KR101748902B1 - 레지스트 재료 및 이것을 이용한 패턴 형성 방법 - Google Patents

레지스트 재료 및 이것을 이용한 패턴 형성 방법 Download PDF

Info

Publication number
KR101748902B1
KR101748902B1 KR1020130054300A KR20130054300A KR101748902B1 KR 101748902 B1 KR101748902 B1 KR 101748902B1 KR 1020130054300 A KR1020130054300 A KR 1020130054300A KR 20130054300 A KR20130054300 A KR 20130054300A KR 101748902 B1 KR101748902 B1 KR 101748902B1
Authority
KR
South Korea
Prior art keywords
group
carbon atoms
monomer
acid
polymer
Prior art date
Application number
KR1020130054300A
Other languages
English (en)
Other versions
KR20130128332A (ko
Inventor
준 하타케야마
마사요시 사게하시
Original Assignee
신에쓰 가가꾸 고교 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신에쓰 가가꾸 고교 가부시끼가이샤 filed Critical 신에쓰 가가꾸 고교 가부시끼가이샤
Publication of KR20130128332A publication Critical patent/KR20130128332A/ko
Application granted granted Critical
Publication of KR101748902B1 publication Critical patent/KR101748902B1/ko

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0395Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having a backbone with alicyclic moieties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Abstract

[해결 수단] 카르복실기 및/또는 페놀성 수산기의 수소 원자가 산불안정기로 치환되어 있는 반복 단위와, 일반식(1)으로 표시되는 반복 단위를 포함하는 중량 평균 분자량이 1,000∼500,000의 범위인 고분자 화합물을 베이스 수지로 하고 있는 레지스트 재료.
Figure 112013042463355-pat00099

(R1은 -C(=O)-R3, -O-C(=O)-R3, -C(=O)-O-R3, 시아노기 또는 니트로기, R2는 수소 원자 또는 메틸기. R3은 동일 또는 이종의 탄소수 1∼4의 알킬기 또는 탄소수 2∼4의 알케닐기 혹은 알키닐기.)
[효과] 본 발명의 레지스트 재료는, 산의 확산을 억제하는 효과가 높고, 고해상성을 지니며, 노광 후의 패턴 형상과 엣지 거칠기가 양호하다. 따라서, 특히 초LSI 제조용 혹은 EB 묘화에 의한 포토마스크의 미세 패턴 형성 재료, EB 혹은 EUV 노광용의 패턴 형성 재료로서 적합한 레지스트 재료, 특히 화학 증폭 포지티브형 레지스트 재료를 얻을 수 있다.

Description

레지스트 재료 및 이것을 이용한 패턴 형성 방법{RESIST COMPOSITION AND PATTERNING PROCESS}
본 발명은 레지스트 재료, 특히 화학 증폭 포지티브형 레지스트 재료의 베이스 수지로서 적합한 고분자 화합물을 이용한 레지스트 재료 및 패턴 형성 방법에 관한 것이다.
LSI의 고집적화와 고속도화에 따라 패턴 룰의 미세화가 급속히 진행되고 있다. 특히 플래시 메모리 시장의 확대와 기억 용량의 증대화가 미세화를 견인하고 있다. 최첨단 미세화 기술로서는 ArF 리소그래피에 의한 65 nm 노드 디바이스의 양산이 이루어지고 있고, 차세대 ArF 액침리소그래피에 의한 45 nm 노드의 양산 준비가 진행중이다. 차세대 32 nm 노드로서는, 물보다도 고굴절율의 액체와 고굴절율 렌즈, 고굴절율 레지스트막을 조합시킨 초고NA 렌즈에 의한 액침 리소그래피, 파장 13.5 nm의 진공자외광(EUV) 리소그래피, ArF 리소그래피의 2중 노광(더블 패터닝 리소그래피) 등이 후보이며, 검토가 진행되고 있다.
전자빔(EB)이나 X선 등의 매우 단파장의 고에너지선에 있어서는, 레지스트 재료에 이용되고 있는 탄화수소와 같은 경원소는 흡수가 거의 없어, 폴리히드록시스티렌 베이스의 레지스트 재료가 검토되고 있다.
마스크 제작용 노광 장치는 선폭의 정밀도를 올리기 위해서, 레이저빔에 의한 노광 장치부터 EB에 의한 노광 장치가 이용되어 왔다. 더욱이, EB의 전자총에 있어서의 가속 전압을 올림으로써, 한층 더 미세화가 가능하게 되므로, 10 kV에서 30 kV, 최근은 50 kV가 주류이며, 100 kV의 검토도 진행되고 있다.
