반적으로 약 65℃ 내지 약 75℃에서 수행된다. 이러한 온도 단계들은, PCR이 최적으로 진행되기 위해서, 순차적으로 반복되어야 한다.
이러한 요구에 부합하기 위해, 상업적으로 이용가능한 다양한 장치들이 PCR을 수행하기 위해 개발되어 왔다. 많은 장치들의 주요한 구성요소로서, 하나 또는 그 이상의 온도가 조절된 요소들(때로는 "히트블록"이라 불리운다)이 PCR 시료를 수용하고 있는 형태의 온도 사이클러(thermal cycler)를 들 수 있다. 이러한 히트블록의 온도는 온도 사이클링을 지원하기 위해 시간의 경과에 따라 변화되게 된다. 불행하게도 이러한 장치들은 중요한 결점들을 가지고 있다.
예를 들어, 대부분의 장치들은 대형이며, 거추장스럽고, 일반적으로 고가이다. 온도 사이클링을 지원하는 히트블록을 가열하고 냉각하기 위해 많은 양의 전력이 일반적으로 필요하다. 사용자들은 많은 경우에 광범위한 훈련을 필요로 한다. 따라서, 이러한 장치들은 일반적으로 현장에서 사용하기에는 적합하지 않다.
이러한 문제점들을 극복하기 위한 시도들은 전적으로 성공적이지 못했다. 예를 들어, 하나의 시도는 다수의 온도가 조절된 히트블록들의 사용을 수반하는 것으로, 각 블록을 원하는 온도에 유지시키고 시료를 히트블록들 간에 이동시키는 방법이다. 하지만, 이 장치들은, 시료를 서로 다른 히트블록들 간에 이동시키기 위한 복잡한 기계장치의 필요성 및 하나 또는 몇 개의 히트블록들을 동시에 가열하거나 냉각할 필요성 등과 같은 다른 단점들을 가지고 있다.
어떤 PCR 공정들에서는 열 대류를 이용하려는 노력이 있어 왔다. 다음을 참조하라: Krishnan, M. et al. (2002) Science 298: 793; Wheeler, E.K. (2004) Anal . Chem. 76: 4011-4016; Braun, D. (2004) Modern Physics Letters 18: 775-784; 그리고 WO02/072267. 그러나, 이러한 시도들 중 어떠한 시도도, 소형이고, 휴대가능하며, 더 적절한 가격대이고, 전력 요구가 적은 열 대류 PCR 장치를 만들어내지 못하였다. 또한, 이러한 열 대류 장치들은 많은 경우에 PCR 증폭 효율이 낮으며 앰플리콘의 사이즈가 제한적이라는 단점을 가지고 있다.
본 발명은 다단 열 대류 장치에 관한 것으로, 특히, 3단 열대류 장치 및 그 사용법에 관한 것이다. 본 장치는 중합효소연쇄반응(polymerase chain reaction(PCR))을 도와주는 적어도 하나의 온도 형상화 요소(temperature shaping element)를 일반적으로 포함한다. 아래에 설명된 바와 같이, 일반적인 온도 형상화 요소는 열 대류 PCR을 지원하는 장치의 구조적 그리고/또는 위치적 특징이다. 온도 형상화 요소의 존재는 PCR 증폭의 효율 및 속도를 향상시키고, 소형화를 지원하며, 많은 양의 전력에 대한 필요성을 감소시킨다. 일 실시예에서, 본 장치는 사용자의 손바닥에 쉽게 맞는 크기이며 배터리 동작에 충분한 저전력 필요조건들을 갖추고 있다. 이 실시예에서, 장치는 이전의 많은 PCR 장치들보다 더 작으며, 덜 비싸고, 더 휴대하기 편하다.
따라서, 그리고 일 측면에 따르면, 본 발명은 열 대류 PCR 증폭을 수행하도록 적응된 3단 열대류 장치("장치")를 특징으로 한다.
바람직하게는, 상기 장치는,
(a) PCR을 수행하기 위한 반응용기를 수용하도록 적응된 채널을 가열 또는 냉각하며, 상부면과 하부면을 포함하는 제 1 열원;
(b) 상기 채널을 가열 또는 냉각하며, 상부면과 상기 제 1 열원의 상부면과 마주하는 하부면을 포함하는 제 2 열원;
(c) 상기 채널을 가열 또는 냉각하며, 상부면과 상기 제 2 열원의 상부면과 마주하는 하부면을 포함하는 제 3 열원으로서, 상기 채널은 상기 제 1 열원과 접촉하는 하단부와 상기 제 3 열원의 상부면과 접하는 관통구에 의해 정의되며, 또한 상기 하단부와 상기 관통구 사이의 중심 점들이 채널축을 형성하고 상기 채널축을 기준으로 상기 채널이 배치되는, 제 3 열원;
(d) 열 대류 PCR을 돕도록 적응된 적어도 하나의 온도 형상화 요소; 및
(e) 상기 제 1 열원 내에서 상기 채널을 수용하도록 적응된 수용구; 중 적어도 하나 바람직하게는 모두를 작동가능하게 연결된 구성요소로서 포함한다.
또한, 본 명세서에 기술된 열 대류 PCR을 수행하기에 충분하도록 (a)-(e) 각각을 작동가능한 조합으로 조립하는 것을 포함하는 방법으로서 상기 장치를 제조하는 방법이 제공된다.
본 발명의 다른 측면에 따르면, 본 명세서에 기술된 장치들 중 적어도 하나를 이용하여 PCR을 수행하도록 적응된 열 대류 PCR 원심 분리기("PCR 원심 분리기")를 제공한다.
본 발명에 의해 제공되는 또 다른 것은 열 대류에 의해 중합효소연쇄반응을 수행하기 위한 방법이다. 일 실시예에서, 상기 방법은,
(a) 이중가닥 핵산분자를 디네츄링하여 단일가닥 주형을 형성하기에 적합한 온도 범위에 수용구를 포함하는 제 1 열원을 유지하는 단계;
(b) 적어도 하나의 올리고뉴클레오타이드 프라이머를 상기 단일가닥 주형에 아닐링하기에 적합한 온도 범위에 제 3 열원을 유지하는 단계;
(c) 상기 단일가닥 주형을 따라 상기 프라이머의 중합(polymerization)을 지원하기에 적합한 온도에 제 2 열원을 유지하는 단계; 및
(d) 프라이머 연장 생성물을 생성하기에 충분한 조건 하에서 상기 수용구와 상기 제 3 열원 사이에 열 대류를 생성하는 단계; 중 적어도 하나, 바람직하게는 모든 단계를 포함한다.
또 다른 측면에 따르면, 본 발명은 본 발명의 장치에 의해 수용되도록 적응된 반응용기를 제공한다.
도 1은 장치의 일 실시예를 위쪽에서 바라본 모양을 도시한 개략적인 도이다. 장치를 통과하는 단면(A-A 및 B-B)들이 도시되어 있다.
도2a-2c는 제 1 챔버(100)를 가지는 장치의 일 실시예의 단면도를 도시한 개략적인 도이다. 도 2a-2c는 면A-A(도 2a 및 도2b) 및 면 B-B(도 2c)를 따라서 취한 단면도들이다.
도 3a-3b는 면 A-A를 따라 취한 장치 실시예들의 단면도를 도시한 개략적인 도이다. 각 장치는 채널축(80)에 대하여 상이한 폭을 가지는 제 1(100) 및 제 2(110) 챔버를 포함한다.
도 4a-4b는 장치의 실시예의 단면도(A-A)를 도시한 개략적인 도이다. 도 4b는 (도 4a에서 점선으로 표시된 원으로 정의된) 영역의 확대도를 도시한다. 상기 장치는 제 1(100), 제 2(110), 및 제 3(120) 챔버를 포함한다. 제 1 및 제 2 챔버 간의 영역은 제 1 온도 브레이크(130)를 포함한다. 제 2 및 제 3 챔버 간의 영역은 제 2 온도 브레이크(140)를 포함한다.
도 5a-5d는 장치의 채널 실시예들을 도시한 개략적인 도이다(면 A-A).
도 6a-6j는 장치의 채널 실시예들을 도시한 개략적인 도이다. 단면의 면은 채널축(80)에 수직한다.
도 7a-7i는 장치의 다양한 챔버 실시예들을 도시한 도이다. 단면의 면은 채널축(80)에 수직한다. 사선으로 표시된 부분들은 제 2 또는 제 3 열원을 나타낸다.
도 8a-8p는 장치의 다양한 챔버 및 채널 실시예들을 도시한 도이다. 단면의 면은 채널축(80)에 수직한다. 사선으로 표시된 부분들은 제 2 또는 제 3 열원을 나타낸다.
도 9a-9b는 장치 실시예들의 단면도(면 A-A)를 도시한 개략적인 도이다. 제 1 챔버(100)가 테이퍼(taper)되어 있다.
도 10a-10f는 제 1 온도 브레이크(130)를 가지는 다양한 장치 실시예들의 단면도(면 A-A)를 도시한 개략적인 도이다. 도 10b, 도 10d, 및 도 10f는, 제 1 온도 브레이크(130)의 구조적 세부사항을 보여주기 위해 각각 도 10a, 도 10c, 및 도 10e에 도시된 점선의 원으로 표시된 영역의 확대도를 도시한다.
도 11a-11b는 장치의 일 실시예의 단면도(A-A)를 도시한 개략적인 도이다. 도 11b는 제 1(130) 및 제 2(140) 온도 브레이크의 위치를 강조하기 위해 도 11a에 도시된 점선의 원으로 표시된 영역의 확대도를 보여준다.
도 12a는 장치의 일 실시예의 단면도(A-A)를 도시한 개략적인 도이다. 제 1(20) 및 제 2 열원(30)은 채널축(80) 방향의 돌출부(23, 24, 33, 34)를 특징으로 한다. 제 1 온도 브레이크(130)가 제 1 챔버(100) 아래에 도시되어 있다.
도 12b는 도 12a에 도시된 장치의 위치고정 실시예를 도시한다. 이 장치는 중력 방향에 대하여 (θg에 의해 정의된 각도만큼) 기울어져 있다.
도 13은 장치의 일 실시예의 단면도(A-A)를 도시한 개략적인 도이다. 수용구(73)가 채널축(80) 주위에 비대칭적으로 배치되어 있으며 수용구 갭(74)을 형성하고 있다.
도 14a는 장치의 일 실시예의 단면도(A-A면)를 도시한 개략적인 도이다. 제 1 (100) 및 제 2 챔버(110)가 각각 제 2(30) 및 제 3 열원(40)에 위치하고 있다.
도 14b는 장치의 일 실시예의 단면도(A-A면)를 도시한 개략적인 도이다. 제 1(100) 및 제 2(110) 챔버는 제 2 열원(30)에 위치하며, 제 3 챔버(120)는 제 3 열원(40)에 위치한다. 제 1 온도 브레이크(130)는 제 2 열원(30) 내에서 제 1(100) 및 제 2(110) 챔버 사이에 위치한다.
도 14c는 제 2(30) 및 제 3(40) 열원에 각각 위치하는 제 1(100) 및 제 2(110) 챔버를 포함하는 장치의 일 실시예의 단면도(A-A)를 도시한 개략적인 도이다. 제 1 온도 브레이크(130)가 제 1 챔버(100) 아래에 도시되어 있다.
도 15a-15b는 제 1 챔버(100)가 제 3 열원(40)에 위치하는 장치 실시예들의 단면도(A-A면)를 도시한 개략적인 도이다. 도 15b에서, 제 1 열원(20)은 수용구(73)를 기준으로 대칭적으로 배치된 돌출부(23, 24)를 특징으로 한다.
도 16a-16c는 장치 실시예의 단면도들을 도시한 개략적인 도이다. 도 16a- 16c는 면A-A(도 16a-16b) 및 B-B(도 16c)을 따라 취한 단면도이다. 제 2 열원(30)은 채널축(80)을 기준으로 대칭적으로 배치되어 제 1 챔버(100)의 길이를 연장하는 돌출부(33, 34)를 포함한다.
도 17a-17c는 면 A-A(도 17a-17b) 및 면 B-B (도 17c)을 따라 취한 장치 실시예의 개략적인 도이다. 제 1(20), 제 2(30), 및 제 3(40) 열원은 채널축(80)을 기준으로 대칭적으로 각각 위치한 돌출부(23, 24, 33,34, 43, 44)를 포함한다.
도 18a는 장치의 실시예의 단면도(A-A)를 도시한 개략적인 도이다. 이 장치는 중력 방향에 대하여 (θg에 의해 정의된 각만큼) 기울어져 있다.
도 18b는 채널(70)과 제 1 챔버(100)가 제 2 열원(30) 내에서 중력 방향에 대하여 기울어져 있는 장치의 일 실시예를 도시한다. 중력의 방향은 열원에 대하여 수직 상태로 유지된다.
도 19는 장치의 일 실시예의 단면도(A-A)를 도시한 개략적인 도이다. 이 실시예에서, 제 1 열원(20)은 수용구 갭(74)을 가지는 수용구(73)를 특징으로 한다.
도 20a-20b는 면 A-A를 따라 취한 장치 실시예들의 단면도를 도시한 개략적인 도이다. 제 1 열원(20)은 수용구 갭(74)을 포함한다. 도 20b에 도시된 실시예에서, 수용구 갭(74)은 채널축(80)에 대하여 기울어져 있는 상부면을 포함한다.
도 21a-21b는 면 A-A를 따라 취한 장치 실시예들의 단면도를 도시한 개략적인 도이다. 제 1 열원(20)은 수용구(73) 주위에 비대칭적으로 배치된 돌출부(23)를 특징으로 한다. 도 21a에서, 수용구(73) 옆의 돌출부(23)는 복수의 상부면을 가지며, 이 복수의 상부면 중 하나가 보다 큰 높이를 가지며 제 1 챔버(100)에 더 근접하고 있다. 도 21b에서, 돌출부(23)는, 일 측이 수용구(73)의 반대쪽에 있는 다른쪽 측보다 더 큰 높이를 가지며 제 1 챔버에 더 근접하도록, 채널축(80)에 대하여 기울어져 있는 하나의 상부면을 가진다.
도 22a-22d는 면 A-A를 따라 취한 장치 실시예들의 단면도를 도시한 개략적인 도이다. 이 실시예들에서, 제 1(20) 및 제 2(30) 열원은 채널축(80)을 기준으로 비대칭적으로 배치된 돌출부(23, 33)를 특징으로 한다. 돌출부(23, 33)는 일 측에서 채널축(80)의 반대쪽에 있는 다른쪽 측보다 더 큰 높이를 가진다. 돌출부(23)의 상단부와 돌출부(33)의 하단부는 복수의 면(도 22a 및 도 22c)을 가지거나, 채널축(80)에 대하여 기울어져 있다(도 22b 및 도 22d). 도 22a 및 22b에서, 제 1 챔버(100)는, 채널축(80)의 반대쪽에 있는 다른쪽 부분보다 한 부분이 돌출부(23)의 한쪽 부분에 더 근접하게 되어 있는 하단부(102)를 특징으로 한다. 도 22c 및 도 22d에서, 제 1 챔버(100)의 하단부(102)는 돌출부(23)의 상부면으로부터 본질적으로 일정한 거리에 위치한다.
도 23a-23b는 면 A-A을 따라 취한 장치 실시예들의 단면도를 도시한 개략적인 도이다. 이 실시예들에서, 제 1 열원(20)은 수용구(73) 주위에 대칭적으로 배치된 돌출부(23)를 특징으로 하며, 제 2 열원(30)은 채널축(80)을 기준으로 비대칭적으로 배치된 돌출부(33)를 특징으로 한다. 도 23a에서, 제 1 챔버(100)의 하단부(102)는, 하단부(102)의 일부가 채널축(80)의 반대 쪽에 있는 다른쪽 부분보다 돌출부(23)의 한쪽 부분에 더 근접하게 되어 있는 복수의 면을 특징으로 한다. 도 23b에서, 제 1 챔버(100)의 하단부(102)는, 하단부(102)의 일부가 채널축(80)의 반대쪽에 있는 다른쪽 부분보다 돌출부(23)에 더 근접하도록, 채널축(80)에 대하여 기울어져 있다.
도 24a-24b는 면 A-A을 따라 취한 장치 실시예들의 단면도를 도시한 개략적인 도이다. 이 실시예들에서, 제 2 열원(30)은 채널축(80)을 기준으로 비대칭적으로 배치된 돌출부(33, 34)를 특징으로 한다. 돌출부(33)의 하단부와 돌출부(34)의 상단부는 채널축(80)에 대하여 기울어져 있거나(도 24a), 복수의 면을 가진다(도 24b). 제 1 챔버(100)는 하단부(102)의 일부가 채널축(80)의 반대쪽에 있는 다른쪽 부분보다 제 1 열원의 상부면에 더 근접해 있는 것을 특징으로 한다. 상단부(101) 또한 일부가 채널축(80)의 반대쪽에 있는 다른쪽 부분보다 제 3 열원(40)의 하부면에 더 근접해 있는 것을 특징으로 한다.
도 25는 제 2 열원(30) 내에 채널축(80)을 기준으로 비대칭적으로 배치된 제 1(100) 및 제 2(110) 챔버를 도시하는, 면 A-A를 따라 취해진 장치의 일 실시예의 단면도를 도시한 개략적인 도이다.
도 26은 제 1 챔버(100)가 채널축(80)에 대하여 각을 이루며 배치된 벽(103)을 포함하는 장치의 일 실시예의 면 A-A를 따라 취한 단면도를 도시한 개략적인 도이다.
도 27a-27b는 면 A-A를 따라 취한 장치 실시예들의 단면도를 도시한 개략적인 도이다. 이 실시예들에서, 제 2 열원(30)은 채널축(80)을 기준으로 비대칭적으로 배치된 돌출부(33, 34)를 특징으로 한다. 돌출부(33)의 하단부와 돌출부(34)의 상단부는 채널축(80)에 대하여 기울어져 있거나(도 27a), 복수의 면을 가진다(도 27b). 도 27b에서, 제 1(20) 및 제 3(40) 열원은 채널축(80)을 기준으로 대칭적으로 배치된 돌출부(23, 24, 43, 44)를 특징으로 한다. 도 27a 및 도 27b에서, 제 1 챔버(100)의 하단부(102)의 일부는 채널축(80)의 반대쪽에 있는 다른쪽 부분보다 제 1 열원(20)의 상부면에 더 근접하여 위치한다. 또한, 상단부(101)는 일부가 채널축(80)의 반대쪽에 있는 다른쪽 부분보다 제 3 열원(40)의 하부면에 더 근접하여 위치한다.
도 28a-28b는 제 2 열원(30) 내에 제 1 챔버(100)와 제 2 챔버(110)를 가지는 장치 실시예의 면 A-A를 따라 취한 단면도를 도시한 개략적인 도이다. 도 28b에 도시된 바와 같이, 상기 장치는, 제 1(100) 및 제 2(110) 챔버 사이에 채널(70)을 기준으로 비대칭적으로 배치되어 있으며, 일 측에서 채널(70)과 접촉하는 벽(133)을 가진 제 1 온도 브레이크(13)를 특징으로 한다.
도 29a는 제 1 챔버(100)가 제 2 열원(30) 내에 위치하며 채널(70)을 기준으로 비대칭적으로(중심에서 벗어나게) 배치된 장치의 일 실시예의 단면도를 도시한 개략적인 도이다.
도 29b-29c는 장치 실시예의 단면도를 면 A-A를 따라 도시한 개략적인 도이다. 제 1 챔버(100)는 채널(70)을 기준으로 비대칭적으로 배치된다. 도 29c에 도시된 바와 같이, 온도 브레이크(130)는, 일 측에서 채널(70)과 접촉하는 벽(133)을 가지고 있으며, 채널(70)을 기준으로 비대칭적으로 배치되어 있다.
도 30a-30b는 제 1(100) 및 제 2(110) 챔버가 제 2 열원(30) 내에 위치하는 장치 실시예의 단면도를 면 A-A를 따라 도시한 개략적인 도이다. 제 1(100) 및 제 2(110) 챔버는 채널축(80)을 기준으로 비대칭적으로 배치된다. 도 30b에 도시된 확대도에서, 온도 브레이크(130)는 제 1(100) 및 제 2(110) 챔버 사이에 채널(70)을 기준으로 대칭적으로 배치된다. 온도 브레이크(130)의 벽(133)은 채널(70)과 접촉한다.
도 30c-30d는 제 1(100) 및 제 2(110) 챔버가 제 2 열원(30) 내에 배치된 장치 실시예의 단면도를 면 A-A를 따라 도시한 개략적인 도이다. 제 1(100) 및 제 2(110) 챔버는 채널축(80)을 기준으로 비대칭적으로 배치된다. 채널축(80)에 수직하는 제 1 챔버(100)의 폭은 채널축(80)을 따라 제 2 챔버(110)의 폭보다 더 작다. 도 30d에 도시된 확대도에서, 제 1 온도 브레이크(130)는, 일 측에서 채널(70)과 접촉하는 벽(1330)을 가지고 있으며, 채널(70)을 기준으로 비대칭적으로 배치되는 것으로 도시되어 있다.
도 31a-31b는 제 1 (100) 및 제 2(110) 챔버가 제 2 열원(30) 내에 있는 장치 실시예의 단면도를 면 A-A를 따라 도시한 개략적인 도이다. 제 1(100) 및 제 2(110) 챔버는 면 A-A 상에서 반대 방향으로 채널축(80)을 기준으로 비대칭적으로 배치되어 있다. 온도 브레이크(130)는, 채널(70)과 접촉하는 벽(133)을 가지고 있으며 채널(70)을 기준으로 대칭적으로 배치되는 것으로 도시되어 있다.
도 32a-32b는 제 1(100) 및 제 2(110) 챔버가 제 2 열원(30) 내에 배치된 장치 실시예의 단면도를 면 A-A를 따라 도시한 개략적인 도이다. 제 1(100) 및 제 2(110) 챔버는 채널축(80)을 기준으로 비대칭적으로 배치된다. 도 32b에 도시된 바와 같이, 제 1 온도 브레이크(130) 또한 채널(70)을 기준으로 비대칭적으로 배치되며, 일 측에서 채널(70)과 접촉하는 벽(133)을 가지고 있다.
도 32c-32d는 제 1(100) 및 제 2(110) 챔버가 제 2 열원(30)에 있으며 채널축(80)을 기준으로 비대칭적으로 배치된 장치 실시예의 단면도를 면 A-A를 따라 도시한 개략적인 도이다. 도 32d에 도시된 바와 같이, 제 1 온도 브레이크(130) 또한 채널(70)을 기준으로 비대칭적으로 배치되며, 일 측에서 채널(70)과 접촉하는 벽(133)을 가지고 있다.
도 33a-33b는 제 1(100) 및 제 2(110) 챔버가 제 2 열원(30) 내에 있으며 면 A-A 상에서 반대 방향으로 채널축(80)을 기준으로 비대칭적으로 배치되어 있는 장치 실시예의 단면도를 면 A-A를 따라 도시한 개략적인 도이다. 도 33b에 도시된 확대도에서, 제 1 온도 브레이크(130)는 제 1 챔버(100) 내에서 비대칭적으로 배치되며, 일 측에서 채널(70)과 접촉하는 벽(133)을 가지고 있는 것으로 도시되어 있다. 제 2 온도 브레이크(140) 또한 제 2 챔버(110) 내에서 비대칭적으로 배치되며, 일 측에서 채널(70)과 접촉하는 벽(143)을 가지고 있는 것으로 도시되어 있다. 제 1 온도 브레이크(130)의 상단부(131)는 본질적으로 제 2 온도 브레이크(140)의 하단부(142)와 같은 높이에 위치된다.
도 33c-33d는 제 1(100) 및 제 2(110) 챔버가 제 2 열원(30) 내에 있으며 면 A-A을 따라 반대 방향으로 채널축(80)을 기준으로 비대칭적으로 배치된 장치 실시예의 단면도를 면 A-A를 따라 도시한 개략적인 도이다. 도 33d에 도시된 확대도에서, 제 1(130) 및 제 2(140) 온도 브레이크는, 일 측에서 채널(70)과 각각 접촉하는 벽들(133, 143)을 가지고 있으며, 비대칭적으로 배치되어 있는 것으로 도시되어 있다. 제 1 온도 브레이크(130)의 상단부(131)는 제 2 온도 브레이크(140)의 하단부(142)보다 더 높게 위치된다.
도 33e-33f는 제 1(100) 및 제 2(110) 챔버가 제 2 열원(30) 내에 있으며 면 A-A을 따라 반대 방향으로, 채널축(80)을 기준으로 비대칭적으로 배치되는 장치 실시예의 단면도를 면 A-A를 따라 도시한 개략적인 도이다. 도 33f에 도시된 확대도에서, 제 1(130) 및 제 2(140) 온도 브레이크는, 일 측에서 채널(70)과 각각 접촉하는 벽들(133, 143)을 가지고 있으며, 비대칭적으로 배치되어 있는 것으로 도시되어 있다. 제 1 온도 브레이크(130)의 상단부(131)는 제 2 온도 브레이크(140)의 하단부(142)보다 낮게 위치된 것으로 도시되어 있다.
도 34a-34b는 제 1(100) 및 제 2(110) 챔버가 제 2 열원(30) 내에 있으며 채널축(80)을 기준으로 비대칭적으로 배치되는 장치 실시예의 면 A-A를 따른 단면도를 도시한 개략적인 도이다. 제 1 챔버(100)의 상단부(101)와 제 2 챔버(110)의 하단부(112)는 채널축(80)에 대하여 경사져 있다 (기울어져 있다). 제 1 챔버(100)의 벽(103), 제 2 챔버(110)의 벽(113)은 각각 본질적으로 채널축(80)에 평행한다. 도 34b에 도시된 확대도에서, 제 1 온도 브레이크(130)는 채널축(80)에 대하여 경사진 것으로 (기울어진 것으로) 도시되어 있으며, 벽(133)은 채널(70)에 접촉한다.
도 35a-35d는 제 1(100) 및 제 2(110) 챔버가 제 2 열원(30) 내에 있으며 채널축(80)을 기준으로 비대칭적으로 배치되는 장치 실시예들의 면 A-A에 따른 단면도들을 도시한 개략적인 도이다. 도 35a-35d에서, 제 1 챔버(100)의 벽(103)과 제 2 챔버(110)의 벽(113)은 채널축(80)에 대하여 경사져 있는 것으로 (기울어져있는 것으로) 도시되어 있다. 도 35b에 도시된 확대도에서, 온도 브레이크(130)는, 채널(70)과 접촉하는 벽(133)을 가지고 있으며, 채널(70)을 기준으로 대칭적으로 배치되어 있는 것으로 도시되어 있다. 도 35d에 도시된 확대도에서, 제 1 온도 브레이크(130)는 채널(70)과 접촉하는 벽(133)을 가지고 있으며, 채널축(80)에 대하여 경사진 것으로 (기울어진 것으로) 도시되어 있다.
도 36a-36c는 제 1 챔버(100)가 제 2 열원(30) 내에 있으며 제 2 챔버(110)가 제 3 열원(40) 내에 있는 경우(도 36a 및 도 36c), 또는 제 1 챔버(100)와 제 2 챔버(110)가 제 2 열원(30) 내에 있으며 제 3 챔버(120)가 제 3 열원(40) 내에 있는 경우(도 36b)의 다양한 장치 실시예들의 면 A-A를 따른 단면도들을 도시한 개략적인 도이다. 모든 도에서, 챔버들은 채널축(80)을 기준으로 대칭적으로 배치된다. 도 36a-36c에서, 제 2 열원(30)은, 제 1 챔버(100)를 정의하며 채널축(80)을 기준으로 대칭적으로 배치된 돌출부(33)를 특징으로 하며, 제 1 열원(20)은 돌출부(23, 24)를 특징으로 한다. 도 36a-36b에서, 제 1 챔버(100)의 하단부(102)는 제 1 단열체(50)와 접촉한다. 도 36c에서, 제 1 챔버(100)의 하단부(102)는 제 2 열원(30)과 접촉한다.
도 37a-37c는 제 1 챔버(100)가 제 2 열원(30) 내에 있으며 제 2 챔버(110)가 제 3 열원(40) 내에 있는 경우(도 37a 및 37c), 또는 제 1 챔버(100)와 제 2 챔버(110)가 제 2 열원(30) 내에 있으며 제 3 챔버(120)가 제 3 열원(40) 내에 있는 경우(도 37b)의 다양한 장치 실시예들의 면 A-A를 따른 단면도들을 도시한 개략적인 도이다. 모든 도에서, 챔버들은 채널축(80)을 기준으로 대칭적으로 배치된다. 돌출부들(23, 24, 33, 및 34)은 채널축(80)을 기준으로 대칭적으로 배치된다. 도 37a-37b에서 제 1 챔버(100)의 하단부(102)는 제 1 단열체(50)와 접촉하는 반면, 도 37c에서는 제 2 열원(30)과 접촉한다.
도 38a-38c는 면 A-A를 따라 취한 다양한 장치 실시예들의 단면도들을 도시한 개략적인 도이다. 도 38a 및 38c에서는 제 1 챔버(100)가 제 2 열원(30) 내에 있고, 제 2 챔버(110)는 제 3 열원(40) 내에 있으며, 도 38b에서는, 제 1 챔버(100)와 제 2 챔버(110)가 제 2 열원(30) 내에 있으며, 제 3 챔버(120)가 제 3 열원(40) 내에 있다. 챔버들은 채널축(80)을 기준으로 대칭적으로 배치되어 있다. 돌출부들(23, 24, 33, 34, 43)은 채널축(80)을 기준으로 대칭적으로 배치된다. 도 38a-38b에서 제 1 챔버(100)의 하단부(102)는 제 1 단열체(50)와 접촉하는 반면, 도 38c에서는 제 2 열원(30)과 접촉한다.
도 39는 제 1 고정요소(200), 제 2 고정요소(210), 가열/냉각 요소(160a-160c), 및 온도센서(170a-170c)를 보여주는 장치(10)의 일 실시예를 위쪽에서 바라본 모양을 도시한 개략적인 도이다. 여러 단면들이 표시되어 있다(A-A, B-B, 및 C-C).
도 40a-40b는 도 39에 도시된 장치 실시예의 면 A-A(도 40a) 및 면 B-B(도 40b)를 따라 취한 단면도의 개략적인 도이다.
도 41은 제 1 고정요소(200)의 면 C-C을 따라 취한 단면도의 개략적인 도이다.
도 42는 여러 고정요소들, 열원 구조, 가열/냉각 요소들, 및 온도 센서들을 보여주는 장치의 일 실시예를 위쪽에서 바라본 모양의 개략적인 도이다.
도 43a-43b는 제 3(310) 및 제 4(320) 단열체를 정의하는 제 1 하우징 요소(300)를 보여주는 장치의 일 실시예의 위쪽에서 바라본 모양(도 43a)과 단면도(도 43b)의 개략적인 도이다.
도 44a-44b는 제 2 하우징 요소(400)와 제 5 (410) 및 제 6 (420) 단열체를 포함하는 장치의 일 실시예의 위쪽에서 바라본 모양(도 44a)과 단면도(도 44b)의 개략적인 도이다.
도 45a-45b는 PCR 원심분리기의 일 실시예의 개략적인 도이다. 도 45a는 위쪽에서 바라본 모양을 도시하며 도 45b는 면 A-A를 따라 취한 단면도를 도시한다.
도 46은 PCR 원심 분리기 장치의 일 실시예의 면 A-A을 따라 취한 단면도를 도시한 개략적인 도이다.
도 47a-47b는 제 1 챔버와 제 1 온도 브레이크를 포함하는 PCR 원심 분리기의 일 실시예를 도시한 개략적인 도이다. 도 47a에서, A-A를 따른 단면은 채널(70)을 통과한다. 도 47b에서, B-B를 따른 단면은 제 1(200) 및 제 2(210) 고정수단을 통과한다.
도 48a-48c는 도 47a-47b에 도시된 PCR 원심 분리기에서 사용하기 위한 제 1(도 48a), 제 2(도 48a), 및 제 3(도 48c) 열원의 실시예들을 도시한 개략적인 도이다. 장치를 통과하는 단면들(A-A 및 B-B)이 표시되어 있다.
도 49a-49b는 챔버 구조를 포함하지 않는 PCR 원심 분리기의 일 실시예를 도시한 개략적인 도이다. 도 49a에서, A-A를 따른 단면은 채널(70)을 통과한다. 도 49b에서, B-B를 따른 단면은 제 1(200) 및 제 2(210) 고정수단을 통과한다.
도 50a-50c는 도 49a-49b에 도시된 PCR 원심 분리기에서 사용하기 위한 제 1(도 50a), 제 2(도 50b), 및 제 3(도 50c) 열원의 실시예들을 도시한 개략적인 도이다. 장치를 통과하는 단면들(A-A 및 B-B)이 표시되어 있다.
도 51a-51d는 다양한 반응용기 실시예들의 단면도를 도시하는 개략적인 도이다.
도 52a-52j는 다양한 반응용기 실시예들의 반응용기 축(95)에 수직하게 취한 단면들을 도시한 개략적인 도이다.
도 53b-53c는 Takara Bio, Finnzymes, 및 Kapa Biosystems의 세 개의 상이한 DNA 중합효소를 각각 사용하여 1ng 플라스미드 시료로부터 373 bp 서열을 증폭한 것을 보여주는, 도 12a의 장치를 사용한 열 대류 PCR의 결과이다.
도 54a-54c는 1 ng 플라스미드 시료로부터 (각각 177 bp, 960 bp 및 1,608 bp의 크기를 가진) 세 개의 표적 서열들을 증폭한 것을 보여주는, 도 12a의 장치를 사용한 열 대류 PCR의 결과이다.
도 55는 1 ng 플라스미드 시료로부터 (약 200 bp 내지 약 2 kbp 사이의 크기를 가진) 여러 가지 표적 서열들을 증폭한 것을 보여주는, 도 12a의 장치를 사용한 열 대류 PCR의 결과를 도시한다.
도 56a-56c는 상승된 디네츄레이션 온도(100℃, 102℃, 및 104℃에서)에서 PCR 증폭을 가속한 것을 보여주는, 도 12a의 장치를 사용하여 열 대류 PCR을 한 결과이다.
도 57a-57c는 10 ng 인간 게놈 시료에서 (각각이 363 bp, 475 bp, 및 513 bp의 크기를 가지는) 3개의 표적 서열들을 증폭한 것을 보여주는, 도 12a의 장치를 사용한 열 대류 PCR의 결과이다.
도 58은 10 ng 인간 게놈 및 cDNA 시료로부터 (약 100 bp 내지 약 800 bp 사이의 크기를 가진) 여러 가지 서열들을 증폭한 것을 보여주는, 도 12a의 장치를 사용한 열 대류 PCR의 결과를 도시한다.
도 59는 매우 낮은 카피 인간 게놈 시료로부터 363 bp β-글로빈 서열을 증폭한 것을 보여주는, 도 12a의 장치를 사용한 열 대류 PCR의 결과를 도시한다.
도 60은 목표 온도가 98℃, 70℃, 및 54℃로 각각 설정되었을 때, 도 12a의 장치의 제 1, 제 2, 및 제 3 열원의 온도 변화를 시간의 함수로 도시한다.
도 61은 12개의 채널을 가지는 도 12a의 장치의 소비전력을 시간의 함수로 도시한다.
도 62a-62e는 PCR 증폭이 가속되는 것을 중력 경사각의 함수로 보여주는, 도 12b의 장치를 사용한 열 대류 PCR의 결과이다. 중력 경사각은 도 62a-62e에 대하여 각각 0도, 10도, 20도, 30도, 및 45도이다.
도 63a-63d는 PCR 증폭이 가속되는 것을 중력 경사각의 함수로 보여주는, 도 12b의 장치를 사용한 열 대류 PCR의 결과이다. 중력 경사각은 도 63a-63d에 대하여 각각 0도, 10도, 20도 및 30도이다.
도 64a-64b는 PCR 증폭이 가속되는 것을 중력 경사각의 함수로 보여주는, 도 12b의 장치를 사용한 열 대류 PCR의 결과이다. 중력 경사각은 도 64a에 대해서는 0도이며 도 64b에 대해서는 20도이다.
도 65는 중력 경사각이 도입되었을 때, 매우 낮은 카피 인간 게놈 시료로부터 363 bp β-글로빈 서열을 증폭한 것을 보여주는, 도 12b의 장치를 사용한 열 대류 PCR의 결과를 도시한다.
도 66은 1 ng 플라스미드 시료로부터 152 bp 서열을 증폭한 것을 보여주는, 도 14c의 장치를 사용한 열 대류 PCR의 결과를 도시한다.
도 67은 1 ng 플라스미드 시료로부터 여러 가지 서열들(약 100 bp 내지 약 800 bp 사이의 크기를 가진)을 증폭한 것을 보여주는, 도 14c의 장치를 사용한 열 대류 PCR의 결과를 도시한다.
도 68a-68b는 10 ng 인간 게놈 시료로부터 500 bp β-글로빈(도 68a) 및 500 bp β-액틴(도 68b) 서열을 증폭한 것을 보여주는, 도 14c의 장치를 사용한 열 대류 PCR의 결과이다.
도 69는 매우 낮은 카피 플라스미드 시료로부터 152 bp 서열을 증폭한 것을 보여주는, 도 14c의 장치를 사용한 열 대류 PCR의 결과를 도시한다.
도 70a-70d는 수용구 깊이가 약 2mm일 때, 챔버 직경의 함수로 PCR 증폭의 의존성을 보여주는, 도 17a의 장치를 사용한 열 대류 PCR의 결과이다. 챔버 직경은 도 70a에 대해서는 약 4mm, 도 70b에 대해서는 약 3.5mm, 도 70c에 대해서는 약 3mm, 및 도 70d에 대해서는 약 2.5mm이었다.
도 71a-71d는 수용구 깊이가 약 2.5mm일 때, 챔버 직경의 함수로 PCR 증폭의 의존성을 보여주는, 도 17a의 장치를 사용한 열 대류 PCR의 결과이다. 챔버 직경은 도 71a에 대해서는 약 4mm, 도 71b에 대해서는 약 3.5mm, 도 71c에 대해서는 약 3mm, 및 도 71d에 대해서는 약 2.5mm이었다.
도 72a-72d는 수용구 깊이가 약 2mm이고 10도의 중력 경사각이 도입되었을 때, 챔버 직경의 함수로 PCR 증폭의 의존성을 보여주는, 도 17a의 장치를 사용한 열 대류 PCR의 결과이다. 챔버 직경은 도 72a에 대해서는 약 4mm, 도 72b에 대해서는 약 3.5mm, 도 72c에 대해서는 약 3mm, 그리고 도 72d에 대해서는 약 2.5mm이었다.
도 73a-73d는 수용구 깊이가 약 2.5mm이고 10도의 중력 경사각이 도입되었을 때, 챔버 직경의 함수로 PCR 증폭의 의존성을 보여주는, 도 17a의 장치를 사용한 열 대류 PCR의 결과이다. 챔버 직경은 도 73a에 대해서는 약 4mm, 도 73b에 대해서는 약 3.5mm, 도 73c에 대해서는 약 3mm, 그리고 도 73d에 대해서는 약 2.5mm이었다.
도 74a-74f는 채널축 방향의 제 1 온도 브레이크의 위치의 함수로 PCR 증폭의 의존성을 보여주는, 제 1 온도 브레이크를 가지는 장치를 사용한 열 대류 PCR의 결과이다. 제 1 온도 브레이크의 하단부는, 제 2 열원의 하부 위로 0mm(도 74a), 약 1mm(도 74b), 약 2.5mm(도 74c), 약 3.5mm(도 74d), 약 4.5mm(도 74e), 그리고 약 5.5mm(도 74f)에 위치하였다. 채널축 방향의 제 1 온도 브레이크의 두께는 약 1mm이었다.
도 75a-75e는, 중력 경사각이 사용되지 않았을 때, 채널축 방향의 제 1 온도 브레이크의 두께의 함수로 PCR 증폭의 의존성을 보여주는, 제 1 온도 브레이크를 가지거나 또는 가지지 않는 장치를 사용한 열 대류 PCR의 결과이다. 채널축 방향의 제 1 온도 브레이크의 두께는, 0mm(도 75a, 즉, 제 1 온도 브레이크가 없는), 약 1mm(도 75b), 약 2mm(도 75c), 약 4mm(도 75d), 및 약 5.5mm(도 75e, 즉, 챔버 구조없이 채널만 있는)이었다. 제 1 온도 브레이크의 하단부는 제 2 열원의 하부에 위치하였다.
도 76a-76e는, 10도의 중력 경사각이 도입되었을 때, 채널축 방향의 제 1 온도 브레이크의 두께의 함수로 PCR 증폭의 의존성을 보여주는, 제 1 온도 브레이크를 가지거나 또는 가지지 않는 장치를 사용한 열 대류 PCR의 결과이다. 채널축 방향의 제 1 온도 브레이크의 두께는 0mm(도 76a, 즉, 제 1 온도 브레이크가 없는), 약 1mm(도 76b), 약 2mm(도 76c), 약 4mm(도 76d), 및 약 5.5mm(도 76e, 즉, 챔버 구조없이 채널만 있는)이었다. 제 1 온도 브레이크의 하단부는 제 2 열원의 하부에 위치하였다.
도 77은 대칭적 가열 구조를 가지는 도 12a의 장치를 사용한 열 대류 PCR의 결과를 도시한다.
도 78a-78b는 비대칭 수용구를 가지는 장치를 사용한 열 대류 PCR의 결과를 도시한다. 수용구는 일 측에서 도 78a에 대해서는 약 0.2mm만큼 그리고 도 78b에 대해서는 약 0.4mm만큼 반대쪽 측보다 더 깊었다.
도 79는 비대칭 온도 브레이크를 가지는 장치를 사용한 열 대류 PCR의 결과를 도시한다.
도 80a-80b는 채널축(80) 방향으로 제 1 열원(20)으로부터 이격되어 있으며, 반응용기(90) 내의 시료로부터 형광 신호를 검출하기에 충분한 하나 또는 그 이상의 광학 검출 장치(600-603)를 가지는 장치 실시예들의 단면도들을 도시한 개략적인 도이다. 상기 장치는 복수의 반응용기(도 80a)로부터 형광 신호를 검출하기 위한 단일 광학 검출 장치(600), 또는 각 반응용기로부터 형광 신호를 검출하기 위한 복수의 광학 검출장치(601-603)(도 80b)를 포함한다. 도 80a-80b에 도시된 실시예들에서, 광학 검출장치는 반응용기(90)의 하단부(92)로부터 형광신호를 검출한다. 제 1 열원(20)은, 채널(70)의 하단부(72)와, 채널축(80)에 평행하여 광의 여기 및 방출을 위한 경로(각각이 상향 및 하향 화살표로 도시됨)를 제공하는 제 1 열원 돌출부(24) 사이에 채널축(80)을 중심으로 위치된 광학 포트(610)를 포함한다.
도 81a-81b는 하나의 광학검출장치(600)(도 81a) 또는 하나 이상의 광학검출장치(601-603)(도 81b)를 가지는 장치 실시예들의 단면도들을 도시한 개략적인 도이다. 각 광학검출장치(600-603)는 반응용기(90) 내에 위치한 시료로부터 형광신호를 검출하기에 충분하도록 채널축(80)을 따라 제 3 열원(40)으로부터 이격되어 있다. 이 실시예들에서, 반응용기(90)의 상부 개구부에 일반적으로 들어맞는 반응용기 캡(미도시 됨)의 중심부가, 채널축(80)에 평행한 여기 및 방출광을 위한 광학 포트(도 81a-81b에 각각 하향 및 상향 화살표로 표시됨)로서 기능한다.
도 82는 제 2 열원(30)으로부터 이격된 광학검출장치(600)를 가지는 장치의 일 실시예의 단면도를 도시한 개략적인 도이다. 이 실시예에서, 광학포트(610)는, 반응용기(90) 내의 시료의 일 측으로부터 형광신호를 검출하기에 충분하도록, 광학검출장치(600)를 향해서 채널축(80)에 수직하는 경로를 따라 제 2 열원(30) 내에 위치한다. 광학포트(610)는 반응용기(90)와 광학검출장치(600) 사이에 여기 및 방출광을 위한 경로(왼쪽 및 오른쪽을 가리키는 화살표로 도시되거나, 또는 그 반대로)를 제공한다. 광의 경로 방향의 반응용기(90)의 측면 부와 제 1 챔버(100)의 일부 또한 이 실시예에서 광학포트로서 기능한다.
도 83은 반응용기(90)의 하단부(92)로부터 형광신호를 검출하기 위해 위치된 광학검출장치(600)의 단면도를 도시한 개략적인 도이다. 이 실시예에서, 여기광을 생성하도록 구성된 광원(620), 여기광 렌즈(630), 및 여기광 필터(640)는 채널축(80)에 대하여 직각을 이루는 방향을 따라 위치하며, 방출광을 검출하도록 작동가능한 검출기(650), 구멍 또는 슬릿(655), 방출광 렌즈(660), 및 방출광 필터(670)는 채널축(80)을 따라 위치한다. 형광 방출을 통과시키고 여기광을 반사하는 다이크로익 빔-스플리터(680) 또한 도시되어 있다.
도 84는 반응용기(90)의 하단부(92)로부터 형광신호를 검출하기 위해 위치된 광학검출장치(600)의 단면도를 도시한 개략적인 도이다. 이 실시예에서, 광원(620), 여기광 렌즈(630), 및 여기광 필터(640)는 채널축(80)을 따라 여기광을 생성하도록 위치되어 있다. 검출기(650), 구멍 또는 슬릿(655), 방출광 렌즈(660), 및 방출광 필터(670)는 채널축(80)에 대하여 직각 방향을 따라 위치되어 방출광을 검출하도록 위치되어 있다. 여기광을 통과시키고 형광 방출을 반사하는 다이크로익 빔-스플리터(680)가 도시되어 있다.
도 85a-85b는 반응용기의 하단부(92)로부터 형광 신호를 검출하도록 위치된 광학검출장치(600)의 단면도들을 도시한 개략적인 도이다. 이 실시예들에서, 단일 렌즈(635)가 여기광을 형성하고 또한 형광 방출을 검출하기 위해 사용된다. 도 85a에 도시된 실시예에서, 열원(620) 및 여기광 필터(640)는 채널축(80)에 직각인 방향을 따라 위치한다. 도 85b에 도시된 실시예에서, 형광 방출을 검출하기 위한 광학요소(650, 655, 및 670)는 채널축(80)에 직각인 방향을 따라 위치한다.
도 86은 반응용기(90)의 상단부(91)로부터 형광신호를 검출하도록 위치된 광학검출장치(600)의 단면도를 도시하는 개략적인 도이다. 도 83에서와 같이, 광원(620), 여기광 렌즈(630), 및 여기광 필터(640)는 채널축(80)에 직각인 방향을 따라 위치하며, 검출기(650), 구멍 또는 슬릿(655), 방출광렌즈(660), 및 방출광 필터(670)는 채널축(80)을 따라 위치한다. 이 실시예에는 또한, 반응용기(90)의 상단부(91)에 밀봉가능하게 부착되고, 여기 및 방출광의 통과를 위해 반응용기(90)의 상단부(91)의 중심점 주변에 배치된 광학포트(695)를 포함하는, 반응용기 캡(690)이 도시되어 있다. 광학포트(695)는 이 실시예에서 반응용기 캡(690)의 상부와 반응용기(90)의 상부에 의해 추가적으로 정의된다.
도 87a-87b는 반응용기 캡(690)과 광학포트(695)를 가지는 반응용기(90)의 단면도들을 도시하는 개략적인 도이다. 반응용기 캡(690)은 반응용기(90)의 상부와 광학포트(695)에 밀봉가능하게 부착된다. 이 실시예들에서, 광학포트(695)의 하단부(696)는, 반응용기(90)가 반응용기 캡(690)과 밀봉될 때, 시료와 접촉하도록 구성된다. 개방 공간(698)이 광학포트(695)의 하단부(696)와 반응용기 캡(690)의 일 측에 제공됨으로써, 반응용기(90)가 반응용기 캡(690)에 의해 밀봉될 때, 시료가 이 개방공간을 채울 수 있게 된다. 시료의 메니스커스는 광학포트(695)의 하단부(696)보다 높게 위치하게 된다. 도 87a-87b에서, 광학포트(695)는 반응용기 캡(690)의 하부의 중심점 주위에 배치되며, 반응용기 캡(690)의 하부와 반응용기(90)의 상부에 의해 추가적으로 정의된다.
도 88은 반응용기(90) 상부에 배치된 광학검출장치(600)를 가지는 반응용기(90)의 단면도을 도시한 개략적인 도이다. 상기 반응용기(90)는, 반응용기(90)의 상부의 중심점 주위에 배치되어 있으며, 시료와 접촉을 이루기에 충분한 광학포트(695)를 가지는 반응용기 캡(690)에 의하여 밀봉된다. 이 실시예에서, 여기광과 형광 방출은 반응용기(90) 내부에 수용된 공기를 통과하지 않고, 광학포트(695)를 통과한 후 시료에 도달하거나, 또는 그 역순으로 한다.
논의된 바와 같이, 일 실시예에서, 본 발명은 열 대류 PCR 증폭을 수행하도록 적응된 3단 열 대류 장치를 특징으로 한다.
일 실시예에서 장치는, 작동가능하게 연결된 구성요소로서,
(a) PCR을 수행하기 위한 반응용기를 수용하도록 적응된 채널을 가열 또는 냉각하며, 상부면과 하부면을 포함하는 제 1 열원;
(b) 상기 채널을 가열 또는 냉각하며, 상부면과 상기 제 1열원의 상부면과 마주하는 하부면을 포함하는 제 2 열원;
(c) 상기 채널을 가열 또는 냉각하며, 상부면과 상기 제 2 열원의 상부면과 마주하는 하부면을 포함하는 제 3 열원으로서, 상기 채널은 상기 제 1 열원과 접촉하는 하단부와 상기 제 3 열원의 상부면과 접하는 관통구에 의해 정의되며, 또한 상기 하단부와 상기 관통구 사이의 중심 점들이 채널축을 형성하고 상기 채널축을 기준으로 상기 채널이 배치되는, 제 3 열원;
(d) 상기 제 2 또는 제 3 열원의 적어도 일부 내에서 상기 채널 주위에 배치된 적어도 하나의 갭 또는 공간(예, 챔버)과 같은 적어도 하나의 온도 형상화 요소로서, 상기 챔버 갭은 상기 제 2 또는 제 3 열원과 상기 채널 사이의 열전달을 감소시키기에 충분한, 적어도 하나의 온도 형상화 요소; 및
(e) 상기 제 1 열원 내에서 상기 채널을 수용하도록 적응된 수용구;를 포함한다.
동작상태에서, 상기 장치는 다수의 열원들, 일반적으로 3개, 4개, 또는 5개의 열원들, 바람직하게는 각각이 일반적인 실시예들에서 다른 열원들과 본질적으로 평행하도록 상기 장치 내에 위치하는 3개의 열원들을 사용한다. 이 실시예에서, 상기 장치는 빠르고 효율적인 대류를 기반으로 한 PCR 공정에 적합한 온도분포를 생성할 것이다. 일반적인 장치는 제 1, 제 2, 및 제 3 열원 내에 배치된 복수의 채널들을 포함함으로써, 사용자가 복수의 PCR 반응을 동시에 수행할 수 있게 한다. 예를 들어, 상기 장치는 제 1, 제 2, 및 제 3 열원을 통해 연장되어 있는 적어도 하나 또는 2, 3, 4, 5, 6, 7, 8, 9개의 채널들에서 약 10, 11, 12개까지의 채널들, 약 20, 30, 40, 50, 또는 수백 개까지의 채널들을 포함할 수 있으며, 약 8개 내지 약 100개 사이의 채널들이 많은 발명의 이용들에서 일반적으로 선호된다. 선호되는 채널의 기능은 사용자의 PCR 반응을 수용하는 반응용기를 수용하는 것과, a) 열원, b) 온도 형상화 요소(들), 및 c) 수용구 중 적어도 하나, 바람직하게는 모두와 반응용기 사이의 직접 또는 간접적인 열적 전달을 제공하는 것이다.
상기 3개의 열원들 각각의 다른 열원에 대한 상대적인 위치는 본 발명의 중요한 특징이다. 상기 장치의 제 1 열원은 일반적으로 하부에 위치하며 핵산 디네츄레이션에 적절한 온도에서 유지되며, 제 3 열원은 일반적으로 상부에 위치하며 디네츄링된 핵산 주형이 하나 또는 그 이상의 올리고뉴클레오타이드 프라이머와 아닐링하기에 적절한 온도에서 유지된다. 어떤 실시예들에서는, 제 3 열원이 아닐링과 중합 모두에 적절한 온도에서 유지된다. 제 2 열원은 일반적으로 제 1 및 제 3 열원 사이에 위치하며 디네츄링된 주형을 따라 프라이머가 중합되기에 적절한 온도에서 유지된다. 따라서, 일 실시예에서, 제 1 열원 내의 채널의 하부와 제 3 열원 내의 채널의 상부는, 각각 PCR 반응의 디네츄레이션과 아닐링 단계에 적절한 온도분포를 가지도록 되어 있다. 제 2 열원이 위치하고 있는 상기 채널의 상부와 하부 사이에는, 제 1 열원의 디네츄레이션 온도(최고 온도)에서 제 3 열원의 아닐링 온도(최저 온도)까지의 대부분의 온도 변화가 일어나는 전이 영역(transition region)이 위치하고 있다. 따라서, 일반적인 실시예들에서, 전이 영역의 적어도 일부는 디네츄링된 주형을 따라 프라이머가 중합되기에 적절한 온도분포를 가지도록 되어 있다. 제 3 열원이 아닐링과 중합 모두에 적절한 온도에서 유지되는 경우, 전이 영역의 상부에 더하여 제 3 열원 내의 채널의 상부 또한 중합 단계에 적절한 온도분포를 제공한다. 따라서, 전이 영역에서의 온도분포는, 특히, 프라이머 연장과 관련하여, 효율적인 PCR증폭을 달성하기 위하여 중요하다. 반응용기 내에서의 열 대류는 일반적으로 전이 영역내에 생성된 온도 기울기(temperature gradient)의 크기 및 방향에 의해 결정되며, 따라서 전이 영역 내의 온도분포 또한 반응용기 내에 PCR 증폭을 가능하게 하는 적절한 열 대류를 생성하기 위하여 중요하다. 빠르고 효율적인 PCR 증폭을 지원하기 위해 전이 영역 내에 적절한 온도분포를 생성하기 위하여 다양한 온도 형상화 요소가 상기 장치에서 사용될 수 있다.