여기서, 가속 전압의 상승과 함께, 레지스트막의 저감도화가 문제가 되어 왔다. 가속 전압이 향상되면, 레지스트막 내에서의 전방 산란의 영향이 작아지기 때문에, 전자 묘화 에너지의 콘트라스트가 향상되어 해상도나 치수 제어성이 향상되는데, 레지스트막 안을 그냥 통과하는 상태로 전자가 통과하기 때문에, 레지스트막의 감도가 저하한다. 마스크 노광기는 직묘(直描)의 일필서(一筆書)(direct continuous writing)로 노광하기 때문에, 레지스트막의 감도 저하는 생산성의 저하로 이어져, 바람직한 것이 아니다. 고감도화의 요구 때문에, 화학 증폭형 레지스트 재료가 검토되고 있다.
미세화의 진행과 함께, 산의 확산에 의한 상의 흐려짐이 문제가 되고 있다. 치수 사이즈 45 nm 이후의 미세 패턴에서의 해상성을 확보하기 위해서는, 종래 제안되어 있는 용해 콘트라스트의 향상뿐만 아니라, 산 확산의 제어가 중요하다는 것이 제안되어 있다(비특허문헌 1: SPIE Vol. 6520 65203L-1(2007)). 그러나, 화학 증폭형 레지스트 재료는 산의 확산에 의해서 감도와 콘트라스트를 올리고 있기 때문에, 포스트 익스포져 베이크(PEB) 온도나 시간을 짧게 하여 산 확산을 극한까지 억제하고자 하면, 감도와 콘트라스트가 현저히 저하된다.
감도와 해상도와 엣지 거칠기의 트라이앵글 트레이드오프의 관계가 드러난다. 여기서는, 해상성 향상을 위해서는 산 확산을 억제할 필요가 있지만, 산 확산 거리가 짧아지면 감도가 저하된다.
벌키(bulky)한 산이 발생하는 산발생제를 첨가하여 산 확산을 억제하는 것은 유효하다. 그래서, 폴리머에 중합성 올레핀을 갖는 오늄염의 산발생제를 공중합하는 것이 제안되어 있다. 일본 특허공개 2006-045311호 공보(특허문헌 1)에는, 특정 술폰산이 발생하는 중합성 올레핀을 갖는 술포늄염, 요오드늄염이 제안되어 있다. 일본 특허공개 2006-178317호 공보(특허문헌 2)에는, 술폰산이 주쇄에 직결된 술포늄염이 제안되어 있다.
감도와 엣지 거칠기의 트레이드오프 관계가 시사된다. 예컨대 SPIE Vol. 3331 p531(1998)(비특허문헌 2)에서는, 감도와 엣지 거칠기의 반비례 관계가 나타나 있고, 노광량 증가에 의한 샷노이즈 저감에 의해서 레지스트막의 엣지 거칠기가 저감되는 것이 예견되어 있다. SPIE Vo1. 5374 p74(2004)(비특허문헌 3)에는, 켄처를 증량한 레지스트막이 엣지 거칠기 저감에 유효하지만, 동시에 감도도 열화되기 때문에 EUV의 감도와 엣지 거칠기의 트레이드오프의 관계가 있어, 이것을 타파하기 위해서 산 발생 양자 효율을 높일 필요성이 기재되어 있다.
SPIE Vo1. 5753 p361(2005)(비특허문헌 4)에서는, 전자빔 노광에 있어서의 산 발생 기구로서, 노광에 의한 폴리머 여기에 의해서 PAG에 전자가 이동하여, 산이 방출되는 기구가 제안되어 있다. EB, EUV의 조사 에너지는 모두 베이스 폴리머의 이온화 포텐셜 에너지의 임계치 10 eV보다도 높아, 베이스 폴리머가 용이하게 이온화되는 것이 추정된다. 전자 이동을 촉진시키는 재료로서는 히드록시스티렌이 기재되어 있다.
SPIE Vol. 5753 p1034(2005)(비특허문헌 5)에서는, 폴리-4-히드록시스티렌이 폴리-4-메톡시스티렌보다도 EB 노광에 있어서의 산 발생 효율이 높다는 것이 기재되어 있고, 폴리-4-히드록시스티렌이 EB의 조사에 의해서 효율적으로 PAG에 전자를 이동시키고 있음이 시사되어 있다.
그래서, 전자 이동에 의한 산 발생 효율을 높이기 위해서 히드록시스티렌, 산 확산을 작게 억제하기 위해서 술폰산이 폴리머 주쇄에 직결된 PAG의 메타크릴레이트, 산불안정기를 갖는 메타크릴레이트를 공중합한 재료가 SPIE Vol. 6519 p65191F-1(2007)(비특허문헌 6)에 제안되어 있다.