일반적으로, 각각의 개별적인 열원은 열 대류 PCR의 각 단계를 유도하기에 적절한 온도에서 유지된다. 또한, 상기 장치가 3개의 열원을 특징으로 하는 실시예들에서, 3개의 열원의 온도는 반응용기 내의 시료를 가로질러 열 대류를 유도하도록 적절히 조치된다. 본 발명에 따른 적절한 열 대류를 유도하기 위한 하나의 일반적인 조건은, 고온으로 유지되는 열원이 저온으로 유지되는 열원보다 상기 장치 내에서 더 낮은 위치에 위치하게 하는 것이다. 따라서, 바람직한 실시예에서, 제 1 열원은 제 2 또는 제 3 열원보다 상기 장치 내에서 낮게 위치된다. 이 실시예에서, 제 2 열원을 제 3 열원보다 상기 장치 내에서 낮게 위치하게 하는 것이 일반적으로 바람직하다. 의도된 결과가 달성되는 한에는, 다른 구성들도 가능하다.
논의된 바와 같이, 본 발명의 목적은 적어도 하나의 온도 형상화 요소를 포함하는 장치를 제공함에 있다. 대부분의 실시예들에서, 상기 장치의 채널 각각은 약 10 개 이하의 그러한 요소들, 예를 들면, 각 채널에 대하여 1, 2, 3, 4, 5, 6, 7, 8, 9 또는 10개의 온도 형상화 요소를 포함할 것이다. 온도 형상화 요소의 하나의 기능은, PCR을 지원하는 구조적 또는 위치적 특징을 제공함으로써 열 대류에 의해 실현되는 효율적인 PCR을 제공하는 것이다. 아래의 예들과 논의에서 명백해지듯이, 이러한 특징들은 챔버와 같은 적어도 하나의 갭 또는 공간; 열원들 사이에 위치하는 적어도 하나의 단열체 또는 단열성 갭; 적어도 하나의 온도 브레이크; 제 1, 제 2, 및 제 3 열원 중 적어도 하나에 있는 적어도 하나의 돌출부 구조; 상기 장치 내, 특히, 채널, 제 1 열원, 제 2 열원, 제 3 열원, 챔버와 같은 갭, 온도 브레이크, 돌출부, 제 1 및 제 2 단열체, 또는 수용구 중 적어도 하나 내에서, 비대칭적으로 배치된 적어도 하나의 구조; 또는 적어도 하나의 구조적 또는 위치적 비대칭성, 을 포함하지만, 이에 한정되는 것은 아니다. 구조적 비대칭성은 일반적으로 채널 및/또는 채널축을 기준으로 정의된다. 위치적 비대칭성의 하나의 예는 중력의 방향에 대하여 상기 장치를 기울어지게 하거나, 또는 그렇지 않으면 벗어나게 하는 것이다.
용어 "갭"과 "공간"은 본 명세서에서 많은 경우에 서로 교체가능하게 사용될 것이다. 갭은 열 대류 PCR을 도와주도록 상기 장치 내의 에워싸진 또는 반 에워싸진 작은 공간이다. 정의된 구조를 가진 큰 갭 또는 큰 공간은 본 명세서에서 챔버라고 불리어진다. 많은 실시예들에서 챔버는 갭을 포함하고 있을 것이며 본 명세서에서 챔버 갭으로 불리어질 것이다. 갭은 비어있거나, 본 명세서에 기술된 단열성 물질로 충진되거나, 또는 부분적으로 충진될 수 있다. 많은 응용예들에서, 공기로 충진된 갭 또는 챔버가 일반적으로 유용하다.
본 발명에 따른 실시예들에서 챔버 갭은 영구적인 챔버 갭이다. 즉, 챔버를 정의하는 열원들은 모두 고체로 이루어지며(본원 명세서 식별기호 <0244> 참조), 따라서 챔버와 챔버 갭은 형상이 변화되지 않는 영구적인 것이다.
(동일 또는 상이한) 온도 형상화 요소들 중 하나 또는 조합은 본 발명의 장치와 함께 사용될 수 있다. 예시적인 온도 형상화 요소들이 지금부터 상세하게 논의될 것이다.
예시적인 온도 형상화 요소들
A. 갭 또는 챔버
본 장치의 일 실시예에서, 각 채널은 적어도 하나의 갭 또는 챔버를 온도 형상화 요소로서 포함할 것이다. 일반적인 실시예에서, 상기 장치는 각 채널 주위에 배치된 1, 2, 3, 4, 5, 또는 심지어 6개의 챔버를 포함할 것이며, 제 2 및 제 3 열원 중 적어도 하나 내에 각 채널에 대해 하나, 둘, 또는 세 개의 이러한 챔버들을 포함할 것이다. 본 발명의 이러한 예에서, 챔버는 채널과 제 2 또는 제 3 열원 사이에 사용자가 상기 장치 내에서 온도 분포를 정확하게 제어하도록 하는 공간을 형성한다. 즉, 챔버는 전이 영역(transition region)에서 채널의 온도 분포를 형상화하는 것을 도와준다. "전이 영역"은 대략적으로 제 3 열원과 접촉하는 채널의 상부와 제 1 열원과 접촉하는 채널의 하부 사이의 채널의 영역을 의미한다. 챔버는 의도된 결과가 달성되는 한에는 채널 주위의 거의 어느 영역에도 위치될 수 있다. 예를 들어, 챔버(또는 하나 이상의 챔버)를 제 2 열원, 제 3 열원, 또는 제 2 열원 및 제 3 열원 양쪽의 내에 또는 인접하여 위치시키는 것은 발명의 많은 응용들에서 유용할 것이다. 상기 장치 내의 채널이 다수의 챔버를 가지는 실시예들에서, 각 챔버는 다른 챔버들로부터 분리될 수 있으며, 어떤 예들에서는, 상기 장치 내에서 하나 또는 그 이상의 다른 챔버들과 접촉할 수 있다.
상이한 갭 또는 챔버 구조의 하나 또는 조합은 본 발명과 양립될 수 있다. 일반적인 필요조건들로서, 챔버는 다음 조건들 중 적어도 하나, 바람직하게는 전부를 만족하는 전이 영역에서의 온도 분포를 생성해야 한다: (1) 생성된 온도 기울기(특히 채널의 수직 프로파일을 가로지르는)는 반응용기 내에서 시료를 가로질러 열 대류를 생성할 만큼 충분히 커야한다. (2) 온도 기울기에 의해 이와 같이 생성된 열 대류는 PCR 공정의 각 단계를 위해 충분한 시간이 제공될 수 있도록 충분히 느려야 (또는 적절히 빨라야) 한다. 특히, 일반적으로 중합 단계가 디네츄레이션 및 아닐링 단계보다 더 많은 시간을 필요로 하기 때문에 중합 단계의 시간을 충분히 길게 하는 것이 특별히 중요하다. 특별한 갭 또는 챔버 구성의 예들이 아래에 개시되어 있다.
필요하다면, 본 발명의 장치 내의 채널은 채널축을 기준으로 본질적으로 대칭적 또는 비대칭적으로 배치된 적어도 하나의 챔버를 가질 수 있다. 많은 실시예들에서, 1, 2, 또는 3개의 챔버를 가지는 장치가 바람직할 것이다. 챔버들은 열원들 중 하나 또는 조합 내에, 예를 들면, 제 1 열원, 제 2 열원, 제 3 열원, 또는 제 2 및 제 3 열원 양쪽에 배치될 수 있다. 어떤 장치들에서는, 제 2 열원 또는 제 2 및 제 3 열원 내에 1, 2, 또는 3개의 챔버를 가지는 장치들이 특별히 유용할 것이다. 그러한 챔버 실시예들의 예들이 아래에 제공된다.
일 실시예에서, 챔버는 제 1 열원, 제 2 열원, 및 제 3 열원 중 적어도 하나로부터의 본 명세서에서 "돌출부"라고 불리어지는 것에 의해 추가적으로 정의될 것이다. 특정 실시예에서, 돌출부는 제 2 열원으로부터 제 1 열원을 향해 채널축에 일반적으로 평행한 방향으로 연장될 것이다. 제 2 열원에서 제 3 열원으로 일반적으로 채널축에 평행하게 연장되는 제 2 돌출부를 포함하는 것과 같은 다른 실시예들도 가능하다. 추가적인 실시예들은 제 1 열원에서 제 2 열원을 향해 채널축에 대하여 일반적으로 평행하게 연장되는 돌출부를 가지는 장치를 포함한다. 또 다른 실시예들은 제 3 열원에서 제 2 열원을 향해 채널축에 또한 일반적으로 평행하게 연장되는 돌출부를 가지는 장치를 포함한다. 어떤 실시예들에서는, 상기 장치는 채널축에 대하여 기울어져 있는 적어도 하나의 돌출부를 포함할 수 있다. 본 발명의 이러한 예들에서, 채널축 방향으로의 챔버의 치수를 늘리면서, 제 1, 제 2 및/또는 제 3 열원의 부피뿐 아니라 열원 간의 열 전달을 실질적으로 감소시키는 것이 가능하다. 이러한 특징들이 소비전력을 감소시키면서 열 대류 PCR 효율을 향상시키는 것으로 발견되었다.
도 2a, 3a, 4a, 9b, 12a, 14a, 15a, 및 22a는 본 발명에서 사용할 수 있는 챔버들의 몇 가지 예를 제공한다. 다른 적합한 챔버 구조들이 아래에 개시되어 있다.
B. 온도 브레이크
본 발명의 장치 내의 각 채널은 장치 내의 온도분포를 제어하기 위한 1, 2, 3, 4, 5, 6개 또는 그 이상의 온도 브레이크들, 일반적으로 1개 또는 2개의 온도 브레이크들을 포함할 수 있다. 많은 실시예들에서, 상기 온도 브레이크는 상단부와 하단부 그리고 필요에 따라 선택적으로 채널과 열적으로 접촉하는 벽에 의해 정의될 것이다. 상기 온도 브레이크는 일반적으로 갭 또는 챔버(존재한다면)의 벽에 이웃하거나 인접하여 배치된다. 온도 브레이크를 온도 형상화 요소로서 포함함으로써, 하나의 열원에서 다른 열원으로의 온도 프로파일의 바람직하지 않은 침해가 제어될 수 있으며, 일반적으로 감소될 수 있다. 아래에서 자세히 설명하겠지만, 열 대류 PCR 증폭 효율은 온도 브레이크의 위치와 두께에 민감하다는 것이 발견되었다. 적합한 온도 브레이크는 채널에 대하여 대칭적이거나 비대칭적으로 배치될 수 있다.
본 명세서에 기술된 하나 또는 그 이상의 온도 브레이크는 의도된 결과가 달성되는 한에는 장치의 각 채널 주위의 거의 어느 위치에도 위치될 수 있다. 따라서, 일 실시예에서, 온도 브레이크는, 이웃하는 열원으로부터의 바람직하지 않은 열흐름을 차단하거나 감소시키고, 적절한 PCR 증폭을 달성하기 위해 챔버에 이웃하거나 인접하여 위치될 수 있다.
도 10b, 10d, 10f, 11b, 14b, 및 14c는 본 발명의 사용에 적합한 온도 브레이크의 몇 가지 예들을 제공한다. 다른 적합한 온도 브레이크들이 아래에 개시되어 있다.
C. 위치적 또는 구조적 비대칭성
본 발명의 장치가 적어도 하나의 위치적 또는 구조적 비대칭 요소, 예를 들면, 각 채널에 대해 1, 2, 3, 4, 5, 6 또는 7개의 이러한 요소들을 포함하는 경우, 열 대류 PCR이 더 빠르고 보다 효율적이라는 것이 발견되었다. 이러한 요소들은 하나 또는 그 이상의 채널 주위에, 또는 전체 장치에 걸쳐 위치될 수 있다. 이론에 구속되기를 바라지는 않지만, 상기 장치 내의 비대칭 요소의 존재가 증폭과정을 더 빠르고 보다 효율적으로 하는 방식으로 부력(buoyancy force)을 증가시키는 것으로 믿어진다. 상기 장치 내에 채널축 또는 중력 방향에 대하여 "수평적으로 비대칭적 가열 또는 냉각"을 발생시킬 수 있는 적어도 하나의 위치적 또는 구조적 비대칭성을 도입함으로써, 열대류 PCR을 도와 줄 수 있다는 것이 발견되었다. 이론에 구속되기를 바라지는 않지만, 내부에 적어도 하나의 비대칭 요소를 가지는 장치는 채널을 가열 또는 냉각하는 것에 관한 장치의 대칭성을 깨트리며, 부력의 생성을 도와주거나 증가시킴으로써 증폭 과정을 더 빠르고 보다 효율적으로 할 수 있는 것으로 믿어진다. "위치적 비대칭 요소"는 채널축 또는 장치를 중력 방향에 대하여 기울어지도록 만드는 구조적 요소를 의미한다. "구조적 비대칭 요소"는 채널 및/또는 채널축에 대하여 장치 내에서 대칭적이지 않게 배치되는 구조적 요소를 의미한다.
논의된 바와 같이, 열 대류를 생성하기 위해 (그리고 또한 PCR 공정을 위한 온도 필요조건들을 만족시키기 위해) 시료 유체 내에 수직 온도 기울기를 생성 하는 것이 필요하다. 그러나, 수직 온도 기울기의 존재에도 불구하고, 온도분포의 등온 등고선(isothermal contour)이 중력 방향(즉, 수직 방향)에 대하여 평평(즉, 수평)하다면, 열 대류를 유도하는 부력은 생성되지 않을 수 있다. 이러한 평평한 온도분포 내에서는, 유체의 각 부분이 동일한 높이에서 유체의 다른 부분들과 동일한 온도(따라서 동일한 밀도)를 가지기 때문에 유체는 어떠한 부력의 영향도 받지 않게 된다. 대칭 실시예들(symmetric embodiments)에서는 모든 구조적 요소들이 채널 또는 채널축에 대하여 대칭을 이루며, 중력 방향은 채널 또는 채널축에 본질적으로 평행하게 정렬된다. 이러한 대칭 실시예들에서, 채널 또는 반응용기 내의 온도분포의 등온 등고선들은 중력장에 대하여 거의 또는 완벽하게 평평해지며, 따라서 충분히 빠른 열 대류를 생성하기가 종종 어렵게 된다. 이론에 구속되기를 바라지는 않지만, 온도분포에서 변동 또는 불안정을 유도할 수 있는 어떤 교란요인(perturbations)의 존재는 종종 부력의 생성을 도와주거나 향상시킬 수 있으며, PCR증폭을 더 빠르고 보다 효율적으로 만들어 주는 것으로 믿어진다. 예를 들어, 일반적인 환경에 존재하는 작은 진동은 거의 또는 완벽하게 평평한 온도분포를 교란시킬 수 있으며, 또는 장치의 작은 구조적 결함이 채널/챔버 구조 또는 반응용기 구조의 대칭성을 깨트림으로써 거의 또는 완벽하게 평평한 온도분포를 교란시킬 수 있다. 이러한 교란된 온도분포에서, 유체는 유체의 적어도 일부에 대하여 같은 높이의 유체의 다른 부분과 비교해서 상이한 온도를 가질 수 있으며, 따라서 이러한 온도 변동 또는 불안정성 때문에 부력이 쉽게 형성될 수 있다. 이러한 자연적 또는 우발적인 교란요인은 일반적으로 대칭 실시예들에서 열 대류를 생성함에 있어서 중요하다. 위치적 또는 구조적 비대칭성이 상기 장치 내에 존재하는 경우, 채널 또는 반응용기 내의 온도 분포는 같은 높이에서 균일하지 않도록(예를 들어, 수평적으로 불균일거나, 또는 비대칭적이 되도록) 제어될 수 있다. 이러한 수평적으로 비대칭적인 온도분포가 존재할 때, 부력은 용이하게 일반적으로 더 강하게 생성될 수 있으며, 따라서 열 대류 PCR을 더 빠르고 보다 효율적으로 수행할 수 있게 된다. 유용한 위치적 또는 구조적 비대칭 요소들은 채널축 또는 중력 방향에 대하여 채널의 "수평적으로 비대칭적인 가열 또는 냉각"을 야기시킨다.
비대칭성은 하나의 방식 또는 방식들의 조합에 의해 본 발명의 장치에 도입될 수 있다. 일 실시예에서, 본 발명의 장치가 장치에 도입된 위치적 비대칭성을 가지도록 할 수 있는데, 예를 들어 장치 또는 채널을 중력 방향에 대하여 기울어지게 할 수 있다. 본 명세서에 개시된 거의 모든 장치 실시예들은, 채널축을 중력 방향에 대하여 벗어나게할 수 있는 구조를 포함함으로써 기울어지게 할 수 있다. 적합한 구조의 예는 웨지 또는 이와 관련된 경사진 형태, 또는 경사지거나 기울어진 채널이다. 이러한 발명 실시예의 예로서 도 12b 및 도 18a-18b를 참조하라.
다른 실시예들에서, a) 채널, b) 챔버와 같은 갭, c) 수용구, d) 제 1 열원, e) 제 2 열원, f) 제 3 열원, g) 온도 브레이크, 및 h) 단열체 중 적어도 하나가 상기 장치 내에 채널축에 대하여 비대칭적으로 배치될 수 있다. 따라서, 일 발명 실시예에서, 상기 장치는 구조적 비대칭 요소로서 챔버를 특징으로 한다. 이 발명 실시예에서, 상기 장치는 채널, 수용구, 온도 브레이크, 단열체, 또는 하나 또는 그 이상의 열원들과 같은 하나 또는 그 이상의 다른 구조적 비대칭 요소를 포함할 수 있다. 다른 일 실시예에서, 구조적 비대칭 요소는 수용구이다. 또 다른 일 실시예에서, 구조적 비대칭 요소는 온도 브레이크 또는 하나 이상의 온도 브레이크이다. 상기 장치는 제 1 열원, 제 2 열원, 제 3 열원, 챔버, 채널, 단열체 등과 같은 하나 또는 그 이상의 다른 비대칭 또는 대칭 구조적 요소들을 포함할 수 있다.
제 1 열원, 제 2 열원, 및/또는 제 3 열원이 구조적 비대칭 요소를 특징으로 하는 실시예들에서, 채널축에 일반적으로 평행하게 연장되는 돌출부(또는 하나 이상의 돌출부)에 이러한 비대칭성이 있을 수 있다.
다른 예들이 아래에 제공된다. 특히, 도 21a-21b, 도22a-22d, 도 23a-23b, 도 24a-24b, 도 25, 도 26, 및 도 27a-27b를 참조하라.
논의된 바와 같이, 채널 및 챔버 중 하나 또는 모두는 상기 장치 내에서 채널축에 대하여 대칭적으로 또는 비대칭적으로 배치될 수 있다. 채널 및/또는 챔버가 대칭 또는 비대칭 구조적 요소인 예들로서 도 6a-6j, 도 7a-7i, 및 도 8a-8p를 참조하라.
수용구가 구조적 비대칭 요소인 장치를 가지는 것이 바람직한 경우가 종종 있을 것이다. 어떤 이론에도 구속되기를 바라지는 않지만, 수용구와 챔버의 하단부 또는 제 2 열원 사이의 영역은, 장치 내에서 열 대류 흐름을 위한 주요 구동력이 생성되는 위치인 것으로 믿어진다. 명백해지겠지만, 이 영역은 최고 온도(예, 디네츄레이션 온도)까지 가열하는 초기 가열과 낮은 온도(예, 중합 온도)로의 전이가 일어나는 곳이며, 따라서 최대의 구동력이 이 영역으로부터 발생한다.
예를 들어, 비대칭 수용구 구조를 도시하는 도 13 및 도 21a-21b를 참조하라.
D. 단열체 및 단열성 갭
본 발명의 목적을 달성하기 위해 열원 각각을 다른 열원으로부터 단열시키는 것이 종종 유용할 수 있다. 다음의 설명에서 명백하듯이, 상기 장치는 각 열원 사이의 단열성 갭들에 위치된 다양한 단열체들과 함께 사용될 수 있다. 따라서, 일 실시예에서, 제 1 단열체는 제 1 및 제 2 열원 사이의 제 1 단열성 갭에 위치되며, 제 2 단열체는 제 2 및 제 3 열원 사이의 제 2 단열성 갭에 위치된다. 낮은 열전도율(thermal conductivity)을 가지는 기체 또는 고체 단열체의 하나 또는 조합이 사용될 수 있다. 본 발명의 다수의 목적을 위한 일반적으로 유용한 단열체는 공기(정적 공기(static air)의 경우 상온에서 약 0.024 W·m-1·K-1의 낮은 열전도율을 가지며, 온도가 증가함에 따라 서서히 증가함)이다. 정적 공기보다 큰 열전도율을 가지는 재료가 전력소비 이외의 다른 장치 성능을 현저하게 감소시키지 않으면서 사용될 수 있지만, 공기와 비슷하거나 공기보다 작은 열전도율을 가지는 기체 또는 고체 단열체를 사용하는 것이 일반적으로 바람직하다. 좋은 열 단열체의 예는 나무, 코르크, 섬유, 플라스틱, 세라믹, 고무, 실리콘, 실리카, 카본 등이 있지만 이들에 한정되지 않는다. 이러한 재료들로 이루어진 경질 폼(rigid foam)들이 매우 낮은 열전도율을 나타내므로 특히 유용하다. 경질 폼의 예는 스티로폼(Styrofoam), 폴리우레탄 폼(polyurethane foam), 실리카 에어로졸(silica aerosol), 카본 에어로졸(carbon aerosol), 씨이젤(SEAgel), 실리콘 또는 고무 폼, 우드, 코르크, 등이 있지만, 이에 한정되지 않는다. 공기에 더해, 폴리우레탄 폼, 실리카 에어로졸 및 카본 에어로졸이 특히 높은 온도에서 사용하기에 유용한 열 단열체이다.
발명의 장치가 단열성 갭들을 가지는 실시예들에서, 장점들이 명백해진다. 예를 들어, 장치의 사용자는 1) 하나의 열원으로부터 다음 열원으로의 열전달을 실질적으로 감소시킴으로써 소비전력을 감소시킬 수 있으며, 2) 하나의 열원으로부터 다음 열원으로의 큰 온도 변화가 단열성 갭 영역에서 발생하기 때문에 구동력을 생성하기 위한 온도 기울기를 제어할 수 있으며 (따라서 열 대류를 제어할 수 있으며), 그리고 3) 3개의 열원 사이의 열전달이 균형을 이루게 함으로써, 인접하여 배치된 3개의 열원의 온도들을 동시에 유지하는 기계장치를 단순화할 수 있고, 이에 따라 소비전력을 최소화 할 수 있는 능력을 가질 수 있다. 낮은 열전도율의 단열체들을 갖는 큰 단열성 갭들은 일반적으로 소비전력을 감소시키는데 도움이 된다는 사실이 발견되었다. 돌출 구조의 사용은, 각 단열성 갭의 상이한 영역들(예컨대, 채널로부터 인접한 영역 및 멀리 떨어져 있는 영역을 분리해서)을 독립적으로 제어하면서 더 큰 평균 갭들이 제공될 수 있도록 하므로, 소비전력을 실질적으로 감소시키는 데 특히 유용하다. 특히 채널에 인접한 영역에서 단열성 갭을 변경함으로써, 열 대류의 속도를 제어할 수 있으며, 따라서 PCR 증폭의 속도를 제어할 수 있다는 사실이 발견되었다. 채널 영역에 인접한 제 1 단열성 갭을 제어하는 것이 열 대류의 속도를 변조하는 것에 특히 유용하다는 것이 발견되었다. 또한, 채널축 방향의 제 1 및 제 2 단열성 갭의 평균 두께의 비율이 3개의 열원 간의 열전달의 균형을 이루게 하는 것에 매우 유용하다는 것이 발견되었다. 2개의 인접하는 열원 간의 열전달량은 2개의 열원 간의 거리에 반비례한다. 따라서, 제 1 및 제 2 단열성 갭의 평균 두께의 비율을 조정함으로써, 제 1 및 제 3 열원 사이에 위치하는 제 2 열원이, 3개의 열원 간의 열전달의 균형의 결과로서, 전력의 소비 없이 원하는 온도에 근접하게 가열될 수 있다. 이것은 장치의 소비전력을 실질적으로 감소시킬 수 있게 할 뿐 아니라, 장치에 필요한 온도제어 장치 및 메커니즘을 아주 단순화시킬 수 있게 한다. 많은 예에서, 3개 열원의 원하는 온도들에 적합한 평균 두께 비율을 선택함으로써, 일반적으로 더 많은 전력을 소비하며 많은 경우에 부피가 더 큰 냉각 요소를 사용하지 않고, 가열 요소만을 사용하여 장치가 제작될 수 있다. 단열성 갭을 가지는 다른 이점들은 아래의 설명과 예들에서 명백해질 것이다.
다음의 설명과 예들에서 발명 장치는 앞에서 설명한 온도 형상화 요소들의 하나 또는 조합을 포함할 수 있다는 것이 명백해질 것이다. 따라서, 일 실시예에서, 상기 장치는, 제 1, 제 2, 및 제 3 열원을 서로로부터 분리하는 제 1 및 제 2 단열체와, 채널축에 일반적으로 평행하고 채널을 기준으로 대칭적으로 배치되는 적어도 하나의 챔버(예, 1, 2, 또는 3개의 챔버)를 특징으로 한다. 이 실시예에서, 상기 장치는 열 대류 PCR를 더 도와 주도록, 하나 또는 둘의 온도 브레이크를 더 포함할 수 있다. 상기 장치가 두 개의 챔버를, 예를 들어 제 2 열원 내에, 포함하는 실시예에서, 각 챔버는 채널축에 대하여 동일하거나 상이한 수평 위치를 가질 수 있다. 다른 일 실시예에서, 제 2 열원은, 채널축에 일반적으로 평행하며 제 1 및/또는 제 3 열원을 향해 연장되는 돌출부들을 특징으로 하며 이 돌출부들이 챔버를 정의한다. 이 실시예에서, 상기 장치는 제 1 열원에서 제 2 열원 방향으로 연장되는 돌출부를 포함할 수 있으며, 필요에 따라 선택적으로 제 3 열원에서 제 2 열원 방향으로 채널축에 일반적으로 평행하게 연장되는 돌출부를 포함할 수 있다. 이러한 실시예들에서, 열원 중 적어도 하나가 챔버를 포함한다는 전제하에, 제 2 열원은 채널축에 대하여 대칭적으로 배치된 하나 또는 두 개의 챔버를 포함하거나 챔버를 전혀 포함하지 않을 수 있으며, 제 3 열원은 채널축에 대하여 대칭적으로 배치된 하나 또는 두 개의 챔버를 포함하거나 챔버를 전혀 포함하지 않을 수 있다.
논의된 바와 같이, 상기 장치 내에 비대칭 구조적 요소를 포함하는 것이 유용한 경우가 많다. 따라서, 본 발명의 일 목적은 장치 내에 채널축에 대하여 비대칭적으로 배치된 수용구를 포함하는 것이다. 이 실시예에서, 상기 장치는 채널축에 대하여 대칭적으로 또는 비대칭적으로 배치된 하나 또는 그 이상의 챔버를 포함할 수 있다. 대안적으로 또는 추가적으로, 상기 장치는 채널축에 대하여 비대칭적으로 배치된 적어도 하나의 온도 브레이크를 특징으로 할 수 있다. 이 실시예에서, 상기 장치는 채널축에 대하여 대칭적으로 또는 비대칭적으로 배치된 하나 또는 그 이상의 챔버를 포함할 수 있다. 대안적으로 또는 추가적으로, 상기 장치는 채널축에 대하여 비대칭적으로 배치된 적어도 하나의 돌출부를 특징으로 할 수 있다. 일 실시예에서, 제 1 열원으로부터 연장된 돌출부는 채널축을 기준으로 비대칭적으로 배치되는 반면, 제 2 열원으로부터 연장되는 하나 또는 양 돌출부(및 챔버)는 채널축을 기준으로 대칭적으로 배치된다. 대안적으로 또는 추가적으로, 제 2 열원의 상기 하나 이상의 돌출부(및 챔버)는 채널축을 기준으로 비대칭적으로 배치될 수 있다. 이들 실시예들에서, 상기 장치는 제 3 열원에서 제 2 열원으로 연장되며 채널축에 대하여 대칭적으로 또는 비대칭적으로 배치되는 돌출부를 더 포함할 수 있다.
그러나, 다른 일 실시예에서, 상기 장치 내 하나 또는 그 이상의 채널에서 모든 채널에 이르기까지 어떠한 챔버나 갭 구조를 포함할 필요가 없다. 이러한 실시예에서, 상기 장치는 중력에 대하여 채널의 각도를 기울이는 것과 같은(위치적 비대칭요소의 예) 하나 또는 그 이상의 다른 온도 형상화 요소를 바람직하게는 포함할 것이다. 대안적으로 또는 추가적으로, 채널은 구조적 비대칭성을 포함할 수 있거나, 본 명세서에 제공된 바와 같은 원심분리 가속을 받을 수 있다. 예를 들어, 예 6 및 도 76e(중력 경사각이 10도이며 채널만 있는 경우)를 도 75e(중력 경사각이 없으며 채널만 있는 경우)와 비교하여 참조하라.
아래에서 이해되는 바와 같이, 다른 또는 추가적인 비대칭 요소가 존재하는 발명 장치를 가지는 것이 가능하다. 예를 들어, 상기 장치는 챔버 중 하나 또는 그 이상이 채널축에 대하여 비대칭적으로 배치되는 둘 또는 세 개의 챔버를 포함할 수 있다. 장치가 단일 챔버를 포함하는 실시예들에서, 그 챔버는 채널축에 대하여 비대칭적으로 배치될 수 있다. 실시예들은 제 2 열원에서 제 1 및 제 3 열원 각각을 향해 연장되는 돌출부들이 채널축에 대하여 비대칭적으로 배치된 장치를 포함한다.
필요하다면, 앞서 설명한 발명 실시예들 중 어떤 것이든 장치 또는 채널을 중력 방향에 대하여 기울어지게 함으로써 또는 그것을 웨지나 다른 경사진 형태에 위치시킴으로써 위치적 비대칭요소를 포함할 수 있다.
아래에서 이해되는 바와 같이, 의도된 결과가 달성될 수 있다면, 장치 실시예의 거의 어떠한 온도 형상화 요소도 (장치 내에서 채널축에 대하여 대칭적이든 또는 비대칭적이든) 장치의 다른 구조적 또는 위치적 특징을 포함하는 하나 또는 그 이상의 다른 온도 형상화 요소와 결합될 수 있다.
아래에서 또한 이해되는 바와 같이, 본 발명은 융통성이 있으며, 각 채널이 동일하거나 상이한 온도 형상화 요소들을 포함하고 있는 장치를 포함한다. 예를 들어, 상기 장치의 하나의 채널은 어떠한 챔버 또는 갭 구조를 갖지 않는 반면, 상기 장치의 다른 채널은 그러한 챔버 또는 갭 구조를 1, 2, 또는 3개를 포함할 수 있다. 본 발명은 의도될 결과가 달성되는 한에는 특정 채널 구성(또는 채널 구성들의 그룹)에 한정되지 않는다. 그러나, 사용 및 제조 상의 고려사항들을 단순화하기 위해 발명 장치의 모든 채널이 동일한 수와 동일한 유형의 온도 형상화 요소를 가지는 것이 종종 바람직할 것이다.
다음의 도들과 예들에 대한 참조는 열 대류 PCR 장치에 대한 더 나은 이해를 제공하기 위한 의도이다. 이것은 본 발명의 범주를 제한하기 위한 의도가 아니며 그렇게 읽혀져서도 안된다.
이제 도 1 및 도 2a-2c를 참조하면, 장치(10)는 작동가능하게 연결된 구성요소로서:
(a) 채널(70)을 가열 또는 냉각하며, 상부면(21)과 하부면(22)을 포함하는 제 1 열원으로서, 상기 채널(70)은 PCR을 수행하기 위한 반응용기(90)를 수용하도록 적응된 제 1 열원(20);
(b) 상기 채널(70)을 가열 또는 냉각하며, 상부면(31)과 상기 제 1 열원의 상부면(21)과 마주하는 하부면(32)을 포함하는 제 2 열원(30);
(c) 상기 채널(70)을 가열 또는 냉각하며, 상부면(41)과 상기 제 2 열원의 상부면(31)과 마주하는 하부면(42)을 포함하는 제 3 열원(40)으로서, 상기 채널(70)은 상기 제 1 열원(20)과 접하는 하단부(72)와, 상기 제 3 열원의 상부면(41)과 접하는 관통구(71)에 의해 정의되며, 이 실시예에서, 상기 하단부(72)와 상기 관통구(71) 사이의 중심 점들이 채널축(80)을 형성하고 상기 채널축을 기준으로 상기 채널(70)이 배치되는, 제 3 열원(40);
(d) 상기 제 2 열원(30) 또는 상기 제 3 열원(40)의 적어도 일부 내에서 상기 채널(70) 주위로 배치된 적어도 하나의 챔버로서, 이 실시예에서, 상기 제 1 챔버(100)는 상기 제 2 열원(30) 또는 상기 제 3 열원(40)과 상기 채널(70) 사이의 열전달을 감소시키기에 충분한 챔버 갭(105)을 상기 제 2 열원(30) 또는 상기 제 3 열원(40)과 상기 채널(70) 사이에 포함하는, 챔버; 및
(e) 상기 제 1 열원(20) 내에 상기 채널(70)을 수용하도록 적응된 수용구(73)를, 포함한다.
"작동가능하게 연결된(operably linked)", "작동가능하게 연동된(operably associated)" 또는 이와 유사한 용어는 장치의 하나 또는 그 이상의 요소가 하나 또는 그 이상의 다른 요소와 작동가능하게 연결되는 것을 의미한다. 보다 구체적으로, 이러한 연동은 직접적 또는 간접적(예를 들어, 열적(thermal)), 물리적 및/또는 기능적일 수 있다. 어떤 요소들이 직접적으로 연결되고 다른 요소들이 간접적으로(예를 들어, 열적으로(thermally)) 연결되는 장치는 본 발명의 범주 내에 속한다.
도 2a에 도시된 실시예에서, 상기 장치는 제 1 열원(20)의 상부면(21)과 제 2 열원(30)의 하부면(32) 사이에 위치된 제 1 단열체(50)를 더 포함한다. 상기 장치는 제 2 열원(30)의 상부면(31)과 제 3 열원(40)의 하부면(42) 사이에 위치된 제 2 단열체(60)를 더 포함한다. 아래에서 이해되는 바와 같이, 실제로 본 발명은, 단열체의 수가 의도된 결과가 달성되기에 충분하다면, 2개의 단열체만이 존재하는 것에 한정되지 않는다. 즉, 본 발명은 다수의 단열체(예를 들어, 2, 3, 또는 4개의 단열체)를 포함할 수 있다. 도 2a에 도시된 실시예에서, 채널축(80) 방향의 제 1 단열체(50)의 길이는 채널축(80) 방향의 제 2 단열체(60)의 길이보다 더 크다. 다른 실시예들에서, 제 1 단열체(50)의 길이는 제 2 단열체(60)의 길이보다 작거나 본질적으로 동일할 수 있다. 그러나, 제 1 단열체(50)의 길이가 제 2 단열체(60)의 길이보다 더 큰 것이 일반적으로 바람직하다. 이러한 실시예는 소비전력을 감소시키고 온도제어를 용이하게 하는데 이점이 있다. 다른 일 실시예에서, 채널축(80) 방향의 제 2 열원(30)의 길이가 제 1 열원(20) 또는 제 3 열원(40)의 길이보다 더 큰 것이 바람직하다. 다른 실시예들에서 제 2 열원(30)의 길이가 제 1 열원(20) 또는 제 3 열원(40)의 길이보다 작거나 본질적으로 동일할 수 있지만, 중합 단계를 위해 더 긴 경로 길이를 달성하기 위해 제 2 열원(30)이 더 큰 길이를 가지는 것이 유리하다.
도 2a에 도시된 일 실시예에서, 제 1 단열체(50), 제 2 단열체(60) 또는 양 단열체(50, 60)는 낮은 열전도율을 가지는 열 단열체로 충진된다. 바람직한 열 단열체는 약 10분의 수 W·m-1·K-1내지 약 0.01 W·m-1·K-1사이 또는 그 이하의 열전도율을 가진다. 이 실시예에서, 채널축(80)방향의 제 1 단열체(50)의 길이와, 바람직하게는 제 2 단열체(60)의 길이 또한, 예를 들어 약 0.1mm 내지 약 5mm 사이, 바람직하게는 약 0.2mm 내지 약 4mm 사이로 작게 구성된다. 본 발명의 이 예에서, 하나의 열원에서 인접하는 열원으로의 열손실이 실질적으로 클 수 있으며, 장치 동작 시 큰 전력소비를 야기할 수 있다. 많은 응용들에서, 3개의 열원들(예, 20, 30, 및 40) 중 적어도 하나를 다른 열원들로부터 격리시키는 것, 바람직하게는 2개의 열원이 서로 열적으로 격리되는 것(예를 들어, 20과 30을 서로로부터 단열하는 것, 30과 40을 서로로부터 단열하는 것 등)이 바람직한 경우가 있으며, 세 개의 열원 모두(예를 들어, 20, 30, 및 40)를 서로로부터 열적으로 격리시키는 것이 많은 발명 응용들에서 일반적으로 선호된다. 하나 또는 그 이상의 열 단열체를 사용하는 것이 종종 유용할 수 있다. 예를 들어, 제 1(50) 및 제 2(60) 단열성 갭에 열 단열체를 사용함으로써 종종 소비전력을 낮출 수 있다.
따라서, 도 2a-2c에 도시된 본 발명의 발명 실시예에서, 제 1 단열체(50)는 고체(solid) 또는 기체(gas)로 구성되거나 이들을 포함한다. 대안적으로 또는 추가적으로, 제 2 단열체(60)는 고체 또는 기체로 구성되거나 이들을 포함한다.
도 2a-2c에 도시된 장치를 다시 살면보면, 제 2 열원 내의 챔버벽(103)과 채널(70) 사이의 챔버 갭(105)은 기체, 고체, 또는 기체-고체 조합과 같은 열 단열체로 부분적으로 또는 완전히 충진될 수 있다. 일반적으로 유용한 단열체는 공기, 및 공기와 유사하거나 더 작은 열 전도율을 가지는 기체 또는 고체 단열체를 포함한다. 챔버 갭(105)의 하나의 중요한 기능은 제 2 열원 내에서 제 2 열원으로부터 채널로의 열전달을 제어(일반적으로 감소)하는 것이므로, 플라스틱이나 세라믹과 같은 공기보다 더 큰 열전도율을 가지는 재료들이 사용될 수 있다. 그러나, 이러한 높은 열전도율을 가진 재료가 사용되는 경우, 단열체로서 공기를 사용하는 실시예와 비교하여 챔버 갭(105)이 더 커지도록 조정되어야 한다. 유사하게, 공기보다 낮은 열전도율을 가지는 재료가 사용되는 경우, 공기 단열체 실시예보다 챔버 갭(105)이 더 작아지도록 조정되어야 한다.
특히, 도 2a-2c는 공기 또는 기체가 제 1 단열체(50)와 제 2 단열체(60), 및 챔버 갭(105)에 단열체로서 사용된 장치를 도시한다. 이러한 갭들 내부의 채널 구조는, 공기(또는 기체)가 단열체로서 사용될 때 이러한 구조들이 눈에 보이지 않는 것을 나타내기 위해 점선으로 도시되었다. 특정 발명의 목적을 달성하기 위해 필요하다면, 상기 장치는 고체 단열체가 챔버 갭(105)에 사용되도록 적응될 수 있다. 대안적으로 또는 추가적으로, 상기 장치는 제 1 단열체(50)와 제 2 단열체(60)에 고체 단열체를 포함할 수 있다.
도 2b 및 도 2c는 도 1에 표시한 바와 같은 장치의 A-A 및 B-B단면의 투시도를 보여준다. 공기 또는 기체가 단열체로서 사용되는 실시예가 도시되어 있다.
도 1 및 도 2a-2c의 실시예에 도시된 바와 같이, 상기 장치는 12개의 채널(때로 반응용기 채널이라고도 함)을 특징으로 한다. 그러나 그 이상 또는 그 이하의 채널도, 예를 들어, 약 하나 또는 둘에서 약 12개까지의 채널, 또는 약 12에서 수백개까지 사이의 채널, 바람직하게는 약 8개 내지 약 100개까지의 채널들도, 사용 목적에 따라 가능하다. 바람직하게는, 각 채널은, 제 1 열원(20) 내의 하단부(92)와 제 3 열원(41)의 상부의 상단부(91)에 의해 일반적으로 정의되는 반응용기(90)를 수용하도록 독립적으로 구성된다. 제 1 열원(20), 제 2 열원(30), 및 제 3 열원(40) 내의 채널(70)은 일반적으로 제 1 단열체(50) 및 제 2 단열체(60)를 관통하여 지나간다. 채널(70)의 상단부(71)와 하단부(72) 사이의 중심 점들은, 열원들과 단열체들이 그 주위로 배치되는 채널의 축(80)(때로 본 명세서에서 채널축이라고도 함)을 형성한다.
도 1 및 도 2a-2c에 도시된 실시예들을 다시 참조하면, 채널(70)은 반응용기(90)가 그 안에 안정적으로 들어맞도록 구성된다. 즉, 도 2a에 도시된 바와 같이 상기 채널은 반응용기의 하부와 본질적으로 동일한 치수 프로파일(dimensional profile)을 가진다. 작동 중에, 채널은 반응용기를 수용하기 위한 수용기로서 기능한다. 그러나, 아래에 더 자세히 설명하듯이, 채널(70)의 구조는, 반응용기(90)와 열원들(20, 30, 및 40) 중 하나 또는 그 이상과의 사이에 상이한 열접촉 가능성을 제공하도록 채널축(80)에 대하여 조정되거나 그리고/또는 이동될 수 있다.
하나의 예로서, 제 3 열원 내에 형성된 관통구(71)가 채널(70)의 상부로서 기능할 수 있다. 이 실시예에서, 제 3 열원(40) 내의 채널(70)은 제 3 열원(40)과 물리적으로 접촉한다. 즉, 제 3 열원(40)을 향해 연장된 관통구(71)의 벽이 반응용기(90)와 물리적으로 접촉한다. 이 실시예에서, 상기 장치는 상기 제 3 열원(40)에서 채널(70) 및 반응용기(90)로의 효과적인 열전달을 제공할 수 있다.
많은 발명 응용들을 위해, 제 3 열원 내의 관통구의 크기는 채널 또는 반응용기의 크기와 본질적으로 동일하게 하는 것이 일반적으로 바람직하다. 그러나, 다른 관통구 실시예들도 본 발명의 범주 내에 속하며 본 명세서에 개시되어 있다. 예를 들어, 도 2a-2c를 다시 참조하면, 제 3 열원(40) 내의 관통구(71)는 반응용기(90)의 크기보다 더 크게 만들어질 수 있다. 그러나 이러한 경우, 제 3 열원(40)에서 반응용기(90)로의 열전달은 덜 효율적이 될 수 있다. 이 실시예에서, 본 발명의 최적의 실현을 위해 제 3 열원의 온도를 낮추는 것이 유용할 수 있다. 대부분의 발명 응용들을 위해, 제 3 열원(40) 내의 관통구(71)의 크기를 반응용기(90)의 크기와 본질적으로 동일한 크기로 하는 것이 일반적으로 유용할 것이다.
수용구(73)가 제 1 열원(20)에 형성된 막힌 하단부(72)를 가지는 발명 실시예들에서, 수용구는 채널(70)의 하부로서 기능하기도 한다. 예를 들어, 도 2a를 참조하라. 이러한 실시예에서, 제 1 열원(20)의 수용구(73)는 반응용기의 하부(92)의 크기와 본질적으로 동일한 크기를 가지며, 대부분의 실시예에서 반응용기(90)에 물리적인 접촉과 효율적인 열전달을 제공하게 된다. 아래에서 논의되겠지만, 어떤 발명 실시예들에서는, 제 1 열원(20) 내의 수용구(73)가 반응용기의 하부의 크기보다 약간 더 큰 크기를 갖거나 부분적 챔버구조를 가질 수 있다.
챔버구조 및 기능
도 2a-2c에 도시된 장치를 다시 살펴보면, 제 1 챔버(100)는 채널(70)을 기준으로 제 2 열원(30) 내에 대칭적으로 배치된다. 상기 장치(10) 내의 이러한 물리적으로 비접촉인(그러나 열적으로 접촉하는) 공간의 존재는 많은 이점과 장점들을 제공한다. 예를 들어, 그리고 어떤 이론에도 구속되기를 바라지는 않지만, 제 1 챔버(100)의 존재는, 바람직하게는 덜 효과적인 제 2 열원(30)에서 채널(70) 또는 반응용기(90)로의 열전달을 제공한다. 즉, 챔버(100)는 제 2 열원(30)과 채널(70) 또는 반응용기(90) 사이에서의 열전달을 실질적으로 감소시킨다. 이어지는 논의에서 보다 명확해지겠지만, 본 발명은 상기 장치(10) 내에서 안정적이고 보다 빠른 열 대류 PCR을 지원하는 것을 특징으로 한다.
제 2 열원(30)내에 물리적으로 비접촉인 공간을 포함하는 것이 종종 유용하겠지만, 이러한 공간을 장치(10)내 하나 또는 그 이상의 추가적인 열원, 예를 들어 제 1 열원(20) 및 제 3 열원(40) 중 하나 또는 양쪽 내에 포함하는 것도 본 발명의 범주에 속한다. 예를 들어, 열원들 중 하나 또는 그 이상과 채널(70) 또는 반응용기(90) 사이의 열전달을 감소시키기 위하여 제 1 열원(20) 또는 제 3 열원(40)이 하나 또는 그 이상의 챔버를 포함할 수 있다.
도 2a-2c에 도시된 발명 실시예는 중요한 구조적 요소로서 제 2 열원(20) 내에 제 1 챔버(100)를 포함한다. 본 발명의 이 예에서, 제 1 챔버(100)는 제 2 열원의 상부(31)에서 제 2 열원의 하부(32)와 제 1 열원의 상부(21)를 향하여 채널(70)을 수용하도록 독립적으로 구성된다. 제 1 챔버(100)는, 제 2 열원(30)의 상부의 상단부(101), 제 2 열원(30)의 하부의 하단부(102), 그리고, 채널축(80) 주위에 배치되며 제 2 열원(30) 내에서 채널(70)과 이격되어 있는 제 1 챔버벽(103)에 의해 정의된다. 챔버벽(103)은 제 2 열원(30) 내에서 거리를 두고 채널(70)을 둘러싸서, 챔버 갭(105)을 형성한다. 챔버벽(103)과 채널(70) 사이의 챔버 갭(105)은 바람직하게는 약 0.1mm 내지 약 6mm 사이의 범위 내, 더 바람직하게는 약 0.2mm 내지 약 4mm 사이의 범위내에 있다. 제 1 챔버(100)의 길이는 약 1mm 내지 약 25mm 사이이며, 바람직하게는 약 2mm 내지 약 15mm 사이이다.
본 발명은 다양한 종류의 열원과 단열체 구성과 양립가능하다. 예를 들어, 제 1 열원(20)은 채널축(80)을 따라 약 1mm보다 큰 길이, 바람직하게는 약 2mm 내지 약 10mm의 길이를 가질 수 있다. 제 2 열원(30)은 채널축(80)을 따라 약 2mm 내지 약 25mm 사이의 길이, 바람직하게는 약 3mm 내지 약 15mm의 길이를 가질 수 있다. 제 3 열원(40)은 채널축(80)을 따라 약 1mm보다 큰 길이, 바람직하게는 약 2mm 내지 약 10mm의 길이를 가질 수 있다. 논의된 바와 같이, 장치가 제 1 단열체(50)와 제 2 단열체(60)를 가지도록 하는 것이 일반적으로 유용할 것이다. 예를 들어, 돌출부들이 없는 실시예들에서, 제 1 단열체(50)는 채널축(80)을 따라 약 0.2mm 내지 약 5mm 사이의 길이, 바람직하게는 약 0.5mm 내지 4mm 사이의 길이를 가질 수 있다. 제 2 단열체(60)는 채널축(80)을 따라 약 0.1mm 내지 약 3mm 사이의 길이, 바람직하게는 약 0.2mm 내지 약 2.5mm 사이의 길이를 가질 수 있다. 돌출부 구조가 존재하는 다른 실시예들에서, 제 1 단열체(50) 및 제 2 단열체(60)는 채널(70)에 대한 위치에 따라서 채널축(80)을 따라 상이한 길이를 가질 수 있다. 예를 들어, 채널에 인접하거나 주위 영역에서(예를 들어, 돌출부들 내에서), 제 1 단열체(50)는 채널축을 따라 약 0.2mm 내지 약 5mm 사이의 길이, 바람직하게는 약 0.5mm 내지 4mm 사이의 길이를 가질 수 있으며, 제 2 단열체(60)는 채널축(80)을 따라 약 0.1mm 내지 약 3mm 사이의 길이, 바람직하게는 약 0.2mm 내지 2.5mm 사이의 길이를 가질 수 있다. 채널에서 떨어진 영역(예를 들어, 돌출구조의 외부)에서는, 제 1 단열체(50)는 채널축을 따라 약 0.5mm 내지 약 10mm 사이의 길이, 바람직하게는 약 1mm 내지 8mm 사이의 길이를 가질 수 있으며, 제 2 단열체(60)는 채널축(80)을 따라 약 0.2mm 내지 약 5mm 사이의 길이, 바람직하게는 약 0.5mm 내지 4mm 사이의 길이를 가질 수 있다.
논의된 바와 같이, 발명 장치는 제 2 열원과 같이 열원들 중 적어도 하나 내에 복수의 챔버들(예를 들어, 2, 3, 4, 5, 또는 그 이상의 챔버들)을 포함할 수 있다.
도 3a-3b에 도시된 실시예에서, 상기 장치는 제 2 열원(30) 내에 완전히 위치한 제 1 챔버(100)를 포함한다. 이 실시예에서, 제 1 챔버(100)는 채널축(80)을 따라 제 1 챔버 하단부(102)와 마주하는 챔버 상단부(101)를 포함한다. 상기 장치는 제 2 열원(30) 내에 완전히 위치하고, 제 1 챔버(100)의 상단부(101)와 접촉하는 제 2 챔버(110)를 더 포함한다. 제 1 챔버(100)의 벽(103)은 채널축(80)에 본질적으로 평행하게 정렬된다. 제 2 챔버(110)는 채널축(80)에 본질적으로 평행하게 위치하는 벽(113)에 의해 더 정의된다. 제 2 챔버(110)는 제 2 열원(30)의 상단부(31)와 접촉하는 상단부(111)와 제 1 챔버(100)의 상단부(101)와 접촉하는 하단부(112)에 의해 더 정의된다. 도시된 바와 같이, 제 1 챔버(100)와 제 2 챔버(110)는 갭(105, 115)을 각각 포함한다. 도시된 실시예에서, 제 2 챔버(110)의 상단부(111)와 하단부(112) 각각은 채널축(80)에 수직한다. 도 3a에 도시된 바와 같이, 채널축(80)으로부터의 제 1 챔버(100)의 폭 또는 반경은 채널축(80)으로부터의 제 2 챔버(110)의 폭 또는 반경보다 작다(약 0.9 내지 0.3배 작다). 그러나, 도 3b의 실시예에 도시된 경우에는, 채널축(80)으로부터의 제 1 챔버(100)의 폭 또는 반경은 채널축(80)으로부터의 제 2 챔버(110)의 폭보다 크다(약 1.1 내지 약 3배 크다).
도 3a-3b를 다시 참조하면, 제 1 챔버(100)와 제 2 챔버(110)는 매우 유용한 온도 제어 또는 형상화 효과를 제공한다. 이들 실시예들에서, 제 1 챔버(100)(도 3a) 또는 제 2 챔버(110)(도 3b)는 다른 챔버와 비교하여 더 작은 직경 또는 폭을 가진다. 제 2 챔버(110)(도 3b) 또는 제 1 챔버(100)(도 3a)의 좁은 부분은 다른 챔버와 비교하여 제 2 열원(30)으로부터의 더 효율적인 열전달을 제공한다. 또한, 이들 실시예들에 도시된 챔버 구성은 좁은 부분에 인접하여 위치하는 다른 열원(예를 들어 도 3a의 제 1 열원(20))으로부터의 열전달을 우선적으로 차단한다.
달리 언급되지 않는다면, 다수의 챔버를 가지는 실시예들은 제 1 열원(일반적으로 상기 장치의 하부에 가장 가까이 위치한)에서부터 챔버들에 번호를 부여함으로써 기술될 것이다. 따라서 제 1 열원에 가장 가까운 챔버가 "제1 챔버"로 지정되고, 제1 열원에 다음으로 가까운 챔버는 "제2 챔버"로 지정되는 등과 같이 지정될 것이다.
온도 브레이크 구조 및 기능
도 4a는 열원들 중 하나에 위치하는 3개의 챔버를 가지는 발명 실시예를 도시한다. 특히, 장치(10)는 제 2 열원(30) 내에 위치하는 제 1 챔버(100), 제 2 챔버(110), 및 제 3 챔버(120)를 가진다. 이 실시예에서, 제 3 챔버(120)는 갭(125)을 포함한다. 제 3 챔버(120)는 채널축(80)과 본질적으로 평행하게 위치하는 벽(123)을 포함한다. 제 3 챔버(120)는 제 2 열원의 상부(31)와 인접한 상단부(121)에 의해 더 정의된다. 제 3 챔버(120)는 제 2 열원(30)내의 특정 영역(도 4a에서 점선으로 표시된 원을 참조하라)과 접촉하는 하단부(122)에 의해 더 정의된다. 도시된 바와 같이, 제 3 챔버(120)의 상단부(121)와 하단부(122)는 채널축(80)에 수직한다.
도 4b는 도 4a에 도시된 점선으로 표시된 원의 확대도이다. 특히, 제 1 챔버(100)와 제 2 챔버(110) 사이의 영역은 제 1 온도 브레이크(130)를 정의한다. 위에서 언급한 바와 같이, 제 1 온도 브레이크(130)는 상기 장치(10) 내의 온도분포를 제어하도록 의도된 것이다. 도시된 실시예에서, 제 1 온도 브레이크(130)는 상단부(131)와 하단부(132), 및 채널(70)과 본질적으로 접촉하는 벽(133)에 의해 정의된다. 이 실시예에서, 제 1 온도 브레이크(130)의 기능은 제 1 열원(20)으로부터의 제 2 열원(30)과 제 3 열원(40)으로의 온도 프로파일의 바람직하지 못한 침해를 감소 또는 차단하는 것이다. 제 1 온도 브레이크(130)의 또 다른 기능은 제 2 열원(30)과 채널(70) 사이에 효과적인 열전달을 제공함으로써 그 영역에서 채널이 제 2 열원(30)의 온도에 신속하게 도달하도록 하는 것이다. 제 1 온도 브레이크(130)가 채널(70)을 기준으로 대칭적으로 배치되어 있다.
도 4b에 도시된 바와 같이, 이 발명 실시예는 제 2 챔버(110)와 제 3 챔버(120) 사이의 영역에 의해 정의된 제 2 온도 브레이크(140)를 포함한다. 특히, 제 2 온도 브레이크(140)는 벽(143)을 통해 채널(70)의 적어도 일부와 본질적으로 접촉하는 상단부(141)와 하단부(142)에 의해 더 정의된다. 제 2 온도 브레이크(140)의 중요한 기능은 장치(10) 내에서 온도분포의 제어를 추가적으로 도와주는 것이다. 이 실시예에서, 제 2 온도 브레이크(140)는, 제 3 열원(40)으로부터 제 2 열원(30)으로의 온도 프로파일의 바람직하지 못한 침해를 감소 또는 차단하고, 또한 제 2 열원(30)과 채널(70) 사이의 효과적인 열전달을 제공함으로써 그 영역을 제 2 열원(30)의 온도에 근접한 온도로 유지하도록 하는 것에, 특히 유용하다. 제 2 온도 브레이크(140)는 채널(70)을 기준으로 대칭적으로 배치된다.
필요하다면, 제 1 챔버(100), 제 2 챔버(110), 및 제 3 챔버(120)(또는 그들의 일부분) 중 적어도 하나는 적절한 고체 또는 기체 단열체를 포함할 수 있다. 대안적으로 또는 추가적으로, 제 1 단열체(50) 및/또는 제 2 단열체(60) 중 하나 또는 양쪽이 적절한 고체 또는 기체로 구성되거나 이들을 포함할 수 있다. 적절한 단열성 기체의 한 예는 공기이다.
채널구조
A. 수직 프로파일
본 발명은 다수의 채널 구성과 완전히 양립가능하다. 예를 들어, 도 5a-5d는 적절한 채널구성의 수직 단면들을 도시한다. 도시된 바와 같이, 채널의 수직 프로파일은 선형(도 5c-5d) 또는 테이퍼형(도 5a-5b) 채널로 형성될 수 있다. 테이퍼형 실시예에서, 채널은 상부에서 하부로 또는 하부에서 상부로 테이퍼되어질 수 있다. 채널의 수직 프로파일과 관련하여 다양한 변형이 가능하지만(예를 들어, 곡선 모양이거나, 둘 이상의 상이한 각도를 가지게 테이퍼되어 있는 측벽을 가지는 채널), 상부에서 하부로 (선형적으로) 테이퍼되어 있는 채널이, 그러한 구조가 제작공정뿐 아니라 채널에 대한 반응용기의 도입도 용이하게 하기 때문에, 일반적으로 선호된다. 일반적으로 유용한 테이퍼 각(θ)은 약 0도 내지 약 15도 사이의 범위, 바람직하게는 약 2도 내지 약 10도 범위이다.
도 5a-5b에 도시된 실시예들에서, 채널(70)은 개방된 상단부(71)와 막힌 하단부(72)에 의해 더 정의되는데, 이러한 말단부들은 채널축(80)에 대하여 수직하거나(도 5a) 곡면 모양을 가질 수 있다(도 5b). 하단부(72)는, 하단부의 수평 프로파일의 반경 또는 폭의 반과 같거나 더 큰 곡률반경을 가지는 볼록형 또는 오목형의 곡면 모양으로 형성될 수 있다. 하단부의 수평 프로파일의 반경 또는 폭의 반보다 적어도 2배 큰 곡률반경을 가지는 평평하거나 또는 거의 평평한 하단부가 다른 형태보다 더 선호되는데, 이는 디네츄레이션 공정 동안 향상된 열전달을 제공할 수 있기 때문이다. 채널(70)은 채널축(80) 방향의 높이(h)와 채널축(80)에 수직하는 폭(w1)에 의해 더 정의된다.
많은 발명 응용들을 위해, 본질적으로 직선인(예를 들어 구부러지거나 테이퍼되어 있지 않은) 채널(70)을 가지는 것이 유용할 수 있다. 도 5c-5d에 도시된 실시예들에서, 채널(70)은 개방된 상단부(71)와 채널축(80)에 수직하거나(도 5c) 또는 곡면 모양인(도 5d) 막힌 하단부(72)를 가진다. 테이퍼되어 있는 채널 실시예들에서와 같이, 하단부(72)는 볼록형 또는 오목형의 곡면 모양으로 형성될 수 있으며, 큰 곡률을 가지는 평평하거나 거의 평평한 하단부가 일반적으로 더 선호된다. 채널(70)은 이 실시예들에서 채널축(80) 방향의 높이(h)와 채널축(80)에 수직하는 폭(w1)에 의해 더 정의된다.
도 5a-5d에 도시된 채널 실시예들에서, 약 20 마이크로리터의 시료 부피에 대하여 높이(h)는 적어도 약 5mm 내지 약 25mm, 바람직하게는 8mm 내지 약 16mm이다. 각 채널 실시예는 채널축(80)을 따라 취한 폭(w1)의 평균에 의해 더 정의되는데, 그 값은 일반적으로 적어도 약 1mm 내지 약 5mm이다. 도 5a-5d에 도시된 채널 실시예들 각각은, 높이(h)와 폭(w1)의 비율인 수직 가로세로 비율과, 각각 제 1 및 제 2 방향으로의 제 1 폭(w1)과 제 2 폭(w2)의 비율인 수평 가로세로 비율에 의해 더 정의 될 수 있는데, 여기서, 제 1 및 제 2 방향은 서로 상호적으로 수직하며 채널축에 대하여 수직하게 정렬되어 있다. 일반적으로 적절한 수직 가로세로비율은 약 4 내지 약 15 사이이며, 바람직하게는 약 5 내지 약 10이다. 수평 가로세로비율은 일반적으로 약 1 내지 약 4이다. 채널(70)이 테이퍼되어 있는 실시예들에서 (도 5a-5b), 채널의 폭 또는 직경은 채널의 수직 프로파일을 가로질러 변화된다. 일반적인 지침으로서, 20 마이크로리터 보다 크거나 작은 시료 부피에 대하여서는, 높이 및 폭(또는 직경)은 부피 비율의 입방근(cubic root) 또는 때로는 제곱근(square root)을 계수로 하여 조정(scale)될 수 있다.
논의된 바와 같이, 채널의 하단부(72)는 도 5a-5d에 도시된 바와 같이 평평하거나, 구형이거나, 또는 곡면형일 수 있다. 하단부가 구형이거나 곡면형인 경우, 일반적으로 볼록 또는 오목형태를 가진다. 논의된 바와 같이, 평평하거나 또는 거의 평평한 하단부가 많은 발명 실시예들에서 다른 형태에 비해 더 선호된다. 어떤 이론에도 구속되기를 바라지는 않지만, 이러한 하단부 설계가 제 1 열원(20)으로부터 채널(70)의 하단부(71)로의 열전달을 향상시킴으로써 디네츄레이션 공정을 용이하게 하는 것으로 믿어진다.
앞서 설명한 수직 채널 프로파일 중 어느 것도 상호적으로 배타적이지 않다. 즉, 직선인 제 1 부분과 (채널축(80)에 대하여) 테이퍼되어 있는 제 2 부분을 가지는 채널도 본 발명의 범주에 속한다.
B. 수평 프로파일
본 발명은 다양한 수평 채널 프로파일과 양립될 수 있다. 용이한 제조가 관심사인 경우, 본질적으로 대칭적인 채널 형태가 일반적으로 선호된다. 도 6a-6j는 각각이 표시된 대칭요소를 가지는 적합한 수평 채널 프로파일의 몇 가지 예를 도시한다. 예를 들어, 채널(70)은 채널축(80)에 대하여 원형(도 6a), 정사각형(도 6d), 둥근 정사각형(도 6g), 또는 육각형(도 6j)인 수평 형태를 가질 수 있다. 다른 실시예들에서, 채널(70)은 길이보다 큰 폭을 가지는 (또는 그 반대의) 수평 형태를 가질 수 있다. 예를 들어, 도 6b, 6e, 6h의 중간 열에 도시된 바와 같이, 채널(70)의 수평 프로파일은 타원형(도 6b), 직사각형(도 6e), 또는 둥근 직사각형(도 6h)으로 형성될 수 있다. 이러한 유형의 수평 형태는, 일 측에서 상향으로 움직이고(예를 들어 좌측에서) 반대쪽 측에서 하향으로 움직이는(예를 들어 우측에서) 대류 흐름 패턴을 사용할 때, 유용하다. 길이에 비해 상대적으로 큰 폭 프로파일이 사용되어 있으므로, 상향 및 하향 열대류 흐름 사이의 간섭이 감소될 수 있으며, 이에 따라 보다 원활한 순환성 흐름을 유도하게 된다. 채널은 한 쪽이 반대쪽 보다 좁은 수평 형태를 가질 수 있다. 몇 가지 예가 도 6c, 6f, 및 6i의 우측 열에 도시되어 있다. 예를 들어, 채널의 좌측이 우측보다 더 좁게 도시되어 있다. 이러한 유형의 수평 형태도, 일 측에서 상향으로 움직이고(예를 들어 좌측에서) 반대쪽 측에서 하향으로 움직이는(예를 들어 우측에서) 대류 흐름 패턴을 사용할 때, 유용하다. 또한, 이러한 유형의 형태가 사용되는 경우, 하향 흐름의 속도(예를 들어 우측에서의)가 상향 흐름에 대하여 제어될 수 있다(일반적으로 감소된다). 대류 흐름은 시료의 연속적인 매체 내에서 연속적이어야 하므로, 흐름 속도는 단면 영역이 커질수록 감소되어야 한다(또는 그 반대). 이 특징은 중합 효율성을 증대하는 것과 관련하여 특히 중요하다. 중합 단계는 일반적으로 하향 흐름 동안(즉, 아닐링 단계 이후) 수행되며, 따라서, 상향 흐름에 비해 하향 흐름을 더 느리게 함으로써 중합 단계를 위한 시간을 연장할 수 있으며, 더욱 효율적인 PCR 증폭을 유도할 수 있다.
따라서, 일 발명 실시예에서, 채널(70)의 적어도 일부(전체 채널을 포함하여)는 채널축(80)에 본질적으로 수직하는 면을 따라 수평 형태를 가진다. 일 발명 예에서, 수평 형태는 적어도 하나의 반사(σ) 또는 회전 대칭요소(Cx)를 가진다. 여기서 X는 1, 2, 3, 4,... 에서 무한대(∞)까지이다. 의도된 발명의 목적을 만족시킨다면 거의 어떠한 수평 형태도 적합하다. 다른 적합한 수평형태는 상기 면을 따라 원형, 마름모형, 정사각형, 둥근 정사각형, 타원형, 장사방형, 직사각형, 둥근 직사각형, 계란형, 반원형, 사다리꼴, 또는 둥근 사다리꼴을 포함한다. 필요하다면, 채널축(80)에 수직하는 면이 제 1 열원(20), 제 2 열원(30), 또는 제 3 열원(40) 내에 존재할 수 있다.
앞서 설명한 수평 채널 프로파일들 중 어느 것도 상호 배타적이지 않다. 즉,예를 들어 (채널축(80)에 대하여) 원형인 제 1 부분과 반원형인 제 2 부분을 가지는 채널도 본 발명의 범주 내에 속한다.
수평 챔버 형태 및 위치
논의된 바와 같이, 본 발명의 장치는 장치 내의, 예를 들어 채널의 전이 영역 내의, 온도 분포를 제어하는 것을 돕는 적어도 하나의 챔버, 바람직하게는, 하나, 둘, 또는 세 개의 챔버를 포함할 수 있다. 채널은 의도된 발명의 목적이 달성된다면, 적절한 형태 중 하나 또는 조합을 가질 수 있다.
예를 들어, 도 7a-7i는 챔버(제 1 챔버(100)가 예로서만 사용됨)의 적절한 수평 프로파일들을 도시한다. 이 발명 실시예에서, 챔버(100)의 수평 프로파일은, 본질적으로 대칭적인 형태가 제조공정을 용이하게 하는데 종종 유용하지만, 다양한 상이한 형태로 형성될 수 있다. 예를 들어, 제 1 챔버(100)는 좌측 열에 도시된 바와 같이 원형, 정사각형, 또는 둥근 정사각형인 수평 형태를 가질 수 있다. 도 7a, 7d, 및 7g를 참조하라. 제 1 챔버(100)는 폭이 길이보다 큰 수평 형태(또는 그 반대), 예를 들면, 중간 열에 도시된 바와 같이, 타원형, 직사각형, 또는 둥근 직사각형 형태를 가질 수 있다. 제 1 챔버(100)는 우측 열에 도시된 바와 같이 일 측이 반대쪽 측보다 더 좁은 수평 형태를 가질 수 있다. 도 7c, 도 7f, 및 도 7i를 참조하라.
논의된 바와 같이, 챔버구조는 열원(일반적으로 제 2 열원)으로부터 채널 또는 반응용기로의 열전달을 제어하는 데 있어서(일반적으로 감소시키는 데 있어서) 유용하다. 따라서, 관심의 대상이 되는 발명 실시예에 따라서 제 1 챔버(100)의 위치를 채널(70)의 위치에 대하여 상대적으로 변경하는 것이 중요하다. 일 실시예에서, 제 1 챔버(100)는 채널(70)의 위치에 대하여 대칭적으로 배치된다. 즉, 챔버축(챔버의 상단부와 하단부의 중심 점들에 의해 형성되는 축)이 채널축(80)과 일치한다. 이 실시예에서, 열원(20, 30, 또는 40)으로부터 채널으로의 열전달이 (특정 수직 위치에서) 채널의 수평 프로파일에 걸쳐 모든 방향에서 일정하게 되도록 의도되어 있다. 따라서, 이러한 실시예들에서 채널의 수평 형태와 동일한 제 1 챔버(100)의 수평 형태를 이용하는 것이 바람직하다. 도 7a-7i를 참조하라.
그러나, 챔버 구조의 다른 실시예들도 본 발명의 범주 내에 속한다. 예를 들어, 장치 내 챔버들 중 하나 또는 그 이상이 채널(70)의 위치에 대하여 비대칭적으로 배치될 수 있다. 즉, 특정 챔버의 상단부와 하단부 사이에 형성된 챔버축(106)이 채널축(80)에 대하여 중심에서 벗어나거나, 기울어지거나, 또는 중심에서 벗어나면서 기울어질 수 있다. 이 실시예에서, 채널(70)과 챔버의 벽 사이의 챔버 갭 중 하나 또는 그 이상이 일 측에서 더 크고 그 챔버의 반대쪽 측에서 더 작을 수 있다. 이러한 실시예들에서의 열전달은 채널(70)의 일 측에서 더 높고 반대쪽 측에서 더 낮다(상기 2개의 측들의 위치에 수직하는 방향을 따라 위치하는 2개의 반대쪽 측들에서는 동일하거나 또는 유사하지만). 특정 실시예에서, 원형 또는 둥근 직사각형인 제 1 챔버의 수평 형태를 사용하는 것이 바람직하다. 원형이 일반적으로 더 바람직하다.
따라서, 장치의 일 실시예에서, 제 1 챔버(100)의 적어도 일부(전체 챔버를 포함하여)는 채널축(80)에 본질적으로 수직인 면을 따라 수평 형태를 가진다. 예를 들어 도 7a 및 도 2a-2c를 참조하라. 일반적으로, 수평 형태는 적어도 하나의 반사 또는 회전 대칭요소를 가진다. 본 발명과 함께 사용하기 위해 바람직한 수평 형태는 채널축(80)에 수직하는 면을 따라 원형, 마름모형, 정사각형, 둥근 정사각형, 타원형, 장사방형, 직사각형, 둥근 직사각형, 계란형, 반원형, 사다리꼴, 또는 둥근 사다리꼴 형태를 포함한다. 일 실시예에서, 채널축(80)과 수직하는 면은 제 2 열원(30) 또는 제 3 열원(40) 내에 존재한다.
챔버 구조와 위치에 대한 앞의 논의는 제 1 챔버(100) 이상의 많은 챔버 실시예들에 적용가능 할 것이라는 것이 이해될 것이다. 즉, 복수의 챔버(예를 들어, 제 2 챔버(110) 및/또는 제 3 챔버(120))를 가지는 발명 실시예에서 이러한 고려사항들이 또한 적용될 수 있다.
비대칭 및 대칭 채널/ 챔버 구성
언급한 바와 같이, 본 발명은 다양한 채널 및 챔버 구성과 양립가능하다. 일 실시예에서, 적절한 채널은 챔버에 대하여 비대칭적으로 배치된다. 도 8a-8P는 이러한 개념의 몇 가지 예들을 도시한다.
특히, 도 8a-8p는 챔버(100)(제 1 챔버(100)가 예시적인 목적으로서만 사용되었다) 내의 채널(70)의 위치를 참조하여 적절한 채널 및 챔버 구조들의 수평 단면을 도시한다. 제 1 챔버(100) 및 채널(70)의 수평 형태는 예들 들어 원형 또는 둥근 직사각형으로 도시되어 있다. 제 1열(도 8a, 8e, 8i, 및 8m)은 대칭적으로 위치한 구조의 예들을 도시한다. 이 실시예들에서, 챔버축은 채널축(70)과 일치한다. 따라서, 제 1 챔버벽(103, 실선)과 채널(70)(점선) 사이의 갭은 좌측 및 우측에 대하여 동일하며, 또한 상부측 및 하부측에 대하여 동일하여, 열원으로부터 채널로 양 방향으로 모두 대칭적인 열전달을 제공한다. 제 2열(도 8b, 8f, 8j, 및 8n)은 비대칭적으로 위치한 구조의 예들을 도시한다. 채널축(80)이 챔버축으로부터 중심에서 벗어나 (좌측으로) 위치하며, 제 1 챔버벽(103)과 채널(70) 간의 갭은 좌측이 더 작아 (상부 및 하부 측에서는 동일하지만), 좌측으로부터 더 높은 열전달을 제공한다. 제 3열 (도 8c, 8g, 8k, 및 8o) 및 제 4열(도 8d, 8h, 8l, 및 8p)은 더 비대칭적 열전달을 제공하는 비대칭적으로 위치된 구조의 다른 예들을 도시한다. 제 3열(도 8c, 8g, 8k, 및 8o)은 챔버벽이 일 측(좌측)에서 채널과 접촉하는 예들을 도시한다. 제 4열(도 8d, 8h, 8l, 및 8p)은 일 측(우측)이 제 1 챔버(100)를 형성하는 반면, 반대쪽 측(좌측)은 채널(70)을 형성하는 예들을 도시한다. 양 예들에서, 좌측에서의 열전달이 우측에서의 열전달보다 매우 높다. 제 3 및 제 4열에 도시된 물리적으로 접촉하는 측은 온도 브레이크로서, 특히, 일 측에서만 온도 브레이킹을 제공하는 비대칭 온도 브레이로서 기능하도록 의도되어 있다.
따라서, 본 발명의 일 목적은, 내부의 챔버들 중 적어도 하나(예를 들어, 제 1 챔버(100), 제 2 챔버(110), 또는 제 3 챔버(120) 중 하나 또는 그 이상)가 채널축에 본질적으로 수직하는 면을 따라 채널을 기준으로 본질적으로 대칭적으로 배치되어 있는 장치를 제공하는 것이다. 또한, 본 발명의 일 목적은, 챔버들 중 적어도 하나가 채널축에 본질적으로 수직하는 면을 따라 그리고 채널을 기준으로 비대칭적으로 배치되는 장치를 제공하는 것이다. 특정 챔버(들)의 모두 또는 일부는 필요 하다면 채널축을 기준으로 대칭적으로 또는 비대칭적으로 배치될 수 있다. 적어도 하나의 챔버가 채널축을 기준으로 비대칭적으로 배치되는 실시예들에서, 챔버축과 채널축은, 서로에 대하여 본질적으로 평행하면서 중심에서 벗어나거나, 기울어지거나, 또는 중심에서 벗어나면서 기울어져 있을 수 있다. 앞서의 보다 특정한 실시예에서, 전체 챔버를 포함하는 챔버의 적어도 일부는 채널축에 수직하는 면을 따라 채널을 기준으로 비대칭적으로 배치된다. 다른 실시예들에서, 채널의 적어도 일부는 채널축에 수직하는 면을 따라 챔버의 내부에 위치한다. 이 실시예의 일 예에서, 채널의 적어도 일부는 채널축에 수직하는 면을 따라 챔버벽과 접촉한다. 다른 일 실시예에서, 채널의 적어도 일부는 채널축에 수직하는 면을 따라 챔버 외부에 그리고 제 2 또는 제 3 열원과 접촉하여 위치한다. 어떤 발명 실시예들에서는, 채널축에 수직하는 면이 제 2 또는 제 3 열원과 접촉한다.
수직 챔버 형태
본 발명의 또 다른 목적은, 제 2 열원이 온도 분포를 제어하는 것을 돕기 위한 적어도 하나의 챔버(일반적으로, 하나, 둘, 또는 세 개의 챔버)를 포함하는 장치를 제공함에 있다. 바람직하게는, 챔버는 장치 내 하나의 열원(예를 들어 제 1 열원(20))으로부터 장치 내의 다른 열원(예를 들어 제 3 열원(40))으로의 전이 영역의 온도 기울기를 제어하는 것을 도와준다. 챔버에 대한 다양한 적절한 개조는, 그것이 본 발명의 대류-기반 PCR 공정에 적절한 온도분포를 제공하는 한, 본 발명의 범주에 속한다.
본 발명의 일 목적은 챔버의 적어도 일부(전체 챔버를 포함하는 것 까지)가 채널축을 따라 테이퍼되어 있는 장치를 제공함에 있다. 예를 들어, 일 실시예에서, 장치 내의 챔버들 모두를 포함하는 챔버들 중 하나 또는 그 이상이 채널축을 따라 테이퍼되어 있다. 일 실시예에서, 챔버들 중 하나 또는 모두의 적어도 일부가 제 2 열원 내에 위치하며, 채널축에 수직하는 폭(w)이 제 1 열원보다는 제 3 열원 쪽에서 더 큰 폭을 가진다. 어떤 실시예들에서는, 챔버의 적어도 일부가 제 2 열원 내에 위치하며, 채널축에 수직하는 폭(w)이 제 3 열원보다는 제 1 열원 쪽에서 더 큰 폭(w)을 가진다. 일 실시예에서, 상기 장치는 제 2 열원 내에 위치하는 제 1 챔버와 제 2 챔버를 포함하며, 제 1 챔버는 제 2 챔버의 폭(w)보다 더 큰(또는 더 작은) 채널축에 수직하는 폭(w)을 가진다. 어떤 실시예들에서는, 제 1 챔버는 제 1 또는 제 3 열원과 마주한다.
추가적인 예시적인 장치 실시예들
적절한 열원, 단열체, 채널, 갭, 챔버, 수용구의 구성들 및 PCR 조건들이 본 출원에 기술되며, 필요하다면 다음 발명 예들과 함께 사용될 것이다.
A. 테이퍼되어 있는 챔버
이제 도 9a-9b를 참조하면, 장치 실시예는 채널과 동심원을 이루는 제 1 챔버(100)를 특징으로 한다. 본 발명의 이 예에서, 챔버축(즉, 챔버의 상단부와 하단부의 중심들에 의해 형성되는 축)은 채널축(80)과 일치한다. 제 1 챔버(100)의 챔버벽(103)은 채널축(80)에 대하여 각도를 가진다. 즉, 챔버벽(103)은 제 1 챔버(100)의 상단부(101)로부터 하단부(102)로 테이퍼되어 있다(도 9a). 도 9b에서, 챔버벽(103)은 제 1 챔버(100)의 하단부(102)로부터 상단부(101)로 테이퍼되어 있다. 이러한 구조는 하부에 좁은 홀을, 상부에는 넓은 홀을 제공하거나 또는 그 반대를 제공한다. 예를 들어, 도 9a에서와 같이, 하부가 더 좁게 형성되면, 제 2 열원(30)의 하부(32)에서 채널(70)로의 열전달이, 제 2 열원(30)의 상부(31)로부터의 열전달보다 더 커지게 된다. 또한, 제 1 열원(20)의 일반적인 높은 디네츄레이션 온도가, 제 3 열원(40)의 상대적으로 낮은 아닐링 온도에 비해, 더 우선적으로 차단된다. 도 9b에서와 같이 제 2 열원의 상부(31)가 더 좁게 형성되면, 제 3 열원의 효과는 더 우선적으로 차단될 것이다.
도 9a-9b에 도시된 예들에서, 제 2 열원(30) 내의 채널(70)의 온도분포는 테이퍼되어 있는 챔버 구조로 제어될 수 있다. 중합 효율성이 제 2 열원(30) 내의 온도 조건들에 민감하므로, 사용되는 DNA 중합효소의 온도 속성에 따라서, 제 2 열원(30) 내의 온도 조건들을 이러한 구조를 이용하여 조정할 필요가 있다. 가장 널리 사용되는 Taq DNA 중합효소 또는 그 유도체들에 대하여서는, Taq DNA 중합효소의 최적의 온도(약 70℃)가 일반적인 작동 조건들에서 디네츄레이션 온도에 비해 아닐링 온도에 더 근접하므로, 상부에서 하부로 테이퍼되어 있는 제 1 챔버벽(103)이 더 선호된다.
B. 하나 또는 두 개의 챔버 , 하나의 온도 브레이크
이제 도 10a를 참조하며, 상기 장치(10)는 채널축(80)을 기준으로 본질적으로 대칭적으로 제 2 열원(30) 내에 형성된 제 1 챔버(100)와 제 2 챔버(110)을 특징으로 한다. 이 실시예에서, 제 1 챔버(100)는 제 2 열원(30)의 하부에 위치하며, 제 2 챔버(110)는 제 2 열원(30)의 상부에 위치한다. 상기 장치(10)는 온도 분포의 더 적극적인 제어를 제공하는 것을 도와주는 제 1 온도 브레이크(130)를 포함한다. 이 실시예에서, 제 1 챔버(100)와 제 2 챔버(110)의 폭은 거의 동일하다. 그러나, 제 1 챔버(100)와 제 2 챔버(110)의 높이는, 아래에서 논의되는 바와 같이 사용되는 DNA 중합효소의 온도속성에 따라서, 채널축(80)을 따라 약 0.2mm 내지 제 2 열원(30)의 길이의 약 80% 또는 90%까지 사이에서 다양할 수 있다. 도 10b는 상단부(131), 하단부(132), 및 채널(70)과 접촉하는 벽(133)에 의해 정의되는 제 1 온도 브레이크(130)의 확대도를 제공한다. 이 실시예에서, 채널축(80) 방향의 제 1 온도 브레이크(130)의 위치 및 두께는 채널축(80) 방향의 제 1 챔버(100) 및 제 2 챔버(110)의 높이에 의해 정의될 것이다. 채널축(80) 방향의 상기 온도 브레이크(130)의 두께는 약 0.1mm 내지 채널축(80) 방향의 제 2 열원(30)의 높이의 약 80%까지 사이이며, 바람직하게는, 약 0.5mm 내지 제 2 열원(30)의 높이의 약 60%까지 사이이다. 제 1 온도 브레이크(130)는, 사용되는 DNA 중합효소의 온도 속성에 따라서, 제 1 챔버(100) 및 제 2 챔버(110) 사이 제 2 열원 내 거의 어느 곳에든 위치할 수 있다. 사용되는 DNA 중합효소의 최적 온도가 제 1 열원(20)의 디네츄레이션 온도보다 제 3 열원(40)의 아닐링 온도에 더 근접하다면, 제 1 온도 브레이크(130)를 제 2 열원(30)의 하부면(32)에 더 인접하게 위치시키는 것이 바람직하며, 또는 그 반대의 경우도 가능하다.
도 10c는 제 1 챔버(100)가 제 2 챔버(110)보다 더 작은 폭을 가지는, 예를 들면, 약 0.9 내지 약 0.3배 더 작은, 바람직하게는 약 0.8 내지 약 0.4배 더 작은 폭을 가지는 예이다. 제 1 챔버(100)가 제 2 챔버(110)보다 더 큰 폭을 가지는 반대의 배치 또한, 사용되는 DNA 중합효소의 온도 속성에 따라서 사용될 수 있다. 제 1 온도 브레이크(130)의 확대도가 도 10d에 도시되어 있다.
도 10a-10d에 도시된 실시예들에서, 상기 장치는 테이퍼되어 있지 않은 제 1 챔버와 제 2 챔버를 특징으로 한다. 이 실시예들에서, 제 1 챔버는 채널축(80)을 따라 길이(l)만큼 제 2 챔버로부터 이격되어 있다. 일 실시예에서, 제 1 챔버, 제 2 챔버, 및 제 2 열원은, 제 1 열원으로부터의 또는 제 3 열원으로의 열전달을 감소시키기에 충분한 면적 및 두께(또는 부피)를 가지고 제 1 및 제 2 챔버 사이의 채널과 접촉하는 제 1 온도 브레이크를 정의한다.
도 10e-10f를 참조하면, 상기 장치는 채널축(80)을 기준으로 대칭적으로 배치된 제 1 챔버(100)를 특징으로 한다. 제 1 온도 브레이크(130)는 제 1 챔버(100)와 제 1 단열체(50) 사이에서 제 2 열원(30)의 하부에 위치한다.
도 10e-10f에 도시된 채널축(80)방향의 제 1 온도 브레이크(130)의 두께는, 제 1 온도 브레이크(130)의 상단부(131)에서 하단부(132)까지의 거리에 의해 정의된다. 바람직하게는, 이 거리는 약 0.1mm 내지 채널축(80) 방향의 제 2 열원(30)의 높이의 약 80%까지 사이, 더 바람직하게는, 약 0.5mm 내지 제 2 열원(30)의 높이의 약 60%까지이다.
이 실시예에서, 상기 장치는 제 2 열원의 하부에 위치하는 제 1 챔버를 특징으로 하며, 제 1 챔버와 제 1 단열체는 제 1 온도 브레이크를 정의한다. 제 1 온도 브레이크는 제 1 열원으로부터의 열전달을 감소시키기에 충분한 면적 및 두께(또는 부피)를 가지고 제 1 챔버와 제 1 단열체 사이에서 채널과 접촉한다. 이 실시예에서, 제 1 온도 브레이크는 상부면과 하부면을 포함하며, 제 1 온도 브레이크의 하부면은 제 2 열원의 하부면과 거의 동일한 높이에 위치한다. 이 실시예는, 제 1 열원의 디네츄레이션 온도보다 제 3 열원의 아닐링 온도에 더 근접한 최적의 온도를 가지는 DNA 중합효소(예를 들어, Taq DNA 중합효소)를 사용할 때, 특히 유용하다.
C. 하나, 둘, 또는 세 개의 챔버 , 2개의 온도 브레이크
언급한 바와 같이, 장치 내의 열원들 중 하나 또는 그 이상으로부터의, 예를 들어 제 1 및 제 3 열원으로부터의, 온도 프로파일의 침해를 감소시키는 것이 어떤 발명 실시예들에서는 유용할 것이다. 이 실시예에서, 2개의 온도 브레이크를 포함하는 것이 일반적으로 유용하다.
도 11a를 참조하면, 상기 장치(10)는 제 1 챔버(100), 제 1 온도 브레이크(130), 및 제 2 온도 브레이크(140)를 포함한다. 이 예에서, 제 1 온도 브레이크(130)는 제 1 열원(20)으로부터의 열전달을 차단 또는 감소시키기 위해 제 1 챔버(100)의 하부에 위치한다. 제 2 온도 브레이크(140)는 제 3 열원(40)으로부터의 열전달을 추가적으로 차단 또는 감소시키기 위해 제 1 챔버(100)의 상부에 위치한다. 도 11b는 상기 장치 내의 제 1 온도 브레이크(130) 및 제 2 온도 브레이크(140)의 확대도를 도시한다. 채널축(80) 방향의 각 온도 브레이크의 두께는 용도에 따라서 변화될 수 있다. 그러나, 각 온도 브레이크(130, 140)는 바람직하게는 적어도 약 0.1mm, 더 바람직하게는, 적어도 약 0.2mm이다. 두 개의 온도 브레이크(130, 140)의 두께의 합은 채널축 방향의 제 2 열원의 높이의 약 80%보다 작으며, 더 바람직하게는 약 60%보다 작다. 온도 브레이크(130, 140) 각각의 치수는 장치의 의도된 용도에 따라서 동일하거나 다를 수 있다.
도 4a는 관련 실시예를 도시한다. 이 실시예에서, 상기 장치(10)는 제 1 챔버(100), 제 1 온도 브레이크(130), 제 2 챔버(110), 제 2 온도 브레이크(140), 및 제 3 챔버(120)를 포함한다. 이 예에서, 제 1 온도 브레이크(130)는 제 1 열원(20)으로부터의 열전달을 차단 또는 감소시키기 위해 제 1 챔버(100)와 제 2 챔버(110) 사이의 낮은 부분에 위치한다. 제 2 온도 브레이크(140)는 제 3 열원(40)에서의 열전달을 추가적으로 차단 또는 감소시키기 위해 제 2 챔버(110)와 제 3 챔버(120) 사이의 높은 부분에 위치한다. 도 4b는 장치 내의 제 1 온도 브레이크(130)와 제 2 온도 브레이크(140)의 확대도를 도시한다. 채널축(80) 방향의 각 온도 브레이크의 두께는 용도에 따라서 변화될 수 있다. 그러나, 각 온도 브레이크(130, 140)는 바람직하게는 적어도 약 0.1mm, 더 바람직하게는, 적어도 약 0.2mm이다. 두 개의 온도 브레이크(130, 140)의 두께의 합은 채널축 방향의 제 2 열원의 높이의 약 80%보다 작으며, 더 바람직하게는, 약 60%보다 작다. 온도 브레이크(130, 140) 각각의 치수는 장치의 의도된 용도에 따라서 동일하거나 다를 수 있다.
다른 실시예들에서, 상기 장치(10)는 제 2 열원 내에 두 개의 챔버와 두 개의 온도 브레이크를 포함할 수 있다. 일 실시예에서, 제 1 온도 브레이크는 제 1 챔버와 제 1 단열체 사이의 제 2 열원의 하부에 위치하며, 제 2 온도 브레이크는 제 2 열원 내에 제 1 및 제 2 챔버 사이에 위치한다. 다른 일 실시예에서, 제 1 챔버는 제 2 열원의 하부에 위치하며, 제 1 온도 브레이크는 제 1 및 제 2 챔버 사이에 위치한다. 이 실시예에서, 제 2 온도 브레이크는 제 2 챔버와 제 2 단열체 사이의 제 2 열원의 상부에 위치한다.
D. 하나의 챔버 , 제 1 및 제 2 열원, 돌출부
어떤 발명 실시예들에서는, 열원들 중 적어도 하나의 구조를 변경함으로써 챔버들 중 하나 또는 그 이상의 구조를 조정하는 것이 유용하다. 예를 들어, 제 1, 제 2, 및 제 3 열원 중 적어도 하나가, 갭 또는 챔버를 정의하며 일반적으로 채널축 또는 챔버축과 본질적으로 평행하게 연장되는 하나 또는 그 이상의 돌출부를 포함하도록 구성될 수 있다. 돌출부는 채널축 또는 챔버축을 기준으로 대칭적으로 또는 비대칭적으로 배치될 수 있다. 중요한 돌출부는 장치 내 하나의 열원으로부터 다른 열원을 향하여 연장된다. 예를 들어, 제 2 열원 돌출부들이 제 2 열원으로부터 제 1 열원 또는 제 3 열원을 향하는 방향으로 연장된다. 이러한 실시예들에서, 돌출부는 챔버와 접촉하며, 챔버 갭 또는 챔버벽을 정의한다. 특정 실시예에서, 채널축을 따라 제 2 열원 돌출부의 폭 또는 직경은 제 2 열원에서 멀어질수록 감소하는 반면, 채널축을 따라 돌출부에 인접하는 제 1 또는 제 2 단열체의 폭은 증가한다. 각 챔버는 동일한 또는 상이한 돌출부(돌출부를 포함하지 않는 것까지)를 가질 수 있다. 돌출부의 중요한 이점은 열원의 크기를 감소시키고, 채널축 방향의 챔버 치수와 단열체 또는 단열성 갭 치수를 길게할 수 있도록 도와주는 것이다. 이들과 다른 이점들이, 장치의 소비전력을 상당히 감소시키면서, 장치 내의 열 대류 PCR을 도와주는 것으로 발견되었다.
돌출부를 가지는 발명 장치의 특정 실시예가 도 12a에 도시되어 있다. 상기 장치는 채널축(80)을 기준으로 본질적으로 대칭적으로 배치된 제 2 열원(30)의 돌출부들(33, 34)을 포함한다. 중요하게도, 제 2 열원의 하부(32)와 제 1 열원의 상부(21) 사이에 갭이 있다. 이 실시예에서, 제 1 열원(20)은 또한, 채널(70)을 기준으로 대칭적으로 배치되며 제 1 열원(20)으로부터 제 2 열원(30)을 향하거나 또는 제 1 열원의 하부면(22)에서 멀어지는 방향으로 연장되는 돌출부들(23, 24)을 포함한다. 또한, 이 실시예에서, 채널축(80)을 따라 제 1 열원 돌출부(23,24)의 폭 또는 직경은 제 1 열원(20)에서 멀어질수록 감소한다. 상기 장치는 또한, 제 1 챔버 하단부(102)와 제 2 열원(30)의 하부면(32) 사이에 위치하는 온도 브레이크(130)를 포함한다. 도 12a에 또한 도시된 바와 같이, 제 2 열원(30)은 채널(70)을 기준으로 대칭적으로 배치되며 제 2 열원(30)으로부터 제 3 열원(40)을 향하여 연장되는 돌출부(34)를 포함한다. 또한, 이 실시예에서, 제 1 챔버의 상부(101)와 제 3 열원의 하부(41) 사이에는 갭이 있다.
도 12a에 또한 도시된 바와 같이, 수용구(73)가 채널축(80)을 기준으로 대칭적으로 배치된다. 이 실시예에서, 수용구(73)는 채널(70)의 폭 또는 직경과 거의 동일한 채널축(80)에 수직인 폭 또는 직경을 가진다. 대안적으로, 수용구(73)는 채널(70)의 폭 또는 직경보다 어느 정도 큰(예를 들어, 약 0.01mm 내지 약 0.2mm 큰) 채널축(80)에 수직하는 폭 또는 직경을 가질 수 있다.
논의된 바와 같이, 본 발명의 일 목적은, 적어도 하나의 온도 형상화 요소를 포함하는 열 대류 PCR을 수행하기 위한 장치를 제공함에 있으며, 일 실시예에서, 이 온도 형상화 요소는 장치에 도입된 위치적 비대칭요소일 수 있다. 도 12b는 이 실시예의 하나의 중요한 예를 도시한다. 도시된 바와 같이, 상기 장치는 중력 방향에 대하여 각 θg(경사각)만큼 기울어져 있다. 이러한 유형의 실시예들은 열 대류 PCR의 속도를 제어하는 것(일반적으로 증가시키는 것)에 특히 유용하다. 아래에서 논의되겠지만, 경사각을 증가시키는 것은 일반적으로 더 삐르고 보다 안정적인 열 대류 PCR을 유도한다. 하나 또는 그 이상의 위치적 비대칭요소를 포함하는 다른 실시예들은 아래에서 더 자세하게 기술될 것이다.
도 12a-12b에 도시된 실시예들은 게놈 또는 염색체의 표적 서열들 또는 긴 서열의 표적 주형들(예를 들어, 약 1.5 또는 2kbp보다 긴)과 같은 "어려운" 시료의 증폭을 포함하는 많은 발명 응용들에 특히 적합할 것이다. 특히, 도 12a는 대칭적 챔버 및 채널 구성을 가지는 열원들을 도시한다. 온도 브레이크(130)는, 그것이 제 2 열원의 하부(32)에 위치함으로써, 제 1 열원(20)의 고온이 제 1 챔버(100) 내부를 향해 침입하는 것을 효과적으로 차단한다. 사용 중, 온도는 제 1 열원(20)의 높은 디네츄레이션 온도(약 92℃ 내지 약 106℃)로부터 제 2 열원(30)의 중합 온도(약 75℃ 내지 약 65℃)로 까지 제 1 단열체 영역(50) 내에서 빠르게 떨어진다. 제 2 단열체 영역(60) 내에서의 제 2 열원(30)으로부터 제 3 열원(약 45℃ 내지 약 65℃)으로의 온도 하강은, 일반적인 조건에서 상대적으로 작다. 따라서, 제 2 열원(30) 내의 온도가 (제 1 온도 브레이크에 의한 높은 디네츄레이션 온도의 초기 차단 때문에) 제 2 열원(30)의 중합 온도 주위로 보다 좁게 분포됨으로써, 제 2 열원(30) 내에서의 큰 부피(및 시간)가 중합 단계를 위해 이용가능하게 된다.
도 12a 및 도 12b에 도시된 실시예들 간의 주된 차이점은 도 12b의 장치가 경사각 θg를 가진다는 것이다. 경사각이 없는 장치(도 12a)도 잘 작동하며, 장치의 구조가 최적화 되었을 때, 1ng 플라스미드 시료로부터 증폭 하는데 약 15분 내지 25분이 걸리며, 10ng 인간 게놈 시료(3,000 카피)로부터 증폭하는데 약 25분 내지 30분이 걸린다. 도 12b에 도시된 바와 같이 약 2도 내지 약 60도(바람직하게는 약 5도 내지 약 30도)의 경사각이 도입되는 경우, 장치의 PCR 증폭 효율성은 더 향상될 수 있다. 이러한 구조와 함께 도입된 중력 경사각에 의해(도 12b), 10ng 인간 게놈 시료로부터의 PCR 증폭은 약 20분 내지 25분 내에 완료된다. 아래의 예 1과 2를 참조하라.
E. 비대칭 수용구
언급한 바와 같이, 본 발명의 일 목적은 수평 비대칭성을 가지는 적어도 하나의 온도 형상화 요소를 가지는 장치를 제공함에 있다. "수평적 비대칭성"은 채널 및/또는 채널축에 수직하는 방향 또는 면 상에서의 비대칭성을 의미한다. 여기서 제공되는 많은 장치 예들이 수평 비대칭성을 갖도록 적응될 수 있다는 것이 명백해질 것이다. 일 실시예에서, 수용구는, 안정적이고 조절된 대류 흐름을 유도하기에 적합한 수평적으로 비대칭적인 온도분포를 형성하기에 충분하도록, 제 1 열원 내에 채널축에 대하여 비대칭적으로 배치된다. 이론에 구속되기를 바라지는 않지만, 수용구와 챔버의 하단부 사이의 영역은 열 대류 흐름을 위한 주요 구동력이 생성되는 곳이라고 믿어진다. 쉽게 명백해지겠지만, 이 영역은 최고의 온도(즉, 디네츄레이션 온도)까지 초기 가열되어 낮은 온도(즉, 중합온도)로의 전이가 일어나는 곳이며, 따라서, 가장 큰 구동력이 이 영역에서 비롯될 수 있다.
따라서, 본 발명의 일 목적은 제 1 열원 내 수용구들 중 적어도 하나(예를 들면 그들 모두)가 제 1 열원 내의 채널보다 더 큰 폭 또는 직경을 가지게 되는 적어도 하나의 수평 비대칭성을 가지는 장치를 제공함에 있다. 바람직하게는, 폭의 불일치는 수용구가 채널축으로부터 중심에서 벗어나는 것을 허용한다. 발명의 이 예에서, 수용구 비대칭성은 수용구의 일 측이 반대쪽 측에 비해 채널에 더 인접하게 위치하게 하는 갭을 형성한다. 이 실시예에서, 상기 장치는 제 1 열원으로부터 채널로의 수평적으로 비대칭적인 가열을 나타낼 것이다.
이러한 발명 장치의 예가 도 13에 도시되어 있다. 도시된 바와 같이, 수용구(73)는 수용구 갭(74)을 형성하기 위해 채널축(80)에 대하여 비대칭적으로 배치된다. 즉, 수용구(73)는, 예를 들면 약 0.02mm 내지 약 0.5mm만큼, 채널축(80)에 대하여 약간 중심에서 벗어나 있다. 이 예에서, 수용구(73)는 채널(70)의 폭 또는 직경보다 큰 채널축(80)에 수직하는 폭 또는 직경을 가진다. 예를 들면, 수용구(73)의 폭 또는 직경은 채널(70)의 폭 또는 직경보다 약 0.04mm 내지 약 1mm 클 수 있다.
도 13에 도시된 실시예를 다시 참조하면, 수용구 갭(74)을 형성하기 위해, 채널의 일 측(좌측)은 제 1 열원(20)과 접촉하고, 반대쪽 측(우측)은 제 1 열원(20)과 접촉하지 않는다. 발명은 여러 갭 크기와 양립가능하지만, 특히 다른쪽 측이 채널과 접촉한다면, 일반적인 수용구갭은 약 0.04mm 정도까지 작을 수 있다. 다른 말로, 일 측은 채널로서 형성되며, 반대쪽 측은 작은 공간으로서 형성된다. 이 실시예에서, 일 측(좌측)이 반대쪽 측(우측)에 비해 우선적으로 가열됨으로써, 상향 흐름이 이 우선적으로 가열된 측(좌측)에서 일어나게 하는 수평적으로 비대칭적인 가열을 제공한다. 수용구가 이 수용구의 벽으로부터 갭을 가지며 이 갭이 일 측에서 반대쪽 측보다 더 작은 경우, 유사한 효과를 얻을 수 있다.
도 13에 도시된 바와 같이, 제 2 열원(30)의 제 1 돌출부(33)는 제 1 단열체(50)의 부분(51)(제 1 단열체 챔버라고 칭함)과 제 2 열원(30)을 정의한다. 도시된 바와 같이, 제 1 돌출부(33)는 또한 제 1 단열체(50)를 챔버(100)와 채널(70)로부터 분리시킨다. 제 2 열원(30)의 제 2 돌출부(34)는 또한 제 1 챔버(100) 또는 채널(70)의 일부를 정의한다. 이 실시예에서, 제 2 돌출부(34)는 또한 제 2 단열체(60)의 일부(61)(제 2 단열체 챔버라고 칭함)와 제 2 열원(30)을 정의한다. 추가적으로, 제 2 열원(30)의 제 2 돌출부(34)는 제 2 단열체(60)를 제 1 챔버(100)와 채널(70)로부터 분리시킨다.
F. 복수의 챔버 , 제 2 및 제 3 열원
논의된 바와 같이, 발명은 적어도 하나, 둘, 또는 세 개의 챔버에서 약 네 개 또는 다섯 개까지의 챔버를 포함하는 열 대류 PCR을 수행하기 위한 장치를 제공한다. 일 실시예에서, 하나, 둘, 또는 세 개의 이러한 챔버는 제 2 열원, 제 3 열원 또는 제 2 및 제 3 열원 모두 내에서 부분적으로 또는 전체적으로 대칭적으로 위치할 수 있다. 예들이 도 14a-14c에 제공된다.
특히, 도 14a는 제 1 챔버(100)가 제 2 열원(30) 내에 대칭적으로 배치되며, 제 2 챔버(110)가 제 3 열원(40) 내에 (채널축(80)에 대하여) 대칭적으로 배치되는 장치를 도시한다. 제 1 챔버(100)의 하단부(102)는 제 2 열원(30)의 하부(32)와 접촉한다. 도 14c를 참조하면, 장치는 또한 제 2 열원(30) 내에서 대칭적으로 배치된 제 1 챔버(100)를 도시하며, 제 2 챔버(110)는 제 3 열원(40) 내 (채널축(80)에 대하여) 대칭적으로 배치된다. 그러나, 제 1 챔버(100)는 제 2 열원(30)의 하부(32)와 접촉하지 않는다. 대신, 이것은 채널축(80)에 대하여 더 짧은 길이를 가진다. 즉, 제 1 챔버(100)의 하단부(102)는 제 2 열원(30)의 내부와 접촉한다. 도 14a 및 도 14c의 양 실시예들에서, 수용구(73)는 채널축(80)을 기준으로 대칭적으로 배치된다. 그러나, 도 14a에 도시된 실시예와 달리, 도 14c의 장치는 제 1 챔버(100)의 하부(102)와 제 2 열원의 하부(32) 사이에 위치하는 제 1 온도 브레이크(130)를 포함한다. 제 1 온도 브레이크(130)의 이러한 위치는 제 1 열원(20)으로부터의 바람직하지 않은 열 흐름을 감소 또는 차단하기 위한 많은 발명 실시예들에서 유용할 것이다.
도 14b는 제 1 챔버(100)와 제 2 챔버(110)가 제 2 열원(30) 내에서 (채널축(80)에 대하여) 대칭적으로 배치되는 발명 실시예를 도시한다. 이 장치는 제 3 열원(40) 내에 (또한 채널축(80)에 대하여) 대칭적으로 배치된 제 3 챔버(120)를 더 포함한다. 이 실시예에서, 수용구(73)는 채널축(80)을 기준으로 대칭적으로 배치된다. 이 실시예에서, 제 1 온도 브레이크(130)는, 채널축(80) 방향의 두께 또는 위치에 따라서, 제 1 열원(20)으로부터의 그리고/또는 제 3 열원(40)으로의 바람직하지 않은 열 흐름을 감소 또는 차단하는 것을 도와주도록 제 1 챔버(100)와 제 2 챔버(110) 사이에 위치한다.
G. 하나의 챔버 , 제 2 또는 제 3 열원
적어도 하나의 챔버(예를 들어, 하나, 두 개, 또는 세 개의 챔버)가 제 3 열원 내에 위치하는 장치가 또한 본 발명에 의해 제공된다. 필요하다면, 열원 중 적어도 하나의 채널축 방향의 길이는 도 2a에 도시된 실시예와 비교하여 감소될 수 있다. 대안적으로 그리고 추가적으로, 열원 중 적어도 하나의 채널축 방향의 길이는 증가될 수도 있다.
이제 도 15a를 참조하면, 제 1 챔버(100)는 제 3 열원(40) 내에 완전히 위치하며, 채널축(80)에 대하여 대칭적으로 배치된다. 도 15b에 도시된 실시예에서, 제 1 열원(20)은, 채널(7)을 기준으로 대칭적으로 배치된 돌출부(23)를 포함하고 있으며, 이로 의해, 인접하는 돌출부들(23) 사이 영역에서 제 1 열원(20)과 제 2 열원(30) 사이에 더 큰 단열성 갭을 형성한다.
필요하다면, 제 3 열원(40)도 또한 채널(70)을 기준으로 대칭적으로 배치되며 제 2 열원(30)의 상부(31)를 향해 연장되는 돌출부(43)를 포함할 수 있다. 이러한 실시예에서, 인접하는 돌출부들(43) 사이의 영역에서 제 2 열원(30) 및 제 3 열원(40) 사이에 더 큰 단열성 갭이 형성될 수 있다. 이 실시예들에서, 채널축(80) 방향의 제 2 열원(30)의 길이는 약 1mm보다 크며, 바람직하게는 약 2mm 내지 약 6mm 사이이며, 채널축(80) 방향의 제 3 열원(40)의 길이는 약 2mm 내지 20mm 사이이며, 바람직하게는 약 3mm 내지 약 10mm 사이이다. 도 15a에서 수용구(73)는 바람직하게는 채널을 기준으로 대칭적으로 배치된다. 제 1 및 제 2 단열체의 바람직한 길이는 이미 기술된 바 있다.
도 16a-16c에 도시된 실시예에서, 제 2 열원(30)은 제 2 열원(30)에서 제 1 열원(20)을 향해 연장되는 돌출부(33)를 포함한다. 제 2 열원(30)은 제 3 열원(40)을 향해 연장되는 돌출부(34)를 더 포함한다. 발명의 이 실시예에서, 돌출부(33, 34) 각각은 제 1 챔버(100)와 채널축(80)을 기준으로 대칭적으로 배치된다. 이 실시예에서, 돌출부(33)는 제 1 챔버(100) 또는 채널(70), 제 1 단열체(50), 및 제 2 열원(30)을 정의하는 것을 도와주며, 제 1 단열체(50)를 제 1 챔버(100) 또는 채널(70)로부터 분리시키는 것을 도와준다. 돌출부(34)는 제 1 챔버(100) 또는 채널(70), 제 2 단열체(60), 및 제 2 열원(30)을 정의하는 것을 도와주고, 제 2 단열체(60)를 제 1 챔버(100) 또는 채널(70)로부터 분리시키는 것을 도와준다.