히드록시스티렌은 약산성의 페놀성 수산기를 갖고 있기 때문에, 알칼리 현상액에서의 팽윤을 저감하는 효과가 있지만 산 확산을 증대시킨다. 한편, ArF 레지스트용으로서 널리 이용되고 있는 밀착성 기로서의 락톤을 함유하는 메타크릴레이트는 높은 친수성을 지니고, 알칼리 용해성이 없기 때문에 팽윤을 저감시키는 효과는 없지만, 산 확산을 억제할 수 있다. 밀착성 기로서 히드록시스티렌과 락톤환을 갖는 메타크릴레이트를 조합시킴으로써, 감도 향상, 팽윤 저감과 산 확산 제어의 균형을 잡을 수 있지만, 한층 더 개선을 필요로 한다.
히드록시페닐메타크릴레이트와 락톤환을 갖는 메타크릴레이트, 나아가서는 술폰산이 폴리머 주쇄에 직결된 PAG의 메타크릴레이트의 공중합은 산 확산을 제어하면서 고감도로 고해상도의 레지스트를 형성하는 것이 가능하다(특허문헌 3: 일본 특허공개 2010-077404호 공보). 이 경우, 감도를 더욱 올리고자 하면 히드록시페닐메타크릴레이트의 비율을 높이는 것이 유효하다. 그러나, 히드록시페닐메타크릴레이트의 비율을 높이면, 알칼리 용해성이 증가하기 때문에 패턴의 막 감소가 생겨, 패턴 붕괴가 일어난다. 보다 고감도이며 해상성이 높은 레지스트 개발이 요망되고 있다.
특허문헌 1: 일본 특허공개 2006-045311호 공보 특허문헌 2: 일본 특허공개 2006-178317호 공보 특허문헌 3: 일본 특허공개 2010-077404호 공보
비특허문헌 1: SPIE Vol. 6520 65203L-1(2007) 비특허문헌 2: SPIE Vol. 3331 p531(1998) 비특허문헌 3: SPIE Vol. 5374 p74(2004) 비특허문헌 4: SPIE Vol. 5753 p361(2005) 비특허문헌 5: SPIE Vol. 5753 p1034(2005) 비특허문헌 6: SPIE Vol. 6519 p65191F-1(2007)
본 발명은 상기 사정에 감안하여 이루어진 것으로, 종래의 레지스트 재료를 웃도는 고해상도로 엣지 거칠기(LER, LWR)가 작고, 노광 후의 패턴 형상이 양호한 포지티브형 레지스트 재료, 특히 화학 증폭 포지티브형 레지스트 재료의 베이스 수지로서 적합한 고분자 화합물을 이용한 레지스트 재료 및 패턴 형성 방법을 제공하는 것을 목적으로 한다.
본 발명자들은, 최근 요망되는 고감도, 고해상도, 엣지 거칠기가 작은 레지스트 재료, 특히 포지티브형 레지스트 재료를 얻기 위해 예의 검토를 거듭한 결과, 이것에는 하나의 아실기, 아실옥시기 또는 알콕시카르보닐기로 치환된 히드록시페닐메타크릴레이트를 갖는 반복 단위를 포함하는 폴리머를 레지스트 재료, 특히 화학 증폭 포지티브형 레지스트 재료의 베이스 수지로서 이용하면 매우 유효하다는 것을 알게 되었다.
또한, 산 확산을 억제하여 용해 콘트라스트를 향상시키기 위해서 카르복실기의 수소 원자가 산불안정기로 치환되어 있는 반복 단위와, 하기 일반식(1)으로 표시되는 하나의 아실기, 아실옥시기 또는 알콕시카르보닐기로 치환된 히드록시페닐메타크릴레이트와의 공중합에 의해 얻어지는 폴리머를 레지스트 재료, 특히 화학 증폭 포지티브형 레지스트 재료의 베이스 수지로서 이용함으로써, 노광 전후의 알칼리 용해 속도 콘트라스트가 대폭 높고, 산 확산을 억제하는 효과가 높으며, 고해상성을 지니고, 노광 후의 패턴 형상과 엣지 거칠기가 양호한, 특히 초LSI 제조용 혹은 포토마스크의 미세 패턴 형성 재료로서 적합한 레지스트 재료, 특히 화학 증폭 포지티브형 레지스트 재료를 얻을 수 있음을 지견한 것이다.