도시된 실시예에서, 제 1 챔버(100)의 상단부(101)와 하단부(102)는 채널축(80)에 대하여 본질적으로 수직한다. 제 1 챔버(100)의 길이는 약 1mm 내지 약 25mm 사이이며, 바람직하게는, 약 2mm 내지 약 15mm 사이이다. 추가적으로, 수용구(73)는 채널(70)과 채널축(80)을 기준으로 대칭적으로 배치된다.
도 17a-17c에 도시된 실시예를 참조하면, 제 1 열원(20)은 제 1 열원(20)으로부터 연장되어 제 2 열원(30)을 향하는 돌출부(23)를 포함한다. 돌출부(23)와 수용구(73) 각각은 채널축(80)을 기준으로 대칭적으로 배치된다. 또한 이 실시예에서, 상기 장치(10)는, 제 2 열원(30)으로부터 제 1 열원(20) 또는 제 3 열원(40)을 향하여 연장되며 제 1 챔버(100)와 채널축(80)을 기준으로 대칭적으로 배치되는 돌출부(33, 34)를 특징으로 한다. 상기 장치(10)는 또한 제 1 챔버(100)와 채널축(80)을 기준으로 대칭적으로 배치되는 제 3 열원 돌출부(43)를 특징으로 한다. 돌출부(43)는 제 3 열원(40)에서 제 2 열원(30)을 향해 연장된다. 이 실시예에서, 돌출부(23)는 채널(70), 제 1 단열체(50), 및 제 1 열원(20)을 정의하는 것을 도와주고, 제 1 단열체(50)를 채널(70)로부터 분리하는 것을 도와준다. 돌출부(43)는 채널(70), 제 2 단열체(60), 및 제 3 열원(40)을 정의하는 것을 도와주고, 제 2 단열체(60)를 채널(70)로부터 분리하는 것을 도와준다. 제 1 챔버의 상단부(101)와 제 1 챔버의 하단부(102)는 채널축(80)에 본질적으로 수직한다. 갭이 돌출부(23)를 제 1 챔버의 하단부(102)로부터 분리시킨다. 다른 갭은 제 1 챔버의 상단부(101)를 돌출부(43)로부터 분리시킨다. 또한, 수용구(73)는 채널(70)과 채널축(80)을 기준으로 대칭적으로 배치된다.
H. 경사진 제 2 열원 내 하나의 챔버
언급한 바와 같이, 발명의 일 목적은 채널, 수용구, 돌출부(존재한다면), 챔버와 같은 갭, 단열체 또는 단열성 갭, 및 온도 브레이크 중 하나 또는 그 이상과 같은 다양한 온도 형상화 요소들 각각이 채널축을 기준으로 대칭적으로 배치된 장치를 제공함에 있다. 사용 중, 상기 장치는 채널축이 중력의 방향과 실질적으로 정렬될 수 있도록 평평하고 수평적인 표면 상에 많은 경우에 설치될 수 있다. 이러한 배치에서, 부력(buoyancy force)이 채널 내의 온도 기울기에 의해 생성되며, 부력 또한 채널축에 평행하게 정렬된다고 믿어진다. 또한, 부력이 (수직방향을 따른) 온도 기울기에 비례하는 크기로 중력의 방향과 반대되는 방향을 가질 것이라고 믿어진다. 이 실시예에서 채널과 하나 또는 그 이상의 챔버가 채널축을 기준으로 대칭적으로 배치되었으므로, 채널 내부에서 생성되는 온도분포(즉, 온도 기울기의 분포) 또한 채널축에 대하여 대칭적이어야 한다고 믿어진다. 따라서, 부력의 분포 또한 채널축에 평행하는 방향을 가지고 채널축에 대하여 대칭적이어야 한다.
채널축을 중력의 방향으로부터 벗어나게 이동시킴으로써, 장치에 수평 비대칭성을 도입하는 것이 가능하다. 이 실시예들에서, 장치 내의 대류-기반 PCR의 효율성 및 속도를 더 향상시킬 수 있다. 따라서, 발명의 일 목적은 하나 또는 그 이상의 수평 비대칭성을 특징으로 하는 장치를 제공함에 있다.
위치적 수평 비대칭성을 가지는 발명 장치의 예들이 도 18a-18b에 제공된다.
도 18a에서, 채널축(80)은 장치에 위치적 수평 비대칭성을 제공하기 위해 중력의 방향에 대하여 벗어나 있다. 특히, 채널과 챔버는 채널축에 대하여 대칭적으로 형성되어 있다. 그러나, 전체 장치는 중력의 방향에 대하여 각도 θg만큼 회전되어 있다(또는 기울어져 있다). 이러한 기울어진 구조에서, 채널축(80)은 중력의 방향에 더 이상 평행하지 않고, 따라서, 채널 하부에서 온도 기울기에 의해 생성된 부력은, 그것이 중력의 방향과 반대되는 방향을 가져야 하므로, 채널축(80)에 대하여 기울어지게 된다. 이론에 구속되기를 바라지는 않지만, 채널/챔버 구조가 채널축(80)에 대하여 대칭적이어도, 부력의 방향이 채널축(80)과 각도 θg를 형성한다. 이러한 구조적 배치에서, 상향 대류 흐름은 채널 또는 반응용기의 일 측(도 18a의 경우 좌측)의 경로를 따를 것이며, 하향 흐름은 반대쪽 측(도 18a의 경우 우측)의 경로를 따를 것이다. 따라서, 대류 흐름의 경로 또는 패턴은 이러한 구조적 배치에 의해 결정된 것으로 실질적으로 고정될 것이며, 따라서 대류 흐름은 더욱 안정적이고 환경으로부터의 작은 교란요인 또는 작은 구조적 결함에 민감하지 않게 되어, 더 안정적인 대류 흐름과 개선된 PCR 증폭을 유도하게 된다. 중력 경사각의 도입이 열 대류의 속도를 증가시키며, 따라서 더 빠르고 보다 안정적인 대류 PCR 증폭을 지원한다는 것이 발견되었다. 경사각 θg은 약 2도 내지 약 60도 사이, 바람직하게는 약 5도 내지 약 30도 사이에서 변화될 수 있다. 이 기울어진 구조는 본 발명에서 제공된 대칭적 또는 비대칭적 채널/챔버 구조 모두와 조합하여 사용될 수 있다.
도 18a에 도시된 경사각 θg은 상이한 요소의 하나 또는 조합에 의해 도입될 수 있다. 일 실시예에서, 경사는 수동으로 도입된다. 그러나, 장치(10)를 경사면 위에 위치함으로써, 예를 들어 장치(10)를 웨지나 또는 유사한 형태의 베이스에 위치함으로써, 경사각 θg을 도입하는 것이 종종 더 편리할 것이다.
그러나 어떤 발명 실시예들에 대해서는, 장치(10)를 기울어지게 하는 것이 유용하지 않을 수 있다. 도 18b는 수평 비대칭성을 도입하기 위한 다른 접근을 도시한다. 도시된 바와 같이, 채널 및 챔버들 중 하나 또는 그 이상이 중력의 방향에 대하여 기울어져 있다. 즉, 채널축(80)(및 챔버축)이 열원들의 수평면에 수직하는 축에 대하여 (θg만큼) 벗어나 있다. 이 발명 실시예에서, 장치가 평평하고 수평적인 표면 상에 바닥이 그 표면과 마주하며 그 표면과 평행하게 설치될 때 (일반적인 것처럼), 채널축(80)은 중력의 방향에 대하여 각도 θg를 형성한다. 이 실시예에 따르면, 그리고 이론에 구속되기를 바라지는 않지만, 위에서 설명한 실시예들의 경우처럼, 채널의 하부에서 온도 기울기에 의해 생성되는 (즉, 중력의 방향과 반대하는 방향을 가지게 되는) 부력이 채널축에 대하여 각도 θg를 형성할 것이다. 이러한 구조적 배치는 대류 흐름이 일 측에서(즉, 도 18b의 경우 좌측) 상승하게 만들고, 반대쪽 측(도 18b의 경우 우측)에서 하강하게 만들 것이다. 경사각 θg은 바람직하게는 약 2도 내지 약 60도 사이, 더 바람직하게는 약 5도 내지 약 30도 사이에서 변화될 수 있다. 이 기울어진 구조는 본 발명에서 제공되는 채널과 챔버의 모든 구조적 특징들과 조합하여 사용될 수 있다.
본 명세서에 개시된 장치 실시예의 거의 어떠한 것도 그것을 중력의 방향에 대하여 약 2도 내지 약 60도 사이에서 채널축(80)을 벗어나게 할 수 있는 구조에 배치함으로써 기울어지게 할 수 있다. 언급한 바와 같이, 적합한 구조의 예는 웨지나 관련 형태와 같은 경사를 생성할 수 있는 표면이다.
I. 하나의 챔버 , 비대칭 수용구
논의된 바와 같이, 열 대류 PCR을 돕도록 제 1 열원 내에 하나 또는 그 이상의 비대칭성을 도입하는 것은 본 발명의 범주에 속한다. 일 실시예에서, 제 1 열원의 수용구는 이 목적을 달성하기 위해 하나 또는 그 이상의 구조적 비대칭성을 포함한다.
도 19의 장치를 참조하면, 수용구(73)는 수용구 갭(74)을 형성하기 위해 채널축(80)을 기준으로 비대칭적으로 배치된다. 바람직하게는, 이 비대칭성은 제 1 열원(20)으로부터 채널(70)로의 수평 방향으로 불균일한 열전달을 발생시키기에 충분하다. 따라서, 수용구(73)는 채널축(80)에 대하여 (약 0.02mm 내지 약 0.5mm 만큼) 중심에서 벗어나 있다. 다른 선호되는 수용구(73)는, 바람직하게는 채널(70)의 폭 또는 직경보다 더 큰, 예를 들어, 채널의 폭(w1 또는 w2) 또는 직경 보다 약 0.04mm 내지 약 1mm 더 큰, 채널축(80)에 수직하는 폭 또는 직경을 가진다. 도시된 바와 같이, 장치의 제 2 열원(30)은 채널(70) 주위의 영역에서 채널축(80)을 따라 일정한 높이를 가진다.
도 19에 도시된 바와 같이, 수용구의 일 측이 채널과 접촉할 때, 훨씬 더 큰 비대칭성을 얻을 수 있다. 이 실시예에서, 다른 갭 구조를 가지는 수용구 구성들, 예를 들어 수용구(73)의 두 개의 마주하는 측에 갭을 가지는 경우, 또한 본 발명의 범주에 속하지만, 상기 수용구(73)에 의해 상기 장치에 도입된 비대칭성은 열 대류를 구동하는 것을 돕는다. 도 19에 도시된 특정 실시예에서, 채널(70)의 일 측(예를 들어, 도 19의 경우 좌측)이, 제 1 열원(20)과의 더 양호한 열 접촉에 의해, 반대쪽 측보다 우선적으로 가열되며, 따라서 더 큰 구동력이 그 측에서 발생함으로써, 상향 대류 흐름이 그 경로로 진행하는 것을 도와준다. 이 실시예에서 수용구(73)의 폭 또는 직경은 채널(70)보다 적어도 약 0.04mm에서 약 1mm까지 더 크도록 형성되며, 수용구의 중심은 적어도 약 0.02mm에서 약 0.5mm까지 중심에서 벗어나도록 위치된다.
비대칭성을 향상시키기 위해, 제 1 열원에 대하여 수용구의 일 측을 다른쪽 측보다 더 깊게(그리고, 챔버와 제 2 열원에 더 근접하게) 형성하는 것이 가능하다. 이제 도 20a-20b에 도시된 장치를 참조하면, 수용구(73)는 수용구의 일 측(좌측)에서 채널의 반대쪽 측(우측)보다 더 큰 깊이를 가진다. 이 실시예에서, 수용구(73)의 양쪽 측들은 채널(70)과 접촉을 유지한다. 도 20a에 도시된 바와 같이, 채널(70)과 제 1 열원(20)에 의해 대략적으로 정의되는 수용구 갭(74)을 형성하기 위해 수용구(73)의 측벽의 상부가 제거되어 있다. 수용구 갭(74)의 하부는 채널축(80)에 수직하거나(도 20a), 또는 거기에 대해 각도를 가지도록 배치될 수 있다(도 20b). 수용구 갭(74)의 측벽은 채널축(80)에 평행하거나(도 20a) 또는 거기에 대해 각도를 가질 수 있다(도 20b). 도 20a-20b에 도시된 양 실시예에서, 채널(70)의 일 측이 수용구 갭(74)을 가지는 다른쪽 측보다 제 1 열원(20)에 대하여 더 큰 깊이를 가진다. 이론에 구속되기를 바라지는 않지만, 도 20a-20b에 도시된 실시예들에서 더 큰 깊이를 가지는 채널 측이 제 1 열원으로부터의 더 많은 열전달에 의해 우선적으로 가열됨으로써, 그 측에 더 큰 부력을 생성한다고 믿어진다. 또한, 이러한 비대칭 수용구(73) 및 수용구 갭(74)을 장치에 추가함으로써, 반대쪽 측에 비해 채널(70)의 일 측에서 온도 기울기가 증가하는 것으로(온도 기울기는 일반적으로 거리에 반비례한다) 믿어진다. 또한, 이러한 특징들은 일 측(도 20a 및 20b의 좌측)에 더 큰 구동력을 생성하게 하여, 그 측을 따라 상향 열 대류 흐름을 지원하는 것으로 믿어진다. 수용구(73) 및 수용구 갭(74)의 상이한 구성들의 하나 또는 조합이 이러한 목표를 달성하기 위해 가능하다는 것이 이해될 것이다. 그러나, 많은 발명 실시예들에 대하여, 약 0.1mm에서 수용구 깊이의 약 40 내지 50%까지의 범위 내에서 두 개의 마주하는 측들의 수용구 깊이에 차이를 만드는 것이 일반적으로 유용할 것이다.
J. 하나의 챔버 , 비대칭적 또는 대칭적 수용구 , 돌출부들
도 21a-21b는 수용구(73)가 채널을 기준으로 비대칭적으로 배치되는 적절한 장치 실시예들의 추가적인 예들을 도시한다. 수용구의 부분들이 다른 부분들보다 제 1 열원 내에서 더 깊고, 챔버 또는 제 2 열원에 더 근접하며, 따라서 제 2 열원을 향해 불균일한 열 흐름을 제공한다.
도 21a에 도시된 장치에서, 수용구(73)는 제 1 열원(20)의 상부(21)와 일치하는 두 개의 면을 가진다. 각 면은 제 2 열원(30)과 마주하며, 면중 하나(도 21a에서 우측에 있는 면)는 채널(70)의 반대쪽에 있는 면(좌측에 있는 면)과 비교하여, 채널(70)의 일 측에서 제 2 열원(30)의 하부면(32)에 대하여 더 큰 갭을 가진다. 즉, 면 중 하나는 다른 면 보다 제 1 챔버(100)의 하부(102) 또는 제 2 열원(30)의 하부면(32)에 더 근접하여 있다. 이 실시예에서, 수용구(73)의 양측은 채널(70)과의 접촉을 유지한다. 두 면 사이의 수용구 깊이의 차이는 바람직하게는 약 0.1mm에서 수용구 깊이의 약 40 내지 50% 사이의 범위에 있다. 제 2 열원(30)은 각각이 채널축(80)을 기준으로 대칭적으로 배치된 돌출부(33, 34)를 특징으로 한다. 또한 이 실시예에서, 제 3 열원(40)은 채널축(80)을 기준으로 대칭적으로 배치된 돌출부(43, 44)를 포함한다.
도 21b를 참조하면, 수용구(73)는 제 1 열원(20)의 상부(21)와 일치하는 하나의 경사진 표면을 가진다. 경사각은 채널축(80)에 수직하는 축에 대하여 약 2도 내지 약 45도 사이에 있다. 이 실시예에서, 경사진 면의 정점(apex)은 제 1 챔버(100)의 하부(102)와 상대적으로 근접한다. 제 2 열원(30)은 각각이 채널축(80)을 기준으로 대칭적으로 배치된 돌출부(33, 34)를 특징으로 한다. 또한 이 실시예에서, 제 3 열원은 각각이 채널축(80)을 기준으로 대칭적으로 배치된 돌출부(43, 44)를 포함한다.
도 22a-22b에 도시된 실시예에서, 제 1 챔버(100)는, 제 2 열원(20)으로부터 채널(70)로의 수평적으로 불균일한 열전달을 발생시키기에 충분하게 채널축(80)을 기준으로 비대칭적으로 배치되어 있다. 도 21a-21b에 도시된 바와 같이, 수용구(73)도 또한 채널(70)을 기준으로 비대칭적으로 배치될 수 있다. 도 22a에 도시된 실시예에서, 제 1 챔버(100)는 제 2 열원(30) 내에 위치하며, 챔버의 일 측에서 채널축(80)의 반대쪽에 있는 다른쪽 측보다 더 큰 높이를 가진다. 즉, 제 1 챔버의 상단부(101)의 일 면과 제 1 챔버의 하단부(102)의 일 면 사이의 채널축(80) 방향의 길이가(도 22a의 좌측), 제 1 챔버의 상단부(101)의 다른 면과 제 1 챔버의 하단부(102)의 다른 면 사이의 길이(도 22a의 우측)보다 더 크다. 두 마주하는 측들 사이의 챔버 높이의 차이는 바람직하게는 약 0.1mm 내지 약 5mm까지 사이의 범위에 있다. 제 1 챔버(100)의 하부(101)(또는 제 2 열원의 하부면)와 수용구(73)의 상단부 사이에는, 채널(70)의 일 측에서 다른쪽 측에서 보다 더 작게 되어 있는 갭이 존재한다.
도 22b를 참조하면, 제 1 챔버(100)의 하단부(102)는 채널축(80)에 수직하는 축에 대하여 약 2도 내지 약 45도만큼 경사져 있다. 이 예에서, 경사의 정점은 수용구(73)에 더 근접해 있다. 제 1 열원(20)의 상부면(21)과 일치하는 수용구(73)의 상부는 채널축(80)에 대하여 경사져 있다. 이 실시예에서, 수용구 경사의 정점은 제 1 챔버의 하단부(102)와 더 근접해 있다. 즉, 제 1 챔버(100)의 하부(또는 제 2 열원의 하부면)와 수용구(73)의 상단부 사이에는 채널(70)의 좌측에서 다른쪽 측에서 보다 더 작게 되어 있는 갭이 존재한다.
도 22a-22b에 도시된 구성들은 수용구(73) 내에서 채널의 일 측(즉, 좌측)에 우선적인 가열을 제공하며, 따라서 초기 상향 대류 흐름이 그 측에서 우선적으로 시작할 수 있게 한다. 그러나, 제 2 열원(30)이 그 측에서의 더 긴 챔버 길이에 의해 같은 측에 우선적인 냉각을 제공한다. 따라서, 상향 흐름은 제 1 챔버 비대칭성의 정도에 따라서 그 경로를 다른쪽 측으로 변경할 수도 있다.
도 22c-22d를 참조하면, 상단부(101)와 하단부(102) 사이의 길이는 채널축(80)에 대하여 제 1 챔버(100)의 일 측 (우측)에서 다른쪽 측에서 보다 더 크다. 여기서, 제 2 열원으로부터의 우선적인 냉각이 도 22c-22d에 도시된 챔버의 우측에서 일어날 것이다. 추가적인 비대칭성은 채널(70)의 일 측에서(즉, 도 22c-22d의 좌측) 다른쪽 측보다 수용구(73)가 더 큰 깊이를 가지는 것에 의해 제공된다. 수용구(73)에서, 우선적인 가열은 채널(70)의 좌측에서 일어나게 된다. 이 실시예에서, 챔버(100)의 하부(102)와 수용구(73)의 상부 사이의 갭은 채널(70)을 기준으로 본질적으로 일정하다.
도 22c-22d에 도시된 구성들은 수용구(73) 내에서 채널의 일 측(즉, 좌측)에 우선적인 가열을 지원하고 제 1 챔버(100) 내 반대쪽 측에 우선적인 냉각을 지원하며, 따라서 상향 대류흐름이 좌측에 우선적으로 머물게 할 것이다.
도 22a-22d에 도시된 실시예들에서, 챔버 구성들에 의해 도입된 비대칭성은 제 2 열원으로부터 채널로의 수평적으로 불균일한 열전달을 발생시키기에 충분하다. 또한, 이 실시예들에서, 돌출부(23, 33)는 채널축(80)에 대하여 비대칭적으로 배치되며, 돌출부(43)는 채널축(80)을 기준으로 대칭적으로 배치된다. 또한, 이 실시예들에서, 상기 장치는 제 1 단열체(50)와 제 2 단열체(60)를 포함하며, 채널축(80) 방향의 제 1 단열체(50)의 길이는 채널축(80) 방향의 제 2 단열체(60)의 길이보다 크다.
적어도 하나의 구조적 비대칭성을 가지는 다른 장치 실시예들도 본 발명의 범주에 속한다.
예를 들어, 도 23a-23b에 도시된 바와 같이, 제 1 챔버의 하단부(102)는 채널축(80)에 대하여 비대칭적으로 배치된다. 상단부(101)와 하단부(102) 사이의 길이는 채널축(80)에 대하여 제 1 챔버(100)의 일 측에서(도 23a-23b의 좌측) 다른쪽 측에서보다 더 크다. 제 1 챔버의 하부(102)와 수용구(73)의 상부 사이의 갭은 채널(70)의 일 측(도 23a-23b의 좌측)에서 다른쪽 측에서보다 더 작다. 이 실시예들에서, 돌출부(23)는 채널축(80)에 대하여 대칭적으로 배치된다. 또한, 이 실시예들에서, 수용구(73)의 우측(채널축(80)에 대하여)에 그 측에서의 더 큰 갭에 의해(제 2 열원에 의한 냉각이 더 큰 갭 때문에 그 측에서 덜 중요하기 때문에) 우선적인 가열이 일어나며, 따라서 더 큰 구동력이 채널의 우측에 생성되며, 그 측에서 보다 현저한 상향 흐름이 생성된다. 또한, 제 2 열원(30)은 채널축(80)을 기준으로 비대칭적으로 배치된 돌출부(33)를 특징으로 한다. 이 실시예에서, 제 2 열원은 채널축(80)을 기준으로 비대칭적으로 배치된 돌출부(34)를 특징으로 한다. 제 3 열원은 채널축(80)을 기준으로 대칭적으로 배치된 돌출부들(43, 44)을 포함한다. 또한, 도 23a-23b에 도시된 실시예들에서, 상기 장치는 제 1 단열체(50)와 제 2 단열체(60)를 포함하며, 채널축(80) 방향의 제 1 단열체(50)의 길이가 채널축(80) 방향의 제 2 단열체(60)의 길이보다 더 크다.
적어도 하나의 구조적 비대칭성을 가지는 다른 장치 실시예들도 본 발명의 범주에 속한다.
도 24a-24b에 도시된 장치 실시예들에서, 제 2 열원(30)은 각각이 채널축(80)의 주위에 비대칭적으로 배치된 돌출부(33, 34)를 특징으로 한다. 도 24a에 도시된 실시예에서, 제 1 챔버(100)의 하단부(102)는 채널축(80)에 수직하는 축에 대하여 약 2도 내지 약 45도 사이만큼 경사져 있어서, 하단부(102)의 일부가 채널축(80)의 반대쪽에 있는 다른 부분보다 제 1 열원(20)에 더 근접하여 있다. 이 실시예에서, 하단부(102)와 제 1 열원(20) 사이의 갭은 채널축(80)의 일 측에서 다른쪽 측에서보다 더 작다. 이 실시예에서, 제 1 열원(20) 및 제 3 열원(40) 중 어느 것도 제 2 열원(30)을 향해 연장되는 돌출부를 가지고 있지 않다. 추가적으로, 제 1 챔버(101)의 상단부는 채널축(80)에 수직하는 축에 대하여 약 2도 내지 약 30도 사이만큼 경사져 있다.
도 24b에서, 제 1 챔버의 하단부(102)의 한 면은 하단부(102)의 다른 면보다 제 1 열원 돌출부(23)에 더 근접하게 위치한다. 이 실시예에서, 제 1 챔버(100)의 하단부(102)와 수용구(73)의 상부 사이의 갭은 일 측(죄측)에서 더 작다. 또한, 도 24b에서, 제 3 열원(40)은 채널(70)을 기준으로 대칭적으로 배치된 돌출부(43)를 특징으로 한다. 제 1 챔버(100)는 일 면(좌측)이 다른 면보다 제 3 열원 돌출부(43)에 더 근접하게 위치되는 2개의 면을 가지는 상단부(101)를 특징으로 한다.
도 24a-24b에 도시된 장치 실시예들에서, 초기 상향 대류 흐름은, 그 측에서의 수용구(73)로부터의 우선적인 가열의 결과로서(그 측에서의 더 큰 단열성 갭의 결과로서 제 2 열원에 의한 덜 중요한 냉각으로 인해), 채널의 우측을 선호하여 일어나게 된다. 제 1 열원(40)으로부터의 우선적인 냉각이, 그 측에서의 더 큰 제 2 단열성 갭으로 인해, 우측에서 발생하기 때문에, 제 1 챔버의 상부에서의 비대칭성의 정도에 따라서, 상향 흐름이 자신의 경로를 반대쪽 측(즉, 좌측)으로 변경할 수 있다. 양 실시예들에서, 채널축(80)에 평행하는 제 1 단열체의 길이는 채널축(80)에 평행하는 제 2 단열체(60)의 길이보다 더 길다.
K. 비대칭 챔버
논의된 바와 같이, 본 발명의 일 목적은 예를 들어 제 2 열원 내에 하나, 둘, 또는 세 개의 챔버를 가지는 장치를 제공함에 있다. 일 실시예에서, 챔버 중 적어도 하나는 수평 비대칭성을 가진다. 비대칭성은 장치 내에서 수평적으로 비대칭적인 구동력을 생성하는 것을 도와준다. 예를 들어, 도 25에 도시된 실시예에서, 제 1 챔버(100)와 제 2 챔버(120)는 채널축(80)으로부터 반대 방향을 따라서 각각 중심에서 벗어나 있다. 특히, 제 1 챔버의 상단부(101)는 제 2 챔버의 하단부(112)와 본질적으로 동일한 높이에 위치한다. 제 1 및 제 2 챔버는 상이한 폭 또는 직경을 가질 수 있다. 두 반대쪽 측 상의 챔버 갭(105, 115)의 차이는 적어도 약 0.2mm에서 약 4 내지 6mm까지 일 수 있다.
도 25에 예시된 중심에서 벗어난 챔버 구조에 더해서, 챔버들 중 적어도 하나 또는 그 이상은, 채널축(80)에 대하여 기울어진(비스듬하게 된) 구조를 포함함으로써 수평적으로 비대칭적으로 구성될 수 있다. 예를 들어, 도 26에 도시된 바와 같이, 제 1 챔버(100)가 채널축(80)에 대하여 기울어질 수 있다. 이 실시예에서, 제 1 챔버의 제 1 벽(103)은 채널축(80)에 대하여 (예를 들어, 채널축(80)에 대하여 약 30도보다 작은 각도로) 기울어져 있다. 챔버(또는 챔버벽(103))의 중심축과 채널축 사이의 각도에 의해 정의되는 경사각은 약 2도 내지 약 30도 사이, 더 바람직하게는 약 5도 내지 약 20도 사이이다.
도 25 및 도 26에 도시된 장치 실시예들에서, 채널(70)의 하부로부터의 상향 대류 흐름은 그 측에서의 수용구(73)로부터의 우선적인 가열의 결과로서 (그 측에서 더 큰 챔버 갭의 결과로서 제 2 열원에 의한 덜 중요한 냉각으로 인해), 채널(70)의 우측을 선호하여 일어나게 된다. 유사하게, 채널(70)의 상부로부터의 하향 흐름은 제 3 열원(40) 또는 관통구(71)로부터의 우선적인 냉각의 결과로서 (그 측에서 더 큰 챔버 갭의 결과로서 제 2 열원(30)에 의한 덜 중요한 가열로 인해), 채널(70)의 좌측을 선호하여 일어나게 된다.
이제 도 27a-27b에 도시된 장치 실시예들을 참조하면, 제 1 챔버(100)의 상단부(101) 및/또는 하단부(102)는 채널축(80)의 두 반대쪽 측에서 (제 3 또는 제 1 열원으로부터의) 상이한 갭을 제공하도록 구성될 수 있다. 예를 들어, 도 27a를 참조하면, 제 1 챔버(100)의 상단부(101) 및/또는 하단부(102)는 챔버축(또는 채널축(80))에 수직하는 축에 대하여 약 2도 내지 약 30도로 경사질 수 있다. 대안적으로, 제 1 챔버(100)는 도 27b에 도시된 바와 같이 복수의 상부면과 하부면을 가질 수 있다.
도 27a-27b에 도시된 실시예들에서, 제 1 챔버의 하단부(102)와 제 1 열원의 상단부(21) 사이의, 그리고 제 1 챔버의 상단부(101)와 제 3 열원(42)의 하단부 사이의 갭은 두 반대쪽 측(즉, 도 27a-27b에서 좌측 및 우측)에서 상이하다. 따라서, 도 25 및 도 26에 도시된 실시예들과 유사하게, 채널(70)의 하부로부터의 상향 대류 흐름은 그 측에서의 수용구(73)로부터의 우선적인 가열의 결과로서(그 측에서 더 큰 단열성 갭의 결과로서 제 2 열원에 의한 덜 중요한 냉각으로 인해), 채널(70)의 우측을 선호하여 일어나게 된다. 채널(70)의 상부로부터의 하향 흐름은 제 3 열원(40) 또는 관통구(71)로부터의 우선적인 냉각의 결과로서(그 측에서 더 큰 단열성 갭의 결과로서 제 2 열원(30)에 의한 덜 중요한 가열로 인해), 채널(70)의 좌측을 선호하여 일어나게 된다.
도 27a-27b에 도시된 실시예들에서, 돌출부(33, 34)는 채널축(80)에 대하여 제 1 챔버(100)를 기준으로 비대칭적으로 배치된다. 추가적으로, 수용구(73)는 채널축(90)을 기준으로 대칭적으로 배치된다. 도 27b에 도시된 실시예는 채널축(80)을 기준으로 대칭적으로 배치된 돌출부(23, 43)를 더 포함한다.
L. 두 개의 챔버 , 비대칭 온도 브레이크(들)
본 발명의 일 목적은 하나 또는 그 이상의 온도 브레이크들, 예를 들어 그들 중 하나 또는 그 이상이 수평적 비대칭성을 가지는 하나, 둘, 또는 세 개의 온도 브레이크를 가지는 장치를 제공함에 있다. 도 28a-28b에 도시된 장치를 참조하면, 제 1 온도 브레이크(130)는 수평적 비대칭성을 가진다. 이 실시예에서, 제 1 온도 브레이크 내에 형성된(일반적으로 채널과 맞도록 형성된) 관통구는, 일 측에 더 작은 갭을 제공하고(또는 어떠한 갭도 제공하지 않고) 반대쪽 측에 더 큰 갭을 제공하도록, 채널(70)보다 더 크며 채널축(80)으로부터 중심에서 벗어나 있다. 온도 분포는 챔버의 비대칭성(즉, 제 1 챔버벽(103)의 비대칭성)에 비해서 온도 브레이크의 비대칭성에 더 민감하다는 것이 발견되었다. 바람직하게는, 온도 브레이크 내의 관통구는 적어도 약 0.1mm에서 약 2mm 더 크도록 형성되며, 채널축으로부터 적어도 약 0.05mm에서 약 1mm까지 중심에서 벗어나 있다.
구조적 비대칭성이 제 1 온도 브레이크(130) 또는 제 2 온도 브레이크(140)(또는 제 1 온도 브레이크(103)와 제 2 온도 브레이크(140) 양쪽)에 존재하는 실시예들에서, 상기 장치는 채널축(80)을 기준으로 대칭적으로 또는 비대칭적으로 배치된 적어도 하나의 챔버를 포함할 수 있다. 도 28a에 도시된 실시예에서, 제 1 챔버(100)와 제 2 챔버(110)는 제 2 열원(30) 내에 위치하며, 채널축(80)을 기준으로 대칭적으로 배치된다. 이 실시예에서, 제 1 챔버(100)는 제 2 챔버(110)로부터 채널축(80)을 따라 길이 l 만큼 이격되어 있다. 제 2 열원(30)의 일부는 제 1 열원(20)으로부터의 또는 제 3 열원(40)으로의 열전달을 감소시키기에 충분한 제 1 온도 브레이크(130)를 형성하기 위해 채널(70)과 접촉한다. 제 1 온도 브레이크(130)는 채널(70)을 기준으로 비대칭적으로 배치된다. 제 1 온도 브레이크(130)는 제 1 챔버(100) 및 제 2 챔버(110) 사이에서 채널(70)의 일 측과 접촉하며, 채널(70)의 다른쪽 측은 제 2 열원(30)으로부터 이격되어 있다. 도 28b는 좌측에서 채널(70)과 접촉하는 벽(133)을 도시하는 제 1 온도 브레이크(130)의 확대도를 도시한다. 구조적 비대칭성이 온도 브레이크 중 하나 또는 그 이상과 연관될 때, 상향 및 하향 대류 흐름은, 채널축 방향의 온도 브레이크의 위치 및 두께에 따라서, 채널축에 대하여 채널의 일 측 또는 반대쪽 측을 선호하여 일어날 수 있다.
M. 온도 브레이크(들)가 있거나 없는 하나 또는 두 개의 비대칭 챔버
도 29a를 참조하면, 제 1 챔버(100)는 채널축(80)에 대하여 중심에서 벗어나 있다. 이 실시예에서, 수용구(73)는 채널축(80)을 기준으로 대칭적으로 배치되며 일정한 깊이를 가진다. 제 1 챔버(100)는 채널(70)로부터 중심에서 벗어남으로써, 챔버 갭(105)이 일 측에서 반대쪽 측과 비교하여 더 작게 만든다. 도 29b에 도시된 바와 같이, 챔버(100)는 채널(70)로부터 더 중심에서 벗어남으로써, 채널(70)의 일 측 또는 한쪽 벽이 챔버벽과 접촉한다. 이 실시예에서, 채널 형성 측(예를 들어, 도 29b의 좌측)은, 자신의 상단부(131)와 하단부(132)가 제 1 챔버(100)의 상단부(101)와 하단부(102)와 일치하는 제 1 온도 브레이크(130)로서 기능한다. 이러한 실시예에서, 제 2 열원(30)과 채널(70) 사이의 열전달은 챔버 갭(105)이 더 작거나 존재하지 않는 측(즉, 도 29a 및 도 29b에서 좌측)에서 더 크며, 따라서 수평적으로 비대칭적인 온도분포를 생성한다. 도 29c는 제 1 온도 브레이크(130)의 확대도를 제공한다. 두 반대쪽 측에서의 챔버 갭 간의 적합한 차이는 바람직하게는 약 0.2mm 내지 약 4 내지 6mm 사이의 범위이며, 따라서 챔버축은 채널축으로부터 적어도 약 0.1mm 내지 약 2 내지 3mm만큼 중심에서 벗어나 있다.
챔버의 전체 또는 일부가 채널축(80)에 대하여 비대칭적으로 형성될 수 있으며, 예를 들어, 챔버의 전체 또는 일부가 중심에서 벗어나게 형성될 수 있다는 것이 이해될 것이다. 대부분의 발명 응용들에 대하여, 전체 챔버를 중심에서 벗어나게 하는 것이 유용할 것이다.
때로는 채널축(80)을 기준으로 대칭적이거나 비대칭적으로 제 2 열원 내에 배치되는 하나, 둘, 또는 세 개의 챔버를 가지는 발명 장치를 가지는 것이 유용할 것이다. 일 실시예에서, 상기 장치는 제 1, 제 2, 및 제 3 챔버를 가지며, 챔버들 중 하나 또는 두 개는 채널축(80)을 기준으로 비대칭적으로 배치되며, 다른 챔버는 동일 축을 기준으로 대칭적으로 배치된다. 상기 장치가 채널축(80)을 기준으로 비대칭적으로 각각 배치된 제 1 챔버와 제 2 챔버를 포함하는 실시예에서, 이 챔버들은 제 2 열원 내에서 완전히 또는 부분적으로 존재할 수 있다.
이 발명 실시예의 특정 예들이 도 30a-30d에 도시되어 있다.
도 30a에서, 제 1 온도 브레이크(130)는 제 2 열원(30) 내에서 채널(70)의 높이의 일부와 접촉한다. 제 1 챔버(100)와 제 2 챔버(110)는 각각이 제 2 열원(30) 내에 위치하며, 제 1 챔버(100)는 제 2 챔버(110)로부터 채널축(80)을 따라 길이 l 만큼 이격되어 있다. 이 실시예에서, 온도 브레이크(130)는 제 1 챔버(100)와 제 2 챔버(110) 사이의 길이 l에서 채널(70)의 전체 둘레와 접촉한다. 제 1 챔버(100)와 제 2 챔버(110)는 동일한 수평 방향으로 채널축(80)으로부터 각각 중심에서 벗어나 있다. 도 30b는 벽(133)이 채널(70)과 접촉하는 제 1 온도 브레이크(130)의 확대도를 제공한다.
도 30c를 참조하면, 제 1 챔버(100)와 제 2 챔버(110)는 동일한 수평 방향으로 채널축으로부터 각각 중심에서 벗어나 있다. 제 1 챔버(100) 및 제 2 챔버(110)는 동일하거나 혹은 상이한 폭 또는 직경을 가질 수 있다. 이 실시예에서, 제 1 온도 브레이크(130)는, 도 30c에 도시된 실시예에서 채널축(80) 방향의 제 1 챔버(100)의 길이와 동일한 제 1 온도 브레이크(130)의 하단부(132)에서 상단부(131)에 이르는 길이에서, 제 1 챔버(100) 내 채널(70)의 일 측(즉, 좌측)과 접촉한다. 도 30d는 채널(70)과 접촉하는 벽(133)을 도시하는 제 1 온도 브레이크(13)의 확대도를 제공한다.
도 30a-30d에 도시된 실시예들 각각에서, 수용구(73)는 채널(70)을 기준으로 대칭적으로 배치된다.
도 31a는 제 1 챔버(100)와 제 2 챔버(110)가 채널축에 대하여 각각 반대 방향으로 약 0.1mm에서 약 2 내지 3mm만큼 중심에서 벗어나 있는 발명 실시예를 도시한다. 제 1 온도 브레이크(130)는 채널축(80)에 대하여 대칭적으로 배치되어 있다. 이 실시예에서, 제 2 열원의 일부는 제 1 열원(20)으로부터의 또는 제 3 열원(40)으로의 열전달을 감소시키기에 충분한 제 1 온도 브레이크(130)를 형성하도록 채널(70)과 접촉한다. 발명의 이 예에서, 제 1 온도 브레이크(130)는 제 1 챔버(100)와 제 2 챔버(110) 사이의 길이 l에서 채널(70)의 전체 둘레와 접촉한다. 다른 실시예들에서, 제 1 온도 브레이크(130)는 일 측에서 채널(70)과 접촉할 수 있으며, 다른쪽 측은 제 2 열원(30)으로부터 이격되어 있다. 도 31b는 채널(70)과 접촉하는 벽(133)을 도시하는 제 1 온도 브레이크(13)의 확대도를 제공한다.
도 32a에 도시된 실시예를 참조하면, 제 1 챔버(100)와 제 2 챔버(11)는 각각이 동일한 수평방향으로 채널축(80)에 대하여 (예를 들면, 약 0.1mm에서 약 2 내지 3mm에 이르기까지) 중심에서 벗어나 있다. 이 실시예에서, 제 1 온도 브레이크(130)는 채널축(80)에 대하여 비대칭적으로 배치된다. 제 1 온도 브레이크(13)와 챔버벽(103)은 동일한 방향으로 중심에서 벗어나 있다. 이 실시예에서, 제 1 온도 브레이크(130)는 일 측(즉, 좌측)에서 채널(70)과 접촉하며, 다른쪽 측은 제 2 열원(30)으로부터 이격되어 있다. 도 32b는 제 1 온도 브레이크(130)의 확대도를 도시한다.
도 32c에서, 제 1 챔버(100)와 제 2 챔버(110)는 동일한 수평방향으로 채널축(80)에 대하여 각각 중심에서 벗어나 있으며, 제 1 온도 브레이크(130)는 반대 방향으로 중심에서 벗어나 있다. 이 실시예에서, 제 1 온도 브레이크(130)는 일 측에서(즉, 우측) 채널(70)과 접촉하며, 다른쪽 측은 제 2 열원(30)으로부터 이격되어 있다. 도 32d는 제 1 온도 브레이크(130)의 확대도를 도시한다.
다른 발명 실시예에서, 상기 장치는 각 챔버가 상이한 수평 방향으로 다른 챔버로부터 중심에서 벗어나 있는 2개의 챔버를 제 2 열원 내에 가지고 있다. 도 33a는 예를 도시한다. 여기서 제 2 열원(30) 내의 제 1 챔버(100)와 제 2 챔버(110)는 각각이 반대쪽 수평 방향으로 채널축(80)에 대하여 (예를 들어 약 0.5mm 내지 약 2 내지 25mm만큼) 중심에서 벗어나 있다. 제 1 챔버의 벽(103)은 채널축(80)을 따라 제 2 챔버의 벽(113)보다 더 낮게 배치되어 있다. 제 1 온도 브레이크의 벽(133)은 제 1 챔버(100) 내의 채널(70)의 하부에서 채널(70)의 일 측(즉, 좌측)과 접촉하며, 제 2 온도 브레이크의 벽(143)은 제 2 챔버(110) 내의 채널(70)의 상부에서 채널의 다른쪽 측(즉, 우측)과 접촉한다. 제 1 온도 브레이크의 상단부(131)는 제 2 온도 브레이크의 하단부(142)와 본질적으로 같은 높이에 위치한다. 이 배치는 일반적으로 제 2 열원(30)과 채널(70) 사이에서 수평적으로 불균일한 열전달을 발생시키기에 충분한다. 도 33b는 제 1 온도 브레이크(130)와 제 2 온도 브레이크(140)의 확대도를 나타낸다.
도 33c는 제 1 온도 브레이크의 상단부(131)가 제 2 온도 브레이크의 하단부(142)보다 더 높게 위치하는 장치 실시예를 도시한다. 제 1 온도 브레이크의 벽(133)과 제 2 온도 브레이크의 벽(143)은 각각 일 측에서 채널(70)과 접촉한다. 도 33d는 제 1 온도 브레이크(130)와 제 2 온도 브레이크(140)의 확대도를 도시한다.
도 33e는 제 1 온도 브레이크의 상단부(131)가 제 2 온도 브레이크의 하단부(142)보다 더 낮게 위치하는 실시예를 도시한다. 제 1 온도 브레이크의 벽(133)과 제 2 온도 브레이크의 벽(143)은 각각 일 측에서 채널(70)과 접촉한다. 도 33f는 제 1 온도 브레이크(130)와 제 2 온도 브레이크(140)의 확대도를 도시한다.
발명은 채널축에 대하여 온도 브레이크들과 챔버들 중 하나 또는 그 이상을 기울어지게(비스듬하게) 함으로써 비대칭성을 상기 장치에 도입하는 다른 실시예들을 제공한다. 도 34a를 참조하면, 제 1 챔버의 상단부(101)와 제 2 챔버의 하단부(112)는 각각 채널축(80)에 수직하는 축에 대하여 약 2도 내지 약 45도 사이에서 경사져 있다. 이 실시예에서, 제 1 열원의 상단부(21)와 제 1 온도 브레이크의 하단부(132) 사이의 거리는 채널축(80)에 대하여 일 측(즉, 좌측)에서 더 작아, 결과적으로 제 1 챔버(100)의 그 측에서 더 커지도록 치우친 온도 기울기를 야기한다. 유사한 효과가 제 2 챔버(110)의 반대쪽 측(즉, 우측)에서 제 3 열원의 하단부(42)와 제 1 온도 브레이크의 상단부(131) 사이의 그 측에서의 더 작은 거리로 인해 기대될 수 있다. 온도 브레이크(130)는 제 1 챔버(100)와 제 2 챔버(110) 사이의 채널의 전체 둘레와 접촉하며 일 측에서 다른쪽 측보다 더 높은 위치에 형성된다. 도 34b는 벽(133)이 채널(70)과 접촉하고 있는 제 1 챔버(100), 제 1 온도 브레이크(130), 및 제 2 챔버(110)의 확대도를 도시한다.
어떤 발명 실시예들에서는, 채널축에 대하여 챔버들 중 적어도 하나(예를 들어, 챔버들 중 하나, 둘, 또는 셋)를 기울이는 것이 유용할 수 있다. 물론, 기울어진 또는 비스듬하게 된 구조들의 상이한 조합들은 의도된 수평적으로 비대칭적인 온도 분포를 달성하기 위하여 구성될 수 있다. 몇 개의 예들이 도 35a-35d에 도시되어 있다.
특히, 도 35a는 제 1 챔버(100)와 제 2 챔버(110)가 각각 채널축(80)에 대하여 약 2도 내지 약 30도 사이에서 기울어지거나 비스듬해져 있는 경우를 도시한다. 이 실시예에서, 제 1 온도 브레이크(130)는 기울어져 있지 않다. 도 35b는 벽(133)이 채널(70)과 접촉하고 있는 제 1 챔버(100), 제 1 온도 브레이크(130), 및 제 2 챔버(110)의 확대도를 도시한다.
도 35c는 제 1 챔버(100)와 제 2 챔버(110), 및 제 1 온도 브레이크(130) 각각이 채널축(80)에 대하여 기울어져 있는 예를 도시한다. 제 1 챔버(100)와 제 2 챔버(110) 각각은 채널축(80)에 대하여 약 2도 내지 약 30도 사이에서 경사져 있거나 비스듬해져 있을 수 있다. 제 1 온도 브레이크(130)의 상단부(131)와 하단부(132)는 각각 채널축(80)에 수직하는 축에 대하여 약 2도 내지 약 45도 사이에서 경사지거나 기울어져 있을 수 있다. 이 실시예에서, 제 1 온도 브레이크(130)는 제 1 챔버와 제 2 챔버 사이에서, 그리고 일 측에서 다른쪽 측에서보다 더 높은 위치에서 채널의 전체 둘레와 접촉한다.
도 31a-31b, 도 32a-32d, 도 33a-33F, 도 34a-34b, 및 도 35a-35d에 도시된 실시예들에서, 수용구(73)는 채널축(80)을 기준으로 대칭적으로 배치된다.
N. 추가적인 실시예들
추가적인 장치 실시예들이 도 36a-36c, 도 37a-37c, 및 도 38a-38c에 도시되어 있다.
도 36a을 참조하면, 상기 장치(10)의 제 1 챔버(100)는 제 2 열원(30) 내에 있으며, 제 2 챔버(110)는 제 3 열원(40) 내에 있다. 제 2 열원 돌출부(33)는 채널축(80)을 기준으로 대칭적으로 배치된다. 상기 장치(10)는 채널축(80)을 기준으로 대칭적으로 배치된 제 1 열원 돌출부(23)를 더 포함한다. 이 실시예에서, 수용구(73)는 채널축(80)을 기준으로 대칭적으로 배치된다.
도 36b에 도시된 실시예에서, 상기 장치(10)의 제 1 챔버(100)와 제 2 챔버(110)는 제 2 열원(30) 내에 있다. 상기 장치는 제 3 열원(40) 내에 제 3 챔버(120)를 더 포함한다. 상기 장치는 또한 제 2 열원(30) 내에 제 1 챔버(100) 및 제 2 챔버(110) 사이에 배치된 제 1 온도 브레이크(130)를 포함한다. 제 2 열원 돌출부(33)는 채널축(80)을 기준으로 대칭적으로 배치된다. 상기 장치는 채널축(80)을 기준으로 대칭적으로 배치된 제 1 열원 돌출부(23)를 더 포함한다. 이 실시예에서, 수용구(73)는 채널축(80)을 기준으로 대칭적으로 배치된다.
도 36c에 도시된 실시예를 참조하면, 제 1 챔버의 하부(102)는 제 2 열원(30) 내에 있다. 그러나, 도 36a에 도시된 장치 실시예에서, 제 1 챔버의 하부(102)는 제 2 열원의 하부면(32)과 일치한다. 도 36c에 도시된 장치는 제 2 열원(30) 내에 제 1 챔버(100)를, 제 3 열원(40) 내에 제 2 챔버(110)를 포함한다. 상기 장치는 제 1 챔버의 하단부(102)와 제 2 열원의 하부(32) 사이에, 제 2 열원(30)의 하부에 배치된 제 1 온도 브레이크(130)를 더 포함한다. 수용구(73)는 채널축(80)에 대하여 대칭적으로 배치된다.
도 36a-36c에 도시된 실시예들에서, 각 장치는 적어도 제 1 열원(20), 제 1 열원의 제 1 돌출부(23), 제 2 열원(30), 및 제 2 열원의 제 1 돌출부(33)에 의해 정의되는 제 1 단열체 챔버(51)를 더 포함한다.
도 37a-37c에 도시된 장치들은 채널축(80)을 기준으로 대칭적으로 배치된 제 2 열원의 제 2 돌출부(34)와, 적어도 제 3 열원(40), 제 2 열원(30), 및 제 2 열원의 제 2 돌출부(34)에 의해 정의되는 제 2 단열체 챔버(61)를 더 포함한다. 도 37a에 도시된 실시예에서, 상기 장치는 제 2 열원(30) 내에 제 1 챔버(100)를, 제 3 열원(40) 내에 제 2 챔버(110)를 포함한다. 수용구(73)는 채널축(80)에 대하여 대칭적으로 배치된다.
도 37b를 참조하면, 도시된 장치는 제 2 열원(30) 내에 위치한 제 1 챔버(100)와 제 2 챔버(110)를 특징으로 한다. 제 3 챔버(120)는 제 3 열원(40) 내에 있다. 상기 장치는 제 2 열원(30) 내에서 제 1 챔버(100) 및 제 2 챔버(110) 사이에 위치하는 제 1 온도 브레이크(130)를 더 포함한다. 이 실시예에서, 상기 장치(10)는 채널축(80)에 대하여 각각 대칭적으로 배치된 돌출부들(23, 33, 34)을 포함한다. 수용구(73)는 채널축(80)에 대하여 대칭적으로 배치된다.
도 37a-37b에 도시된 실시예들에서, 제 1 챔버의 하단부(102)는 제 1 단열체(50)와 접촉한다. 그러나, 도 37c에 도시된 실시예에서는, 제 1 챔버의 하단부(102)는 제 2 열원(20) 내에 있으며, 제 1 온도 브레이크(130)는 제 1 챔버의 하단부(102)와 제 2 열원의 하부(32) 사이에서 제 2 열원(30)의 하부에 위치한다. 도 37c에 도시된 장치는 각각 채널축(80)을 기준으로 대칭적으로 배치된 돌출부들(23, 33, 34)을 또한 포함한다. 또한, 도 37b-37c에 도시된 실시예들에서, 제 1 온도 브레이크(130)는 채널축(80)에 대하여 대칭적으로 배치된다.
도 38a-38c에 도시된 장치들은 채널축(80)을 기준으로 대칭적으로 배치된 제 3 열원의 제 1 돌출부(43)와, 적어도 제 3 열원(40), 제 3 열원 돌출부(43), 제 2 열원(30), 및 제 2 열원의 제 2 돌출부(34)에 의해 정의되는 제 2 단열체 챔버(61)를 더 포함한다. 도 38a에 도시된 실시예에서, 상기 장치는 제 2 열원(30) 내에 제 1 챔버(100)를, 제 3 열원(40) 내에 제 2 챔버(110)를 포함한다. 수용구(73)는 채널축(80)에 대하여 대칭적으로 배치된다.
도 38b에 도시된 장치 실시예에서, 제 1 챔버(100)와 제 2 챔버(110) 각각은 제 2 열원(30) 내에 위치한다. 제 3 챔버(120)는 제 3 열원(40) 내에 위치한다. 상기 장치는 제 2 열원(30) 내에서 제 1 챔버(100)와 제 2 챔버(110) 사이에 위치한 제 1 온도 브레이크(130)를 더 포함한다. 이 실시예에서, 상기 장치는 각각이 채널축(80)에 대하여 대칭적으로 배치된 돌출부들(23, 33, 34, 43)을 포함한다. 수용구(73)는 채널축(80)에 대하여 대칭적으로 배치된다.
도 38c에 도시된 실시예에서, 제 1 챔버의 하단부(102)는 제 2 열원(20) 내에 있으며, 제 1 온도 브레이크(130)는 제 1 챔버의 하단부(102)와 제 2 열원의 하부(32) 사이에서 제 2 열원(30)의 하부에 위치한다. 도 37c에 도시된 상기 장치는 각각이 채널축(80)을 기준으로 대칭적으로 배치된 돌출부들(23, 33, 34, 43)을 또한 포함한다. 수용구(73)는 채널축(80)에 대하여 대칭적으로 배치된다.
제조, 사용 및 온도 형상화 요소 선택
A. 열원들
대부분의 발명 실시예들에 대해서, 열원 중 하나 또는 그 이상은, 다른 온도 사이클링형 장치들을 위해 사용되는 재료들에 비해서 상대적으로 낮은 열 전도율을 가지는 재료들로 만들어질 수 있다. 빠른 온도 변화 공정이 본 발명에서는 일반적으로 회피될 수 있다. 따라서, 열원들 각각에 대한 고온 균일성(예를 들어, 약 0. 1℃보다 작은 온도변화를 가지는)이 상대적으로 낮은 열 전도율을 가지는 재료를 사용하여서도 쉽게 달성될 수 있다. 열원들은 시료 또는 반응용기의 그 것보다 충분히 큰, 바람직하게는 적어도 약 10배 큰, 더 바람직하게는 적어도 약 100배 큰 열전도율을 가지는 어떠한 고체형 재료로도 만들어질 수 있다. 가열될 시료는 주로 상온에서 0.58 W·m-1·K-1의 열전도율을 가지는 물이며, 반응용기는 일반적으로 약 십분의 몇 W·m-1·K-1의 열전도율을 가지는 플라스틱으로 일반적으로 만들어진다. 따라서, 적절한 재료의 열전도율은 적어도 약 5 W·m-1·K-1 또는 그 이상, 더 바람직하게는 적어도 약 50 W·m-1·K-1 또는 그 이상이다. 반응용기가 플라스틱보다 더 큰 열전도율을 가지는 유리 또는 세라믹으로 만들어진 경우, 약간 더 큰 열전도율을 가지는 재료, 예를 들어 약 80 또는 약 100 W·m-1·K-1 보다 큰 열전도율을 가지는 것을 사용하는 것이 바람직하다. 대부분의 금속 및 금속합금들뿐 아니라 높은 열전도율 세라믹들이 이러한 필요조건을 만족시킨다. 더 높은 열전도율을 가지는 재료가 일반적으로 열원들 각각에 대하여 더 나은 온도 균일성을 제공하겠지만, 알루미늄 합금들 및 구리합금들이 상대적으로 저렴하며 높은 열전도율을 가지면서 제조하기 쉬운 이유로 일반적으로 유용한 재료들이다.
다음의 상세한 설명이 본 명세서에 기술된 장치 실시예들을 구성하고 사용하는데 일반적으로 유용할 것이다. 채널축에 수직하는 축 방향의 제 1, 제 2, 및 제 3 열원의 폭 및 길이 치수는 의도된 용도에 따라서, 예를 들어 인접하는 채널/챔버 구조 간의 간격에 따라서, 어떠한 값으로든 선택될 수 있다. 인접하는 채널/챔버 구조 간의 간격은 적어도 약 2 내지 3mm, 바람직하게는 약 4mm 내지 약 15mm 사이일 수 있다. 일반적으로 산업표준, 즉, 4.5mm 또는 9mm의 간격을 사용하는 것이 바람직할 것이다. 일반적인 실시예들에서, 채널/챔버 구조들은 동일하게 이격된 행들 및/또는 열들로 배치된다. 이러한 실시예들에서, 열원 각각의 (채널축에 수직하는 축 방향의) 폭 또는 길이를, 적어도 간격 곱하기 행 또는 열의 갯수에 대응하는 대략의 값에서 이 값보다 약 하나 내지 약 3개의 간격만큼 큰 값까지로 만드는 것이 바람직하다. 다른 실시예들에서, 채널/챔버 구조들은 원형패턴으로 배치될 수 있으며, 바람직하게는 동일한 간격으로 배치된다. 이러한 실시예들에서의 간격은 또한 적어도 약 2 내지 3mm, 바람직하게는 약 4mm 내지 약 15mm이며, 산업 표준인 4.5mm 또는 9mm 간격이 더 바람직하다. 이 실시예들에서, 열원들의 형태는 일반적으로 중앙에 구멍을 가지는 도넛 형태인 것이 바람직하다. 채널/챔버 구조들은 하나, 둘, 셋, 약 10개까지의 동심원 상에 위치될 수 있다. 각 동심원의 직경은, 의도된 용도를 위한 기하학적 필요조건에 의해, 예를 들어, 채널/챔버 구조의 갯수, 그 원에서 인접하는 채널/챔버 구조 사이의 간격 등에 따라서 결정될 수 있다. 열원들의 외경은 가장 큰 동심원의 직경보다 적어도 약 하나의 간격만큼 더 큰 것이 바람직하며, 열원들의 내경은 가장 작은 동심원의 직경보다 적어도 약 하나의 간격만큼 작은 것이 바람직하다.
채널축 방향의 제 1, 제 2, 및 제 3 열원의 길이 또는 두께는 이미 논의되었다. 제 2 열원 내에 적어도 하나의 챔버를 포함하는 실시예들에서, 제 1 열원의 두께는 채널축 방향으로 약 1mm보다 크며, 바람직하게는 약 2mm에서 약 10mm까지이다. 채널축 방향의 제 2 열원의 두께는 약 2mm 내지 약 25mm 사이이며, 바람직하게는 3mm 내지 약 15mm 사이이다. 채널축 방향의 제 3 열원의 두께는 약 1mm보다 더 크며, 바람직하게는 약 2mm 내지 약 10mm 사이이다. 제 3 열원 내에 배치된 단 하나의 챔버를 포함하는 다른 실시예들에서, 제 2 및 제 3 열원은, 제 2 열원 내에 적어도 하나의 챔버를 포함하는 실시예들과 비교하여, 채널축 방향으로 상이한 두께를 가질 수 있다. 예를 들어, 제 2 열원은 채널축 방향으로 1mm보다 큰 두께를, 바람직하게는 약 2mm 내지 약 6mm 사이의 두께를 가진다. 이러한 실시예들에서, 채널축 방향의 제 3 열원의 두께는 약 2 내지 약 20mm 사이이며, 바람직하게는 약 3mm 내지 약 10mm 사이이다. 제 1 열원은 다른 실시예들에서와 같은 범위 내의 채널축 방향의 두께, 예를 들어 약 1mm보다 큰, 바람직하게는 약 2mm 내지 약 10mm 사이의 두께를 가질 수 있다.
채널 치수는 도 5a-5d 및 도 6a-6j에 표시된 바와 같은 몇 개의 파라미터들에 의해 정의될 수 있다. 채널축 방향의 채널의 높이(h)는 약 20마이크로리터의 시료 부피에 대하여 적어도 약 5mm 내지 약 25mm이며, 바람직하게는 8mm 내지 약 16mm이다. 테이퍼 각(θ)은 약 0도 내지 약 15도 사이이며, 바람직하게는 약 2도에서 약 10도까지이다. 채널축에 수직하는 축 방향의 채널의 폭(w1) 또는 직경(또는 그것의 평균)은 적어도 약 1mm 내지 5mm이다. 폭(w1)에 대한 높이(h)의 비율에 의해 정의되는 수직 가로세로비율은 약 4 내지 약 15 사이이며, 바람직하게는 약 5에서 약 10까지이다. 서로에 대하여 상호 수직하며 채널축에 수직하게 정렬되는 제 1 및 제 2 방향을 따른 제 1 폭(w1)의 제 2 폭(w2)에 대한 비율에 의해 정의되는 수평 가로세로비율은, 일반적으로 약 1 내지 약 4이다.
수용구는 채널과 같은 범위에 속하는, 즉, 적어도 약 1mm 내지 약 5mm인 폭 또는 직경을 갖는다. 채널이 테이퍼되어 있는 경우, 수용구의 폭 또는 직경은, 테이퍼된 방향에 따라서 채널보다 더 작거나 더 크다. 수용구의 깊이는 일반적으로 적어도 약 0.5mm 내지 약 8mm, 바람직하게는 약 1mm 내지 약 5mm 사이이다.
챔버는 일반적으로 채널축에 수직하는 축을 따라 적어도 약 1mm 내지 약 10 또는 12mm, 바람직하게는 약 2mm 내지 약 8mm 사이인 폭 또는 직경을 가진다. 챔버 구조의 존재는, 채널과 챔버벽 사이에 일반적으로 약 0.1mm 내지 약 6mm 사이, 보다 바람직하게는 약 0.2mm 내지 약 4mm 사이의 챔버 갭을 제공한다. 채널축 방향의 챔버의 길이 또는 높이는 상이한 실시예들에 따라 변화될 수 있다. 예를 들어, 장치가 제 2 열원 내에 하나의 챔버를 포함하는 경우, 그 챔버는 약 1mm 내지 약 25mm 사이, 바람직하게는 약 2mm 내지 약 15mm 사이인 채널축 방향의 높이를 가질 수 있다. 제 2 열원 내에 두 개 또는 그 이상의 챔버들을 가지는 실시예들에서, 각 챔버의 높이는 약 0.2mm 내지 채널축 방향의 제 2 열원의 두께의 약 80% 또는 90% 사이이며, 두 개 또는 그 이상의 챔버들의 높이의 합은 제 2 열원의 두께만큼 클 수 있다. 제 3 열원 내에 배치된 단 하나의 챔버를 가지는 실시예들에서, 채널축 방향의 챔버 높이는 약 0.2mm에서 채널축 방향의 제 3 열원의 두께의 약 60% 또는 70% 사이의 범위에 있다.
온도 브레이크와 단열체들(또는 단열성 갭들)의 치수 또한 매우 중요하다. 위에서 이미 제공된 일반적인 사양을 참조하라.
발명의 최적의 사용을 위해 일반적으로 요구되는 것은 아니지만, 돌출부(24, 44) 또는 양자 모두를 가지는 장치를 제공하는 것도 본 발명의 범주에 속한다. 예를 들어 도 22c를 참조하라.
기계적 구조를 만들거나 제조함에 있어서 어느 정도의 공차(tolerance)가 일반적으로 존재한다는 것은 자명하다. 따라서, 실질적 실시에 있어서, 물리적으로 접촉하는 구멍(예를 들어, 특정 실시예들에서 제 3 열원 내의 관통구 또는 제 1 열원 내의 수용구)은 반응용기의 크기에 대하여 양의 공차(positive tolerance)를 갖도록 설계되어야 한다. 그렇지 않으면, 관통구 또는 채널은 반응용기의 크기보다 작거나 동일하게 형성됨으로써, 반응용기를 채널에 적절히 설치하지 못하게 될 수 있다. 물리적으로 접촉하는 구멍에 대한 실질적으로 신뢰할만한 공차는 표준 제조 공정에서 약 +0.05mm이다. 따라서 2개의 대상이 "물리적으로 접촉"한다면, 그것은 두 접촉하는 대상 사이에 약 0.05mm 보다 작거나 같은 갭을 가지고 있는 것으로 해석되어야 한다. 두 대상이 "물리적으로 비접촉"하거나 또는 "이격되어" 있는 것이라면, 그것은 두 대상 사이에 약 0.05 또는 0.1mm 보다 큰 갭을 가지고 있는 것으로 해석되어야 한다.
B. 사용
본 명세서에 기술된 거의 어떠한 열 대류 PCR장치도 상이한 PCR 증폭 기법 중 하나 또는 조합을 수행하기 위하여 사용될 수 있다. 하나의 적절한 방법은:
(a) 이중가닥 핵산분자를 디네츄링하여 단일가닥 주형을 형성하기에 적합한 온도 범위에 수용구를 포함하는 제 1 열원을 유지하는 단계;
(b) 적어도 하나의 올리고뉴클레오타이드 프라이머를 상기 단일가닥 주형에 아닐링하기에 적합한 온도 범위에 제 3 열원을 유지하는 단계;
(c) 상기 단일가닥 주형을 따라 상기 프라이머의 중합(polymerization)을 지원하기에 적합한 온도에 제 2 열원을 유지하는 단계; 및
(d) 프라이머 연장 생성물을 생성하기에 충분한 조건 하에서 상기 수용구와 상기 제 3 열원 사이에서 열 대류를 생성하는 단계; 중 적어도 하나를, 바람직하게는 모든 단계를 포함한다.
일 실시예에서, 상기 방법은 수성 완충 용액(aqueous buffer solution)에 이중가닥 핵산과 올리고뉴클레오타이드 프라이머(들)를 포함하는 반응용기를 제공하는 단계를 더 포함한다. 일반적으로 반응용기는 하나 또는 그 이상의 DNA 중합효소를 더 포함한다. 필요하다면, 상기 효소(enzyme)는 고정화되어 있을 수 있다. 반응 방법의 더 특별한 실시예에서, 상기 방법은 반응용기를 수용구, 관통구, 및 제 2 또는 제 3 열원 중 적어도 하나 내에 배치된 적어도 하나의 온도 형상화 요소(일반적으로, 적어도 하나의 챔버)에 (직접적으로 또는 간접적으로) 접촉시키는 단계를 포함한다. 이 실시예에서, 상기 접촉은 반응용기 내에서의 열 대류를 지원하기에 충분한다. 바람직하게는, 상기 방법은 반응용기를 제 1 및 제 2 열원 사이의 제 1 단열체와 제 2 및 제 3 열원 사이의 제 2 단열체에 접촉시키는 단계를 더 포함한다. 일 실시예에서, 제 1, 제 2, 및 제 3 열원은 반응용기 또는 그 안의 수용액보다 적어도 약 10배, 바람직하게는 약 100배 큰 열전도율을 가진다. 제 1 및 제 2 단열체는 반응용기 또는 그 안의 수용액보다 적어도 약 5배 작은 열전도율을 가질 수 있으며, 여기서 제 1 및 제 2 단열체의 열전도율은 제 1, 제 2, 및 제 3 열원 사이의 열전달을 감소시키기에 충분하다.
상기 방법의 단계 (c)에서, 열 대류 유체 흐름은 반응용기 내에서 채널축을 기준으로 본질적으로 대칭적으로 또는 비대칭적으로 생성된다. 바람직하게는, 위에 기술된 상기 방법의 단계 (a)-(d)는 프라이머 연장 생성물을 생성하기 위해 반응용기 당 약 1W보다 적은, 바람직하게는 약 0.5W보다 적은 전력을 소비한다. 필요하다면, 상기 방법을 수행하기 위한 전력은 배터리에 의해 공급된다. 일반적인 실시예들에서, PCR 연장 생성물은 약 15분 내지 약 30분 또는 더 짧은 시간 내에 생성되며, 반응용기는 약 50 또는 100마이크로리터보다 작은 부피, 예를 들어 약 20마이크로리터보다 작거나 같은 부피를 가질 수 있다.
상기 방법이 본 발명의 열 대류 PCR 원심분리기와 함께 사용되는 실시예들에서, 상기 방법은 PCR을 수행하기에 좋도록 반응용기에 원심력을 적용 또는 인가하는 단계를 더 포함한다.
열 대류에 의해 PCR을 수행하기 위한 방법의 더 상세한 실시예에서, 상기 방법은 프라이머 연장 생성물을 생성하기에 충분한 조건 하에서, 본 명세서에 개시된 장치들 중 어느 하나에 의해 수용되는 반응용기에 올리고뉴클레오타이드 프라이머, 핵산 주형, 및 버퍼를 추가하는 단계들을 포함한다. 일 실시예에서, 상기 방법은 반응용기에 DNA 중합효소를 추가하는 단계를 더 포함한다.
열 대류에 의해 PCR을 수행하기 위한 방법의 다른 실시예에서, 상기 방법은, 프라이머 연장 생성물을 생성하기에 충분한 조건 하에서, 본 명세서에 개시된 어느 PCR 원심분리기에 의해 수용되는 반응용기에 올리고뉴클레오타이드 프라이머, 핵산 주형, 및 버퍼를 추가하는 단계와, 반응용기에 원심력을 적용하는 단계를 포함한다. 일 실시예에서, 상기 방법은 반응용기에 DNA 중합효소를 추가하는 단계를 포함한다.
본 발명의 실시는 다른 다양한 증폭기법 중 양적(quantitative) PCR(qPCR), 멀티플렉스 PCR(multiplex PCR), 라이게이션-중재 PCR(ligation-mediated PCR), 핫-스타트 PCR(hot-start PCR), 대립유전자-특이적 PCR(allele-specific PCR)을 포함하는 PCR 기법들의 하나 또는 조합과 양립가능하다. 아래의 본 발명의 특정 사용법이 도 1 및 2a에 도시된 실시예를 참조하여 설명된다. 아래에서 이해되겠지만, 본 방법은 본 명세서에 참조된 다른 실시예들에도 일반적으로 적용가능하다.
도 1 및 2a를 참조하며, 제 1 열원(20)은 채널의 바닥 또는 하부에서(때로는 본 명세서에서 디네츄레이션 영역이라고도 함) 디네츄레이션 과정에 적합한 온도분포를 생성한다. 제 1 열원(20)은 일반적으로 관심의 대상이 되는 핵산 주형(예를 들면, 약 1fg 내지 약 100ng 의 DNA-기반 주형)을 녹이는데 유용한 온도에 유지된다. 이 실시예에서, 제 1 열원(20)은 약 92℃ 내지 약 106℃ 사이에서, 바람직하게는 약 94℃ 내지 약 104℃ 사이에서, 더 바람직하게는 약 96℃ 내지 약 102℃ 사이에서 유지되어야 한다. 아래에서 이해되는 바와 같이, 관심의 대상이 되는 핵산, 필요한 민감도, 및 PCR 공정이 수행되어야 하는 속도와 같은 인식된 파라미터들에 따라서, 상이한 온도 프로파일들이 발명의 최적의 실시에 더 적합할 수 있다.
제 3 열원(40)은 채널의 맨위 또는 상부(때로는 본 명세서에서 아닐링 영역이라고도 함)에서 아닐링 과정에 적합한 온도분포를 생성한다. 제 3 열원은 일반적으로, 예를 들어 사용되는 올리고뉴클레오타이드 프라이머들의 녹는 온도 및 PCR반응에 경험을 가진 사람들에게 알려진 다른 파라미터들에 따라서, 약 45℃ 내지 약 65℃ 사이의 온도에서 유지된다.
제 2 열원(30)은 채널(70)의 중간 영역(때로는 본 명세서에서 중합 영역이라고도 함)에서 중합 과정에 적합한 온도분포를 생성한다. 많은 발명 응용들에 대하여, Taq DNA 중합효소 또는 그것의 상대적으로 열안정적인 유도체가 사용되는 경우, 제 2 열원(30)은 약 65℃ 내지 약 75℃ 사이, 보다 바람직하게는 약 68℃ 내지 약 72℃ 사이의 온도에서 일반적으로 유지된다. 활성도 온도 프로파일이 다른 DNA 중합효소가 사용되는 경우, 제 2 열원의 온도 범위는 사용된 중합효소의 온도 프로파일에 맞추어 변화될 수 있다. 열 민감성 및 열 안정성 중합효소를 PCR 공정에 사용하는 것과 관련하여, U.S. Pat No. 7,238,505와 거기에 개시되어 있는 참고문헌들을 참조하라.
추가 장치 실시예들의 사용에 대한 정보를 위한 예 부분을 참조하라.
C. 온도 형상화 요소의 선택
다음의 절은 온도 형상화 요소들의 선택 및 사용에 대한 추가적인 안내를 제공하기 위한 의도이다. 이것은 본 발명을 특정 장치 고안 또는 사용에 제한하기 위한 의도가 아니다.
발명 장치와 함께 사용되는 온도 형상화 요소의 하나 또는 조합의 선택은 관심의 대상이 되는 특정 PCR 응용에 의해 안내된다. 예를 들어, 표적 주형의 속성들은 특정 PCR 응용에 가장 적합한 온도 형상화 요소(들)을 선택하는데 있어서 중요하다. 예를 들어, 표적 서열이 상대적으로 짧거나 또는 길 수 있으며, 그리고/또는 표적 서열은 상대적으로 단순한 구조(예를 들어, 플라스미드 또는 박테리아 DNA, 바이러스 DNA, 파지(phage) DNA, 또는 cDNA) 또는 복잡한 구조(예를 들어, 게놈 또는 염색체 DNA)를 가질 수 있다. 일반적으로, 긴 서열 및/또는 복잡한 구조를 가지는 표적 서열들은 증폭하기가 더 어렵고 일반적으로 더 긴 중합 시간을 요구한다. 추가적으로, 아닐링 또는 디네츄레이션을 위한 더 긴 시간이 종종 요구되기도 한다. 또한, 표적 서열은 많거나 적은 양으로 있을 수 있다. 적은 양의 표적 서열이 증폭하기에 더 어렵고 일반적으로 PCR 반응시간(즉, 더 많은 PCR 사이클)을 더 요구한다. 다른 고려사항들도 특정 사용에 따라서 또한 중요할 수 있다. 예를 들어, 후속 응용, 실험, 또는 분석을 위해, 그렇지 않으면 시료로부터 표적 서열을 탐지하거나 확인하기 위해 특정 양의 표적 서열을 생성하는데 PCR 장치가 이용될 수 있다. 추가적인 고려들에 있어서, PCR 장치는 실험실 또는 현장에서, 또는 어떤 특수한 환경, 예를 들어, 차량, 선박, 잠수함, 또는 우주선 내에서, 여러 혹독한 날씨 조건 하 등에서 사용될 수 있다.
논의된 바와 같이, 본 발명의 열 대류 PCR 장치는 일반적으로 기존의 PCR 장치들보다 더 빠르고 보다 효율적인 PCR 증폭을 제공한다. 또한, 본 발명 장치는 기존의 PCR 장치들보다 실질적으로 더 낮은 전력 필요조건과 한층 더 작은 크기를 가진다. 예를 들어, 열 대류 PCR장치는 일반적으로 적어도 약 1.5배 내지 2배 더 빠르며(바람직하게는 약 3배 내지 4배 더 빠르며), 적어도 약 5배 내지 10배 작은 크기와 중량을 가지며, 작동을 위해 적어도 약 5배(바람직하게는 약 10배 내지 수십배) 더 적은 전력을 요구한다. 따라서 적절한 설계가 선택되면, 사용자들은 시간, 에너지, 및 공간이 훨씬 적게 드는 장치를 가질 수 있다.
적절한 장치 설계를 선택하기 위해, 의도하는 온도 형상화 요소의 중요 기능들을 이해하는 것이 중요하다. 아래의 표 1에 요약된 바와 같이, 각 온도 형상화 요소는 열 대류 PCR 장치의 성능과 관련하여 특정 기능들을 가진다. 예를 들어, 챔버 구조는 일반적으로, 챔버가 없는 구조들에 비해서 챔버가 위치한 열원 내에서 열 대류의 속도를 증가시키며, 온도 브레이크는 일반적으로, 온도 브레이크가 없이 챔버 구조를 가지는 구조들에 비해서 열 대류의 속도를 감소시킨다. 그러나, 중요하게는, 제 2 열원 내에 챔버 구조에 더해서 온도 브레이크 구조를 도입하는 것은, 중합 단계에 이용가능한 시료의 시간 길이 또는 부피를 더 크게 할 수 있어, 더 긴 중합 시간을 요구하는 표적 서열들에 대하여 PCR 증폭의 효율성이 증가될 수 있다. 따라서, 아래에 논의되는 바와 같이 특정 응용에 따라, 챔버 구조는 온도 브레이크와 같이 또는 온도 브레이크 없이 사용될 수 있다. 표 1에 또한 요약된 바와 같이, 채널 구조만 가지는 구조(즉, 챔버가 없는 구조)를 포함하는 다른 열원 구조들과 상관없이, 대류 가속 요소들(예를 들어, 위치적 비대칭성, 구조적 비대칭성, 및 원심 가속도)의 어느 하나 또는 조합이 열 대류의 속도를 증가시키기 위해 사용될 수 있다. 따라서, 필요에 따라 열 대류 속도를 향상시키기 위해, 이러한 대류 가속요소들 중 적어도 하나 또는 조합은 거의 모든 열원 구조들과 조합될 수 있다. 논의된 바와 같이, 상기 발명 장치는, 주로 온도 사이클링 공정(즉, 열원의 온도를 변경하는 공정)에 대한 필요성을 제거한 결과로서, 기존의 PCR 장치보다 훨씬 적은 전력을 요구한다. 또한 논의된 바와 같이, 제 1 및 제 2 단열체의 적절한 조합(즉, 단열성 갭의 두께뿐 아니라 적절한 열 단열체의 사용)은 본 발명 장치의 소비전력을 더 감소시킨다. 또한, 돌출부 구조(들)의 사용은 본 발명 장치의 소비전력을 실질적으로 더욱 더 감소시킬 수 있으며(예를 들어 예 1 및 3을 참조하라), 또한, 챔버길이를 증가시켜 중합 시간을 증가시킨다. 수용구 깊이 및 제 1, 제 2 및 제 3 열원의 온도들과 같은 다른 파라미터들 또한 열 대류 속도와 또한 중합, 아닐링 및 디네츄레이션 단계 각각에 이용가능한 시간을 조절하는데 사용될 수 있다. 아래에 논의되는 바와 같이, 이러한 온도 형상화 요소들 각각은 특정 응용에 적합한 특정 열 대류 PCR장치를 제작하기 위해 단독으로 사용되거나, 하나 또는 그 이상의 다른 요소들과 조합하여 사용될 수 있다.
온도 형상화 요소들의 중요 기능들
온도 형상화 요소 중요기능
챔버 채널만 있는 구조와 비교하여 챔버가 있는 열원 내에서 열 대류 속도를 증가시킨다. 챔버 직경이나 챔버 갭이 작을수록 열 대류 속도는 더 느려진다.
온도 브레이크 챔버 구조와 조합될 때 열 대류 속도를 감소시킨다. 적어도 하나의 챔버와 조합되어 일반적으로 제 2 열원 내에 위치되며, 중합 단계를 위해 이용가능한 시료의 시간 길이 및 부피를 챔버만 있는 구조에 비해 증가시킨다.
채널축 방향의 온도 브레이크의 길이가 길면 길수록, 열 대류 속도는 더 느려지고, 더 증가된 시간 및 시료 부피가 중합단계를 위해 이용가능해진다.
단열체/단열성 갭 일반적으로 다단 열 대류 장치에 요구된다. 열 대류 속도를 제어하고 소비 전력을 감소시키기 위해 유용하다. 채널축 방향의 단열체의 길이가 작으면 작을수록, 열 대류를 위한 소비 전력과 구동력이 더 커진다.
돌출부 실질적으로 소비전력을 감소시키고 채널축 방향의 챔버 길이를 늘리는 데 유용하다(따라서 중합 단계를 위해 이용가능한 시간 및 시료 부피를 증가시키는 데 유용하다)
위치적 비대칭성 열 대류 속도를 증가시키며, 조정가능한 구조적 요소로서 발명 장치에 사용될 수 있어서 주어진 설계에서 열 대류 속도를 제어하기 위한 자유도를 제공할 수 있다. 구조적 비대칭요소와 함께 사용될 때, 조정가능한 위치적 비대칭요소는 가속 및 감소 요소로서 사용될 수 있다.
구조적 비대칭성 열 대류 속도를 증가시킨다.
원심 가속도 주어진 설계에서 열 대류 속도를 제어하기 위한 자유도를 제공하면서, 열 대류 속도를 증가시킨다. 일반적으로 위치적 비대칭요소와 함께 사용된다.
많은 유용한 장치 실시예들이 본 발명에 의해 제공되지만, 다음의 조합들이 특히 유용하고 발명 장치의 성능을 예측하기가 쉽다.
많은 응용들을 위한 적합한 열 대류 PCR장치는 일반적으로 채널과 제 1 및 제 2 단열체(또는 제 1 및 제 2 단열성 갭)를 기본 요소로서 포함한다. 하나 또는 그 이상의 다른 온도 형상화 요소들이 이러한 기본 요소들과 사용되기 위해 조합될 수 있다. 채널과 단열체들만을 사용하는 장치는 어떤 PCR 응용에는 최적이 아닐 수 있다. 채널 구조만을 가지고는, 각 열원 내 시료 내부의 온도 기울기가 열원들로부터의 효율적인 열전달로 인해 너무 작을 수 있으며, 따라서 열 대류가 너무 느려지거나 또는 적절하게 발생하지 않을 수 있다. 챔버 구조의 사용은 이러한 결함을 해결할 수 있다. 논의된 바와 같이, 각 열원 내의 열 대류의 속도는 챔버 구조를 그 열원에 사용함으로써 증가될 수 있다. 추가적인 온도 형상화 요소로서 챔버를 사용하는 열 대류 PCR장치는, 가령, 플라스미드 또는 박테리아 DNA, 바이러스 DNA, 파지(phage) DNA, 또는 cDNA 등과 같은 단순한 구조를 가지는 상대적으로 짧은 표적 서열(예를 들어, 약 1kbp보다 짧고, 바람직하게는 약 500 또는 600bp보다 짧은)의 빠른 증폭에 가장 적합하다. 예를 들어, 약 3 내지 6mm의 폭 또는 직경을 가지는 제 2 열원 내의 직선형 챔버를 가지는 장치 설계는, 표적 서열의 양 및 크기에 따라, 이러한 시료들의 PCR증폭을 약 25 또는 30분 이내, 바람직하게는 약 10 내지 20분 이내에 완료할 수 있다(예를 들어, 예 1 및 3 참조). 열 대류 PCR의 속도를 더 증가시키는 것은 대류 가속 요소들 중 적어도 하나를 사용함으로써 달성될 수 있다(예를 들어, 예 2 및 7 참조).
(온도 브레이크 없이) 챔버를 포함하는 발명 장치는 또한 긴 표적 서열들(예를 들어, 약 1kbp 내지 약 2 또는 3kbp보다 긴) 또는 복잡한 구조를 가진 표적 서열들(예를 들어, 게놈 도는 염색체 DNA)뿐 아니라 단순한 구조를 가진 짧은 서열들을 증폭하는데 유용하다. 이러한 실시예들의 일 유형에서, 챔버(들)는 제 2 열원 내에만, 또는 제 2 및 제 3 열원 양자 내에 존재하며, 제 2 열원 내에 위치하는 챔버의 폭 또는 직경은 (부분적으로 또는 완전히) 감소될 수 있거나, 또는 감소된 폭 또는 직경을 가지는 추가적인 챔버가 제 2 열원 내에 사용될 수 있다. 감소된 챔버 폭 또는 직경은 일반적으로 약 3mm보다 작은 범위에 속한다. 이러한 설계들에서, (감소된 폭 또는 직경을 가지는 챔버 영역에서의) 제 2 열원으로부터의 증가된 열 전달은 중합단계에 이용가능한 시간 길이의 증가를 가져오며, 따라서 긴 서열들 및/또는 복잡한 구조를 가지는 서열들의 증폭이 효율적으로 이루어지게 된다. 그러나, 감소된 챔버 폭 또는 직경을 사용하는 것은 일반적으로 열 대류 속도의 감소를 가져온다. 대류 속도가 사용자의 응용에 있어서 너무 느려지면, 대류 가속 요소들 중 적어도 하나가 대류 속도를 증가시키기 위해 결합될 수 있다. 다른 유형의 실시예에서, 챔버는 제 3 열원 내에만 존재할 수 있다. 이러한 유형의 실시예들에서, 상대적으로 높은 (예를 들어, 약 60℃보다 높은) 녹는점을 가지는 프라이머들을 사용하는 것이 위에서 언급된 표적 서열들의 다른 유형들을 증폭하기 위해 일반적으로 추천된다.
위에서 논의된 바와 같이, 온도 브레이크는 대류 감속 요소이며, 일반적으로 제 2 열원 내에서 챔버 구조와 결합될 때, 중합 시간을 일반적으로 더 길게 한다. 따라서, 제 2 열원 내에서의 온도 브레이크와 챔버 구조의 조합은, 충분한 중합 시간을 제공하기에 적절히 느리며, 또한 빠른 PCR 증폭을 이루기 위해 충분히 빠른 열 대류 속도를 제공할 수 있는 좋은 설계 예이다. 예 1에서 입증되는 바와 같이, 큰 폭의 챔버(예를 들어, 약 3mm보다 큰 챔버의 폭 또는 직경)와 얇은 온도 브레이크(예를 들어, 채널축 방향의 온도 브레이크의 길이가 약 2mm보다 작은)의 조합은, 짧은 표적 서열 및 긴 표적 서열(예를 들어, 약 2 또는 3 kbp까지의 플라스미드 표적들)뿐 아니라 복잡한 구조를 가지는 표적 서열들(예를 들어, 약 1kbp 내지 약 800bp까지의 인간 게놈 표적들)에 대하여도 충분히 빠른 증폭을 이룰 수 있는 장치 설계의 좋은 예이다. 중요하게도, 이러한 설계는 대류 가속 요소들 중 어느 것도 사용하지 않으면서 다른 유형들의 표적 서열들에 대해 실질적으로 빠른 증폭(즉, 25 또는 30분 이하 이내, 바람직하게는 약 10분 내지 20분 이내)을 제공한다. 또한 입증되는 바와 같이, 대류 가속 요소(예를 들어, 예 2에서 위치적 비대칭성)의 사용은 더욱 더 가속된 열 대류 PCR을 제공할 수 있다.
제 2 열원 내에서 더 좁은 챔버(예를 들어, 약 3mm보다 작은 챔버 폭 또는 직경의) 및/또는 온도 브레이크를 사용함으로써, 열 대류 PCR 장치의 작동 범위의 추가적인 증대가 달성될 수 있다. 제 2 열원 내에서의 감소된 폭 또는 직경(부분적으로나 완전히)을 가지는 챔버 또는 온도 브레이크의 사용은 제 2 열원으로부터 채널로의 증가된 열전달을 가져올 수 있으며, 따라서 열 대류는 감속된다. 이러한 감속된 열원 구조들에서는, 중합 시간이 증가할 수 있게 되어, 긴 서열들, 예를 들어, 약 5 또는 6kbp까지의 서열들을 증폭할 수 있게 된다. 그러나, 전체 PCR 반응 시간은 느린 열 대류 속도로 인해 불가피하게 증가될 수 밖에 없는데, 예를 들면, 표적 서열의 크기 및 구조에 따라 약 35분에서 약 1시간까지 또는 그 이상으로 증가될 수 밖에 없다. 대류 가속 요소들 중 어느 하나 또는 그 이상은 또한, 열 대류 PCR의 속도를 필요에 따라 증가시키기 위해 이러한 유형의 장치 설계들과 조합될 수 있다.
위에서 언급된 대류 가속 요소들(즉, 위치적 비대칭성, 구조적 비대칭성, 및 원심 가속도)은 열 대류의 속도에 각각 다른 정도로 영향을 줄 수 있다. 위치적 또는 구조적 비대칭성은 일반적으로 열 대류 속도를 약 10% 또는 20%에서 약 3배 내지 4배까지로 증가시킬 수 있다. 원심 가속도의 경우, 이러한 증가는, 예를 들면, 논의되는 바와 같이 R=10cm인 경우 10,000rpm에서 약 11,200 배로, 얼마든지 크게 만들어질 수 있다. 실질적으로 유용한 범위는 약 10배 내지 약 20배까지의 증가이다. 이러한 대류 가속 요소들 중 어느 하나가 사용될 때, 열 대류의 속도는 증가될 수 있다. 따라서, 사용자의 응용들을 위해 열 대류 속도의 추가적인 증가가 필요할 때마다, 이러한 특징은 편리하게 사용될 수 있다. 대류 가속 요소들 중 적어도 하나를 포함하는 하나의 특정 설계는 챔버를 포함하지 않는(즉, 채널만을 포함하는) 열원 구조이다. 예 6에서 입증되는 바와 같이(도 75e와 비교하여 도 76e를 참조하라), 대류 가속 요소의 사용은 채널만 있는 설계를 작동가능하게 만들 수 있다. 이러한 채널만을 가지는 설계는, 그것이 중합 단계에 이용가능한 시간과 시료의 부피를 가능한 한 최대로 제공할 수 있기 때문에 유익하다. 그러나, 논의된 바와 같이, 이러한 설계는 일반적으로 너무 느린 열 대류 속도를 제공한다. 사용자의 요구에 맞추어 대류 가속 요소들 중 어느 하나 또는 그 이상을 사용하여 열 대류 속도를 증가시킴으로써 이러한 결함을 제거할 수 있다.
위에서 논의된 모든 장치예들은 기존의 PCR 장치들보다 훨씬 더 적은 전력을 요구하며, 심지어 돌출부 구조 없이도 휴대용 장치로, 즉 배터리로 작동가능한 장치로 제작될 수 있다. 논의된 바와 같이, 돌출부 구조의 사용은 실질적으로 소비전력을 감소시킬 수 있으며, 따라서 휴대가능한 PCR 장치가 사용자의 응용에 필수적인 경우 더 추천된다.
위에서 논의된 장치 설계들은 (최적화된 경우) 매우 낮은 카피 수의 시료들로부터 증폭할 수 있다. 예를 들어, 예 1, 2, 및 3에서 입증되는 바와 같이, 약 100개 카피보다 훨씬 적은 표적 서열들이 약 25분 또는 약 30분 내에 증폭될 수 있다.
또한, 위에서 논의된 장치 설계들은, 실험실 내부와 같이 제어된 조건하에서만 사용될 수 있는 많은 기존의 PCR 장치들과 달리, 실험실 내 또는 현장, 또는 어떤 특수한 조건에서 사용될 수 있다. 예를 들어, 몇 가지의 발명 장치를 운전하는 동안 차 내부에서 시험하였으며, 빠르고 효율적인 PCR 증폭이 실험실 내부에서와 같이 달성될 수 있다는 것을 확인하였다. 추가적으로, 몇 가지의 발명 장치를 또한 특수한 온도 조건 하에서(약 -20℃이하부터 약 40℃ 이상까지) 시험하였으며, 외부 온도에 상관없이 빠르고 효율적인 PCR 증폭을 확인하였다.
마지막으로, 예들을 통해 예시되는 바와 같이, 본 발명의 열 대류 PCR 장치들은 빠를 뿐만 아니라 매우 효율적인 PCR 증폭을 제공할 수 있다. 따라서, 본 발명 장치들이, 손바닥 크기의 휴대가능한 PCR 장치라는 새로운 특징과 함께 개선된 성능을 제공하면서, PCR 장치의 다양한 여러 가지의 응용들 거의 모두에 일반적으로 적합하다는 것이 입증되었다.
하우징 및 온도 제어 요소들을 가지는 장치
위에 참조된 발명 장치는 단독으로, 또는 적절한 하우징, 온도 감지, 및 가열 및/또는 냉각 요소들과 조합되어 사용될 수 있다. 도 39에 도시된 일 실시예에서, 제 1 열원(20), 제 2 열원(30), 및 제 3 열원(40)은 적어도 하나의 제 1 고정요소(200)(일반적으로 스크류 구멍)와 제 2 고정요소(210)를 특징으로 하며, 이 요소들 각각은 열원들, 제 1 단열체(50) 및 제 2 단열체(60)를 단일 작동가능한 장치로서 함께 고정하도록 적응되어 있다. 제 2 고정요소(210)는 추가적인 단열 공간(아래 참조)을 위한 경계를 제공하는 것을 돕기 위해 바람직하게는 "윙 형태(wing-shaped)"이다. 가열 및/또는 냉각요소들(160a, 160b, 160c)은 제 1 열원(20), 제 2 열원(30), 및 제 3 열원(40) 내에 각각 위치한다. 열원들 각각은 일반적으로 적어도 하나의 가열 요소를 가진다. 일반적으로 유용한 가열요소는 저항형 가열(resistive heating) 또는 유도형 가열(inductive heating) 방식이다. 의도된 용도에 따라, 열원들 중 하나 또는 그 이상은 하나 또는 그 이상의 냉각요소 및/또는 하나 또는 그 이상의 가열요소를 더 포함할 수 있다. 일반적으로 선호되는 냉각요소는 팬(fan) 또는 펠티어 쿨러(Peltier cooler)이다. 잘 알려진 바와 같이, 펠티어 쿨러는 가열 및 냉각 양 요소로서 기능할 수 있다. 온도 기울기 작동이 열원에 걸쳐 다른 온도를 제공하기 위해 요구되는 경우, 열원들 중 하나 또는 그 이상의 상이한 위치에 하나보다 더 많은 가열요소들 또는 가열 및 냉각 양 요소들을 사용하는 것이 특히 바람직하다. 제 1 열원(10), 제 2 열원(30), 및 제 3 열원(40)은 열원들 각각에 배치된 온도센서들(170a, 170b, 및 170c)을 각각 더 포함한다. 대부분의 실시예들에 대하여, 열원들 각각은 일반적으로 하나의 온도센서를 포함한다. 그러나, 열원들 중 하나 또는 그 이상에 온도 기울기 작동 기능을 가지는 것과 같은 어떤 실시예들에서는, 둘 또는 그 이상의 온도센서가 그 열원의 상이한 위치들에 위치될 수 있다.
도 40a-40b는 도 39에 도시된 실시예의 단면도들을 제공한다. 채널 및 챔버 구조의 단면도들에 더해서, 가열요소 및/또는 냉각요소의 위치들이 하나의 예로서 도시되어 있다. 이 예에서 도시된 바와 같이, 열원들 각각에 걸쳐서 균일한 가열 및/또는 냉각을 제공하기 위해, 가열요소 및/또는 냉각요소들을 열원 각각에 균일하게 위치하는 것이 바람직하다. 예를 들어, 도 40b에 도시된 바와 같이, 가열요소 및/또는 냉각요소들이 채널 및 챔버 구조 각각의 사이에 위치하며, 서로로부터 동일하게 이격되어 있다(예를 들어 도 42를 또한 참조하라). 예를 들어, 도 40a에 도시된 단면도는, 채널 및 챔버 구조들 각각의 사이에 한 위치에서 다른 위치로의 가열요소 및/또는 냉각 요소들 간의 연결들(즉, 원들)을 도시한다. 온도 기울기 작동 옵션을 가진 것들과 같은 다른 유형의 실시예들에서는, 가열요소 또는 냉각요소들의 둘 또는 그 이상이, 열원들 중 하나 또는 그 이상에 사용될 수 있으며, 그 열원에 걸쳐서 편향된 가열 및/또는 냉각을 제공하기 위해 그 열원의 상이한 위치에 위치될 수 있다.
도 41에서, 단면의 면은 제 2 고정요소(210)와 제 1 고정요소(200) 중 하나를 절단한다. 도시된 바와 같이, 제 1 고정요소(200)는, 스크류(201), 와셔(202a), 제 1 열원의 고정요소(203a), 스페이서(202b), 제 2 열원의 고정요소(203b), 스페이서(202c), 및 제 3 열원의 고정요소(203c)를 포함한다. 바람직하게는, 스크류(201), 와셔(202a) 및 스페이서들(202b 및 202c) 중 적어도 하나, 더 바람직하게는 모두는 열 단열체 재료로 제작된다. 예는 플라스틱, 세라믹, 및 플라스틱 혼합물(탄소 또는 유리섬유를 포함하는 것들과 같은)을 포함한다. 높은 기계적 강도, 높은 녹는온도 및/또는 변형온도(예를 들어, 약 100℃ 또는 그 이상, 더 바람직하게는 약 120℃ 또는 그 이상), 및 낮은 열전도율(예를 들어, 약 10분의 몇 W·m-1·K-1 보다 작은 열전도율을 가지는 플라스틱 또는 몇 W·m-1·K-1 보다 작은 열전도율을 가지는 세라믹)을 가지는 재료가 더 바람직하다. 보다 구체적인 예는, 폴리페닐렌 설파이드 (polyphenylene sulfide(PPS)), 폴리에테르캐톤 (polyetherehterketone(PEEK)), Vesper(폴리이미드(polyimide)), RENY(폴리아마이드(polyamide)) 등과 같은 플라스틱, 또는 이들의 탄소 또는 유리 혼합물들, 및 마코르(Macor), 퓨즈드 실리카(fused silica), 산화 지르코늄(sirconium oxide), 멀라이트(Mullite), 어큐플렉트(Accuflect) 등의 낮은 열전도율 세라믹들을 포함한다.
도 42는 다양한 고정요소와 온도 제어요소를 가지는 장치 실시예의 확대도를 제공한다. 도 42에 도시된 특정 고정구조들에 더하여, 다른 것들도 가능하다는 것이 명백해질 것이다. 따라서, 일 실시예에서, 제 1 및/또는 제 2 고정 요소들(200, 210) 중 적어도 하나는, 제 1 열원(20), 제 2 열원(30), 제 3 열원(40), 제 1 단열체(50), 및 제 2 단열체(60) 중 적어도 하나, 바람직하게는 모두의 다른 영역(들)에 위치한다. 즉, 제 3 열원(40)이 제 2 고정요소(210)를 포함하도록 도시되어 있지만, 열원들 및/또는 단열체들 중 어느 다른 것 또는 모두가 제 2 고정요소(210)를 포함할 수 있다. 다른 일 실시예에서, 제 1 및/또는 제 2 고정요소들(200, 210) 중 적어도 하나는, 제 1 열원(20), 제 2 열원(30), 제 3 열원(40), 제 1 단열체(50), 및 제 2 단열체(60) 중 적어도 하나, 바람직하게는 모두의 내부 영역에 위치한다.
앞의 발명 실시예들이 많은 PCR 응용들에 일반적으로 유용하지만, 보호 하우징을 추가하는 것이 종종 바람직할 것이다. 일 실시예가 도 43a-43b에 도시되어 있다. 도시된 바와 같이, 장치(10)는 제 1 열원(20), 제 2 열원(30), 제 3 열원(40), 제 1 단열체(50), 및 제 2 단열체(60)를 둘러싸는 제 1 하우징 요소(300)를 특징으로 한다. 이 실시예에서, 제 2 고정요소들(210) 각각은, 적어도 하나의 단열성 갭, 예를 들어, 하나, 둘, 셋, 넷, 다섯, 여섯, 일곱, 또는 여덟 개의 이러한 갭들을 형성하기 위해 장치(10)의 다른 구조적 요소들과 서로 작용하는 윙 형태의 구조를 가진다. 갭들 각각은 기체 또는 고체 단열체와 같이 본 명세서에 개시된 것과 같은 적절한 단열성 재료로 충진될 수 있다. 공기가 많은 응용들에서 바람직한 단열성 재료일 것이다. 단열성 갭(들)의 존재는 장치(10)에서의 열손실을 감소시킴으로써, 소비전력을 낮추는 것과 같은 장점들을 제공한다.
따라서, 도 43a-43b에 도시된 실시예에서, 제 3 열원(40)은 4개의 제 2 고정요소들(210)를 포함하며, 제 2 고정요소 각 쌍은 제 3 단열성 갭(310)을 정의한다. 도 43a는 각각이 제 1 하우징 요소(300)와 한 쌍의 제 2 고정요소(210)에 의해 정의되는 제 3 단열성 갭의 4개의 부분들을 도시한다. 도 43b는 또한 제 1 열원(20)의 하부 및 제 1 하우징 요소(300) 사이에 위치한 제 4 단열성 갭(320)을 도시한다. 고정된 열원을 제 1 하우징 요소(300) 내에 매달아 제 3 단열성 갭(310)과 제 4 단열성 갭(320)을 형성하는 것을 도와주는 지지대(330)가 도시되어 있다.
예를 들어, 추가적인 보호와 단열성 갭을 제공하기 위해 발명 장치를 더 하우징하는 것이 종종 바람직할 것이다. 이제 도 44a-44b를 참조하면, 장치는 제 1 하우징 요소(300)를 둘러싸는 제 2 하우징 요소(400)를 더 포함한다. 이 실시예에서, 장치(10)는 제 1 하우징 요소(300)와 제 2 하우징 요소(400)에 의해 정의되는 제 5 단열성 갭(410)을 더 포함한다. 상기 장치(10)는 또한 제 1 하우징 요소(300)의 바닥과 제 2 하우징 요소(400)의 바닥 사이에 위치한 제 6 단열성 갭(420)을 포함할 수 있다.
필요하다면, 발명 장치는 장치로부터 열을 제거하기 위해 적어도 하나의 팬 장치를 더 포함할 수 있다. 일 실시예에서, 상기 장치는 제 3 열원(40)으로부터 열을 제거하기 위해 제 3 열원(40) 위쪽에 위치한 제 1 팬 장치를 포함한다. 필요하다면, 상기 장치는 제 1 열원(20)으로부터 열을 제거하기 위해 제 1 열원(20)의 아래쪽에 위치한 제 2 팬 장치를 더 포함할 수 있다.
원심 가속도를 사용하는 대류 PCR 장치
본 발명의 일 목적은 본 명세서에 기술된 장치 실시예들의 선택적인 추가 특징으로서 "원심 가속도(centrifugal acceleration)"를 제공하는 것에 있다. 위에서 논의된 바와 같이, 수직 온도 기울기(그리고, 선택적으로 또는 추가적으로, 위치적 또는 구조적 비대칭성이 사용될 때의 수평적으로 비대칭인 온도분포)가 유체 내부에 생성될 때, 열 대류가 최적으로 생성될 수 있다. 수직 온도 기울기의 크기에 비례하여, 유체 내부에서 대류 흐름을 구동하는 부력이 생성된다. 발명 장치에 의해 생성되는 열 대류는 일반적으로PCR 반응을 일으키기 위한 다양한 조건들을 만족시켜야 한다. 예를 들어, 열 대류는, PCR 반응의 각 단계(즉, 디네츄레이션, 아닐링, 및 중합 단계) 에 적합한 온도 범위에 각 공간적 영역들을 유지하면서, 복수의 공간적 영역들을 통과하여 순차적으로 그리고 반복적으로 흘러야 한다. 또한, 열 대류는 상기 3개의 PCR 반응 단계 각각에 적합한 시간을 허용하도록 적절한 속도를 갖도록 제어되어야 한다.
어떤 이론에도 구속되기를 바라지는 않지만, 온도 기울기를, 더 정확하게는 유체 내부의 온도 기울기의 분포를 제어함으로써, 열 대류가 제어될 수 있다고 믿어진다. 온도 기울기(dT/dS)는 두 기준 위치 사이의 온도 차이(dT)와 거리(dS)에 의존한다. 따라서, 온도 차이 또는 거리는 온도 기울기를 제어하기 위해 변경될 수 있다. 그러나, 대류 PCR 장치에서, 온도(또는 그 차이)나 거리 중 어떠한 것도 쉽게 변경되지 않을 수 있다. 시료 유체 내부의 상이한 공간적 영역들의 온도는 3개의 PCR 반응 단계 각각에 적합한 온도에 의해 정의되는 특정 범위에 있어야 한다. 시료 내부의 상이한(일반적으로 적어도 수직적으로 상이한) 공간적 영역들의 온도를 변경할 수 있는 기회가 많지 않다. 또한, 상이한 공간적 영역들의 수직 위치들(부력 구동력을 유발하기 위한 수직 온도 기울기를 생성하기 위해)은 시료 유체의 작은 부피로 인해 일반적으로 제한되어 있다. 예를 들어, PCR 시료의 일반적인 부피는 약 20 내지 50 마이크로리터이며 때로는 더 적다. 이러한 작은 부피 및 공간 제약은 PCR 반응을 위한 상이한 공간적 영역들의 수직 위치들을 변경하기 위한 많은 자유도를 허용하지 않는다.
논의된 바와 같이, 부력은 두 기준 점 사이의 온도 차이 및 거리에 의존하는 수직 온도 기울기에 비례한다. 그러나, 이러한 의존성에 더해서, 부력은 또한 중력 가속도(지구상에서 g = 9.8 m/sec2)에 비례한다. 이 힘의 장(force field) 파라미터는 제어 또는 변경될 수 없는 변수인 상수이고, 만유인력법칙에 의해 정의될 수 있을 뿐이다. 따라서, 거의 모든 열 대류 기반의 PCR 장치는 매우 제한적인 특정 구조들에 의존하며 중력의 힘에 불가피하게 적응되어야 한다.
본 발명에 따른 원심 가속도의 사용은 이러한 문제점에 대한 해결책을 제공한다. 대류 기반의 PCR 장치를 원심 가속도 힘의 장의 조건에 있도록 함으로써, 온도 기울기의 크기를 정의하는 구조와 상관없이 부력의 크기를 제어할 수 있으며, 따라서 많은 제한없이 대류 속도를 제어할 수 있다.
도 45a-45b는 본 발명에 따른 PCR 원심분리기(500)의 일 실시예를 도시한다. 이 예에서, 장치(10)는 모터(501)에 회전가능하게 장착된 회전 팔(520)에 장착된다. 이 실시예에서, 회전 팔(520)은 회전축(510)과 채널축(80) 사이의 각도를 변경할 수 있는 자유도를 제공하기 위한 경사 축(530)을 포함한다. 상기 PCR원심분리기는 의도된 결과가 달성되는 한에는, 어떠한 갯수의 장치(10)든, 예를 들면, 2, 4, 6, 8, 10 또는 심지어 12개의 장치를 포함할 수도 있다. 상기 장치(10)는, 보호 하우징을 포함하는 것이 일반적으로 유용하지만, 위에서 논의된 보호 하우징을 포함할 수도 있고 포함하지 않을 수도 있다.
바람직하게는, 경사 축(530)은 회전축에 대한 열원의 각도(특히, 채널축(80)의 각도)를 기울어지게 할 수 있는 각도 유발 요소(angle inducing element)로 구성될 수 있다. 경사각은 회전 속도에 따라서(즉, 원심 가속도의 크기에 따라서) 조정됨으로써, 채널축(80)과 도 46에 도시된 알짜(순수) 가속도 벡터(net acceleration vector) 사이의 경사각이 약 0도 내지 약 60도 사이의 범위에서 조정될 수 있다. 일 실시예에서, 도 45a에서의 각도 유발 요소는 수평 팔과 열원 조립체가 위치하는 팔 사이의 접합 지역의 중심에 있는 회전축(원으로 도시됨)이다.
도 45a-45b에 도시된 실시예에서, 장치(10) 내부에 위치한 반응용기 내부의 시료 유체는 중력 가속력에 더해서 원심 가속력의 영향을 받는다. 도 46을 참조하라. 이해하는 바와 같이, 원심 가속도 g c의 방향은 원심 회전의 축에 수직하며(그리고 이 축으로부터 외부를 향하며), 그 크기는 공식 g c = 2에 의해 주어진다. 여기서 R은 원심 회전의 축에서 시료 유체까지의 거리이며, ω는 초당 radian/sec 단위의 각속도를 나타낸다. 예를 들어, R=10cm 이고 원심 회전의 속도가 100rpm(ω=약 10.5 radian/sec에 해당)인 경우, 원심 가속도의 크기는 약 11m/sec2로 지구상의 중력 가속도와 유사하다. 원심 가속도가 회전속도의 제곱(또는 각속도의 제곱)에 비례하므로, 원심 가속도는 회전속도의 증가에 대해 2차식으로(quadratically) 증가하는데, 예를 들어, R=10cm일 때, 200rpm에서 중력 가속도의 약 4.5배, 1,000rpm에서 약 112배, 그리고 10,000rpm일 때 약 11,200배로 증가한다. 시료 유체에 작용하는 알짜(순수) 힘의 장(net force field)의 크기는 이러한 원심 가속도를 채택함으로써 자유로이 제어될 수 있다. 따라서, 부력은 필요한 만큼 제어(일반적으로 증가)될 수 있으며, 이에 따라 대류 속도도 필요한 만큼 빨라지게 할 수 있다. 실제적으로, 시료 유체에서 작은 수직 온도 기울기가 생성될 수 있다면, 매우 높은 속도의 PCR 반응에 충분한 매우 높은 흐름 속도로 열 대류를 유도하는 것에 거의 제약이 없다. 따라서, 열원 조립체 및 사용에 관한 기존의 제약들은, 본 발명에 따라서 원심 가속도와 조합될 때, 최소화되거나 회피될 수 있다.