페놀기는 EB, EUV에 증감(增感) 작용이 있어, 알칼리수 현상액 중에서의 팽윤 방지 효과가 있다. 본 발명에 따른 고분자 화합물은 페놀기와 아실기, 아실옥시기 또는 알콕시카르보닐기를 동일 분자 내에 갖기 때문에 증감 작용이 있어, 알칼리 용해 속도가 낮기 때문에 알칼리 현상 후의 패턴의 막 감소를 억제할 수 있다. 패턴의 막 감소를 억제할 수 있기 때문에, 아실기, 아실옥시기, 알콕시카르보닐기를 갖지 않는 페놀기보다도 높은 비율 도입할 수 있다. 이에 따라 감도를 올릴 수 있게 된다. 아실기, 아실옥시기, 알콕시카르보닐기는 산소 원자를 갖고 있으며, EUV의 파장 13.5 nm에 있어서의 흡수가 높고, 전자 흡인기이기도 하기 때문에 EUV 조사에 의해서 전자를 방출하여 산발생제에 에너지 이동을 일으켜 산을 발생시키는 효율이 높다. 이에 의해서도 감도의 향상이 예상된다.
본 발명의 레지스트 재료는, 특히 산 확산을 억제하는 효과가 높고, 고해상성을 지니며, 엣지 거칠기가 작고, 프로세스 적응성이 우수하며, 노광 후의 패턴 형상이 양호하다. 따라서, 이들 우수한 특성을 지니므로 실용성이 매우 높고, 초LSI용 레지스트 재료 및 마스크 패턴 형성 재료로서 매우 유효하다.
즉, 본 발명은 하기 레지스트 재료 및 이것을 이용한 패턴 형성 방법을 제공한다.
〔1〕 카르복실기 및/또는 페놀성 수산기의 수소 원자가 산불안정기로 치환되어 있는 반복 단위와, 하기 일반식(1)으로 표시되는 반복 단위를 포함하는 중량 평균 분자량이 1,000∼500,000의 범위인 고분자 화합물을 베이스 수지로 하고 있는 것을 특징으로 하는 레지스트 재료.
Figure 112013042463355-pat00001
(식에서, R1은 -C(=O)-R3, -O-C(=O)-R3, -C(=O)-O-R3, 시아노기 또는 니트로기, R2는 수소 원자 또는 메틸기이다. R3은 동일 또는 이종의 탄소수 1∼4의 알킬기 또는 탄소수 2∼4의 알케닐기 혹은 알키닐기이다)
〔2〕 하기 일반식(1)으로 표시되는 반복 단위 a와, 하기 일반식(2-1) 및/또는 일반식(2-2)으로 표시되는 산불안정기를 갖는 반복 단위 b1 및/또는 b2가 공중합되어 이루어지는 하기 일반식(2)으로 표시되는 중량 평균 분자량이 1,000∼500,000의 범위인 고분자 화합물을 베이스 수지로 하고 있는 것을 특징으로 하는 〔1〕에 기재한 레지스트 재료.
Figure 112013042463355-pat00002
(식에서, R1, R2는 상기와 마찬가지다. R4, R6은 수소 원자 또는 메틸기, R5, R9는 산불안정기를 나타낸다. R7은 단결합 또는 탄소수 1∼6의 직쇄상 또는 분기상의 알킬렌기이며, R8은 수소 원자, 불소 원자, 트리플루오로메틸기, 시아노기 또는 탄소수 1∼6의 직쇄상, 분기상 또는 환상의 알킬기이고, p는 1 또는 2이며, q는 0∼4의 정수이다. Y1은 단결합, 에스테르기 또는 에테르기 또는 락톤환을 갖는 탄소수 1∼12의 2가의 연결기, 페닐렌기 또는 나프틸렌기이다. Y2는 단결합, -C(=O)-O- 또는 -C(=O)-NH-이다. 0<a<1.0, 0≤b1<1.0, 0≤b2<1.0, 0<b1+b2<1.0, 0.1≤a+b1+b2≤1.0의 범위이다)
〔3〕 상기 일반식(2) 중의 반복 단위 a와, 카르복실기 및/또는 페놀성 수산기의 수소 원자가 산불안정기로 치환되어 있는 반복 단위 b1 및/또는 b2에 더하여, 상기 일반식(1)의 히드록시기 이외의 히드록시기, 카르복실기, 락톤환, 카르보네이트기, 티오카르보네이트기, 카르보닐기, 환상 아세탈기, 에테르기, 에스테르기, 술폰산에스테르기, 시아노기, 아미드기, -O-C(=O)-G-(G는 황 원자 또는 NH임)에서 선택되는 밀착성 기의 반복 단위 c를 공중합한(여기서, 0<c≤0.9, 0.2≤a+b1+b2+c≤1.0의 범위임), 중량 평균 분자량이 1,000∼500,000의 범위인 고분자 화합물을 베이스 수지로 하고 있는 것을 특징으로 하는 〔2〕에 기재한 레지스트 재료.