도 46에 도시된 바와 같이, 시료 유체는 원심 가속도와 중력 가속도의 합에 의해 생성된 알짜 힘의 장의 영향을 받는다. 일반적인 실시예에서, 채널축(80)은 알짜 힘의 장에 평행하게 정렬되거나, 알짜 힘의 장에 대하여 경사각 θc을 갖도록 만들어진다. 논의된 바와 같이, 대류 흐름을 안정적인 경로에 머물도록 하기 위해, 경사각의 존재는 일반적으로 바람직하다. 경사각(θc)의 범위는 약 2도 내지 약 60도 사이이며, 더 바람직하게는 약 5도 내지 약 30도 사이이다.
PCR 원심 분리기(500)를 예시하는데 이용되는 장치 실시예가 도 1 및 도 2a-2c에 도시되어 있다는 것이 이해될 것이다. 그러나, PCR 원심 분리기(500)는 본 명세서에 기술된 상이한 발명 장치들의 하나 또는 조합의 사용과 양립될 수 있다. 특히, PCR 원심 분리기(500)는 또한, 작은 수직 온도 기울기가 시료 내부에서 생성될 수 있다면, 본 명세서에 기술된 거의 어떠한 유형의 열원 구조 및 반응용기와도 함께 사용될 수 있다. 예를 들어, 위에서 그리고 다른 곳(예를 들어, Benett et al.의 WO02/072267 및 Malmquist et al.의 U.S Pat. No. 6,783,993)에서 기술된 거의 어떠한 열원 구조도, 장치의 증폭 속도와 성능을 향상시킬 수 있도록 본 발명의 원심 요소와 결합될 수 있다. 또한, 일반적인 중력적으로 구동되는 모드에서 작동가능하도록 만들어질 수 없는(또는 높은 PCR 증폭속도를 제공하도록 만들어질 수 없는) 다른 열원 구조들도 원심 가속도 구조와 결합될 때 작동가능하게 만들어질 수 있다. 예를 들어, 본 명세서에 기술된 챔버를 포함하지 않고 채널 구조만 포함하는 열원 구조 또한 작동가능하게 만들어질 수 있다. 예를 들어, PCT/KR02/01900, PCT/KR02/01728 및 U.S. Patent No. 7,238,505를 참조하라. 이 실시예에서, 챔버가 없는 기존의 열원 구조는, 아마도 제 2 열원으로부터의 높은 열전달로 인해, 제 2 열원 내부에 천천히 변하는 온도분포를 제공한다. 그 결과는 제 2 열원 내의 작은 온도 기울기이다. 중력만으로는 열 대류가 만족스럽지 못하거나, 또는 많은 PCR 응용들에서 너무 느릴 것이다. 그러나, 본 발명에 따른 원심 가속도의 도입은, PCR 반응을 성공적으로 그리고 효율적으로 유도할 수 있도록 열 대류를 충분히 빠르고 안정적이게 할 것이다.
열 대류 PCR 원심 분리기(500)의 일반적인 작동에서, 회전축(510)은 중력의 방향에 본질적으로 평행한다. 도 46을 참조하라. 이 실시예에서, 채널축(80)은 중력과 원심력에 의해 생성된 알짜 힘의 방향에 대하여 본질적으로 평행하거나 또는 기울어져 있다. 즉, 채널축(80)은 중력과 원심력에 의해 생성된 알짜 힘의 방향에 대하여 기울어져 있을 수 있다. 대부분의 실시예들에 대하여, 채널축(80)과 알짜 힘의 방향 사이의 경사각 θc은 약 2도 내지 약 60도 사이이다. 경사 축(530)은 채널축(80)과 알짜 힘 사이의 각도를 제어하도록 적응되어 있다. 작동 시, 회전축(510)은 일반적으로 제 1 열원(20), 제 2 열원(30), 및 제 3 열원(40)의 외부에 위치한다. 대안적으로, 회전축(510)이 본질적으로 제 1 열원(20), 제 2 열원(30), 및 제 3 열원(40)의 본질적으로 중심에 또는 중심에 근접하여 위치한다. 이 실시예들에서, 장치(10)는 회전축(510)에 대하여 동심원적으로 위치하는 복수의 채널들(70)을 포함한다.
원형 열원들
열 대류 PCR 원심 분리기의 다른 일 실시예에서, 열원 중 하나 또는 그 이상은 원형 또는 반원형 형태를 가진다. 도 47a-47b, 48a-48c, 49a-49b, 및 도 50a-50c는 이러한 열원 구조의 특정 실시예들을 도시한다.
47a-47b는 원심으로 가속된 대류 PCR 장치의 특정 실시예의 수직 단면들을 도시한다. 특히, 도 47a 및 도 47b는 각각이 채널과 고정 요소 영역들을 따른 단면들을 도시한다. 두 단면은, 각각이 제 1 열원(20), 제 2 열원(30), 및 제 3 열원(40)의 수평 상면도를 도시하는 도 48a-48c에 정의되어 있다. 도 47a-47b에 도시된 바와 같이, 3개의 원형 열원들은 회전팔(520)을 통해 PCR 원심 분리기(500)의 회전축(510)에 회전가능하게 장착된 장치 실시예를 형성하도록 조립된다. 열원 조립체의 중심은 회전축(510)에 대하여 동심적으로 위치됨으로써, 원심 회전의 반경이 회전축으로부터 채널(70)의 중심까지의 회전팔의 수평 길이에 의해 정의된다. 3개의 열원(20, 30, 40)은, 한 열원의 상부가 이웃하는 열원의 하부와 마주하는 식으로, 본질적으로 서로 평행하게 조립된다. 또한 도시된 바와 같이, 채널축(80)이 도 46에 도시된 알짜 가속도 벡터에 평행하거나 기울어지게 정렬되도록, 열원 조립체가 회전축에 대하여 배향되어 있다.
도 48a-48c에 도시된 3개의 열원은, 도 47b에 도시된 바와 같이 열원들에 형성된 스크류(201), 스페이서 또는 와셔(202a-c), 및 고정 구멍(203a-c)을 포함하는 제 1 고정요소의 일 세트를 이용하여 조립된다. 도 47b 및 48c에 도시된 제 3 열원(40)에 형성된 제 2 고정요소(210)는 제 1 하우징 요소(300) 내에 장치를 설치하기 위해 사용된다.
(다양한 채널 및 챔버구조를 포함하여) 본 출원에 개시된 장치 실시예들 중 거의 어떠한 것도 본 명세서에 기술된 원심적으로 가속된 열 대류 PCR 장치와 함께 사용될 수 있다. 그러나, 어떠한 챔버구조도 없는 장치 또한 사용될 수 있다. 도 49a 및 도 50a-50c는, 열원들 각각이 채널만을, 즉, 제 1 열원(20) 내에 막힌 하단부를 가지는 구멍으로 형성되며 제 2 열원(30)을 통해 제 3 열원(40)까지 연장되는 채널(70)만을 제공하도록 구성되는 예를 도시한다. 다른 일 실시예로서, 도 47a는 제 2 열원의 하부에 제 1 온도 브레이크(130)를 가지는 챔버 구조(100)가 채널 구조와 조합되어 사용되는 예의 수직단면을 도시한다. 도 48b는, 도 47a의 예에서 사용된 바와 같이, 챔버(100)와 제 1 온도 브레이크(130)를 포함하는 제 2 열원의 수평 상면도를 도시한다. 제 1 및 제 3 열원은 각각 도 50a 및 50c에서와 같은 구조를 가진다.
앞의 열 대류 PCR 원심분리기의 일 실시예에서, 장치는 휴대가능하게 만들어지며 바람직하게는 배터리로 작동된다. 도 45a-45b에 도시된 실시예는, 예를 들어, 높은 처리량의 대규모 PCR 증폭을 위해 사용될 수 있다. 이 실시예에서, 장치는 분리가능한 모듈로서 사용될 수 있으며, 따라서 원심분리기 장치에 쉽게 장착 또는 탈착될 수 있다.
반응용기들
상기 장치의 적절한 채널이 장치 내에서 반응용기를 수용하도록 적응됨으로써 의도된 결과가 달성될 수 있다. 대부분의 경우에, 채널은 반응용기의 하부의 구성과 본질적으로 동일한 구성을 가질 것이다. 이 실시예에서, 반응용기의 외부 프로파일은, 특히 하부는, 채널의 수직 및 수평 프로파일과 본질적으로 동일할 것이다. 반응용기의 상부(즉, 상단부를 향하는)는 의도된 사용에 따라서 거의 어떤 모양도 가질 수 있다. 예를 들어, 반응용기는 시료의 도입을 용이하게 하기 위해 상부에 더 큰 폭 또는 직경을 가질 수 있으며, 열 대류 PCR에 적용될 시료의 도입 후 반응용기를 밀봉하기 위한 캡을 포함할 수 있다.
적절한 반응용기의 일 실시예에서, 도 5a-5d를 다시 참조하면, 반응용기의 외부 프로파일은 채널(70)의 프로파일에서 채널(70)의 프로파일의 상단부(71)까지와 일치할 수 있다. 반응용기 내부의 형태 또는 프로파일은 반응용기 외부의 것과 다른 형태를 가질 수 있다(반응용기의 벽 두께가 변화되게 만들어진 경우). 예를 들어, 수평 단면의 외부 프로파일은 원형인 반면, 내부 프로파일은 타원형 이거나 그 반대일 수 있다. 외부 프로파일이 열원들과의 적절한 열 접촉을 제공하도록 적절히 선택되고, 내부 프로파일이 의도된 열 대류 패턴을 위해 적절히 선택된다면, 외부 및 내부 프로파일의 상이한 조합들이 가능하다. 그러나, 일반적인 실시예들에서, 반응용기는 거의 일정하거나 많이 변하지 않는 벽 두께를 가진다. 즉, 내부 프로파일은 일반적으로 반응용기의 외부 프로파일과 일치하거나 유사하다. 일반적인 벽 두께는, 사용된 재료에 따라서 변할 수 있지만, 약 0.1mm 내지 약 0.5mm 사이의 범위, 더 바람직하게는 약 0.2mm 내지 약 0.4mm 사이이다.
필요하다면, 도 5a-5d에 도시된 바와 같이, 반응용기의 수직 프로파일은 채널에 들어맞도록 선형 또는 테이퍼형 튜브를 형성하도록 형성될 수 있다. 테이퍼형인 경우, 상부에서 하부로 (선형으로) 테이퍼되어 있는 반응용기가 채널의 경우에서와 같이 일반적으로 선호되지만, 반응용기는 상부에서 하부로 또는 하부에서 상부로 테이퍼되어 있을 수 있다. 반응용기의 일반적인 테이퍼 각도 θ는 약 0도 내지 약 15도 사이의 범위, 보다 바람직하게는 약 2도 내지 약 10도의 범위에 있다.
반응용기의 하단부는 도 5a-5d에 도시된 채널의 하단부에 대한 것과 같이 평평하거나, 구형이거나, 또는 곡면형으로 형성될 수 있다. 하단부가 구형 또는 곡면형인 경우, 그것은 하단부의 수평 프로파일의 반경 또는 반폭과 같거나 또는 더 큰 곡률 반경을 가지는 볼록 또는 오목 형태를 가질 수 있다. 평평하거나 또는 거의 평평한 하단부가, 디네츄레이션 공정을 용이하게 할 수 있는 개선된 열전달을 제공할 수 있으므로, 다른 형태보다 더 바람직하다. 이러한 바람직한 실시예들에서, 평평거하거나 또는 거의 평평한 하단부는, 하단부의 수평 프로파일의 반경 또는 반폭보다 적어도 2배 이상 더 큰 곡률반경을 가진다.
또한, 필요하다면, 어떤 대칭성을 가지는 형태가 일반적으로 선호된다고 하더라도, 반응용기의 수평 프로파일은 여러 상이한 형태로 만들어질 수 있다. 도 6a-6j는 어떤 대칭성을 가지는 채널의 수평 프로파일의 몇 가지 예들을 도시한다. 적합한 반응용기는 이러한 형태들에 들어맞도록 형성될 수 있다. 예를 들어, 반응용기는, 일반적으로 도 6a, 6d, 6g, 및 6j에 채널(70)에 대하여 도시된 것과 같은 원형(상, 좌), 정사각형(중간, 좌), 또는 둥근 정사각형(하, 좌)인 수평 형태를 가질 수 있다. 그래서, 반응용기는, 폭이 길이보다 더 큰(또는 그 반대) 수평 형태를, 예를 들어, 일반적으로 도 6b, 6e, 및 6h의 중간 열에 채널(70)에 대하여 도시된 것과 같은 타원형(상, 중간), 직사각형(중간, 중간), 또는 둥근 직사각형(하, 중간)과 같은 수평 형태를 가질 수 있다. 반응용기에 대한 이러한 유형의 수평 형태는, 일 측(예를 들어, 좌측)에서 상향으로 움직이고 반대쪽 측(예를 들어, 우측)에서 하향으로 움직이는 대류 흐름 패턴을 사용할 때 유용하다. 길이에 비해 상대적으로 더 큰 폭 프로파일이 사용되어 있으므로, 상향 및 하향 대류 흐름 사이의 간섭이 감소될 수 있으며, 이에 따라 보다 원활한 순환성 흐름 유도하게 된다. 반응용기는 일 측이 반대쪽 측보다 더 좁은 수평 형태를 가질 수 있다. 몇 가지 예들이 도 6a-6j의 우측 열에 채널의 형태에 대하여 도시되어 있다. 특히, 채널(70)에 대하여 도 6c, 6f, 및 6i에 도시된 바와 같이, 반응용기는, 예를 들어 반응용기의 좌측이 우측보다 더 좁도록 형성될 수 있다. 이러한 유형의 수평형태도, 일 측(예를 들어, 좌측)에서 상향으로 움직이고 반대쪽 측(예를 들어, 우측)에서 하향으로 움직이는 대류 흐름 패턴을 사용할 때 또한 유용하다. 또한, 이러한 유형의 형태가 사용되는 경우, 하향 흐름(예를 들어, 우측에서)의 속도는 상향 흐름에 대하여 제어(일반적으로 감소)될 수 있다. 대류 흐름은 시료의 연속적인 매체 내에서 연속적이어야 하므로, 흐름 속도는 단면적이 커질 수록 감소되어야 한다(또는 그 반대). 이 특징은 중합 효율성을 증가시키는 것과 관련하여 특히 중요하다. 중합 단계는 일반적으로 하향 흐름 동안(예를 들어, 아닐링 단계 이후) 수행되며, 따라서 상향 흐름에 비해 하향 흐름을 더 느리게 함으로써 중합 단계를 위한 시간이 연장될 수 있으며, 더욱 효과적인 PCR 증폭을 유도할 수 있다.
적절한 반응용기들의 추가적인 예들이 도 51a-51d에 제공된다. 도시된 바와 같이, 반응용기(90)는 중심 반응용기 축(95)을 정의하는 중심 점들을 포함하는 상단부(91)와 하단부(92)를 포함한다. 반응용기(90)는, PCR 반응 혼합물을 수용하기 위한 영역을 둘러싸는 외벽(93)과 내벽(94)에 의해 더 정의된다. 도 51a-51b에서, 반응용기(90)는 상단부(91)에서 하단부(92)로 테이퍼되어 있다. 일반적으로 유용한 테이퍼 각도(θ)는 약 0도 내지 약 15도 사이, 바람직하게는 약 2도 내지 약 10도 사이의 범위에 있다. 도 51a에 도시된 실시예에서, 반응용기(90)는 평평하거나 또는 거의 평평한 하단부(92)를 가지는 반면, 도 52b에 도시된 예에서는, 하단부는 곡면형 또는 구형이다. 채널의 상단부(71)와 하단부(72)가 도 51a-51d에 표시되어 있다.
도 51c-51d는 상단부(91)에서 하단부(92)로 직선벽을 가지는 적절한 반응용기의 예들을 제공한다. 도 51c에 도시된 반응용기(90)는 평평하거나 또는 거의 평평한 하단부(92)를 가지는 반면, 도 51d에 도시된 예에서는, 하단부가 곡면형 또는 구형이다.
바람직하게는, 도 51a-51d에 도시된 반응용기(90)의 외벽(93)의 수직 가로세로비율은 적어도 약 4 내지 약 15, 바람직하게는 약 5 내지 약 10이다. 반응용기의 수평 가로세로비율은, 채널의 경우에서와 마찬가지로, 채널(70)의 상단부(71)에 대응하는 위치까지의 폭(w1)에 대한 높이(h)의 비율에 의해 정의된다. 외벽(93)의 수평 가로세로 비율은 일반적으로 약 1 내지 약 4까지이다. 수평 가로세로 비율은, 서로 상호 직각이며 채널축에 수직으로 정렬된 제 1 및 제 2 방향을 따른 반응용기의 제 2 폭(w2)에 대한 제 1 폭(w1)의 비율에 의해 정의된다. 바람직하게는, 반응용기 축(95) 방향의 반응용기(90)의 높이는 적어도 약 6mm 내지 약 35mm 사이이다. 이 실시예에서, 외벽의 폭의 평균은 약 1mm 내지 약 5mm 사이이며, 반응용기의 내벽의 폭의 평균은 약 0.5mm 내지 약 4.5mm 사이이다.
도 52a-52j는 본 발명에서 사용되기 위한 적절한 반응용기들의 수평 단면도들을 도시한다. 발명은 의도된 결과가 달성되는 한에는 다른 반응용기 구성과 양립가능하다. 따라서, 적합한 반응용기의 수평 형태는, 원형, 반원형, 마름모형, 정사각형, 둥근 정사각형, 타원형, 장사방형, 직사각형, 둥근 직사각형, 계란형, 삼각형, 둥근 삼각형, 사다리꼴, 둥근 사다리꼴, 장방형직사각형(oblong) 중 하나 또는 조합일 수 있다. 많은 실시예들에서, 내벽은 반응용기 축에 대하여 본질적으로 대칭적으로 형성된다. 예를 들어, 반응용기 벽의 두께는 약 0.1mm 내지 약 0.5mm 사이일 수 있다. 바람직하게는 반응용기 벽의 두께는 본질적으로 반응용기 축(95)을 따라 변경되지 않는다.
반응용기(90)의 일 실시예에서, 내벽(94)은 반응용기 축(95)에 대하여 중심에서 벗어나 배치된다. 예를 들어, 반응용기 벽의 두께는 약 0.1mm 내지 약 1mm 사이이다. 바람직하게는, 반응용기 벽의 두께는 일 측에서 적어도 약 0.05 또는 0.1mm만큼 다른쪽 측에서보다 더 얇다.
논의된 바와 같이, 적절한 반응용기의 하단부는 평평하거나, 곡면형, 또는 구형일 수 있다. 일 실시예에서, 하단부는 반응용기 축에 대하여 본질적으로 대칭적으로 배치된다. 다른 일 실시예에서, 하단부는 반응용기 축에 대하여 비대칭적으로 배치된다. 하단부는 막혀 있을 수 있으며, 플라스틱, 세라믹, 또는 유리로 구성되거나 이들을 포함한다. 어떤 반응에 대해서는, 반응용기는 고정화된 DNA 중합효소를 더 포함할 수 있다. 본 명세서에 기술된 거의 어떠한 반응용기도 반응용기와 밀봉 접촉하는 캡을 포함할 수 있다.
반응용기가 본 발명의 열 대류 PCR 원심분리기와 함께 사용되는 실시예들에서, 상대적으로 큰 힘이 원심 회전에 의해 생성될 것이다. 바람직하게는, 채널과 반응용기는 더 작은 직경 또는 폭을 가질 수 있으며, 따라서 큰 수직 프로파일이 사용될 수 있다. 채널과 반응용기의 외벽의 직경 또는 폭은 적어도 약 0.4mm 에서 약 4 내지 5mm까지 이며, 반응용기의 내벽의 직경 또는 폭은 적어도 약 0.1mm에서 약 3.5 내지 4.5mm까지 이다.
광학검출장치를 포함하는 대류 PCR 장치
본 발명의 일 목적은 본 명세서에 기술된 장치 실시예들의 추가적인 특징으로서 "광학검출"을 제공함에 있다. PCR 반응동안 또는 이후에 속도와 정확성을 가지고 중합효소연쇄반응(PCR)의 진행상태와 결과를 검출하는 것이 중요하다. 광학검출 특징은 PCR 반응의 동시적인 증폭 및 검출을 위한 장치 및 방법을 제공함으로써 이러한 필요들에 유용할 수 있다.
일반적인 실시예들에서, 증폭된 PCR 생성물의 양의 함수로서 광학신호를 발생할 수 있는 검출가능한 프로브(probe)가 시료에 도입되며, 반응용기를 개방하지않고도 PCR 반응 동안 또는 이후에 검출가능한 프로브로부터의 광학신호가 관측되거나 또는 검출된다. 검출가능한 프로브는 일반적으로, DNA분자에 대한 결합 또는 비결합, 또는 PCR 반응 및/또는 PCR 생성물과의 상호작용에 따라서, 광학적 속성을 변경하는 검출가능한 DNA 결합제(binding agent)이다. 검출가능한 프로브의 유용한 예는 이중가닥 DNA에 결합하는 속성을 가진 삽입염료(intercalating dyes)와 검출가능한 라벨(들)을 가진 다양한 올리고뉴클레오타이드 프로브들을 포함하지만, 이에 한정되지 않는다.
본 발명과 사용될 수 있는 검출가능한 프로브는 일반적으로 PCR 증폭에 따라서 형광의 세기, 파장 또는 편광성과 같은 자신의 형광 속성을 변경한다. 예를 들어, SYBR 그린 1, YO-PRO 1, 브롬화 에티듐, 및 유사한 염료들과 같은 삽입염료들은, 이 염료가 이중가닥 DNA와 결합될 때 증가되거나 활성화되는 형광신호를 생성한다. 따라서, 이러한 삽입염료로부터의 형광신호는 증폭된 PCR 제품의 양을 관측하기 위해 검출될 수 있다. 삽입염료를 사용하여 검출하는 것은 이중가닥 DNA의 서열에 대하여 비특이적이다. 본 발명에서 사용될 수 있는 다양한 올리고뉴클레오타이드 프로브들이 관련분야에서 알려져 있다. 이러한 올리고뉴클레오타이드 프로브들은 일반적으로, 적어도 하나의 검출가능한 라벨과 증폭된 PCR 생성물 또는 주형에 특이적으로 교잡반응되는(hybridize) 핵산서열을 가진다. 따라서, 대립유전적 식별(allelic discrimination)을 포함하여, 증폭된 PCR 제품의 서열-특이적 검출이 가능하다. 상기 올리고뉴클레오타이드 프로브들은, 두 표지들 사이의 거리가 짧아질수록 상호작용("형광성 공명 에너지 전달" 또는 "비형광성 에너지 전달"과 같은)이 증가되는, 두 형광물질의 쌍 또는 형광물질과 소광체(quencher)의 쌍과 같은 상호작용하는 표지 쌍(interactive label pair)으로 일반적으로 표지된다. 대부분의 올리고뉴클레오타이드 프로브들은, 표적 DNA 서열에 대한 결합(일반적으로, 긴 거리) 또는 비결합(일반적으로 짧은 거리)에 따라서 두 개의 상호작용하는 표지들 간의 거리가 증감되도록 설계된다. 이러한 교잡반응-의존적 거리 증감은, 증폭된 PCR 생성물의 양에 따라서, 형광 세기의 변화 또는 형광 파장의 변화(증가 또는 감소)를 초래한다. 다른 유형의 올리고뉴클레오타이드 프로브들에서는, 프로브가 PCR 반응의 확장단계 동안에 특정 화학반응, 예를 들어, DNA 중합효소의 5'-3' 뉴클레아제 활성(5'-3' nuclease activity)으로 인한 형광물질 표지의 가수분해 또는 프로브 서열의 연장과 같은 특정 화학반응을 일으키도록 설계된다. 프로브의 이러한 PCR 반응 의존적 변화들은 어떤 형광물질로부터의 형광신호의 활성화 또는 증가를 초래하여, PCR 생성물의 양의 변화를 알려주게 된다.
다양한 적절한 검출가능한 프로브들 및 이러한 프로브들을 검출하기 위한 장치들이 U.S. Pat. Nos. 5,210,015; 5,487,972; 5,538,838; 5,716,784; 5,804,375; 5,925,517; 5,994,056; 5,475,610; 5,602,756; 6,028,190; 6,030,787; 6,103,476; 6,150,097; 6,171,785; 6,174,670; 6,258,569; 6,326,145; 6,365,729; 6,703,236; 6,814,934; 7,238,517, 7,504,241; 7,537,377 와 이에 대응하는 미국외의 출원 및 특허들에 기술되어 있다.
본 명세서에서 사용되는 복수형을 포함하는 "광학검출장치"라는 용어는, 본 명세서에 개시된 하나 또는 그 이상의 PCR 열 대류 장치들 및 PCR 방법들과 같이 사용할 수 있는 PCR 증폭을 검출하기 위한 장치(들)를 의미한다. 바람직한 광학검출장치는, 예를 들어 PCR 증폭 반응이 진행 중일 때, 형광 광학 신호를 검출하도록 구성된다. 일반적으로, 이러한 장치는, 장치에 작동가능하게 장착된 장치의 적어도 하나의 반응용기를 개방하지 않고도 신호의 검출 및 바람직하게는 그것의 정량화(quantification)를 제공할 것이다. 필요하다면, 광학검출장치와 본 발명의 PCR 열 대류 장치의 하나 또는 그 이상은, 반응용기 내 증폭된 핵산의 양(즉, 실시간 또는 정량적 PCR 증폭)에 관련하도록 구성된다. 본 발명과의 사용을 위한 일반적인 광학검출장치는 작동가능한 조합으로 다음의 구성요소 중 하나 또는 그 이상을 포함한다: 일반적으로 약 400 내지 약 750nm 사이의 가시광 영역에서 형광을 검출하기 위한 적절한 열원(들), 렌즈들, 필터들, 거울들, 및 빔 스플리터(들). 바람직한 광학검출장치는, 반응용기 내에서 PCR 증폭을 검출하기 위해 광을 수신하고 출력하기에 충분하게 반응용기의 아래, 위, 및/또는 옆에 위치한다.
광학검출장치는, 그것이 장치가 의도하는 PCR증폭에 대해 안정적이고, 민감하고 신속한 검출을 지원한다면, 본 발명의 열 대류 PCR 장치와 양립가능하다. 일 실시예에서, 상기 열 대류 PCR 장치는 반응용기 내에서 시료의 광학적 속성의 검출을 가능하게 하는 광학검출장치를 포함한다. 검출되는 상기 광학적 속성은 바람직하게는, 시료의 흡광도가 때로는 검출하기에 유용하지만, 사용되는 검출가능한 프로브에 의존하는 하나 또는 그 이상의 파장의 형광이다. 시료로부터의 형광이 검출될 때, 상기 광학검출장치는 시료(일부 또는 전체 시료)를 여기광으로 조사하여, 시료로부터 형광신호를 검출한다. 여기광의 파장은 일반적으로 형광보다 더 짧다. 흡광도를 검출하는 경우, 상기 광학검출장치는 시료를 빛으로 조사하고(일반적으로 선택된 파장에서 또는 파장을 스캔함으로써), 시료를 통과하기 전과 이후의 빛의 세기가 측정된다. 형광 검출은, 그것이 검출될 표적 분자에 더 민감하고 특이적이기 때문에, 일반적으로 선호된다.
다음의 도들 및 기술에 대한 참조는, 형광검출을 위한 광학검출장치를 포함하는 열 대류 PCR 장치에 대한 더 나은 이해를 제공하기 위한 의도이다. 이것은 본 발명의 범주를 제한하기 위해 의도된 것이 아니며, 그렇게 읽혀져서도 안된다.
도 80a-80b를 참조하면, 장치 실시예들은 반응용기(90)의 하단부(92) 또는 채널(70)의 하단부(72)로부터 반응용기(90) 내의 시료로부터 형광신호를 검출하도록 작동가능한 하나 또는 그 이상의 광학검출장치(600-603)를 특징으로 한다. 단일 광학검출장치(600)가 복수의 반응용기(90)로부터 형광을 검출하기 위해 사용되는 일 일시예가 도 80a에 도시되어 있다. 이 실시예에서, 복수의 반응용기들을 조사하기 위해 넓은 여기광 빔(상향 화살표로 도시됨)이 생성되며, 복수의 반응용기(90)들로부터의 형광신호(하향 화살표로 도시됨)가 검출된다. 이 실시예에서, 형광 검출을 위해 사용되는 검출기(650)(예를 들어, 도 83 참조)는 바람직하게는 이미징 능력을 가지는 것으로서, 이에 따라, 상이한 반응용기들로부터의 형광신호가 형광 이미지로부터 구별될 수 있다. 대안적으로, 각각이 각 반응용기로부터 형광신호를 검출하는 복수의 검출기(650)가 사용될 수 있다.
도 80b에 도시된 실시예에서, 복수의 광학검출장치(601-603)들이 사용된다. 이 실시예에서, 각 광학검출장치는 각 반응용기(90) 내의 시료를 여기광으로 조사시키고, 각 시료로부터 형광신호를 검출한다. 이 실시예는 각 반응용기에 대한 여기 빔의 프로파일을 보다 정밀하게 제어하며, 또한 상이한 반응용기로부터의 상이한 형광신호를 독립적으로 그리고 동시에 측정하는데 있어서 유리하다. 이러한 유형의 실시예는 또한, 단일 광학검출장치 실시예에서 넓은 여기 빔을 생성하기 위해 필요한 더 큰 광학요소들과 더 긴 광학경로들을 회피할 수 있으므로, 소형화된 장치들을 구성하는데 유리하다.
도 80a-80b를 다시 참조하면, 광학검출장치(600-603)가 반응용기(90)의 하단부(92)에 위치하는 경우, 제 1 열원(20)은 반응용기(70)에 여기광 및 방출광을 위한 경로를 제공하기 위한 각 채널(70)에 대한 광학포트(610)를 포함한다. 광학포트(610)는 관통구이거나, 광학적으로 투명 또는 반투명한 재료로, 예를 들어 이러한 광학적 속성을 가지는 유리, 석영 또는 중합체 재료 같은 재료로 (부분적으로 또는 전체적으로) 만들어진 광학요소일 수 있다. 광학포트(610)가 관통구로 형성된 경우, 광학포트의 직경 또는 폭은 일반적으로 채널(70)의 하단부(72) 또는 반응용기(90)의 하단부(92)의 직경 또는 폭보다 더 작다. 도 80a-80b에 도시된 실시예들에서, 반응용기(90)의 하단부(92) 또한 광학포트로서 작동한다. 따라서, 반응용기(90)의 하단부(92)의 전체 또는 적어도 일부가 광학적으로 투명하거나 반투명한 재료로 만들어지도록 하는 것이 일반적으로 바람직하다.
이제 도 81a-81b를 참조하면, 장치 실시예들은 반응용기(90)의 상단부(91)의 위에 위치하는 단일 광학검출장치(600)(도 81a) 또는 복수의 광학검출장치들(601-603)(도 81b)을 특징으로 한다. 앞서와 같이, 단일 광학검출장치(600)가 사용되는 경우(도 81a), 넓은 여기 빔(하향 화살표로 도시됨)이 복수의 반응용기를 조사하도록 생성되며, 복수의 반응용기(90)로부터의 형광신호(상향 화살표로 도시됨)가 검출된다. 복수의 광학검출장치들(601-603)(도 81b)이 사용되는 경우, 각 광학검출장치는 각 반응용기(90) 내의 시료에 여기광을 조사하고, 각 시료로부터 형광신호를 검출한다.
도 81a-81b에 도시된 실시예들에서, 반응용기(90)의 상단부(개구부)(91)에 일반적으로 들어맞는 반응용기 캡(도시되지 않음)의 중심부가 여기광 및 방출광을 위한 광학포트로서 기능한다. 따라서, 반응용기 캡의 중심부의 모두 또는 적어도 일부는 광학적으로 투명하거나 반투명한 재료로 만들어진다.
도 82는 반응용기(90)의 측면에 위치된 광학검출장치(600)를 특징으로 하는 장치 실시예를 도시한다. 이 특정 실시예에서, 광학포트(610)는 제 2 열원(30)의 측면에 형성된다. 대안적으로, 광학포트(610)는, 특정 응용 목적에 의해 요구되는 형광 검출의 위치에 따라서, 제 1 열원(20), 제 2 열원(30), 및 제 3 열원(40), 및 제 1 단열체(50) 및 제 2 단열체(60) 중 어느 하나 또는 그 이상에 형성될 수 있다. 이 실시예에서, 광경로 방향의 반응용기(90)의 측면부와 제 1 챔버(100)의 일부 또한 광학포트로서 기능하며, 따라서 반응용기(90) 및 제 1 챔버(100)의 모두 또는 적어도 일부들은 광학적으로 투명하거나 반투명한 재료로 만들어진다. 광학검출장치(600)가 반응용기(90)의 측면에 위치할 때, 채널(70)은 일반적으로 선형적으로 또는 원형으로 배열된 하나 또는 둘의 배열로 형성된다. 채널들(70)의 이러한 배열은 다른 채널들과의 간섭없이 모든 채널(70) 또는 반응용기(90)로부터 형광신호를 검출할 수 있게 한다.
위에서 설명된 실시예들에서, 여기 및 형광 검출 양자는 반응용기(90)에 대하여 동일한 측에서 수행되며, 따라서 여기부(excitation part)와 형광검출부(fluorescence detection part) 양자는 동일한 측에, 일반적으로 광학검출장치(600-603)의 동일한 구획 내에 위치한다. 예를 들면, 도 80a-80b에 도시된 실시예들에서, 양 부분들을 포함하는 광학검출장치(600-603)는 반응용기(90)의 하단부(92) 상에 위치한다. 유사하게, 도 81a-81b에 도시된 실시예들에서는 전체 광학검출장치는 반응용기(90)의 상단부(91) 위에 위치하며, 도 82에 도시된 실시예에서는 반응용기(90)의 측면부에 위치한다. 대안적으로, 광학검출장치(600-603)는 개조되어서, 여기부와 형광검출부가 분리되어 위치할 수 있다. 예를 들어, 여기부는 반응용기(90)의 하부(또는 상부)에 위치하며, 형광검출부는 반응용기(90)의 상부(하부) 또는 측면부에 위치한다. 다른 실시예들에서, 여기부는 반응용기(90)의 일 측(예를 들어, 좌측)에 위치하며, 형광검출부는 다른쪽 측(예를 들어, 상측, 하측, 우측, 앞측, 또는 뒤측, 또는 여기 측이 아닌 다른 측부)에 위치할 수 있다.
광학검출장치(600-603)는 일반적으로 선택된 파장을 갖는 여기광을 생성하는 여기부(excitation part)와, 반응용기(90) 내의 시료로부터 형광신호를 검출하는 형광검출부(fluorescence detection part)를 포함한다. 여기부는 일반적으로 광원들, 파장 선택요소들, 및/또는 빔 형상화요소들의 조합을 포함한다. 광원들의 예는, 수은 아크 램프, 크세논(Xenon) 아크 램프, 및 메탈-할라이드(metal-halide) 아크 램프와 같은 아크 램프들, 레이저들, 및 발광 다이오드들(LED)을 포함하지만, 이것에 한정되지 않는다. 아크 램프들은 일반적으로 다중 대역 또는 광대역의 광을 생성하며, 레이저 및 LED들은 일반적으로 단색광 또는 좁은대역 광을 생성한다. 파장 선택 요소는 광원에서 생성된 광으로부터 여기 파장을 선택하기 위해 사용된다. 파장 선택 요소의 예는 (파장을 선택하기 위한) 슬릿 또는 구멍과 조합된 (광을 분산하기 위한) 회절격자(grating) 또는 프리즘 및 (선택된 파장을 통과시키는) 광학필터를 포함한다. 광학필터가 일반적으로 선호되는데, 이는 작은 크기로 특정 파장을 효율적으로 선택할 수 있고 상대적으로 저렴하기 때문이다. 바람직한 광학필터는 박막 코팅을 가진 간섭필터(interference filter)로서, 특정 대역의 광을 통과시키거나(대역 투과 필터), 특정 컷온(cut-on) 값보다 길거나(장파장 투과 필터) 또는 짧은(단파장 투과 필터) 파장을 가지는 광을 통과시킬 수 있다. 음향 광학필터(acoustic optical filter)들과 액정 가변필터(liquid crystal tunable filter)들은 우수한 파장 선택 요소가 될 수 있는데, 상대적으로 고가이지만 작은 크기로 속도와 정확성을 가지고 투과 파장을 변경하도록 전자적으로 제어될 수 있기때문이다. 채색 필터 유리(colored filter glass) 또한, 다른 유형의 파장 선택 요소들의 저렴한 대체품으로서, 또는 불필요한 광(예를 들어, IR, UV, 또는 다른 난사광(stray light))의 배제를 향상시키기 위한 다른 유형의 파장 선택 요소들과의 조합으로 사용될 수 있다. 광학 필터의 선택은 광원에 의해 생성되는 광의 특징과 여기광의 파장뿐 아니라 크기와 같은 장치의 기하학적 요구조건에 의존한다. 빔 형상화요소는 여기 빔의 모양을 만들고 안내하기 위해 사용된다. 빔 형상화요소는 렌즈들(볼록형 또는 오목형), 거울들(볼록형, 오목형, 또는 타원형) 또는 프리즘들 중 어느 하나 또는 조합일 수 있다.
형광검출부는 일반적으로 검출기들, 파장선택요소들, 및/또는 빔 형상화요소의 조합을 포함한다. 검출기의 예는 광전 증배관들(PMT), 포토다이오드들, 전하결합소자(charge-coupled device, CCD), 및 비디오 카메라를 포함하지만, 이들에 한정되지 않는다. 광전 증배관은 일반적으로 가장 민감하다. 그러므로, 매우 약한 형광신호 때문에 민감성이 중요 사안이라면, 광전 증배관이 적절한 선택일 수 있다. 그러나, 광전 증배관은 작은 크기 또는 이미징 능력이 요구되는 경우 (큰 크기 때문에) 적절하지 않다. 예를 들어, 마이크로채널 플레이트로 증강된 CCD, 실리콘 포토다이오드, 또는 비디오 카메라들은 광전 증배관과 비슷한 민감성을 가질 수 있다. 각 반응용기를 위한 광학검출장치를 가지는 실시예에서와 같이 형광신호의 이미징이 요구되지 않고 소형화가 중요한 경우, 증강장치(intensifier)를 가지는 또는 가지지 않는 포토다이오드 또는 CCD가 작고 상대적으로 저렴하므로 좋은 선택일 수 있다. 복수의 반응용기를 위한 단일 광학검출장치를 가지는 실시예들에서와 같이 이미징이 요구되는 경우, CCD 어레이, 포토다이오드 어레이, 또는 비디오 카메라들(또한 증폭장치가 있거나 또는 없는)이 사용될 수 있다. 여기부와 유사하게, 시료로부터 수집된 광으로부터 방출 파장을 선택하는데 파장선택요소가 사용되며, 효과적인 검출을 위해 방출광의 모양을 만들고 안내하기 위한 빔 형상화요소가 사용된다. 파장선택요소와 빔 형상화요소의 예는 여기부에 대해서 기술된 것들과 동일하다.
위에서 설명된 광학요소들에 더해서, 광학검출장치는 빔 스플리터를 포함할 수 있다. 여기부와 형광검출부가 반응용기(90)에 대해서 동일한 측에 위치된 경우, 빔 스플리터는 특히 유용하다. 이러한 실시예들에서, 여기 빔 및 방출 빔의 경로(반대 방향을 따라)는 서로 일치하며 따라서 빔 스플리터를 사용하여 빔 경로를 분리할 필요가 생긴다. 일반적으로 유용한 빔 스플리터는, 박막 광학 필터와 유사한 박막 간섭코팅을 가지는 다이크로익 빔 스플리터 또는 다이크로익 미러이다. 일반적인 빔 스플리터는 여기광을 반사하고 형광광을 투과시키거나(장파장 투과 타입) 또는 그 반대(단파장 투과 타입)이다.
이제 도 83-84, 도 85a-85b, 및 도 86을 참조하여, 광학검출장치(600)의 구조의 몇 가지 설계 예들이 기술되다..
도 83에서, 광학검출장치(600)의 일 실시예가 도시되어 있다. 이 실시예에서, 여기 광학 요소들(620, 630, 및 640)은 채널축(80)에 대하여 직각인 방향을 따라 위치되며, 형광검출 광학요소들(650, 655, 660, 및 670)은 채널축(80) 방향으로 위치된다. 형광 방출을 통과시키고 여기광을 반사하는(즉, 장파장 투과 타입) 다이크로익 빔 스플리터(680)가 중간 근처에 위치한다. 일반적이듯이, 광원(620)에 의해 생성된 광은 여기광 렌즈(630)에 의해 수집되고, 원하는 파장을 가진 여기광을 선택하기 위해 여기광 필터(640)로 필터링된다. 선택된 여기광은 이후 다이크로익 빔 스플리터에 의해 반사되고, 시료를 조사한다. 시료로부터의 형광방출은, 원하는 파장을 가지는 방출광을 선택하기 위해 다이크로익 빔 스플리터(680)와 여기광 필터(670)를 통과한 이후, 방출광 렌즈(660)에 의해 수집된다. 이렇게 수집된 형광 광은 그 후 형광신호를 측정하기 위해 구멍 또는 슬릿(655) 또는 검출기(650)에 포커싱된다. 구멍 또는 슬릿(655)의 기능은 방출을 위한 "공간적 필터링"이다. 일반적으로, 형광 광은 구멍 또는 슬릿(655)에 또는 이에 근접하여 포커싱되고 따라서 시료의 특정 (수직) 위치로부터의 형광 이미지가 구멍 또는 슬릿(655)에 형성된다. 이러한 광학적 배치는, 다른 위치들로부터의 광을 배제하면서, 시료 내의 특정 제한된 위치(예를 들어, 아닐링, 연장, 또는 디네츄레이션 영역)로부터의 형광신호를 효율적으로 수집할 수 있게 한다. 구멍 또는 슬릿(655)의 이용은 사용되는 검출가능한 프로브의 유형에 따라 선택적이다. 형광신호가 시료 내의 특정영역으로부터 발생되도록 되어있다면, 하나 또는 그 이상의 구멍 또는 슬릿(655)의 사용이 바람직하다. 형광신호가 시료 내의 위치에 상관없이 생성된다면, 구멍 또는 슬릿(655)의 사용이 불필요하거나 더 큰 개구를 가지는 것이 사용될 수 있다.
도 84에 도시된 실시예에 도시된 바와 같이, 채널축(80) 방향을 따라 여기 광학 요소들(620, 630, 640)을 위치시키고, 채널축(80)에 직각인 방향을 따라 형광 검출 광학 요소들(650, 655, 660, 및 670)을 위치시키기 위해 광학검출장치(600)를 개조할 수 있다. 이러한 유형의 실시예에 유용한 다이크로익 빔 스플리터(680)는 여기광을 투과하고 방출광을 반사하는 단파장 투과 타입이다.
도 83-84에 도시된 실시예들에서 사용되는 여기광 렌즈(630)는 하나보다 많은 렌즈의 조합 또는 렌즈와 거울의 조합으로 대체될 수 있다. 이러한 광학요소들의 조합이 사용되는 경우, 제 1 렌즈(일반적으로 볼록렌즈)는 여기광을 효율적으로 수집하기 위해 바람직하게는 광원에 근접하여 또는 광원의 전면에 위치된다. 여기광의 수집 효율성을 더 향상시키기 위해, 거울(일반적으로 오목형 또는 타원형)이 광원의 후측에 배치될 수 있다. 복수의 반응용기(90)들을 조사하기 위해 단일 광학검출장치(600)를 가지는 실시예에서와 같이 여기 빔을 크게할 필요가 있는 경우, 오목 렌즈 또는 볼록 거울이 여기빔을 확장하기 위해 추가적으로 사용될 수 있다. 어떤 실시예들에서는, 하나 또는 그 이상의 광학요소들(예를 들어, 하나 또는 그 이상의 렌즈들 또는 거울들)이 다른 위치들, 예를 들면, 반응용기(90)와 다이크로익 빔 스플리터(680) 또는 여기광 필터(640) 사이에 위치될 수 있다. 다른 측면에서, 여기광은 더 큰 부피의 시료를 조사하기 위해, 일반적으로 본질적으로 공선적인 빔(collinear beam)으로 형성된다. 다광자(multi-photon) 여기 방식을 이용할 때와 같이 어떤 특별한 응용들에서는, 여기광은 시료 내의 특정 위치에 긴밀하게 포커싱될 수 있다.
도 83-84에 도시된 실시예들에서 사용되는 방출광 렌즈(660) 또한 하나보다 많은 렌즈들의 조합 또는 렌즈와 거울의 조합으로 대체될 수 있다. 이러한 광학요소들의 조합이 사용되는 경우, 제 1 렌즈(일반적으로 볼록렌즈)는 형광 광을 보다 효율적으로 수집하기 위해 바람직하게는 반응용기(90)에 근접하여 (예를 들어, 반응용기(90)와 다이크로익 빔 스플리터(680) 또는 방출광 필터(670) 사이에) 위치된다. 어떤 실시예들에서는, 하나 또는 그 이상의 광학요소들(예를 들어, 렌즈 또는 미러)은 다른 위치들, 예를 들어, 반응용기(90)와 다이크로익 빔 스플리터(680) 또는 방출광 필터(670) 사이에, 위치될 수 있다.
도 85a-85b는 여기 빔과 방출 빔 양자의 모양을 만들기 위해 하나의 렌즈(635)가 사용되는 실시예들을 도시한다. 여기 광학요소들(620 및 640)과 형광검출 광학요소들(650, 655, 및 670)을 배치하는 두 예들이 도시되어 있다. 여기 광학요소들(620 및 640)은 도 85a에서 채널축(80)에 직각인 방향을 따라 위치하며, 도 85b에서는 채널축(80) 방향을 따라 위치한다. 단일 렌즈를 사용하는 이러한 유형의 실시예들은, 도 80b, 81b, 및 82에 도시된 복수의 광학검출장치들을 사용하는 실시예들에서와 같이 광학검출장치(600)를 소형화하는데 유용하다.
도 86은 광학검출장치(600)가 반응용기(90)의 상측에 위치하는 일 장치 실시예를 도시한다. 도시된 광학요소들의 배치는 도 83에 도시된 실시예와 동일하다. 다른 유형의 광학배치들(예를 들면, 도 84 및 도 85a-85b에 도시된 것들) 또한 사용될 수 있다. 광학검출장치(600)(또는 여기부 또는 형광검출부)가 반응용기(90)의 상측에 위치된 경우, 반응용기 캡(690)의 중심부는 광학포트(610)로서 기능한다. 그러므로, 논의된 바와 같이, 이 유형의 실시예에서는 반응용기 캡(690) 또는 적어도 그 중심부는 바람직하게는 광학적으로 투명한 또는 반투명한 재료로 만들어진다.
도 86을 다시 참조하면, 반응용기(90)와 반응용기 캡(690)은 일반적으로 PCR 반응 중의 시료의 증발 손실을 방지하기 위해 서로에 대하여 밀봉 관계를 가진다. 도 86에 도시된 반응용기 실시예에서, 상기 밀봉 관계는 반응용기(90)의 내벽과 반응용기 캡(690)의 외벽 사이에서 이루어진다. 대안적으로, 상기 밀봉 관계는 반응용기(90)의 외벽과 반응용기 캡(690)의 내벽 사이, 또는 반응용기(90)의 상부면과 반응용기 캡(690)의 하부면 사이에서 이루어진다. 어떤 실시예들에서는, 반응용기 캡(690)이 광학적으로 투명하거나 반투명한 박막 접착 테이프일 수 있다. 이러한 실시예들에서, 상기 밀봉 관계는 반응용기(90)의 상부면과 반응용기 캡(690)의 하부면 사이에서 이루어진다.
위에서 설명된 반응용기 실시예들은 본 발명의 모든 사용들에 대해서 최적이 아닐 수 있다. 예를 들어, 도 86에 도시된 바와 같이, 시료 메니스커스(meniscus)(즉, 물-공기 인터페이스)가 시료와 반응용기 캡(690)(또는, 반응용기 캡(690)의 광학포트부) 사이에 형성되는 것이 일반적이다. 작동 시, 고온 공정을 수반하는 PCR 반응으로 인해, 시료 내의 물이 증발하여 반응용기 캡(690)의 내부면(또는 반응용기 캡(690)의 광학포트부)에 응결된다. 이렇게 응결된 물은 어떤 응용들에서는, 특히 광학검출장치가 반응용기(90)의 상측에 위치된 경우, 여기 빔 및 형광 빔과 어느정도 간섭을 할 수 있다.
도 87a-87b에 예시된 반응용기 실시예들은 다른 접근을 제공한다. 도시된 바와 같이, 반응용기(90)와 반응용기 캡(690)이 시료와 접촉하는 광학포트(695)를 갖도록 설계되어 있다. 시료 메니스커스는 광학포트(695)의 하부면(696)보다 더 높게 또는 거의 동일한 높이에서 형성된다. 위에서 설명된 일반적인 반응용기 실시예들과 달리, 여기 빔과 형광 빔은 반응용기(90) 내부의 공기 또는 어떠한 응결된 물을 통과하지 않고 광학포트(695)에서 시료로 또는 그 반대로 직접 통과된다. 이러한 실시예들을 위한 구조적 필요조건들은 다음과 같다:
우선, 도 87a-87b에 도시된 바와 같이, 반응용기 캡(690)은 반응용기(90)의 상부와 또한 광학포트(695)와 밀봉 관계를 가진다. 논의된 바와 같이, 반응용기(90)와 반응용기 캡(690) 사이의 밀봉은 반응용기의 내벽(도 87a-87b에서와 같이)에서, 또는 반응용기(90)의 외벽 또는 상단부(91)에서 이루어진다. 반응용기 캡(690)과 광학포트(695) 사이의 밀봉은 광학포트(695)의 상부면(697)(도 87a) 또는 측벽(699)(도 87b)에서 이루어진다. 대안적으로, 반응용기 캡(690)과 광학포트(695)는 하나의 구성체로 만들어질 수 있으며, 바람직하게는 동일한 또는 유사한 광학적으로 투명한 또는 반투명한 재료를 사용하여 만들어진다.
추가적으로, 광학포트(695)의 직경 또는 폭(그리고, 또는 반응용기 캡(690)의 벽이 광학포트(695)의 하부면(696)과 근접하거나 또는 거의 같은 높이에 위치되는 경우의 직경 또는 폭)은, 광학포트(695)의 하부면(696)과 근접하거나 또는 거의 같은 높이에 위치하는 반응용기(90)의 내벽의 일부의 직경 또는 폭보다 더 작게 만들어진다. 또한, 광학포트(695)의 하부면(696)은 반응용기 캡(690)의 내부 부분의 하부보다 더 낮거나 또는 거의 같은 높이에 위치된다. 이러한 구조적 요구조건들이 만족되면, 개방공간(698)이 반응용기(90)의 내벽과 광학포트(695)의 측면부 사이에 제공된다. 그러므로, 광학포트의 하부가 시료와 접촉하도록 반응용기(90)가 반응용기 캡(690)과 밀봉될 때, 시료가 이 개방공간의 일부를 채우게 되며, 광학포트(695)의 하부(696) 위에 시료 메니스커스를 형성하게 된다.
도 88에서, 위에서 논의된 광학적으로 비간섭적인 반응용기의 사용이 예시되어 있다. 논의된 바와 같이, 광학포트(695)의 하부(696)는 시료와 접촉하고 시료 메니스커스는 광학포트(695)의 하부(696)의 위에 형성된다. 광학검출장치(600)가 반응용기(90)의 상단부(91)에 위치하게 함으로써, 여기 빔과 형광 빔이 반응용기(90) 내부의 공기 또는 어떠한 응결된 물을 통과하지 않고, 광학포트(695)에서 시료로 또는 그 반대로 직접 통과되게 된다. 이러한 광학적 구조는 본 발명의 광학검출 특징을 크게 용이하게 한다.
다음 예들은 본 발명이 더 완전히 이해되도록 하기 위해 예시의 목적으로만 주어진다. 이 예들은, 달리 명시적으로 지적하지 않는 한, 본 발명의 범주를 어떤 방식으로든 제한하기 위한 의도가 아니다.
예( Examples )
재료 및 방법
Takara Bio (일본), Finnzymes (핀란드), 및 Kapa Biosystems (남아프리카 공화국)에서 구입한 3개의 상이한 DNA 중합효소가 여러 발명 장치들의 PCR 증폭성능을 시험하기 위해 사용되었다. 여러 삽입 서열들을 포함하는 플라스미드 DNA들, 인간 게놈 DNA, 및 cDNA들이 주형 DNA로 사용되었다. 플라스미드 DNA들은 다른 크기의 삽입 서열들을 pcDNA3.1 벡터에 클로닝함으로써 준비되었다. 인간 게놈 DNA는 인간 배아 신장 세포(293, ATCC CRL-1573)로부터 준비되었다. cDNA는 HOS 또는 SV-OV-3 세포로부터의 mRNA 추출물을 역전사(reverse transcription)하여 준비되었다.