〔4〕 상기 반복 단위 a, b1, b2, c와, 하기 일반식(3)으로 표시되는 술포늄염 d1∼d3에서 선택되는 하나 이상의 반복 단위를 공중합한(여기서, 0.2≤a+b1+b2+c<1.0, 0≤d1≤0.5, 0≤d2≤0.5, 0≤d3≤0.5, 0<d1+d2+d3≤0.5의 범위임), 중량 평균 분자량이 1,000∼500,000의 범위인 고분자 화합물을 베이스 수지로 하고 있는 것을 특징으로 하는 〔3〕에 기재한 레지스트 재료.
Figure 112013042463355-pat00003
(식에서, R20, R24, R28은 수소 원자 또는 메틸기, R21은 단결합, 페닐렌기, -O-R- 또는 -C(=O)-Y0-R-이다. Y0은 산소 원자 또는 NH, R은 탄소수 1∼6의 직쇄상, 분기상 또는 환상의 알킬렌기, 알케닐렌기 또는 페닐렌기이며, 카르보닐기, 에스테르기, 에테르기 또는 히드록시기를 포함하고 있더라도 좋다. R22, R23, R25, R26, R27, R29, R30, R31은 동일 또는 이종의 탄소수 1∼12의 직쇄상, 분기상 또는 환상의 알킬기이며, 카르보닐기, 에스테르기 또는 에테르기를 포함하고 있더라도 좋고, 또는 탄소수 6∼12의 아릴기, 탄소수 7∼20의 아랄킬기 또는 티오페닐기를 나타낸다. Z0은 단결합, 메틸렌기, 에틸렌기, 페닐렌기, 불소화된 페닐렌기, -O-R32- 또는 -C(=O)-Z1-R32-이다. Z1은 산소 원자 또는 NH, R32는 탄소수 1∼6의 직쇄상, 분기상 또는 환상의 알킬렌기, 알케닐렌기 또는 페닐렌기이며, 카르보닐기, 에스테르기, 에테르기 또는 히드록시기를 포함하고 있더라도 좋다. M-는 비구핵성 대향 이온을 나타낸다)
〔5〕 유기 용제 및 산발생제를 더 함유하는 화학 증폭형 레지스트 재료인 것을 특징으로 하는 〔1〕∼〔4〕 중 어느 것에 기재한 레지스트 재료.
〔6〕 첨가제로서 염기성 화합물 및/또는 계면활성제를 더 배합하여 이루어지는 것을 특징으로 하는 〔5〕에 기재한 레지스트 재료.
〔7〕 〔1〕∼〔6〕 중 어느 하나에 기재한 레지스트 재료를 기판 상에 도포하는 공정과, 가열 처리 후, 고에너지선으로 노광하는 공정과, 현상액을 이용하여 현상하는 공정을 포함하는 것을 특징으로 하는 패턴 형성 방법.
〔8〕 노광하는 고에너지선이, KrF 엑시머 레이저, ArF 엑시머 레이저, 전자빔 또는 파장 3∼15 nm 범위의 연X선인 것을 특징으로 하는 〔7〕에 기재한 패턴 형성 방법.
이상과 같은 본 발명의 레지스트 재료, 특히 화학 증폭 포지티브형 레지스트 재료의 용도로서는, 예컨대 반도체 회로 형성에 있어서의 리소그래피뿐만 아니라, 마스크 회로 패턴의 형성 혹은 마이크로머신, 박막 자기 헤드 회로의 형성에도 응용할 수 있다.
본 발명의 레지스트 재료는 산의 확산을 억제하는 효과가 높고, 고해상성을 지니며, 노광 후의 패턴 형상과 엣지 거칠기가 양호하다. 따라서, 특히 초LSI 제조용 혹은 EB 묘화에 의한 포토마스크의 미세 패턴 형성 재료, KrF 엑시머 레이저, ArF 엑시머 레이저, EB 혹은 EUV 노광용의 패턴 형성 재료로서 적합한 레지스트 재료, 특히 화학 증폭 포지티브형 레지스트 재료를 얻을 수 있다.
이하, 본 발명에 관해 더욱 자세히 설명한다.
본 발명에 따른 레지스트 재료는 하기 일반식(1)으로 표시되는 반복 단위를 포함하는 수지를 베이스 수지로 하고 있는 것을 특징으로 하는 레지스트 재료이며, 특히 포지티브형 레지스트 재료로서 유효하다.
Figure 112013042463355-pat00004
(식에서, R1은 -C(=O)-R3, -O-C(=O)-R3, -C(=O)-O-R3, 시아노기 또는 니트로기, R2는 수소 원자 또는 메틸기이다. R3은 동일 또는 이종의 탄소수 1∼4의 알킬기 또는 탄소수 2∼4의 알케닐기 혹은 알키닐기이다)
R1로 표시되는 것은 전자 흡인기이지만, 벤젠환을 이것에 의해 치환함으로써 벤젠환의 전자 밀도가 저하하여 흡수의 파형이 변화된다. 파장 248 nm의 KrF 엑시머 레이저에 있어서 흡수 윈도우의 협곡이 되는 벤젠환은 비교적 투명성이 높지만, R1로 치환함으로써 흡수가 시프트되어 투명성이 저하된다. 투명성이 저하하면 고반사 기판에서의 기판 반사를 억제할 수 있다.
여기서, R3의 탄소수 1∼4의 알킬기로서는, 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, sec-부틸기, tert-부틸기, 탄소수 2∼4의 알케닐기 혹은 알키닐기로서는, 비닐기, 알릴기, 이소프로페닐기, 에티닐기, 2-프로피닐기, 1-프로페닐기, 2-부테닐기, 1,3-부타디에닐기를 들 수 있다.
일반식(1)으로 표시되는 기는 바람직하게는 (메트)아크릴산의 카르복실기의 수소 원자를 치환한 것이다.
이 경우, 특히 베이스 수지로서는, 적어도 하기 일반식(1)으로 표시되는 반복 단위 a와, 하기 일반식(2-1) 및/또는 일반식(2-2)으로 표시되는 산불안정기를 갖는 반복 단위 b1 및/또는 b2가 공중합되어 이루어지는 하기 일반식(2)으로 표시되는 중량 평균 분자량이 1,000∼500,000의 범위인 고분자 화합물이 바람직하다.
Figure 112013042463355-pat00005
(식에서, R1, R2는 상기와 마찬가지다. R4, R6은 수소 원자 또는 메틸기, R5, R9는 산불안정기를 나타낸다. R7은 단결합 또는 탄소수 1∼6의 직쇄상 또는 분기상의 알킬렌기이며, R8은 수소 원자, 불소 원자, 트리플루오로메틸기, 시아노기 또는 탄소수 1∼6의 직쇄상, 분기상 또는 환상의 알킬기이고, p는 1 또는 2이며, q는 0∼4의 정수이다. Y1은 단결합, 에스테르기 또는 에테르기 또는 락톤환을 갖는 탄소수 1∼12의 2가의 연결기, 페닐렌기 또는 나프틸렌기이다. Y2는 단결합, -C(=O)-O- 또는 -C(-O)-NH-이다. 0<a<1.0, 0≤b1<1.0, 0≤b2<1.0, 0<b1+b2<1.0, 0.1≤a+b1+b2≤1.0, 바람직하게는 0.4≤a+b1+b2≤1.0, 더욱 바람직하게는 0.5≤a+b1+b2≤1.0의 범위이다)
일반식(1)에 나타내어지는 반복 단위 a를 얻기 위한 모노머 Ma는 구체적으로는 하기에 예시할 수 있다.
Figure 112013042463355-pat00006
(식에서, R1, R2는 전술한 것과 같다)
이 모노머는 아실화, 아실옥시화, 알콕시카르보닐화한 히드로퀴논, 레조르시놀, 카테콜의 히드록시기의 하나를 메타크릴레이트에스테르로 함으로써 합성할 수 있다.
상기 반복 단위 a를 얻기 위한 모노머 Ma는 구체적으로는 하기에 예시할 수 있다.
Figure 112013042463355-pat00007
Figure 112013042463355-pat00008
Figure 112013042463355-pat00009
Figure 112013042463355-pat00010
(식에서, R2는 전술한 것과 같다)
본 발명의 레지스트 재료 중의 반복 단위 a로서는, 아실기, 아실옥시기 또는 알콕시카르보닐기와 페놀성 수산기 양쪽을 1 분자 내에 하나씩 갖는 메타크릴레이트이다. 아실기, 아실옥시기, 알콕시카르보닐기가 없는 히드록시페닐메타크릴레이트보다도 알칼리 용해 속도가 낮기 때문에 현상 후의 패턴의 막 감소나 패턴의 붕괴를 저감시킬 수 있을 뿐만 아니라, 아실기, 아실옥시기 또는 알콕시카르보닐기에 의해 EUV광의 흡수가 증대됨으로써, EUV 혹은 EB 노광에 있어서도 높은 증감 효과를 발휘하여, 감도를 향상시키는 것이 가능하다. 아실기, 아실옥시기, 알콕시카르보닐기는 페닐기에 하나 도입하는 것이 가장 바람직하다.
아실기로 치환된 히드록시스티렌은 일본 특허 제4871693호 공보에 기재되어 있고, 알콕시카르보닐기로 치환된 히드록시스티렌은 일본 특허공개 2009-109595호 공보 중의 단락 [0208]에 예시되어 있다. 히드록시스티렌 공중합체는 히드록시페닐메타크릴레이트 공중합체보다도 증감 효과가 낮고, 산 확산을 억제하는 효과도 낮다. 아실기, 아실옥시기, 알콕시카르보닐기로 치환된 히드록시페닐메타크릴레이트를 공중합함으로써 고감도로 알칼리 현상 후에 있어서의 막 감소가 적고, 현상 중의 팽윤에 의한 패턴의 붕괴를 억제할 수 있다.
일반식(2) 중의 산불안정기를 갖는 반복 단위 b1, b2를 얻기 위한 모노머 Mb1, Mb2는 구체적으로는 하기에 예시할 수 있다.
Figure 112013042463355-pat00011
(식에서, R4∼R9, Y1, Y2, p, q는 전술한 것과 같다)
이 경우, Y1의 락톤환을 갖는 탄소수 1∼12의 2가의 연결기로서는 하기의 것을 예시할 수 있다.
Figure 112013042463355-pat00012
반복 단위 b1을 얻기 위한 모노머 Mb1은 구체적으로는 하기에 예시된다.
Figure 112013042463355-pat00013
(식에서, R4, R5는 전술한 것과 같다)
반복 단위 b2를 얻기 위한 모노머 Mb2는 구체적으로는 하기에 예시된다.
Figure 112013042463355-pat00014
(식에서, R6, R9는 전술한 것과 같다)
산불안정기(일반식(2) 중의 R5, R9의 산불안정기)는 여러 가지 선정되지만, 동일하더라도 다르더라도 좋으며, 특히 하기 식(A-1)∼식(A-3)으로 치환된 기로 표시되는 것을 들 수 있다.
Figure 112013042463355-pat00015
식(A-1)에 있어서, RL30은 탄소수 4∼20, 바람직하게는 4∼15의 3급 알킬기, 각 알킬기가 각각 탄소수 1∼6의 트리알킬실릴기, 탄소수 4∼20의 옥소알킬기 또는 상기 일반식(A-3)으로 표시되는 기를 나타내고, 3급 알킬기로서 구체적으로는 tert-부틸기, tert-아밀기, 1,1-디에틸프로필기, 1-에틸시클로펜틸기, 1-부틸시클로펜틸기, 1-에틸시클로헥실기, 1-부틸시클로헥실기, 1-에틸-2-시클로펜테닐기, 1-에틸-2-시클로헥세닐기, 2-메틸-2-아다만틸기 등을 들 수 있고, 트리알킬실릴기로서 구체적으로는 트리메틸실릴기, 트리에틸실릴기, 디메틸-tert-부틸실릴기 등을 들 수 있고, 옥소알킬기로서 구체적으로는 3-옥소시클로헥실기, 4-메틸-2-옥소옥산-4-일기, 5-메틸-2-옥소옥솔란-5-일기 등을 들 수 있다. A1은 0∼6의 정수이다.
식(A-2)에 있어서, RL31, RL32는 수소 원자 또는 탄소수 1∼18, 바람직하게는 1∼10의 직쇄상, 분기상 또는 환상의 알킬기를 나타내고, 구체적으로는 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, sec-부틸기, tert-부틸기, 시클로펜틸기, 시클로헥실기, 2-에틸헥실기, n-옥틸기 등을 예시할 수 있다. RL33은 탄소수 1∼18, 바람직하게는 1∼10의 산소 원자 등의 헤테로 원자를 갖더라도 좋은 1가의 탄화수소기를 나타내고, 직쇄상, 분기상 또는 환상의 알킬기, 이들의 수소 원자의 일부가 수산기, 알콕시기, 옥소기, 아미노기, 알킬아미노기 등으로 치환된 것을 들 수 있고, 구체적으로는 하기의 치환 알킬기 등을 예시할 수 있다.
Figure 112013042463355-pat00016
RL31과 RL32, RL31과 RL33, RL32와 RL33은 결합하여 이들이 결합하는 탄소 원자와 함께 고리를 형성하더라도 좋고, 고리를 형성하는 경우에는 고리의 형성에 관여하는 RL31, RL32, RL33은 각각 탄소수 1∼18, 바람직하게는 1∼10의 직쇄상 또는 분기상의 알킬렌기를 나타내며, 바람직하게는 고리의 탄소수는 3∼10, 특히 4∼10이다.