PCR 혼합물의 조성은 다음과 같다: 실험에 따라 상이한 양의 주형 DNA, 순방향 및 역방향 프라이머 각각 약 0.4μM, dNTP 각각 약 0.2mM, 사용된 DNA 중합효소에 따라 약 0.5 내지 1units의 DNA 중합효소, 및 약 1.5mM 내지 2mM의 MgCl2를 각 제조사에 의해 공급되는 완충 용액을 사용하여 전체 부피 20μL 로 혼합함.
반응용기는 폴리프로필렌(polypropylene)으로 만들어졌으며, 도 51a에 도시된 구조적 특징들을 가진다. 반응용기는 하단부가 막힌 테이퍼되어 있는 원통형 형태를 가지며, PCR 혼합물의 도입 후 반응용기를 밀봉하기 위해 반응용기의 상단부의 내부 직경에 들어맞도록 캡을 포함하였다. 반응용기는 상부가 더 큰 직경을 가지도록 상단부에서 하단부로 (선형적으로) 테이퍼되어 있었다. 도 51a에 정의되어 있는 테이퍼각은 4도였다. 제 1 열원 내의 수용구로부터의 열전달을 용이하게 하기 위해 반응용기의 하단부는 평평하게 만들어졌다. 반응용기는, 약 22mm 내지 약 24mm의 상단부에서 하단부까지의 길이, 약 1.5mm의 하단부에서의 외경, 약 1mm의 하단부에서의 내경, 약 0.25mm 내지 약 0.3mm의 벽 두께를 가지고 있었다.
각 반응을 위해 사용된 PCR 혼합물의 부피는 20μL이었다. 20μL 부피를 가지는 PCR 혼합물은 반응용기 내에 약 12 내지 13mm의 높이를 형성하였다.
아래의 예들에서 사용된 모든 장치들은 DC 전력으로 작동가능하게 제작되었다. 재충전가능한 Li+ 폴리머 배터리(12.6V) 또는 DC 전원공급장치가 장치를 작동시키는데 사용되었다. 예들에서 사용된 장치들은, 도 39에 예시된 바와 같이, 복수의 행 및 열을 가진 어레이 형태로 배열된 12개(3x4), 24개(4x6), 또는 48개(6x8)의 채널들을 가지고 있었다. 인접하는 채널들 간의 간격은 9mm로 제작되었다. 실험들에서, 장치의 세 열원들이 원하는 온도까지 가열된 후, PCR 혼합물 시료를 포함하는 반응용기(들)가 채널(들)에 도입되었다. 원하는 PCR 반응 시간 이후, PCR 혼합물 시료는 상기 장치로부터 제거되어, 증폭된 DNA 밴드를 가시화하기 위한 형광염료로서 브롬화 에티듐(EtBr)을 사용하여 아가로스 겔 전기영동(agarose gel electrophoresis)으로 분석되었다.
예 1. 도 12a의 장치를 사용한 열 대류 PCR
이 예에서 사용된 장치는, 채널(70), 제 1 챔버(100), 제 1 온도 브레이크(130), 수용구(73), 관통구(71), 제 2 열원(30)의 돌출부(33, 34), 및 제 1 열원(20)의 돌출부(23, 24)를 포함하는 도 12a에 도시된 구조를 가졌다. 채널축(80) 방향의 제 1, 제 2, 및 제 3 열원의 길이는 각각 약 4mm, 약 5.5mm, 및 약 4mm이었다. 제 1 및 제 2 단열체(또는 단열성 갭)는 각각 약 2mm 및 약 0.5mm의 채널 인접영역(즉, 돌출부 영역 내에서)에서의 채널축(80) 방향의 길이를 가졌다. 채널 외부영역(즉, 돌출부 영역 외부)에서의 채널축(80) 방향의 제 1 및 제 2 단열체의 길이는 각각 약 6mm 내지 약 3mm(위치에 따라서) 및 약 1mm이었다. 제 1 챔버(100)는 제 2 열원(30)의 상부에 위치하였으며, 약 4.5mm의 채널축(80) 방향의 길이와 약 4mm의 직경을 가지는 원통 형태를 가졌다. 제 1 온도 브레이크(130)는 제 2 열원(30)의 하부에 위치하였으며, 채널(70) 또는 반응용기(90)의 전체 둘레와 접촉하는 제 1 온도 브레이크의 벽(133)과 함께 약 1mm의 채널축(80) 방향의 길이 또는 두께를 가졌다. 채널축(80) 방향의 수용구(73)의 깊이는 약 1.5mm 내지 약 3mm 사이에서 변화되었다. 이 장치에서, 채널(70)은 제 3 열원(40) 내의 관통구(71), 제 2 열원(30) 내의 제 1 온도 브레이크(130)의 벽(133), 및 제 1 열원(20) 내의 수용구(73)에 의해 정의되어졌다. 채널(70)은 테이퍼되어 있는 원통 형태를 가졌다. 채널의 평균 직경은 약 2mm이었으며, 하단부(수용구 내)에서의 직경은 약 1.5mm이었다. 이 장치에서, 제 1 챔버, 제 1 온도 브레이크, 수용구, 제 1 및 제 2 단열체, 및 돌출부들을 포함하는 모든 온도 형상화 요소들은 채널축에 대하여 대칭적으로 배치되어 있었다.
아래 제시된 바와 같이, 도 12a에 도시된 구조를 가지는 이 예에서 사용된 장치는, 중력 경사각 없이 10ng 인간 게놈 시료(약 3,000카피)로부터 약 25분 내지 약 30분 내에 증폭하기에 충분할 정도로 효율적인 것이 발견되었다. 1ng 플라스미드 시료에 대하여서는, PCR 증폭은 약 6 또는 8분 정도의 짧은 시간 내에 검출가능한 증폭을 완료하였다. 따라서, 이것은 중력 경사각을 사용하지 않고 효율적인 PCR 증폭을 제공할 수 있는 대칭적 가열 구조의 좋은 입증 예이다. 예 2에 제시된 바와 같이, 이 구조는 또한 중력 경사각이 도입될 때 더 잘 작동한다. 그러나, 작은 (약 10도 내지 약 20도 또는 더 작은) 경사각이 대부분의 응용들에 대해서 충분할 수 있다.
1.1. 플라스미드 시료들로부터의 PCR 증폭
도 53a-53c는 위에서 설명된 세 개의 상이한 DNA 중합효소들(각각이 Takara Bio, Finnzymes, 및 Kapa Biosystems에서 구입된)을 사용하여 1ng 플라스미드 DNA 주형으로부터 얻어진 PCR 증폭 결과를 도시한다. 예상되는 앰플리콘의 크기는 373bp이었다. 사용된 순방향 및 역방향 프라이머는 각각 5'-TAATACGACTCACTATAGGGAGACC-3' (SEQ ID NO: 1) 및 5'-TAGAAGGCACAGTCGAGGCT-3' (SEQ ID NO: 2)이었다. 도 53a-53c에서, 최 좌측 레인은 DNA 크기 마커(뉴잉글런드 바이오 랩의 2-Log DNA Ladder(0.1-10.0kb)) 를 보여주며, 레인 1에서 5는 각 도의 하부에 표시된 바와 같이, 각각 10, 15, 20, 25, 및 30분의 PCR 반응시간에서 열 대류 PCR 장치로 얻어진 결과이다. 발명 장치의 제 1, 제 2, 및 제 3 열원의 온도는 각각 98℃, 70℃, 및 54℃로 설정되었다. 채널축 방향의 수용구의 깊이는 약 2.8mm이었다. 레인 6(하부에 C로 표시됨)은 바이오메트라(Biometra)의 T1 온도사이클러(thermocycler)를 사용하여 얻어진 대조 실험으로부터의 결과이다. 같은 양의 플라스미드 주형을 포함하는 동일한 PCR 혼합물이 대조 실험에서 사용되었다. 대조 실험의 전체 PCR 반응시간은 핫 스타팅(hot starging)을 위한 예열(5분)과 최종 연장(10분)을 포함하여 약 1시간 30분이다. 도 53a-53c에 도시된 바와 같이, 열 대류 장치는 대조 실험에서와 같은 크기에서, 그러나 훨씬 더 짧은 PCR 반응 시간 내에(즉, 약 3 내지 4배 더 짧은) 증폭된 생성물을 생성하였다. PCR 증폭은 약 10 내지 15분에 검출가능한 수준에 도달하였으며, 약 20 또는 25분 내에 포화되었다. 자명해진 바와 같이, 상기 3개의 DNA 중합효소들은 열 대류 PCR 장치와 함께 사용하기에 거의 동등하다는 것이 발견되었다.
도 54a-54c는 열 대류 PCR의 다른 예들을 도시한다. 제 1, 제 2, 및 제 3 열원의 온도는 각각 98℃, 70℃, 및 54℃로 설정되었다. 채널축 방향의 수용구의 깊이는 약 2.8mm이었다. 도 54a-54c는 각각 177bp, 960bp, 및 1,608bp의 앰플리콘 크기를 가지는 3개의 다른 플라스미드 DNA 주형으로부터의 증폭에서 얻어진 결과들이다. 각 반응을 위해 사용된 주형 플라스미드의 양은 1ng이었다. 사용된 순방향 및 역방향 프라이머는 각각 SEQ ID NOs: 1 및 2에 기재된 서열을 가진다. 도시된 바와 같이, 심지어 큰 앰플리콘(약 1kbp 및 1.6kbp)도 아주 짧은 반응 시간 내에, 즉, 약 20분 내에 검출가능한 수준까지 그리고 약 30분 내에 포화 수준까지, 증폭되었다. 짧은 앰플리콘(177bp)은 훨씬 더 짧은 반응 시간 내에, 즉, 약 10분 내에 검출가능한 수준까지 그리고 약 20분 내에 포화 수준까지 증폭되었다.
도 55는 약 200bp 내지 약 2kbp 사이의 앰플리콘 크기를 가지는 다양한 상이한 플라스미드 주형들로부터 얻어진 열 대류 PCR 증폭의 결과를 도시한다. 제 1, 제 2, 및 제 3 열원의 온도는 각각 98℃, 70℃, 및 54℃로 설정되었다. 채널축 방향의 수용구의 깊이는 약 2.8mm이었다. 각 반응에 사용된 주형 플라스미드의 양은 1ng이었다. 사용된 순방향 및 역방향 프라이머는 각각 SEQ ID NOs: 1 및 2에 기재된 서열을 가졌다. 예상되는 앰플리콘의 크기는 레인 1에 대해서는 177bp, 레인 2에 대해서는 373bp, 레인 3에 대해서는 601bp, 레인 4에 대해서는 733bp, 레인 5에 대해서는 960bp, 레인 6에 대해서는 1,608bp, 및 레인 7에 대해서는 1,966bp이었다. PCR 반응시간은 레인 1-6에 대해서는 25분이었고 레인 7에 대해서는 30분이었다. 도시된 바와 같이, 거의 포화된 생성물 밴드들이 짧은 반응 시간 내에 모든 앰플리콘에 대해서 관측되었다. 이 결과는 열 대류 PCR이 빠르고 효율적일 뿐만 아니라, 넓은 작동 범위를 가진다는 것을 입증한다.
1.2. 상승된 디네츄레이션 온도에서의 PCR 증폭의 가속
도 56a-56c에 도시된 결과는 상승된 디네츄레이션 온도에서의 열 대류 PCR의 가속을 입증한다. 사용된 주형은 373 bp 앰플리콘을 생성할 수 있는 1ng 플라스미드이었다. 디네츄레이션 온도를 제외하고는, 사용된 주형 및 프라이머를 포함하는 모든 다른 실험적 조건들은 도 53a-53c에 제시된 실험들에서 사용된 것들과 같다. 제 2 및 제 3 열원의 온도가 70℃ 및 54℃로 각각 설정된 반면, 제 1 열원의 온도는 100℃(도 56a), 102℃(도 56b), 및 104℃(도 56c)로 증가되었다. 도 56a-56c에 도시된 바와 같이, 디네츄레이션 온도(즉, 제 1 열원의 온도)의 상승은 PCR 증폭의 가속을 가져온다. 373 bp 생성물은 디네츄레이션 온도가 100℃일 때(도 56a) 8분 반응 시간에서 겨우 관측될 정도이였으며, 디네츄레이션 온도가 102℃로 상승되었을 때(도 56b) 같은 8분 반응 시간에서 더 강해졌다. 디네츄레이션 온도가 104℃(도 56c)로 더 상승되었을 때(도 56c), 373bp 생성물은 6분 반응시간에서도 관측가능해졌다.
1.3. 인간 게놈 및 cDNA 시료들로부터의 PCR 증폭
도 57a-57c는 인간 게놈 시료로부터의 증폭에 대한 열 대류 PCR의 세 개의 예를 도시한다. 제 1, 제 2, 및 제 3 열원의 온도는 각각 98℃, 70℃, 및 54℃로 설정되었다. 채널축 방향의 수용구의 깊이는 약 2.8mm이었다. 각 반응에 사용된 인간 게놈 주형의 양은 약 3,000카피에 해당하는 10ng이었다. 도 57a는 β-글로빈 유전자의 363bp 조각의 증폭에 대한 결과를 도시한다. 이 서열에 사용된 순방향 및 역방향 프라이머들은 각각 5'-GCATCAGGAGTGGACAGAT-3' (SEQ ID NO: 3) 및 5'-AGGGCAGAGCCATCTATTG-3' (SEQ ID NO: 4)이었다. 도 57b는 GAPDH 유전자의 469bp 조각의 증폭에 대한 결과를 도시한다. 이 실험에 사용된 순방향 및 역방향 프라이머는 각각 5'-GCTTGCCCTGTCCAGTTAA-3' (SEQ ID NO: 5) 및 5'-TGACCAGGCGCCCAATA-3'(SEQ ID NO: 6)이었다. 도 57c는 β-글로빈 유전자의 514bp 조각의 증폭에 대한 결과를 도시한다. 이 실험에 사용된 순방향 및 역방향 프라이머는 각각 5'-TGAAGTCCAACTCCTAAGCCA-3' (SEQ ID NO: 7) 및 5'-AGCATCAGGAGTGGACAGATC-3' (SEQ ID NO: 8)이었다.
도 57a-57c에 도시된 바와 같이, 약 3,000카피의 인간 게놈 시료들로부터의 열 대류 PCR은 아주 짧은 반응 시간 내에 정확한 사이즈를 가진 앰플리콘들을 생성하였다. PCR 증폭은 약 20 또는 25분 내에 검출가능한 수준에 도달하였으며, 약 25 또는 30분 내에 포화되었다. 이 결과들은 열 대류 PCR이 낮은 카피수 시료들로부터의 증폭에도 빠르며 아주 효율적이라는 것을 입증한다.
도 58은 10ng 인간 게놈 또는 cDNA시료로부터의 열 대류 PCR 증폭의 추가적인 예들을 도시한다. PCR 반응 시간은 30분이었다. 모든 다른 실험적 조건은 도 57a-57c에 제시된 실험들에서 사용된 것들과 동일하다. 도시된 바와 같이, 약 100bp 내지 약 800bp의 범위의 크기를 가지는 총 14개의 유전자 조각들은 30분 반응 시간 내에 성공적으로 증폭되었다. 표적 유전자들과 대응하는 프라이머 서열들이 아래 표 2에 정리되어 있다. 사용된 주형은 레인 1, 3-5, 및 9-14에 대해서는 인간 게놈 DNA(10ng)이었으며, 레인 2, 6, 7 및 8에 대해서는 cDNA이었다. cDNA시료들은 HOS(레인 2 및 7) 또는 SK-OV-3(레인 6 및 8) 세포들로부터의mRNA 추출물을 역전사하여 준비되었다.
도 58의 실험에 사용된 프라이머 서열들 및 표적 유전자들
레인 번호 표적 유전자 앰플리콘 사이즈 SEQ ID NO 프라이머 서열
1 PRPS1 99 bp 9 5'-GATCTATTTGGCCTCTCAAA-3'
10 5'-CACACAGGTACACACACTTTATT-3'
2 p53 123 bp 11 5'-TGCCCAACAACACCAGC-3' 
12 5'-CCAAGGCCTCATTCAGCTC-3' 
3 NAIP Exon5 132 bp 13 5'-TGCCACTGCCAGGCAATCTAA-3'
14 5'-CATTTGGCATGTTCCTTCCAAG-3'
4 p53 152 bp 15 5'-GAAGACCCAGGTCCAGAT-3'
16 5'-CTGCCCTGGTAGGTTTTC-3'
5 CYP27B1 168 bp 17 5'-GACAAGGTGAGAGGAGC-3'
18 5'-TTAGCTGGACCTCGTCTC-3'
6 HER2 192 bp 19 5'-AGCACTGGGGAGTCTTTGT-3'
20 5'-GGGACAGTCTCTGAATGGGT-3'
7 CDK4 284 bp 21 5'-GGTGTTTGAGCATGTAGACCA-3'
22 5'-GAACTTCGGGAGCTCGGTA-3
8 CD24 330 bp 23 5'-TCCAAGCACCCAGCATC-3' 
24 5'-TGGGGAAATTTAGAAGACGTTTCTTG-3' 
9 β-globin 363 bp 3 5'-GCATCAGGAGTGGACAGAT-3' 
4 5'-AGGGCAGAGCCATCTATTG-3' 
10 CR2 402 bp 25 5'-AGGTTGGGGTCTTGCCT-3'
26 5'-CACCTGTGCTAGACGGTG-3'
11 PIGR 433 bp 27 5'-GCCACCTACTACCCAGAGG-3'
28 5'-TGATGGTCACCGTTCTGC-3'
12 GAPDH 469 bp 5 5'-GCTTGCCCTGTCCAGTTAA-3'
6 5'-TGACCAGGCGCCCAATA-3'
13 β-globin 514 bp 7 5'-TGAAGTCCAACTCCTAAGCCA-3'
8 5'-AGCATCAGGAGTGGACAGATC-3'
14 β-globin 830 bp 3 5'-GCATCAGGAGTGGACAGAT-3'
29 5'-GGAGAAGATATGCTTAGAACCGA-3'
표 2에 사용된 약자는 다음과 같다: PRPS1: 포스포라이보실 파이로인산 신세타제 1(phosphoribosyl pyrophosphate synthetase 1); NAIP: NLR 패밀리, 세포사멸 저해 단백질(NLR family, apoptosis inhibitory protein); CYP27B1: 사이토크롬 P450, 패밀리 P450, 서브패밀리 B, 폴리펩타이드1(cytochrome P450, family 27, subfamily B, polypeptide 1); HER2: ERBB2, v-erb-b2 적혈구아세포 백혈병 바이러스 암유전자 상동체 2(ERBB2, v-erb-b2 erythroblastic leukemia viral oncogene homolog 2); CDK4: 사이클린-의존적 카이네이스 4(cyclin-dependent kinase 4); CR2: 보체 수용체 2(complement receptor 2); PIGR: 중합 면역글로불린 수용체(polymeric immunoglobulin receptor); GAPDH: 글리세르알데히드 3-인산 디하이드로제나제(glyceraldehydes 3-phosphate dehydrogenase).
1.4. 인간 게놈 시료의 매우 낮은 카피로부터의 PCR 증폭
도 59는 본 발명 장치를 사용하여 매우 낮은 카피수 시료들로부터의 PCR증폭을 도시한다. 사용된 주형 시료는 293 세포로부터 추출된 인간 게놈 DNA이었다. 이 실험에서 사용된 프라이머는 SEQ ID NOs: 3 및 4에 기재된 서열을 가진다. 표적 서열은 β-글로빈의 363bp 조각이었다. PCR 반응시간은 30분이었다. 세 개의 열원의 온도와 수용구의 깊이를 포함한 모든 다른 실험 조건들은 도 57a-57c 및 도 58에 제시된 실험들에 사용된 것들과 동일하였다. 도 59의 하부에 표시된 것처럼, 각 반응에 사용된 인간 게놈 시료의 양은 10ng(약 3,000카피)에서 시작하여 1ng(약 300카피), 0.3ng(약 100카피), 및 0.1ng(약 30카피)까지 순차적으로 감소되었다. 자명해진 바와 같이, 열 대류 PCR은 30카피 시료만큼 적은 시료로부터도 성공적인 PCR 증폭을 나타내었다. 단일 카피 시료들 또한 열 대류 PCR 증폭으로 시험되었다. 단일 카피 시료로부터의 증폭은 약 30 내지 40%의 확률로 성공적이었다는 것이 발견되었는데, 아마 단일 카피를 샘플링하는 기회와 관련된 통계적 확률로 인한 것인 것 같다.
1 .5. 발명 장치의 온도 안정성 및 소비전력
도 12a에 도시된 구조를 가지는 발명 장치의 온도 안정성 및 소비전력이 시험되었다. 이 실험에서 사용된 장치는 도 39 및 도 42에 도시된 바와 같이 서로로부터 9mm 이격되어 위치된 12개의 채널(3x4)을 가진다. 제 1, 제 2, 및 제 3 열원은 각각에 도 42에 도시된 바와 같이 채널들 사이에 배치된 NiCr 가열 와이어(160a-160c)가 장착되어 있다. 장치는 또한 필요한 경우 제 3 열원에 냉각을 제공하기 위해 제 3 열원 위에 팬을 포함하였다. 재충전가능한 Li+ 폴리머 배터리(12.6V)의 DC 전력이 각 가열 와이어에 공급되었고, PID(proportional-integral-derivative) 제어 알고리즘에 의해 제어되어 세 열원 각각의 온도를 기설정된 목표 값에서 유지하도록 하였다.
도 60은 목표 온도가 각각 98℃, 70℃, 그리고 54℃로 설정되었을 때의 제 1, 제 2, 및 제 3 열원의 온도 변화를 도시한다. 주위온도는 약 25℃이었다. 도시된 바와 같이, 세 열원들은 약 2분 이내에 목표 온도들에 도달하였다. 목표 온도들에 도달한 이후 약 40분 시간 동안, 세 열원의 온도는 목표 온도에서 안정적으로 정확히 유지되었다. 40분 시간 기간 동안의 각 열원의 온도의 평균은 각 목표 온도에 대하여 약 ±0.05℃ 이내이었다. 온도 변동 또한 매우 작아, 각 열원의 온도의 표준편차는 약 ±0.05℃ 이내이었다.
도 61은 12개의 채널을 가지는 상기 발명 장치의 소비전력을 도시한다. 도시된 바와 같이, 소비전력은 목표 온도들까지의 신속한 가열이 일어나는 초기 시기(즉, 약 2분까지)에는 높았다. 세 열원들이 목표 온도들에 도달한 후(즉, 약 2분 후), 소비전력은 낮은 값으로 감소되었다. 약 2분 후부터 관측되는 큰 변동은 각 열원에 대한 전력 공급의 적극적인 제어의 결과이다. 이러한 적극적인 전력 제어로 인해, 세 열원들의 온도들은 도 60에 도시된 바와 같이 목표 온도들에서 안정적이고 정확하게 유지될 수 있다. 온도 유지 영역(즉, 약 2분후)에서의 소비전력의 평균은 도 61에 표시된 것처럼 약 4.3W이었다. 그러므로, 각 채널 또는 각 반응에 대한 소비전력은 약 0.4W보다 적다. 약 30분 또는 더 짧은 시간이 발명 장치에서 PCR 증폭에 충분하므로, 하나의 PCR 반응의 완료에 대한 에너지 비용은, 약 2mL 물을 상온에서 약 100℃까지 한번 가열하는데 필요한 에너지에 대응하는, 약 700J 또는 이하에 불과하다.
24개 및 48개의 채널을 가지는 발명 장치들 또한 시험되었다. 평균 소비전력은 24개 채널 장치에서는 약 7 내지 8W이었고, 48개 채널 장치에서는 약 9 내지 10W이었다. 따라서, 각 PCR반응당 소비전력은 더 큰 장치들에서 더 적다는 것, 즉 24개 채널 장치에 대해서는 약 0.3W이고 48개 채널 장치에 대해서는 약 0.2W인 것이 발견되었다.
예 2. 도 12b의 장치를 사용한 열 대류 PCR
이 예에서는, 열 대류 PCR에 대한 중력 경사각 θg의 효과가 시험되었다. 이 예에서 사용된 장치는 도 12b에 정의된 중력 경사각(θg)의 사용을 제외하고는, 예 1에서 사용된 것과 같은 구조 및 치수를 가진다. 장치는 하부에 경사진 웨지를 장착함으로써, 채널축이 중력의 방향에 대해서 θg만큼 기울어지게 하였다.
아래에 제시된 바와 같이, 중력 경사각의 도입은 대류 흐름을 더 빠르게 하였으며, 이에 따라 열 대류 PCR을 가속시켰다. 따라서, 장치 또는 채널에 중력 경사각을 부여할 수 있는 웨지 또는 다리(leg), 또는 경사지거나 기울어진 채널과 같은 구조적 요소가, 효과적이고 빠른 열 대류 PCR 장치를 구성하는데 유용한 구조적 요소라는 것이 확인되었다.
2.1. 플라스미드 시료로부터의 PCR 증폭
도 62a-62e는 플라스미드 시료로부터의 증폭에 대한 열 대류 PCR의 결과를 중력 경사각의 함수로서 도시한다. 제 1, 제 2, 및 제 3 열원의 온도는 각각 98℃, 70℃, 및 54℃로 설정되었다. 채널축 방향의 수용구의 깊이는 약 2.8mm이었다. 각 반응에 사용된 주형 플라스미드의 양은 1ng이었다. 사용된 프라이머는 SEQ ID NOs: 1 및 2에 기재된 서열을 가졌다. 예상되는 앰플리콘의 크기는 373bp이었다. 도 62a는 중력 경사각이 영일 때 얻어진 결과를 도시한다. 도 62b-62e는 각각 θg가 10도, 20도, 30도, 및 45도일 때 얻어진 결과를 도시한다. 중력 경사각이 영일 때(도 62a)에는 증폭된 생성물이 15분 반응시간에서 겨우 관측가능했고 20분에는 강해졌다. 이에 대비하여, 10도의 중력 경사각이 도입되었을 때는 증폭된 생성물은 10분 반응시간에 상당한 세기로 관측가능했다(도 62b). 중력 경사각이 20도로 증가됨에 따라(도 62c) 10 및/또는 15분 반응시간에 생성물 밴드 세기의 추가적인 증가가 관측되었다. 20도 이상의 경사각(도 62d-62e)에서는 증폭 속도가 20도에서 관측된 것과 유사하게 관측되었다.
2.2. 인간 게놈 시료로부터의 PCR 증폭
도 63a-63d는 중력 경사각의 효과를 입증하는 다른 예를 도시한다. 이 실험에서, 10ng 인간 게놈 시료(약 3,000카피)가 주형 DNA로서 사용되었고, SEQ ID NOs: 3 및 4에 기재된 서열을 가지는 프라이머가 사용되었다. β-글로빈 유전자의 363bp 조각이 표적이었다. 다른 실험적 조건들은 도 62a-62e에 제시된 실험에 사용된 것들과 동일하였다. 도 63a-63d는 θg가 각각 0도, 10도, 20도, 및 30도로 설정되었을 때 얻어진 결과를 도시한다. 도시된 바와 같이, 열 대류 PCR은 중력 경사각이 도입되었을 때 가속되었다 (즉, 도 63a와 비교하여 도 63b-63d). PCR 증폭의 속도는 중력 경사각이 증가되면 증가되는 것으로 관측되었다. 유사한 증폭 속도가 20도(도 63c)와 30도(도 63d)에서 관측되었다.
도 64a-64b는 높은 녹는 온도(60℃ 이상)를 가진 프라이머가 사용된 다른 예를 도시한다. 이 실험에서, 10ng 인간 게놈 시료(약 3,000카피)가 주형 DNA로서 사용되었다. 사용된 순방향 및 역방향 프라이머는 각각 서열 5'-GCTTCTAGGCGGACTATGACTTAGTTGCG-3' (SEQ ID NO: 30) 및 5'-CCAAAAGCCTTCATACATCTCAAGTTGGGGG-3' (SEQ ID NO: 31)을 가졌다. 증폭 표적은 β-액틴 유전자의 521bp 조각이었다. 제 1, 제 2, 및 제 3 열원의 온도는 각각 98℃, 74℃, 및 64℃로 설정되었다. 채널축 방향의 수용구의 깊이는 약 2.8mm이었다. PCR 반응시간은 30분으로 설정되었고, 실험은 각 경사각에 대하여 2개씩의 시료(레인 1 및 2)로 수행되었다. 도 64a 및 64b는 각각 θg = 0°및 20°에서 얻어진 결과들을 도시한다. 도시된 바와 같이, 0도에서는 어떠한 유의미한 증폭도 양 PCR 시료에 대해관측되지 않았다(도 64a). 이에 대비하여, 20도의 경사각이 도입되었을 때에는(도 64b) 강한 생성물 밴드가 관측되었다. 도 63a-63d에 제시된 실험과 비교하여, 제 3 및 제 2 열원의 온도는 각각 10도 및 4도씩 증가된 반면, 제 1 열원의 온도는 동일하였다. 따라서, 열원 간의 감소된 온도 차이로 인해 열 대류는 느려졌다. 중력 경사각을 사용하지 않으면(도 64a), 열 대류 PCR은 너무 느려져서, 빠른 PCR 증폭을 할 수 없게 되었다. 그러나, 중력 경사각을 도입함으로써(도 64b), 열 대류 PCR은 짧은 반응 시간 내에 낮은 카피 인간 게놈 시료(약 3,000카피)로부터 강한 생성물 밴드를 생성하기에 충분히 빠르고 효율적이게 되었다.
2.3. 인간 게놈 시료의 매우 낮은 카피로부터의 PCR 증폭
도 65는 중력 경사각이 사용될 때, 아주 낮은 카피 인간 게놈 시료로부터의 열 대류 PCR 증폭의 결과를 도시한다. 사용된 프라이머는 도 64a-64b에 제시된 실험들에서 사용된 것들과 동일하였다. 따라서, 증폭 표적은 β-액틴 유전자의 521bp 조각이었다. 제 1, 제 2, 및 제 3 열원의 온도는 각각 98℃, 74℃, 및 60℃로 설정되었다. 채널축 방향의 수용구의 깊이는 약 2.5mm이었다. 중력 경사각은 10도로 설정되었고 PCR 반응시간은 30분으로 설정되었다. 도 65에 도시된 바와 같이, 열 대류 PCR은 30 카피 시료만큼의 적은 시료로부터도 성공적인 PCR 증폭을 나타내었다.
예 3. 도 14c의 장치를 사용한 열 대류 PCR
이 예에서 사용된 장치는 채널(70), 제 1 챔버(100), 제 2 챔버(110), 제 1 온도 브레이크(130), 수용구(73), 및 관통구(71)를 포함하는 도 14c에 도시된 구조를 가졌다. 어떠한 돌출부 구조도 이 장치에서는 사용되지 않았다. 채널축(80) 방향의 제 1, 제 2, 및 제 3 열원의 길이는 각각 약 5mm, 약 4mm, 및 약 5mm이었다. 제 1 및 제 2 단열체(또는 단열성 갭)는 각각 약 2mm 및 약 1mm의 채널축(80) 방향의 길이를 가졌다. 제 1 챔버(100)는 제 2 열원(30)의 상부에 위치하며, 약 3mm의 채널축(80) 방향의 길이와 약 4mm의 직경을 가진 원통형태를 가졌다. 제 1 온도 브레이크(130)는 제 2 열원(30)의 하부에 위치하며, 채널(70) 또는 반응용기(90)의 전체 둘레와 접촉하는 제 1 온도 브레이크(130)의 벽(133)과 함께 약 1mm의 채널축(80) 방향의 길이 또는 두께를 가졌다. 제 2 챔버(110)는 제 3 열원(40)의 하부에 위치하며, 약 4mm의 직경을 가진 원통 형태를 가졌다. 채널축(80) 방향의 제 2 챔버(110)의 길이는, 수용구(73)의 깊이에 따라 약 1.5mm 내지 약 0.5mm 사이에서 변화되었다. 채널축(80) 방향의 수용구(73)의 깊이는 약 2mm 내지 약 3mm 사이에서 변화되었다. 이 장치에서, 채널은 제 3 열원(40) 내의 관통구(71), 제 2 열원(30) 내의 제 1 온도 브레이크(130)의 벽(133), 및 제 1 열원(20) 내의 수용구(73)에 의해 정의되었다. 채널(70)은 테이퍼되어 있는 원통 형태를 가졌다. 하단부(수용구 내)에서의 직경이 약 1.5mm인 채널의 평균 직경은 약 2mm이었다. 이 장치에서, 제 1 및 제 2 챔버, 제 1 온도 브레이크, 수용구, 및 제 1 및 제 2 단열체를 포함하는 모든 온도 형상화 요소들은 채널축에 대하여 대칭적으로 배치되었다.
3.1. 플라스미드 시료들로부터의 PCR 증폭
도 66은 서열 5'-AAGGTGAGATGAAGCTGTAGTCTC-3' (SEQ ID NO: 32) 및 5'-CATTCCATTTTCTGGCGTTCT-3'(SEQ ID NO: 33)를 가진 두 프라이머를 사용하여 1ng 플라스미드 시료로부터 얻어진 PCR 증폭결과를 도시한다. 예상되는 앰플리콘의 크기는 152bp이었다. 제 1, 제 2, 및 제 3 열원의 온도는 각각 98℃, 70℃, 및 56℃로 설정되었다. 채널축 방향의 제 2 챔버의 길이는 약 1mm이었고, 채널축 방향의 수용구의 깊이는 약 2.5mm이었다. 도 66에 도시된 바와 같이, 열 대류 PCR은 10분만큼 짧은 시간 내에 성공적인 증폭을 나타냄으로써, 이러한 유형의 발명 장치들에서의 빠르고 효율적인 PCR 증폭을 보여준다.
도 67은 약 200bp 내지 약 2kbp 사이의 앰플리콘 크기를 가지는 여러 상이한 플라스미드 주형들로부터의 열 대류 PCR 증폭의 결과를 도시한다. 제 1, 제 2, 및 제 3 열원의 온도는 각각 98℃, 70℃, 및 56℃로 설정되었다. 채널축 방향의 제 2 챔버의 길이는 약 1.5mm이었고, 채널축 방향의 수용구의 깊이는 약 2mm이었다. 각 반응에 사용된 주형 플라스미드의 양은 1ng이었다. SEQ ID NOs: 1 및 2에 기재된 서열을 가진 프라이머들이 사용되었다. 예상되는 앰플리콘의 크기는 레인 1에 대해서는 177bp, 레인 2에 대해서는 373bp, 레인 3에 대해서는 601bp, 레인 4에 대해서는 733bp, 레인 5에 대해서는 960bp, 레인 6에 대해서는 1,608bp, 및 레인 7에 대해서는 1,966bp이었다. PCR 반응 시간은 레인 1-6에 대해서는 30분이었고, 레인 7에 대해서는 35분이었다. 도시된 바와 같이, 거의 포화된 생성물 밴드들이 짧은 시간 내에 모든 앰플리콘에 대해서 관측되었다. 이 결과들은 열 대류 PCR이 빠르고 효율적일 뿐 아니라 넓은 작동 범위를 가진다는 것을 입증한다.
3.2. 인간 게놈 시료로부터의 PCR 증폭
도 68a-68b는 인간 게놈 시료로부터의 증폭에 대한 열 대류 PCR의 두 예를 도시한다. 제 1, 제 2, 및 제 3 열원의 온도는 각각 98℃, 70℃, 및 56℃로 설정되었다. 채널축 방향의 제 2 챔버의 길이는 약 1mm이었고, 채널축 방향의 수용구의 깊이는 약 2.5mm이었다. 각 반응에 사용된 인간 게놈 주형의 양은 약 3,000카피에 대응하는 10ng이었다. 도 68a는 β-글로빈 유전자의 500bp 조각의 증폭에 대한 결과를 도시한다. 이 서열에 사용된 순방향 및 역방향 프라이머는 각각 5'-GCATCAGGAGTGGACAGAT-3' (SEQ ID NO: 3) 및 5'-CTAAGCCAGTGCCAGAAGA-3' (SEQ ID NO: 34)이었다. 도 68b는 β-액틴 유전자의 500bp 조각의 증폭에 대한 결과를 도시한다. 이 서열을 위해 사용된 순방향 및 역방향 프라이머는 각각 서열 5'-CGGACTATGACTTAGTTGCG-3' (SEQ ID NO: 35) 및 5'-ATACATCTCAAGTTGGGGGA-3' (SEQ ID NO: 36)를 가졌다.
도 68a-68b에 도시된 바와 같이, 약 3,000카피의 인간 게놈 시료로부터의 열 대류 PCR은 짧은 시간 내에 정확한 크기를 가진 앰플리콘을 생성하였다. 약 20 또는 25분 내에 상당한 증폭이 관측되었으며, 약 30분 내에 포화된 증폭에 도달하였다. 이 결과들은 낮은 카피 수 시료로부터의 증폭에 대한 열 대류 PCR의 높은 속도와 효율성을 입증한다.
3.3. 아주 낮은 카피의 플라스미드 시료로부터의 PCR 증폭
도 69는 발명 장치를 사용한 아주 낮은 카피 수 플라스미드 시료로부터의 PCR 증폭을 도시한다. 플라스미드 시료의 양을 제외하고는, 세 열원의 온도와 수용구의 깊이를 포함하는 다른 모든 실험적 조건들은 도 66에 제시된 실험들에서와 동일하였다. 사용된 주형 플라스미드와 프라이머 또한 동일하였다. PCR 반응 시간은 30분이었다. 도 69의 하부에 표시된 바와 같이, 각 반응에 대해 사용된 플라스미드 시료의 양은, 약 10,000카피(레인 1)에서 시작하여, 약 1,000카피 (레인 2), 100카피(레인 3), 및 10카피(레인 4)까지 순차적으로 감소되었다. 자명해진 바와 같이, 열 대류 PCR은 10 카피 시료만큼이나 적은 시료에서도 성공적인 PCR 증폭을 나타내었다. 단일 카피 시료들 또한 시험되었다. 단일 카피 시료로부터의 증폭은 약 30 내지 40% 확률을 가지고 성공적인 것으로 발견되었다.
3.4. 발명 장치의 온도 안정성 및 소비전력
도 14c에 도시된 구조를 가지는 발명 장치의 온도 안정성 및 소비전력이 시험되었다. 이 실험에서 사용된 장치는 서로로부터 9mm 이격되어 배치된 48개의 채널(6x8)을 가졌다. 이 발명 장치에 대해서 관측된 온도변화는, 예 1에서 제시된 실험들에 사용된 도 12a에 도시된 구조를 가지는 장치(위의 1.5절 참조)보다 약간 더 컸다. 온도유지시간 동안의 각 열원의 평균 온도는 목표 온도의 각각에 대하여 약 ±0.1℃ 이내이었다. 각 열원의 온도 변동(즉, 표준편차)은 약 ±0.1℃ 이내이었다. 온도유지시간 동안의 평균 소비전력은 주변온도에 따라서 약 15W 내지 약 20W 사이이었다. 도 12a에 도시된 구조를 가지는 장치와 비교하여, 도 12a 장치에서 사용된 돌출부 구조의 부재로 인한 감소된 단열성 갭의 결과로서, 소비전력은 약 1.5 내지 2배 더 컸다. 이 결과들은 돌출부 구조의 사용이 발명 장치의 소비전력을 감소시키는데 효율적이라는 것을 입증한다.
예 4. 도 17a의 장치를 사용한 열 대류 PCR
이 예에서 사용된 장치는 도 17a 에 도시된 구조를 가지나, 제 3 열원(40)의 돌출부들(43, 44)을 가지지 않는다. 장치는 채널(70), 제 1 챔버(100), 수용구(73), 관통구(71), 제 2 열원(30)의 돌출부(33, 34), 및 제 1 열원(20)의 돌출부(23, 24)를 포함한다. 제 1 챔버(100)는 제 2 열원(30) 내에 배치되었으며, 온도 브레이크 구조는 사용되지 않았다. 채널축(80) 방향의 제 1, 제 2, 및 제 3 열원의 길이는 각각 약 4mm, 약 6.5mm, 및 약 4mm이었다. 제 1 및 제 2 단열체(또는 단열성 갭)는 각각 채널 인접 영역(즉, 돌출부 영역 내)에서 약 1mm 및 약 0.5mm의 채널축(80) 방향의 길이를 가졌다. 채널 영역 외부(즉, 돌출부 영역 외부)에서의 제 1 및 제 2 단열체의 길이는 각각 약 6mm 내지 약 3mm(위치에 따라서)와 약 1mm이었다. 제 1 챔버(100)는 채널축(80) 방향의 제 2 열원의 길이(즉, 약 6.5mm)와 같은 채널축(80) 방향의 길이를 가지는 원통 형태를 가졌다. 제 1 챔버(100)의 직경은 약 4mm에서 약 2.5mm까지 변화되었다. 채널축 방향의 수용구(73)의 깊이는 약 2mm에서 약 3mm까지 변화되었다. 이 장치에서, 채널(70)은 제 3 열원(40) 내의 관통구(71)와 제 1 열원(20) 내의 수용구(73)에 의해 정의되었다. 채널(70)은 약 2mm의 평균 직경과 하단부(수용구 내)에서의 약 1.5mm의 직경을 가지는 테이퍼되어 있는 원통 형태를 가졌다. 이 장치에서, 제 1 챔버, 수용구, 및 제 1 및 제 2 단열체를 포함하는 모든 온도 형상화 요소들은 채널축에 대해서 대칭적으로 배치되었다.
이 예에서는, 챔버 직경, 수용구 깊이, 및 중력 경사각의 효과들이 열 대류 PCR의 속도와 관련하여 시험되었다.
4.1. 챔버 직경 수용구 깊이의 효과
이 예에서, 열 대류 PCR은 상이한 수용구 깊이에서 챔버 직경의 함수로서 시험되었다. 사용된 주형 DNA는 1ng 플라스미드이었다. SEQ ID NOs: 1 및 2에 기재된 서열을 가진 두 프라이머가 사용되었으며, 앰플리콘의 크기는 373bp이었다. 제 1, 제 2, 및 제 3 열원의 온도는 각각 98℃, 70℃, 및 54℃로 설정되었다.
도 70a-70d는 제 1 챔버의 직경이 약 4mm(도 70a), 약 3.5m(도 70b), 약 3mm(도 70c), 및 약 2.5mm(도 70d)인 경우 얻어진 결과를 도시한다. 채널축 방향의 수용구의 깊이는 약 2mm이었다. 도시된 바와 같이, 제 1 챔버의 직경이 감소될수록 대류 PCR은 감속된다는 것이 발견되었다. 제 1 챔버의 직경이 약 4.0mm인 경우, PCR 생성물은 10분의 반응 시간에도 상당한 수준까지 증폭되었다(도 70a). 그러나, 챔버 직경이 약 3.5mm(도 70b) 및 약 3mm(도 70c)로 감소된 경우 유사한 밴드 세기에 도달하는데 더 많은 반응시간이 필요하였다. 챔버 직경이 약 2.5mm(도 70d)로 감소된 경우, 심지어 30분 반응시간 이후에도 어떠한 검출가능한 PCR 밴드도 관측되지 않았다. 제 2 열원과 채널 사이의 챔버 갭의 감소는 제 2 열원과 채널 사이에 더 효율적인 열전달을 야기하였다. 따라서, 채널 내부의 온도 기울기가 챔버 직경이 작아질수록 작아졌으며, 따라서 열 대류 속도의 감소를 유도하였다.
도 71a-71d는, 제 1 챔버의 직경은 동일한 반면, 즉, 약 4mm(도 71a), 약 3.5mm(도 71b), 약 3mm(도 71c), 및 약 2.5mm(도 71d)인 반면, 수용구의 깊이가 약 2.5mm까지 증가된 경우 얻어진 결과를 도시한다. 더 깊은 수용구에서의 증가된 가열로 인해, 도 70a-70d에 도시된 결과와 비교하여 열 대류는 제 1 챔버의 모든 상이한 직경에 대해서 빨라졌다. 제 1 챔버의 직경이 가장 작을 때에도(즉, 약 2.5mm), 열 대류 PCR은 약 15분 반응 시간 내에 검출가능한 생성물 밴드를 나타낼 만큼 충분하게 빠르고 효율적이었다.
이 예의 결과들은, 챔버 직경 또는 챔버 갭이 열 대류 PCR의 속도를 제어하는데 이용될 수 있는 중요한 구조적 요소라는 것을 입증한다. 큰 챔버 직경이 빠른 열 대류 PCR을 유도하며, 또는 그 반대인 것을 알 수 있었다. 대류 흐름을 가능한 한 빠르게 하는 것이 일반적으로 바람직하지만, 때로는 대류 흐름의 속도를 감소시키는 것이 바람직하기도 한다. 예를 들어, 긴 표적 서열을 가지는 주형 또는 게놈 DNA의 특정 표적 유전자와 같은 어떤 주형 시료들은 대류 속도가 너무 빠르면 (큰 크기 또는 어떤 복잡한 구조적 제한으로 인해) PCR 증폭이 성공적으로 되지 않을 수도 있다. 또 다른 예로서, 사용되는 DNA 중합효소가 열 대류 PCR의 속도와 비교하여 너무 느린 중합 속도를 가질 수도 있다. 이러한 경우들에서, 상이한(일반적으로 작아지는) 직경 또는 챔버 갭을 가지는 챔버 구조의 사용은 열 대류 PCR의 속도를 제어(일반적으로 감소)시키는데 있어서 아주 유용할 수 있다.
4.2. 중력 경사각의 효과
이 예에서는, 발명 장치의 열 대류 PCR이 중력 경사각(θg)을 도입함으로써 더 시험되었다. 중력 경사각을 제외하고는, 사용된 주형 DNA와 프라이머들을 포함하는 다른 모든 실험적 조건들은 도 70a-70d 및 도 71a-71d에서 제시된 예에서 사용된 것들과 동일하다.
도 72a-72d 및 도 73a-73d는 10도의 중력 경사각이 도입된 경우 얻어진 결과를 도시한다. 수용구의 깊이는 도 72a-72d에서는 약 2.0mm이었고, 도 73a-73d에서는 약 2.5mm이었다. 도 70a-70d와 도 71a-71d에 도시된 바와 같이, 제 1 챔버의 직경은 약 4mm(도 72a 및 도 73a), 약 3.5mm(도 72b와 도 73b), 약 3mm(도 72c와 도 73c), 및 약 2.5mm(도 72d와 도 73d)이었다. 도시된 바와 같이, 중력 경사각이 도입되었을 때, 열 대류 PCR의 가속이 분명해지는 것을 알 수 있었다. 그러나, 수용구의 깊이가 약 2mm(도 70a-70d와 비교하여 도 72a-72d)일 때, 열 대류 PCR속도의 증가가 더 현저하였다. 도 70a-70d에 도시된 결과와 비교하여, 챔버 직경이 약 4mm(도 72a)와 약 3.5mm(도 72b)이었을 때 PCR 반응 시간의 약 5분 감소가 관측되었으며, 챔버 직경이 약 3mm(도 72c)와 약 2.5mm(도 72d)이었을 때 PCR 시간의 적어도 약 10 내지 15분 감소가 관측되었다. 수용구의 깊이가 약 2.5mm인 경우, 챔버 직경이 약 4mm(도 71a와 비교하여 도 73a), 약 3.5mm(도 71b와 비교하여 도 73b), 그리고 약 3mm(도 71c와 비교하여 도 73c)일 때, 열 대류 PCR 속도의 단지 약간의 증가만이 관측되었다. 챔버 직경이 약 2.5mm(도 71d와 비교하여 도 73d)일 때, PCR 반응 시간의 큰 감소(약 10분 감소)가 관측되었다.
이 예의 결과들은 중력 경사각이 열 대류 PCR의 속도를 증가시키는데 사용될 수 있는 중요한 구조적 요소인 것을 입증한다. 또한, 이 결과들은 열 대류 PCR의 속도를 높이는데 (장치 이외의) 어떤 제한이 있을 수 있다는 것을 제시한다. 예를 들어, (대류 속도에 중요하게 영향을 준다고 발견된) 챔버 직경이 변경되어도, 열 대류 PCR의 속도는 도 73a-73c에 도시된 결과에서와 거의 동일한 것으로 관측되었다. 유사하게, 도 73a-73c에 도시된 결과는, 중력 경사각의 존재 또는 부재와 관계없이 도 71a-71c에 도시된 것들과 많이 다르지 않다. 이 결과들은, 발명 장치의 대류 속도는 원하는 대로 빠르게 증가될 수 있지만, 열 대류 PCR의 궁극적인 속도는 사용된 DNA 중합효소의 중합 속도에 의해 제한될 수 있다는 것을 보여준다.
예 5. 제 1 온도 브레이크의 위치의 효과
이 예에서는 두 유형의 장치가 사용되었다. 사용된 제 1 장치는, 채널(70), 제 1 챔버(100), 제 1 온도 브레이크(130), 수용구(73), 관통구(71), 제 2 열원(30)의 돌출부(33, 34), 및 제 1 열원(20)의 돌출부(23, 24)를 포함하는 도 12a에 도시된 구조를 가졌다. 따라서, 도 12a에 도시된 바와 같이, 제 1 온도 브레이크(130)는 제 2 열원(30)의 하부에 위치하였으며, 제 1 챔버(100)는 제 2 열원(30)의 상부에 위치하였다. 채널축(80) 방향의 제 1 온도 브레이크의 두께는 약 1mm이었다.
사용된 제 2 장치는 챔버/온도 브레이크 구조를 제외하고는 도 12a에 도시된 구조와 동일한 구조를 가졌다. 도 10a에 도시된 구조에서와 같이, 제 2 장치는 제 2 열원(30)의 하부와 상부에 위치한 제 1(100) 및 제 2(110) 챔버를 포함하였으며, 제 1 온도 브레이크(130)는 제 1 (100) 및 제 2(110) 챔버 사이에 위치하였다. 채널축(80) 방향의 제 1 온도 브레이크(130)의 두께는 약 1mm이었다. 제 1 온도 브레이크(130)의 위치는 채널축(80) 방향으로 변화되었다.
양 장치에서, 채널축(80) 방향의 제 1, 제 2, 및 제 3 열원의 길이는 각각 약 4mm, 약 6.5mm, 및 약 4mm이었다. 제 1 및 제 2 단열체(또는 단열성 갭)는 각각 채널 인접 영역(즉, 돌출부 영역 내)에서 약 1mm 및 약 0.5mm의 채널축(80) 방향의 길이를 가졌다. 채널 영역 외부(즉, 돌출부 영역 외부)의 제 1 및 제 2 단열체의 길이는 각각 약 6mm 내지 약 3mm(위치에 따라서) 및 약 1mm이었다. 제 1 (100) 및 제 2(110) 챔버 양자는 약 4mm의 직경을 가지는 원통 형태를 가졌다. 제 1 온도 브레이크(130)는, 채널(70)의 전체 둘레와 접촉하는 제 1 온도 브레이크(130)의 벽(133)과 함께, 약 1mm의 채널축(80) 방향의 길이 또는 두께를 가졌다. 채널축 방향의 수용구(73)의 깊이는 약 2.8mm이었다. 채널(70)은 테이퍼되어 있는 원통 형태를 가졌다. 하단부(수용구 내)에서 약 1.5mm의 직경을 가지는 채널의 평균 직경은 약 2mm이었다. 이 장치에서 제 1 챔버, 제 2 챔버, 제 1 온도 브레이크, 수용구, 및 제 1 및 제 2 단열체를 포함하는 모든 온도 형상화 요소는 채널축에 대하여 대칭적으로 배치되어 있다.
이 예에서 사용된 주형 DNA는 1ng 플라스미드 DNA이었다. SEQ ID NOs: 1 및 2에서 기재된 서열을 가진 두 프라이머가 사용되었으며, 앰플리콘의 크기는 373bp이었다. 제 1, 제 2, 및 제 3 열원의 온도는 각각 98℃, 70℃, 및 54℃로 설정되었다.
도 74a-74f는 채널축 방향의 제 1 온도 브레이크의 위치가 변화되었을 때 얻어진 결과를 도시한다. 제 1 온도 브레이크의 하단부(132)의 위치는, 제 2 열원의 하부(도 74a)로부터, 제 2 열원의 하부에서 약 1mm(도 74b), 약 2.5mm(도 74c), 약 3.5mm(도 74d), 약 4.5mm(도 74e), 또는 약 5.5mm(도 74f)까지 변화되었다. 도 74a-74F에 도시된 바와 같이, 열 대류 PCR의 속도는 채널축 방향의 제 1 온도 브레이크의 위치에 따라서 증감되었다. 제 1 온도 브레이크가 제 2 열원의 하부에 위치한 경우(도 74a), 열 대류 PCR은 다른 위치들과 비교하여 상대적으로 느린 PCR 증폭을 나타내었다. 제 1 온도 브레이크가 약 3.5mm까지(도 74b-74d) 상승함에 따라, PCR 증폭 속도는 증가되었다. 더 높은 위치들에서는(도 74e-74f), 증폭 속도의 약간의 감소가 관측되었다.
이 예의 결과들은 온도 브레이크의 위치가 열 대류 PCR의 속도를 조정 또는 제어하기 위해 사용될 수 있는 유용한 구조적 요소인 것을 입증한다.
예 6. 제 1 온도 브레이크의 두께와 중력 경사각의 효과
이 예에서는 세 유형의 장치가 사용되었다. 사용된 제 1 장치는 채널(70), 제 1 챔버(100), 제 1 온도 브레이크(130), 수용구(73), 관통구(71), 제 2 열원(30)의 돌출부(33, 34), 및 제 1 열원(20)의 돌출부(23, 24)를 포함하는 도 12a에 도시된 구조를 가진다. 따라서, 도 12a에 도시된 바와 같이, 제 1 온도 브레이크(130)는 제 2 열원(30)의 하부에 위치하였으며, 제 1 챔버(100)는 제 2 열원(30)의 상부에 위치하였다. 채널축 방향의 제 1 온도 브레이크의 두께가 변화되었다.
사용된 제 2 장치는 도 17a에 도시된 구조에서처럼 제 2 열원 내에 배치된 제 1 챔버만을(제 1 온도 브레이크 없이) 가지고 있다. 다른 구조들은 제 1 장치의 구조와 동일하였다.