상기 식(A-1)의 산불안정기로서는, 구체적으로는 tert-부톡시카르보닐기, tert-부톡시카르보닐메틸기, tert-아밀옥시카르보닐기, tert-아밀옥시카르보닐메틸기, 1,1-디에틸프로필옥시카르보닐기, 1,1-디에틸프로필옥시카르보닐메틸기, 1-에틸시클로펜틸옥시카르보닐기, 1-에틸시클로펜틸옥시카르보닐메틸기, 1-에틸-2-시클로펜테닐옥시카르보닐기, 1-에틸-2-시클로펜테닐옥시카르보닐메틸기, 1-에톡시에톡시카르보닐메틸기, 2-테트라히드로피라닐옥시카르보닐메틸기, 2-테트라히드로푸라닐옥시카르보닐메틸기 등을 예시할 수 있다.
또한, 하기 식(A-1)-1∼식(A-1)-10으로 표시되는 치환기를 들 수도 있다.
Figure 112013042463355-pat00017
여기서, RL37은 서로 동일 또는 이종의 탄소수 1∼10의 직쇄상, 분기상 또는 환상의 알킬기 또는 탄소수 6∼20의 아릴기, RL38은 수소 원자 또는 탄소수 1∼10의 직쇄상, 분기상 또는 환상의 알킬기이다.
또한, RL39는 서로 동일 또는 이종의 탄소수 2∼10의 직쇄상, 분기상 또는 환상의 알킬기 또는 탄소수 6∼20의 아릴기이다.
A1은 전술한 것과 같다.
상기 식(A-2)으로 표시되는 산불안정기 중, 직쇄상 또는 분기상인 것으로서는 하기 식(A-2)-1∼식(A-2)-69의 것을 예시할 수 있다.
Figure 112013042463355-pat00018
Figure 112013042463355-pat00019
Figure 112013042463355-pat00020
Figure 112013042463355-pat00021
상기 식(A-2)으로 표시되는 산불안정기 중, 환상인 것으로서는, 테트라히드로푸란-2-일기, 2-메틸테트라히드로푸란-2-일기, 테트라히드로피란-2-일기, 2-메틸테트라히드로피란-2-일기 등을 들 수 있다.
또한, 하기 일반식(A-2a) 혹은 일반식(A-2b)으로 표시되는 산불안정기에 의해서 베이스 수지가 분자 사이 혹은 분자 내 가교되어 있더라도 좋다.
Figure 112013042463355-pat00022
식에서, RL40, RL41은 수소 원자 또는 탄소수 1∼8의 직쇄상, 분기상 또는 환상의 알킬기를 나타낸다. 또는, RL40과 RL41은 결합하여 이들이 결합하는 탄소 원자와 함께 고리를 형성하더라도 좋고, 고리를 형성하는 경우에는 RL40, RL41은 탄소수 1∼8의 직쇄상 또는 분기상의 알킬렌기를 나타낸다. RL42는 탄소수 1∼10의 직쇄상, 분기상 또는 환상의 알킬렌기, B1, D1은 0 또는 1∼10, 바람직하게는 0 또는 1∼5의 정수, C1은 1∼7의 정수이다. A는 (C1+1)가의 탄소수 1∼50의 지방족 혹은 지환식 포화 탄화수소기, 방향족 탄화수소기 또는 헤테로환기를 나타내며, 이들 기는 헤테로 원자를 개재하더라도 좋고, 또는 그 탄소 원자에 결합하는 수소 원자의 일부가 수산기, 카르복실기, 카르보닐기 또는 불소 원자에 의해서 치환되어 있더라도 좋다. B는 -CO-O-, -NHCO-O- 또는 -NHCONH-을 나타낸다.
이 경우, 바람직하게는 A는 2∼4가의 탄소수 1∼20의 직쇄상, 분기상 또는 환상의 알킬렌기, 알킬트리일기, 알킬테트라일기, 탄소수 6∼30의 아릴렌기이며, 이들 기는 헤테로 원자를 개재하고 있더라도 좋고, 또한 그 탄소 원자에 결합하는 수소 원자의 일부가 수산기, 카르복실기, 아실기 또는 할로겐 원자에 의해서 치환되어 있더라도 좋다. 또한, C1은 바람직하게는 1∼3의 정수이다.
일반식(A-2a), 일반식(A-2b)으로 표시되는 가교형 아세탈기는 구체적으로는 하기 식(A-2)-70∼식(A-2)-77의 것을 들 수 있다.