사용된 제 3 장치는 제 1 장치와 다른 구조들은 동일하나 챔버가 없는 구조를 가지고 있다. 따라서, 제 3 장치는 챔버없이 (온도 브레이크로서 기능하는) 채널구조만을 가지고 있다.
상기 세 장치들에서, 채널축(80) 방향의 제 1, 제 2, 및 제 3 열원의 길이는 각각 약 4mm, 약 5.5mm, 및 약 4mm이었다. 제 1 및 제 2 단열체(또는 단열성 갭)는 각각 채널 인접 영역(즉, 돌출부 영역 내)에서 약 2mm 및 약 0.5mm의 채널축(80) 방향의 길이를 가졌다. 채널 영역 외부(즉, 돌출부 영역 외부)에서의 제 1 및 제 2 단열체의 길이는 각각 약 6mm 내지 약 3mm(위치에 따라서) 및 약 1mm이었다. 제 1 챔버(100)는 약 4mm의 직경을 가지는 원통 형태를 가졌다. 제 1 온도 브레이크(130)는, 채널(70)의 전체 둘레와 접촉하는 제 1 온도 브레이크(130)의 벽(133)과 함께, 약 1mm 내지 약 5.5mm 사이의 채널축(80) 방향의 길이 또는 두께를 가졌다. 채널축 방향의 수용구(73)의 깊이는 약 2.8mm이었다. 채널(70)은 테이퍼되어 있는 원통 형태를 가졌다. 하단부(수용구 내)에서 약 1.5mm의 직경을 가진 채널의 평균 직경은 약 2mm이었다. 이 장치들에서 제 1 챔버, 제 1 온도 브레이크, 수용구, 및 제 1 및 제 2 단열체를 포함하는 모든 온도 형상화 요소는 채널축에 대하여 대칭적으로 배치되어 있다.
이 예에서 사용된 주형 DNA는 1ng 플라스미드 DNA이었다. SEQ ID NOs: 1 및 2에서 기재된 서열을 가진 두 프라이머가 사용되었으며, 앰플리콘의 크기는 373bp이었다. 제 1, 제 2, 및 제 3 열원의 온도는 각각 98℃, 70℃, 및 54℃로 설정되었다.
도 75a-75e는 채널축 방향의 제 1 온도 브레이크의 두께가 변화될 때 얻어진 결과를 도시한다. 도 75a는 어떠한 온도 브레이크도 존재하지 않을 때(즉, 제 1 챔버만 있을 때) 얻어진 결과들을 도시한다. 도 75b-75e는 제 1 온도 브레이크의 두께가 약 1mm(도 75b), 약 2mm(도 75c), 약 4mm(도 75d), 및 약 5.5mm(도 75e, 즉, 챔버 구조 없이 채널만 있는 구조)일 때 얻어진 결과들을 도시한다. 도시된 바와 같이, 제 1 온도 브레이크의 두께가 증가됨에 따라 PCR 증폭 속도는 감소되었다. 온도 브레이크가 없을 때(도 75a) 최고 증폭 속도가 관측되었다. 제 1 온도 브레이크가 존재하면, 온도 브레이크가 없는 구조(도 75a)와 비교하여 증폭속도는 감소되었다(도 75b-75e). 도시된 바와 같이, 더 두꺼운 온도 브레이크는 "더 강한 온도 브레이킹"을 부과함으로써, 더 느린 PCR 증폭을 유도한다. 챔버 구조가 없는 경우(도 75e)에는 채널만 있는 구조에 의한 아주 강한 온도 브레이킹으로 인해 어떠한 유의미한 PCR 증폭도 관측되지 않았다.
도 76a-76e는 10도의 중력 경사각이 도입되었을 때 얻어진 결과를 도시한다. 중력 경사각을 제외하고는, 다른 모든 실험적 조건들은 도 75a-75e에 제시된 결과들을 위해 사용된 것들과 동일하다. 도 76a는 온도 브레이크가 존재하지 않을 때(즉, 제 1 챔버만 있을 때) 얻어진 결과를 도시한다. 도 76b-76e는 제 1 온도 브레이크의 두께가 약 1mm(도 76b), 약 2mm(도 76c), 약 4mm(도 76d), 및 약 5.5mm(도 76e, 즉, 챔버구조 없이 채널만 있는 경우)일 때 얻어진 결과를 도시한다. 중력 경사각이 도입되지 않은 도 75a-75e에 도시된 결과들과 비교하면, PCR 증폭은 중력 경사각의 사용에 의해 가속되었다. 심지어 챔버 구조가 없는 경우(즉, 채널 구조만 있는 경우, 도 76e)에도, 중력 경사각의 도입은 약 30분 반응시간 내에 성곡적인 PCR 증폭을 가능하게 하였다. 중력 경사각이 없이는, 챔버구조가 없는 경우(도 75e)에 어떠한 유의미한 PCR 증폭도 관측되지 않았다.
이 예의 결과들은 온도 브레이크, 챔버, 및 중력 경사각이 상이한 응용들에 따라서 열 대류 PCR의 속도를 조절 또는 제어하기 위해 사용될 수 있는 유용한 구조적 요소라는 것을 입증한다. 챔버 구조와 중력 경사각은 열 대류 PCR을 가속화하는데 유용한 반면, 온도 브레이크(자신의 두께를 포함하여)는 열 대류 PCR을 감속하는데 유용하다는 것이 발견되었다. 열 대류 PCR의 속도는 이러한 온도 형상화 요소들 중 하나 또는 그 이상을 사용함으로써 원하는대로 증감될 수 있다는 것이 확인되었다.
예 7. 구조적 비대칭성을 가진 장치를 사용한 열 대류 PCR
이 예에서는 세 가지 유형의 장치들이 사용되었다. 사용된 제 1 장치는 채널(70), 제 1 챔버(100), 제 1 온도 브레이크(130), 수용구(73), 관통구(71), 제 2 열원(30)의 돌출부(33, 34), 및 제 1 열원(20)의 돌출부(23, 24)를 포함하는 도 12a에 도시된 구조를 가진다. 도 12a에 도시된 바와 같이, 제 1 온도 브레이크(130)는, 제 2 열원(30)의 상부에 위치한 제 1 챔버(100)와 함께, 제 2 열원(30)의 하부에 위치하였다. 채널축 방향의 제 1 온도 브레이크의 두께는 약 1mm이었다. 이 장치에서, 제 1 챔버, 제 1 온도 브레이크, 수용구, 및 제 1 및 제 2 단열체를 포함하는 모든 온도 형상화 요소는 채널축에 대하여 대칭적으로 배치되어 있었다.
사용된 제 2 장치는 도 21a에 도시된 구조를 가지는 비대칭 수용구를 가지고 있었다. 수용구의 반은, 채널축과 마주하는 다른 반과 비교하여, 제 1 열원에서 더 깊고 제 2 열원에 인접하도록 제작되었다. 두 반대쪽 측에서의 수용구 깊이의 차이는 약 0.2mm 및 약 0.4mm로 변화되었다. 제 2 장치의 다른 구조들은 제 1 장치의 구조와 동일하다.
사용된 제 3 장치는 비대칭적으로 만들어진 제 1 온도 브레이크를 가지고 있다. 이 장치의 제 1 온도 브레이크는 도 28a에 도시된 구조를 갖도록 만들어져서, 온도 브레이크의 일 측은 채널과 접촉하고 반대쪽 측은 채널로부터 이격되어 있었다. 제 1 온도 브레이크에 형성된 관통구는 약 0.4mm만큼 채널의 직경보다 더 크게 만들어져 있었으며, 약 0.2mm만큼 채널축에 대하여 중심에서 벗어나 있었다. 채널축 방향의 제 1 온도 브레이크의 두께 및 위치를 포함하는 제 3 장치의 다른 구조들은 제 1 장치의 구조와 동일하였다.
상기 세 장치들에서, 채널축(80) 방향의 제 1, 제 2, 및 제 3 열원의 길이는 각각 약 4mm, 약 6.5mm, 및 약 4mm이었다. 제 1 및 제 2 단열체(또는 단열성 갭)는 각각 채널 인접영역(즉, 돌출부 영역 내)에서 약 1mm 및 약 0.5mm의 채널축(80) 방향의 길이를 가졌다. 채널 영역 외부(즉, 돌출부 영역 외부)에서의 제 1 및 제 2 단열체의 길이는 각각 약 6mm 내지 약 3mm(위치에 따라서) 및 약 1mm이었다. 제 1 챔버(100)는 약 4mm의 직경을 가진 원통 형태를 가졌다. 제 1 온도 브레이크(130)는 약 1mm의 채널축(80) 방향의 길이 또는 두께를 가졌다. 채널축 방향의 수용구(73)의 깊이는 약 2.8mm이었다. 채널(70)은 테이퍼되어 있는 원통 형태를 가졌다. 하단부(수용구 내)에서 약 1.5mm의 직경을 가진 채널의 평균 직경은 약 2mm이었다.
이 예에서 사용된 주형 DNA는 1ng 플라스미드 DNA이었다. SEQ ID NOs: 1 및 2에 기재된 서열을 가진 두 프라이머가 사용되었으며, 앰플리콘의 크기는 373bp이었다. 제 1, 제 2, 및 제 3 열원의 온도는 각각 98℃, 70℃, 및 54℃로 설정되었다.
도 77은 모든 온도 형상화 요소들이 채널축에 대하여 대칭적으로 배치된 제 1 장치에서 얻어진 결과들을 도시한다. 도시된 바와 같이, 약한 생성물 밴드가 20분 반응 시간에 관측되었으며, 거의 포화된 강한 밴드는 25분 이후에 관측되었다.
도 78a-78b는 비대칭적 수용구 구조를 가지는 제 2 장치에서 얻어진 결과들을 도시한다. 두 반대쪽 측에서의 수용구 깊이의 차이는 도 78a에서는 약 0.2mm, 도 78b에서는 약 0.4mm이었다. 도 78a-78b에 도시된 바와 같이, PCR 증폭은 대칭 장치에서 얻어진 결과(도 77)와 비교하여 거의 2배 빨라졌다(그리고 효율적이다). 자명해진 바와 같이, 수용구 내의 작은 수평 비대칭성은 열 대류 PCR을 극적으로 가속화하기에 충분하였다.
도 79는 비대칭 제 1 온도 브레이크를 가진 제 3 장치에서 얻어진 결과들을 도시한다. 도 79에 도시된 바와 같이, PCR 증폭은 대칭장치에서 얻어진 결과(도 77)와 비교하여 2배 이상 빨라졌다(그리고 효율적이다). 제 2 장치에서 얻어진 결과에 따르면, 제 1 온도 브레이크 내의 작은 수평 비대칭성은 열 대류 PCR을 극적으로 가속화하기에 충분하였다.
이 예의 결과들은 비대칭 수용구, 비대칭 온도 브레이크, 비대칭 챔버, 비대칭 단열체 등과 같은 비대칭 구조적 요소들이 유용한 구조적 요소들이라는 것을 입증한다. 이러한 비대칭 구조적 요소들은, 열 대류 PCR의 속도를 원하는대로 변조(일반적으로 증가)하기 위해, 단독으로 또는 다른 온도 형상화 요소들과의 조합으로 사용될 수 있다.
본 명세서에 언급된 모든 참고문헌들의 개시(모든 특허 및 과학 문서들을 포함하여)는 참조됨으로써 본 명세서에 결합된다. 본 발명은 그 특정 실시예들을 참조하여 상세하게 기술되었다. 그러나, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 개시를 고려하여 본 발명의 정신 및 범주 내에서 변형 및 개량을 할 수 있음은 자명할 것이다.
다음의 도면 약어 일람이 도면 및 청구항을 포함하는 본 발명을 이해하기 쉽도록 도와 줄 것이다.
10: 장치 실시예
20: 제 1 열원(하부 스테이지)
21: 제 1 열원의 상부면
22: 제 1 열원의 하부면
23: 제 1 열원 돌출부 (제 2 열원을 향하고 있음)
24: 제 1 열원 돌출부(테이블 방향을 향하고 있음)
30: 제 2 열원(중간 스테이지)
31: 제 2 열원의 상부면
32: 제 2 열원의 하부면
33: 제 2 열원 돌출부(제 1 열원을 향하고 있음)
34: 제 2 열원 돌출부(제 3 열원을 향하고 있음)
40: 제 3 열원(상부 스테이지)
41: 제 3 열원의 상부면
42: 제 3 열원의 하부면
43: 제 3 열원 돌출부(제 2 열원을 향하고 있음)
44: 제 3 열원 돌출부(장치로부터 멀어지는 쪽을 향하고 있음)
50: 제 1 단열체(또는 제 1 단열성 갭)
51: 제 1 단열체 챔버
60: 제 2 단열체(또는 제 2 단열성 갭)
61: 제 2 단열체 챔버
70: 채널
71: 채널/관통구의 상단부
72: 채널의 하단부
73: 수용구
74: 수용구 갭
80: 채널의 (중심)축
90: 반응 용기
91: 반응 용기의 상단부
92: 반응 용기의 하단부
93: 반응용기의 외벽
94: 반응용기의 내벽
95: 반응용기의 (중심)축
100: 제 1 챔버
101: 챔버의 상한선을 정의하는 제 1 챔버의 상단부
102: 챔버의 하한선을 정의하는 제 1 챔버의 하단부
103: 챔버의 수평한계선을 정의하는 제 1 챔버의 제 1 벽
105: 제 1 챔버의 갭
106: 제 1 챔버의 (중심)축
110: 제 2 챔버
111: 제 2 챔버의 상단부
112: 제 2 챔버의 하단부
113: 제 2 챔버의 제 1 벽
115: 제 2 챔버의 갭
120: 제 3 챔버
121: 제 3 챔버의 상단부
122: 제 3 챔버의 하단부
123: 제 3 챔버의 제 1 벽
125: 제 3 챔버의 갭
130: 제 1 온도브레이크
131: 제 1 온도브레이크의 상단부
132: 제 1 온도브레이크의 하단부
133: 채널의 적어도 일부와 본질적으로 접촉하는 제 1 온도 브레이크의 제 1 벽
140: 제 2 온도 브레이크
141: 제 2 온도 브레이크의 상단부
142: 제 2 온도 브레이크의 하단부
143: 채널의 적어도 일부와 본질적으로 접촉하는 제 2 온도 브레이크의 제 1 벽
160: 가열/냉각 요소들
160a: 제 1 열원의 가열(및/또는 냉각)요소
160b: 제 2 열원의 가열(및/또는 냉각)요소
160c: 제 3 열원의 가열(및/또는 냉각)요소
170: 온도 센서들
170a: 제 1 열원의 온도센서
170b: 제 2 열원의 온도센서
170c: 제 3 열원의 온도센서
200: 다음의 요소들 중 적어도 하나를 포함하는 제 1 고정요소
201: 스크류 또는 잠금자 (일반적으로 열 단열체로 만들어져 있음)
202a: 와셔 또는 위치고정 스탠드오프 (일반적으로 열 단열체로 만들어져 있음)
202b: 스페이서 또는 위치고정 스탠드오프 (일반적으로 열 단열체로 만들어져 있음)
202c: 스페이서 또는 위치고정 스탠드오프 (일반적으로 열 단열체로 만들어져 있음)
203a: 제 1 열원의 고정요소
203b: 제 2 열원의 고정요소
203c: 제 3 열원의 고정요소
210: 제 2 고정요소 (일반적으로 윙 구조로 만들어져 있음)
- 제 1 하우징 요소(300)에 열원 조립체를 조립하기 위해 사용됨
300: 제 1 하우징 요소
310: 제 3 단열체(또는 제 3 단열성 갭)
- 열원들의 측면과 제 1 하우징 요소의 측벽 사이에 위치함
- 공기, 기체, 또는 고체 단열체와 같은 열 단열체로 충진됨
320: 제 4 단열체(또는 제 4 단열성갭)
- 제 1 열원의 하부와 제 1 하우징 요소의 하부벽 사이에 위치함
- 공기, 기체, 또는 고체 단열체와 같은 열 단열체로 충진됨
330: 지지대
400: 제 2 하우징 요소
410: 제 5 단열체(또는 제 5 단열성 갭)
- 제 1 하우징 요소의 측벽들과 제 2 하우징 요소의 측벽들 사이에 위치함
- 공기, 기체, 또는 고체 단열체와 같은 열 단열체로 충진됨.
420: 제 6 단열체(또는 제 6 단열성 갭)
- 제 1 하우징 요소의 하부벽과 제 2 하우징 요소의 하부벽 사이에 위치함
- 공기, 기체, 또는 고체 단열체와 같은 열 단열체로 충진됨
500: 원리분리기 장치
501: 모터
510: 원심분리 회전 축
520: 회전 팔(rotation arm)
530: 경사 축
600-603: 광학 검출 장치들
610: 광학 포트
620: 광원
630: 여기광 렌즈(excitation lens)
635: 렌즈
640: 여기광 필터(excitation filter)
650: 검출기
655: 구멍 또는 슬릿
660: 방출광 렌즈
670: 방출광 필터
680: 다이크로익 빔-스플리터
690: 반응용기 캡
695: 광학 포트
696: 광학 포트의 하단부
697: 광학 포트의 상단부
698: 반응 용기의 내벽과 광학 포트의 측벽 사이의 개방된 공간
699: 광학 포트의 측벽
SEQUENCE LISTING <110> Ahram Biosystems, Inc. Hyun Jin , HWANG <120> THREE-STAGE THERMAL CONVECTION <130> 12090-09PCT <150> 61/294,445 <151> 2010-01-12 <160> 36 <170> PatentIn version 3.5 <210> 1 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> plasmid forward primer <400> 1 taatacgact cactataggg agacc 25 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> plasmid reverse primer <400> 2 tagaaggcac agtcgaggct 20 <210> 3 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> beta-globin forward primer <400> 3 gcatcaggag tggacagat 19 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> beta-globin reverse primer <400> 4 agggcagagc catctattg 19 <210> 5 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GAPDH forward primer <400> 5 gcttgccctg tccagttaa 19 <210> 6 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> GAPDH reverse primer <400> 6 tgaccaggcg cccaata 17 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> beta-globin forward primer <400> 7 tgaagtccaa ctcctaagcc a 21 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> beta-globin reverse primer <400> 8 agcatcagga gtggacagat c 21 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PRPS1 forward primer <400> 9 gatctatttg gcctctcaaa 20 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> PRPS1 reverse primer <400> 10 cacacaggta cacacacttt att 23 <210> 11 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> p53 forward primer <400> 11 tgcccaacaa caccagc 17 <210> 12 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> p53 reverse primer <400> 12 ccaaggcctc attcagctc 19 <210> 13 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> NAIP Exon5 forward primer <400> 13 tgccactgcc aggcaatcta a 21 <210> 14 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> NAIP Exon5 reverse primer <400> 14 catttggcat gttccttcca ag 22 <210> 15 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> p53 forward primer <400> 15 gaagacccag gtccagat 18 <210> 16 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> p53 reverse primer <400> 16 ctgccctggt aggttttc 18 <210> 17 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> CYP27B1 forward primer <400> 17 gacaaggtga gaggagc 17 <210> 18 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CYP27B1 reverse primer <400> 18 ttagctggac ctcgtctc 18 <210> 19 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> HER2 forward primer <400> 19 agcactgggg agtctttgt 19 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> HER2 reverse primer <400> 20 gggacagtct ctgaatgggt 20 <210> 21 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CDK4 forward primer <400> 21 ggtgtttgag catgtagacc a 21 <210> 22 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> CDK4 reverse primer <400> 22 gaacttcggg agctcggta 19 <210> 23 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> CD24 forward primer <400> 23 tccaagcacc cagcatc 17 <210> 24 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> CD24 reverse primer <400> 24 tggggaaatt tagaagacgt ttcttg 26 <210> 25 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> CR2 forward primer <400> 25 aggttggggt cttgcct 17 <210> 26 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CR2 reverse primer <400> 26 cacctgtgct agacggtg 18 <210> 27 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PIGR forward primer <400> 27 gccacctact acccagagg 19 <210> 28 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> PIGR reverse primer <400> 28 tgatggtcac cgttctgc 18 <210> 29 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> beta-globin reverse primer <400> 29 ggagaagata tgcttagaac cga 23 <210> 30 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer having high melting temperature <400> 30 gcttctaggc ggactatgac ttagttgcg 29 <210> 31 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> reverse primer having high melting temperature <400> 31 ccaaaagcct tcatacatct caagttgggg g 31 <210> 32 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> plasmid forward primer <400> 32 aaggtgagat gaagctgtag tctc 24 <210> 33 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> plasmid reverse primer <400> 33 cattccattt tctggcgttc t 21 <210> 34 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> beta-globin reverse primer <400> 34 ctaagccagt gccagaaga 19 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> beta-actin forward primer <400> 35 cggactatga cttagttgcg 20 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> beta-actin reverse primer <400> 36 atacatctca agttggggga 20

Claims (242)

  1. 열 대류 PCR을 수행하도록 적응된 장치에서,
    (a) PCR을 수행하기 위한 반응용기를 수용하도록 적응된 채널을 가열 또는 냉각하며, 상부면과 하부면을 포함하는 제 1 열원;
    (b) 상기 채널을 가열 또는 냉각하며, 상부면과 상기 제 1 열원의 상부면과 마주하는 하부면을 포함하는 제 2 열원;
    (c) 상기 채널을 가열 또는 냉각하며, 상부면과 상기 제 2 열원의 상부면과 마주하는 하부면을 포함하는 제 3 열원으로서, 상기 채널은 상기 제 1 열원과 접촉하는 하단부와 상기 제 3 열원의 상부면과 접하는 관통구에 의해 정의되며, 또한 상기 하단부와 상기 관통구 사이의 중심 점들이 채널축을 형성하고, 상기 채널축을 기준으로 상기 채널이 배치되는, 제 3 열원;
    (d) 상기 제 1, 제 2 또는 제 3 열원의 적어도 일부 내에서 상기 채널 주위에 배치된 적어도 하나의 챔버로서, 상기 챔버는, 상기 제 1, 제 2 또는 제 3 열원 및 상기 채널 사이에, 상기 제 1, 제 2 또는 제 3 열원과 상기 채널 사이의 열전달을 감소시키기에 충분한 영구적인 챔버 갭을 포함하는 상기 챔버; 및
    (e) 상기 제 1 열원 내에서 상기 채널을 수용하도록 적응된 수용구;를 포함하며,
    상기 수용구, 상기 관통구, 및 상기 챔버는 상기 열 대류 PCR이 수행되는 동안 상기 채널에 접촉되며, 이 접촉은 상기 반응용기 내에서 상기 열 대류 PCR을 지원하기에 충분한 정도인 것인, 열 대류 PCR을 수행하도록 적응된 장치.
  2. 제 1 항에 있어서, 상기 장치는 상기 제 1 열원의 상부면과 상기 제 2 열원의 하부면 사이에 위치한 제 1 단열체를 포함하는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  3. 제 2 항에 있어서, 상기 장치는 상기 제 2 열원의 상부면과 상기 제 3 열원의 하부면 사이에 위치한 제 2 단열체를 포함하는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  4. 제 3 항에 있어서, 상기 채널축 방향의 상기 제 1 단열체의 길이는 상기 채널축 방향의 상기 제 2 단열체의 길이보다 큰 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  5. 제 1 항에 있어서, 상기 제 2 열원의 길이는 상기 채널축 방향의 상기 제 1 열원 또는 상기 제 3 열원의 길이보다 큰 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  6. 제 1 항에 있어서, 상기 장치는 상기 제 2 열원 내에 완전히 위치된 제 1 챔버를 포함하며, 상기 제 1 챔버는 상기 채널축을 따라 제 1 챔버 하단부를 마주하는 제 1 챔버 상단부와 상기 채널축 주위에 배치된 적어도 하나의 챔버벽을 포함하는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  7. 제 3 항에 있어서, 상기 장치는 상기 제 2 열원 내에 완전히 위치된 제 1 챔버를 포함하며, 상기 제 1 챔버는 상기 채널축을 따라 제 1 챔버 하단부를 마주하는 제 1 챔버 상단부와 상기 채널축 주위에 배치된 적어도 하나의 챔버벽을 포함하는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  8. 제 6 항에 있어서, 상기 장치는 상기 제 2 열원에 위치하는 제 2 챔버를 더 포함하는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  9. 제 6 항에 있어서, 상기 챔버벽은 상기 채널축에 대하여 평행하게 배치되는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  10. 제 6 항에 있어서, 상기 제 1 챔버 상단부와 상기 제 1 챔버 하단부 각각은 상기 채널축에 대하여 수직을 이루는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  11. 제 2 항에 있어서, 상기 제 1 단열체는 고체 또는 기체를 포함하는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  12. 제 3 항에 있어서, 상기 제 2 단열체는 고체 또는 기체를 포함하는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  13. 제 1 항에 있어서, 상기 챔버는 고체 또는 기체를 포함하는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  14. 제 11 항 내지 제 13 항 중 어느 한 항에 있어서, 상기 기체는 공기인 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  15. 제 6 항에 있어서, 상기 제 1 챔버는 상기 채널축에 수직하는 면을 따라 상기 채널을 기준으로 대칭적으로 배치되는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  16. 제 6 항에 있어서, 상기 제 1 챔버의 적어도 일부는 상기 채널축에 수직하는 면을 따라 상기 채널을 기준으로 비대칭적으로 배치되는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  17. 제 15 항 내지 제 16 항 중 어느 한 항에 있어서, 상기 제 1 챔버의 적어도 일부는 상기 채널축을 따라 테이퍼되어 있는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  18. 제 8 항에 있어서, 상기 장치는 상기 제 2 열원 내에 위치하는 상기 제 1 챔버 및 상기 제 2 챔버를 포함하며, 상기 제 1 챔버는 상기 제 2 챔버로부터 상기 채널축 방향의 길이(l) 만큼 이격되어 있는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  19. 제 18 항에 있어서, 상기 제 1 챔버, 상기 제 2 챔버, 및 상기 제 2 열원은, 상기 제 1 열원으로부터의 또는 상기 제 3 열원으로의 열전달을 감소시키기에 충분한 면적과 두께(또는 부피)로 상기 제 1 및 제 2 챔버 사이에서 상기 채널과 접촉하는 제 1 온도 브레이크를 정의하는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  20. 제 6 항에 있어서, 상기 장치는 상기 제 1 열원의 상부면과 상기 제 2 열원의 하부면 사이에 위치한 제 1 단열체를 포함하며, 상기 제 1 챔버 및 상기 제 1 단열체는, 상기 제 1 열원으로부터의 열전달을 감소시키기에 충분한 면적과 두께(또는 부피)로 상기 제 1 챔버 및 상기 제 1 단열체 사이에서 상기 채널과 접촉하는 제 1 온도 브레이크를 정의하는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  21. 제 20 항에 있어서, 상기 제 1 온도 브레이크는 상부면과 하부면을 포함하는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  22. 제 21 항에 있어서, 상기 제 1 온도 브레이크의 상기 하부면은 상기 제 2 열원의 상기 하부면과 동일한 높이에 위치하는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  23. 제 1 항에 있어서, 상기 제 2 열원은 상기 제 2 열원으로부터 상기 제 1 또는 제 3 열원을 향해 멀어지며 연장되는 적어도 하나의 돌출부를 포함하는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  24. 제 1항에 있어서, 상기 제 1 열원은 상기 제 1 열원으로부터 상기 제 2 열원을 향하거나 상기 제 1 열원의 하부면으로부터 멀어지며 연장되는 적어도 하나의 돌출부를 포함하는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  25. 제 1 항에 있어서, 상기 제 3 열원은 상기 제 3 열원으로부터 상기 제 2 열원을 향해 또는 상기 제 3 열원의 상부면으로부터 멀어지며 연장되는 적어도 하나의 돌출부를 포함하는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  26. 제 1항에 있어서, 상기 장치는 상기 채널축이 중력 방향에 대하여 경사지도록 적용되는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  27. 제 26 항에 있어서, 상기 채널축은 상기 제 1, 제 2, 및 제 3 열원 중 어느 하나의 상부면 또는 하부면에 수직하며, 상기 장치는 경사져 있는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  28. 제 26 항에 있어서, 상기 채널축은 상기 제 1, 제 2, 및 제 3 열원 중 어느 하나의 상부면 또는 하부면에 수직하는 방향으로부터 경사져 있는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  29. 제 1 항에 있어서, 상기 장치는 상기 열 대류 PCR을 변조하도록 상기 채널 내부에 원심력을 생성하도록 적응되는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  30. 제 1 항 내지 제 13 항, 제 15 항, 제 16 항, 제 18 항 내지 제 29 항 중 어느 한 항에 있어서, 상기 장치는 적어도 하나의 광학 검출장치를 더 포함하는 것을 특징으로 하는 열 대류 PCR을 수행하도록 적응된 장치.
  31. 열 대류에 의해 중합효소연쇄반응(PCR)을 수행하기 위한 방법에 있어서,
    (a) 이중가닥 핵산분자를 디네츄링하여 단일가닥 주형을 형성하기에 적합한 온도 범위에 수용구를 포함하는 제 1 열원을 유지하는 단계;
    (b) 적어도 하나의 올리고뉴클레오타이드 프라이머를 상기 단일가닥 주형에 아닐링하기에 적합한 온도 범위에 제 3 열원을 유지하는 단계;
    (c) 상기 단일가닥 주형을 따라 상기 프라이머의 중합을 지원하기에 적합한 온도에 제 2 열원을 유지하는 단계; 및
    (d) 프라이머 연장 생성물을 생성하기에 충분한 조건 하에서 상기 수용구와 상기 제 3 열원 사이에 열 대류를 생성하는 단계;를 포함하며,
    상기 중합효소연쇄반응(PCR)을 수행하기 위한 반응용기를 수용하도록 적응된 채널이 상기 제 1 열원의 상기 수용구와 상기 제 3 열원의 상부면과 접하는 관통구에 의해 정의되며, 또한 상기 수용구와 상기 관통구 사이의 중심 점들에 의해 형성되는 채널축을 기준으로 상기 채널이 배치되며,
    상기 방법은
    상기 반응용기를 상기 수용구, 상기 관통구, 및 상기 제 1, 제 2 또는 제 3 열원의 적어도 일부 내에서 상기 채널 주위에 배치된 적어도 하나의 챔버와 접촉시키는 단계를 추가적으로 포함하며,
    상기 챔버는, 상기 제 1, 제 2 또는 제 3 열원 및 상기 채널 사이에 영구적인 챔버 갭을 포함하며, 상기 접촉은 상기 반응용기 내에서 상기 열 대류를 지원하기에 충분한 정도인 것을 특징으로 하는 열 대류에 의해 중합효소연쇄반응을 수행하기 위한 방법.
  32. 제 31 항에 있어서, 상기 방법은 수용액 내에 있는 상기 이중가닥 핵산 및 올리고뉴클레오타이드 프라이머와 수용액 내에 있는 DNA 중합효소 또는 고정화된 DNA 중합효소를 포함하는 반응용기를 제공하는 단계를 더 포함하는 것을 특징으로 하는 열 대류에 의해 중합효소연쇄반응을 수행하기 위한 방법.
  33. 삭제
  34. 제 32 항에 있어서, 상기 방법은 상기 반응용기를 상기 제 1및 제 2 열원 사이의 제 1 단열체 및 상기 제 2 및 제 3 열원 사이의 제 2 단열체에 접촉시키는 단계를 더 포함하는 것을 특징으로 하는 열 대류에 의해 중합효소연쇄반응을 수행하기 위한 방법.
  35. 제 31 항에 있어서, 상기 방법은 상기 채널축에 대하여 대칭적인 상기 반응용기 내의 유체흐름을 생성하는 단계를 더 포함하는 것을 특징으로 하는 열 대류에 의해 중합효소연쇄반응을 수행하기 위한 방법.
  36. 제 31 항에 있어서, 상기 방법은 상기 채널축을 기준으로 비대칭인 상기 반응용기 내의 유체흐름을 생성하는 단계를 더 포함하는 것을 특징으로 하는 열 대류에 의해 중합효소연쇄반응을 수행하기 위한 방법.
  37. 제 32 항에 있어서, 적어도 단계(a) 내지 (c)는 프라이머 연장 생성물을 생성하기 위해 반응용기당 1W의 전력보다 적은 전력을 소비하는 것을 특징으로 하는 열 대류에 의해 중합효소연쇄반응을 수행하기 위한 방법.
  38. 제 37 항에 있어서, 상기 방법을 수행하기 위한 상기 전력은 배터리에 의해 제공되는 것을 특징으로 하는 열 대류에 의해 중합효소연쇄반응을 수행하기 위한 방법.
  39. 제 31 항에 있어서, 상기 프라이머 연장 생성물은 15분 내지 30분 내 또는 그 이내에 생성되는 것을 특징으로 하는 열 대류에 의해 중합효소연쇄반응을 수행하기 위한 방법.
  40. 제 31 항, 제32항, 및 제34항 내지 제 39 항 중 어느 한 항에 있어서, 상기 방법은 PCR를 수행하기에 도움이 되도록 상기 반응용기에 원심력을 적용하는 단계를 더 포함하는 것을 특징으로 하는 열 대류에 의해 중합효소연쇄반응을 수행하기 위한 방법.
  41. 제 31 항, 제32항, 및 제34항 내지 제 39 항 중 어느 한 항에 있어서, 상기 방법은 적어도 하나의 광학검출장치를 사용하여 상기 프라이머 연장 생성물을 실시간으로 검출하는 단계를 더 포함하는 것을 특징으로 하는 열 대류에 의해 중합효소연쇄반응을 수행하기 위한 방법.
  42. 제 40 항에 있어서, 상기 방법은 적어도 하나의 광학검출장치를 사용하여 프라이머 연장 생성물을 실시간으로 검출하는 단계를 더 포함하는 열 대류에 의해 중합효소연쇄반응을 수행하기 위한 방법.
  43. 열 대류에 의해 중합효소연쇄반응(PCR)을 수행하기 위한 방법에 있어서, 상기 방법은 프라이머 연장 생성물을 생성하기에 충분한 조건 하에서 제 1 항 내지 제 13 항, 제 15 항, 제 16 항, 제 18 항 내지 제 29 항 중 어느 한 항의 장치에 의해 수용되는 반응용기에, 올리고뉴클레오타이드 프라이머, 핵산 주형, DNA 중합효소, 및 완충용액을 추가하는 단계를 포함하는 것을 특징으로 하는 열 대류에 의해 중합효소연쇄반응을 수행하기 위한 방법.
  44. 제 43 항에 있어서, 상기 방법은 적어도 하나의 광학검출장치를 사용하여 프라이머 연장 생성물을 실시간으로 검출하는 단계를 더 포함하는 열 대류에 의해 중합효소연쇄반응을 수행하기 위한 방법.
  45. 삭제
  46. 삭제
  47. 삭제
  48. 삭제
  49. 삭제
  50. 삭제
  51. 삭제
  52. 삭제
  53. 삭제
  54. 삭제
  55. 삭제
  56. 삭제
  57. 삭제
  58. 삭제
  59. 삭제
  60. 삭제
  61. 삭제
  62. 삭제
  63. 삭제
  64. 삭제
  65. 삭제
  66. 삭제
  67. 삭제
  68. 삭제
  69. 삭제
  70. 삭제
  71. 삭제
  72. 삭제
  73. 삭제
  74. 삭제
  75. 삭제
  76. 삭제
  77. 삭제
  78. 삭제
  79. 삭제
  80. 삭제
  81. 삭제
  82. 삭제
  83. 삭제
  84. 삭제
  85. 삭제
  86. 삭제
  87. 삭제
  88. 삭제
  89. 삭제
  90. 삭제
  91. 삭제
  92. 삭제
  93. 삭제
  94. 삭제
  95. 삭제
  96. 삭제
  97. 삭제
  98. 삭제
  99. 삭제
  100. 삭제
  101. 삭제
  102. 삭제
  103. 삭제
  104. 삭제
  105. 삭제
  106. 삭제
  107. 삭제
  108. 삭제
  109. 삭제
  110. 삭제
  111. 삭제
  112. 삭제
  113. 삭제
  114. 삭제
  115. 삭제
  116. 삭제
  117. 삭제
  118. 삭제
  119. 삭제
  120. 삭제
  121. 삭제
  122. 삭제
  123. 삭제
  124. 삭제
  125. 삭제
  126. 삭제
  127. 삭제
  128. 삭제
  129. 삭제
  130. 삭제
  131. 삭제
  132. 삭제
  133. 삭제
  134. 삭제
  135. 삭제
  136. 삭제
  137. 삭제
  138. 삭제
  139. 삭제
  140. 삭제
  141. 삭제
  142. 삭제
  143. 삭제
  144. 삭제
  145. 삭제
  146. 삭제
  147. 삭제
  148. 삭제
  149. 삭제
  150. 삭제
  151. 삭제
  152. 삭제
  153. 삭제
  154. 삭제
  155. 삭제
  156. 삭제
  157. 삭제
  158. 삭제
  159. 삭제
  160. 삭제
  161. 삭제
  162. 삭제
  163. 삭제
  164. 삭제
  165. 삭제
  166. 삭제
  167. 삭제
  168. 삭제
  169. 삭제
  170. 삭제
  171. 삭제
  172. 삭제
  173. 삭제
  174. 삭제
  175. 삭제
  176. 삭제
  177. 삭제
  178. 삭제
  179. 삭제
  180. 삭제
  181. 삭제
  182. 삭제
  183. 삭제
  184. 삭제
  185. 삭제
  186. 삭제
  187. 삭제
  188. 삭제
  189. 삭제
  190. 삭제
  191. 삭제
  192. 삭제
  193. 삭제
  194. 삭제
  195. 삭제
  196. 삭제
  197. 삭제
  198. 삭제
  199. 삭제
  200. 삭제
  201. 삭제
  202. 삭제
  203. 삭제
  204. 삭제
  205. 삭제
  206. 삭제
  207. 삭제
  208. 삭제
  209. 삭제
  210. 삭제
  211. 삭제
  212. 삭제
  213. 삭제
  214. 삭제
  215. 삭제
  216. 삭제
  217. 삭제
  218. 삭제
  219. 삭제
  220. 삭제
  221. 삭제
  222. 삭제
  223. 삭제
  224. 삭제
  225. 삭제
  226. 삭제
  227. 삭제
  228. 삭제
  229. 삭제
  230. 삭제
  231. 삭제
  232. 삭제
  233. 삭제
  234. 삭제
  235. 삭제
  236. 삭제
  237. 삭제
  238. 삭제
  239. 삭제
  240. 삭제
  241. 삭제
  242. 삭제
KR1020127020988A 2010-01-12 2011-01-11 3단 열대류 장치 및 그 사용법 KR101873199B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US29444510P 2010-01-12 2010-01-12
US61/294,445 2010-01-12
PCT/IB2011/050103 WO2011086497A2 (en) 2010-01-12 2011-01-11 Three-stage thermal convection apparatus and uses thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020187018037A Division KR102032522B1 (ko) 2010-01-12 2011-01-11 3단 열대류 장치 및 그 사용법

Publications (2)

Publication Number Publication Date
KR20120138747A KR20120138747A (ko) 2012-12-26
KR101873199B1 true KR101873199B1 (ko) 2018-08-03

Family

ID=44304735

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020187018037A KR102032522B1 (ko) 2010-01-12 2011-01-11 3단 열대류 장치 및 그 사용법
KR1020127020988A KR101873199B1 (ko) 2010-01-12 2011-01-11 3단 열대류 장치 및 그 사용법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020187018037A KR102032522B1 (ko) 2010-01-12 2011-01-11 3단 열대류 장치 및 그 사용법

Country Status (8)

Country Link
US (3) US9573134B2 (ko)
EP (1) EP2524026A4 (ko)
JP (2) JP5940458B2 (ko)
KR (2) KR102032522B1 (ko)
CN (2) CN102791847B (ko)
AU (2) AU2011206359B2 (ko)
BR (1) BR112012017165A2 (ko)
WO (1) WO2011086497A2 (ko)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104630056B (zh) 2010-01-12 2017-11-07 阿赫姆生物系统公司 两阶段热对流装置及其用途
JP5940458B2 (ja) * 2010-01-12 2016-06-29 アーラム バイオシステムズ インコーポレイテッド 3段熱対流装置及びその使用法
CA2830389A1 (en) 2011-04-21 2012-10-26 Streck, Inc. Improved sample tube having particular utility for nucleic acid amplification
US9737891B2 (en) 2011-06-01 2017-08-22 Streck, Inc. Rapid thermocycler system for rapid amplification of nucleic acids and related methods
CN102876569A (zh) * 2011-07-11 2013-01-16 瑞基海洋生物科技股份有限公司 用于热对流聚合酶连锁反应装置的毛细管
CN103173434A (zh) * 2011-12-23 2013-06-26 厦门万泰沧海生物技术有限公司 一种在恒温热源下进行聚合酶链式反应的方法及装置
WO2013131274A1 (zh) * 2012-03-09 2013-09-12 瑞基海洋生物科技股份有限公司 生化反应的热对流速度控制装置及方法
CN103421688B (zh) * 2012-05-25 2015-02-11 财团法人工业技术研究院 聚合酶连锁反应装置
EP2883039A1 (en) 2012-08-10 2015-06-17 Streck Inc. Real-time optical system for polymerase chain reaction
JP5967611B2 (ja) * 2012-08-22 2016-08-10 国立大学法人大阪大学 熱対流生成用チップ及び熱対流生成装置
US9440234B2 (en) * 2013-03-22 2016-09-13 Rarecyte, Inc. Device for analysis of a target analyte
EP3014251A1 (en) 2013-06-28 2016-05-04 Streck Inc. Devices for real-time polymerase chain reaction
JP6427753B2 (ja) 2013-09-11 2018-11-28 国立大学法人大阪大学 熱対流生成用チップ、熱対流生成装置、及び熱対流生成方法
US9427739B2 (en) * 2013-10-11 2016-08-30 Benjamin Albert Suhl Rapid thermal cycling for PCR reactions using enclosed reaction vessels and linear motion
JP6714277B2 (ja) 2014-05-08 2020-06-24 国立大学法人大阪大学 熱対流生成用チップ
WO2015176253A1 (en) * 2014-05-21 2015-11-26 Coyote Bioscience Co., Ltd. Systems and methods for low power thermal cycling
CN105358673A (zh) * 2014-05-21 2016-02-24 卡尤迪生物科技(北京)有限公司 用于热循环的系统和方法
US10196678B2 (en) 2014-10-06 2019-02-05 ALVEO Technologies Inc. System and method for detection of nucleic acids
US10352899B2 (en) 2014-10-06 2019-07-16 ALVEO Technologies Inc. System and method for detection of silver
US9921182B2 (en) 2014-10-06 2018-03-20 ALVEO Technologies Inc. System and method for detection of mercury
US9506908B2 (en) 2014-10-06 2016-11-29 Alveo Technologies, Inc. System for detection of analytes
US10627358B2 (en) 2014-10-06 2020-04-21 Alveo Technologies, Inc. Method for detection of analytes
TW201628718A (zh) * 2015-02-13 2016-08-16 Genereach Biotechnology Corp 加熱裝置以及具有該加熱裝置的生化反應器
WO2016145573A1 (zh) * 2015-03-13 2016-09-22 瑞基海洋生物科技股份有限公司 加热装置以及具有该加热装置的生化反应器
CN107043768A (zh) * 2015-11-04 2017-08-15 深圳市瀚海基因生物科技有限公司 多重pcr引物、试剂盒及用途
CN106680250B (zh) * 2015-11-10 2023-06-30 北京万泰生物药业股份有限公司 用于聚合酶链式反应的检测机构及聚合酶链式反应装置
CN105441321B (zh) * 2015-12-11 2018-06-08 杭州优思达生物技术有限公司 全自动一体化核酸分析仪
CN105505763A (zh) * 2016-01-12 2016-04-20 上海理工大学 自然对流型pcr-电泳集成芯片及检测方法
CN106047688A (zh) * 2016-07-29 2016-10-26 车团结 一种聚合酶链式反应仪及其温度控制系统
CN106367336B (zh) * 2016-08-08 2020-03-03 皮卡(上海)生物科技有限公司 用于进行化学反应的装置、方法和系统
JP7146743B2 (ja) 2016-09-23 2022-10-04 アルヴェオ テクノロジーズ インコーポレイテッド 分析種を検出するための方法および組成物
CN106399088A (zh) * 2016-11-08 2017-02-15 北京工业大学 一种用于单通道往复式循环荧光pcr研究的方法
CN109957506B (zh) * 2017-12-22 2022-04-01 克雷多生物医学私人有限公司 通过试剂容器以热对流进行定量聚合酶链式反应的装置
CN109321428B (zh) * 2018-09-20 2022-10-14 北京酷搏科技有限公司 一种热循环装置、方法及应用
US11788887B2 (en) * 2020-03-27 2023-10-17 Nanohmics, Inc. Tunable notch filter
JP2023110116A (ja) * 2020-06-26 2023-08-09 野村メディカルデバイス株式会社 核酸測定装置及び核酸測定方法
JP2023537785A (ja) * 2020-08-19 2023-09-05 スピンディアグ ゲーエムベーハー Dnaの複製方法、dna複製のための回転装置及びシステム
WO2023102208A1 (en) * 2021-12-03 2023-06-08 Adaptive Phage Therapeutics, Inc. Heating arrangement
US11938485B2 (en) 2021-12-07 2024-03-26 Industrial Technology Research Institute Heating device for convective polymerase chain reaction
JP7253032B1 (ja) 2021-12-07 2023-04-05 財團法人工業技術研究院 対流式ポリメラーゼ連鎖反応のための加熱装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080038813A1 (en) * 1998-06-24 2008-02-14 Shuqi Chen Sample vessels
US20090203084A1 (en) 2008-01-24 2009-08-13 Medigen Biotechnology Corp. Methods and apparatuses for convective polymerase chain reaction (pcr)

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US6787338B2 (en) * 1990-06-04 2004-09-07 The University Of Utah Method for rapid thermal cycling of biological samples
US5455175A (en) 1990-06-04 1995-10-03 University Of Utah Research Foundation Rapid thermal cycling device
RU2017821C1 (ru) 1990-10-10 1994-08-15 Анатолий Михайлович Онищенко Способ амплификации днк и устройство для его осуществления
US6703236B2 (en) * 1990-11-29 2004-03-09 Applera Corporation Thermal cycler for automatic performance of the polymerase chain reaction with close temperature control
US5270183A (en) 1991-02-08 1993-12-14 Beckman Research Institute Of The City Of Hope Device and method for the automated cycling of solutions between two or more temperatures
DE69429038T2 (de) 1993-07-28 2002-03-21 Pe Corp Ny Norwalk Vorrichtung und Verfahren zur Nukleinsäurevervielfältigung
DE4412286A1 (de) 1994-04-09 1995-10-12 Boehringer Mannheim Gmbh System zur kontaminationsfreien Bearbeitung von Reaktionsabläufen
US6524532B1 (en) 1995-06-20 2003-02-25 The Regents Of The University Of California Microfabricated sleeve devices for chemical reactions
US5589136A (en) 1995-06-20 1996-12-31 Regents Of The University Of California Silicon-based sleeve devices for chemical reactions
US6168948B1 (en) 1995-06-29 2001-01-02 Affymetrix, Inc. Miniaturized genetic analysis systems and methods
DE19534632A1 (de) 1995-09-19 1997-03-20 Boehringer Mannheim Gmbh System zur Temperaturwechselbehandlung von Probenflüssigkeiten
US5761377A (en) 1995-09-28 1998-06-02 Holmes Products Corporation Tower type portable radiant heater
JP3851672B2 (ja) 1995-09-29 2006-11-29 オリンパス株式会社 Dna増幅装置
WO1997048818A1 (en) 1996-06-17 1997-12-24 The Board Of Trustees Of The Leland Stanford Junior University Thermocycling apparatus and method
US5786182A (en) 1997-05-02 1998-07-28 Biomerieux Vitek, Inc. Dual chamber disposable reaction vessel for amplification reactions, reaction processing station therefor, and methods of use
EP0997530B1 (en) 1997-06-26 2006-08-23 Takara Bio Inc. Dna polymerase-related factors
EP3093649B1 (en) * 1998-05-16 2019-05-08 Life Technologies Corporation A combination of a reaction apparatus and an optical instrument monitoring dna polymerase chain reactions
US6780617B2 (en) 2000-12-29 2004-08-24 Chen & Chen, Llc Sample processing device and method
AU766869B2 (en) 1999-03-25 2003-10-23 Alphahelix Ab Homogenising of small-volume mixtures by centrifugation and heating
US6472186B1 (en) 1999-06-24 2002-10-29 Andre Quintanar High speed process and apparatus for amplifying DNA
JP2005095001A (ja) 1999-10-22 2005-04-14 Fujisawa Pharmaceut Co Ltd ヘテロマーペプチドの遺伝子工学的固定化
US6740495B1 (en) 2000-04-03 2004-05-25 Rigel Pharmaceuticals, Inc. Ubiquitin ligase assay
AUPQ671500A0 (en) 2000-04-05 2000-05-04 Orbital Engine Company (Australia) Proprietary Limited Fuel injector nozzles
US6734401B2 (en) 2000-06-28 2004-05-11 3M Innovative Properties Company Enhanced sample processing devices, systems and methods
US6720187B2 (en) * 2000-06-28 2004-04-13 3M Innovative Properties Company Multi-format sample processing devices
EP1336845B1 (en) 2000-10-27 2013-03-27 DENKA SEIKEN Co., Ltd. Method of diagnosing nephropathy
US6586233B2 (en) 2001-03-09 2003-07-01 The Regents Of The University Of California Convectively driven PCR thermal-cycling
EP1415113B1 (en) * 2001-07-16 2011-08-31 Idaho Technology, Inc. Thermal cycling system and method of use
AU2002341644B2 (en) * 2001-09-11 2008-02-28 Iquum, Inc. Sample vessels
KR100488281B1 (ko) * 2001-09-15 2005-05-10 아람 바이오시스템 주식회사 열 대류를 이용한 염기서열 증폭 방법 및 장치
WO2003038127A1 (en) 2001-10-30 2003-05-08 Ahram Biosystems Inc. Method and apparatus for amplification of nucleic acid sequences using immobilized dna polymerase
KR100740869B1 (ko) * 2002-09-13 2007-07-19 아람 바이오시스템 주식회사 고정화된 디엔에이 중합효소를 사용한 염기서열 증폭 방법및 장치
US7537890B2 (en) 2003-10-03 2009-05-26 The Regents Of The University Of Michigan Methods of performing biochemical reactions in a convective flow field
US8043849B2 (en) * 2004-02-24 2011-10-25 Thermal Gradient Thermal cycling device
ATE460947T1 (de) 2004-06-07 2010-04-15 Core Dynamics Ltd Verfahren zur sterilisation von biologischen präparaten
CN2767454Y (zh) * 2004-07-06 2006-03-29 北京工业大学 一种应用于pcr扩增的微流控芯片应用封装结构
JP2009537152A (ja) * 2006-05-17 2009-10-29 カリフォルニア インスティテュート オブ テクノロジー 温度サイクルシステム
US8088580B2 (en) * 2006-06-07 2012-01-03 Sumitomo Bakelite Company, Ltd. RNA detection method
US8735103B2 (en) * 2006-12-05 2014-05-27 Electronics And Telecommunications Research Institute Natural convection-driven PCR apparatus and method using disposable polymer chip
CN1995319A (zh) * 2007-01-12 2007-07-11 北京工业大学 面向聚合酶链式反应微流控芯片的多通道智能温控装置
CN101801514A (zh) * 2007-08-28 2010-08-11 考贝特研究控股公司 带有可选择性的打开的试样端口的热循环装置
JP2009201444A (ja) 2008-02-29 2009-09-10 Hitachi High-Technologies Corp 核酸分析装置
CN104630056B (zh) * 2010-01-12 2017-11-07 阿赫姆生物系统公司 两阶段热对流装置及其用途
JP5940458B2 (ja) * 2010-01-12 2016-06-29 アーラム バイオシステムズ インコーポレイテッド 3段熱対流装置及びその使用法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080038813A1 (en) * 1998-06-24 2008-02-14 Shuqi Chen Sample vessels
US20090203084A1 (en) 2008-01-24 2009-08-13 Medigen Biotechnology Corp. Methods and apparatuses for convective polymerase chain reaction (pcr)

Also Published As

Publication number Publication date
EP2524026A4 (en) 2017-10-18
AU2011206359B2 (en) 2015-11-26
BR112012017165A2 (pt) 2015-09-15
KR20180073725A (ko) 2018-07-02
CN104611222A (zh) 2015-05-13
JP2013516975A (ja) 2013-05-16
CN104611222B (zh) 2017-05-24
WO2011086497A3 (en) 2012-02-16
US20130109022A1 (en) 2013-05-02
AU2016200907B2 (en) 2018-04-19
JP5940458B2 (ja) 2016-06-29
EP2524026A2 (en) 2012-11-21
JP6432946B2 (ja) 2018-12-05
US20190168215A1 (en) 2019-06-06
AU2016200907A1 (en) 2016-03-03
US9573134B2 (en) 2017-02-21
CN102791847A (zh) 2012-11-21
KR102032522B1 (ko) 2019-11-08
JP2016144479A (ja) 2016-08-12
KR20120138747A (ko) 2012-12-26
CN102791847B (zh) 2015-01-21
WO2011086497A2 (en) 2011-07-21
AU2011206359A1 (en) 2012-08-23
US20170239654A1 (en) 2017-08-24
US10086374B2 (en) 2018-10-02

Similar Documents

Publication Publication Date Title
KR101873199B1 (ko) 3단 열대류 장치 및 그 사용법
KR101931235B1 (ko) 2단 열대류 장치 및 그 사용법
JP2013516976A5 (ko)
JP2013516975A5 (ko)
WO2018143469A1 (ja) 遺伝子増幅システム、流路チップ、回転駆動機構、及び遺伝子増幅方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant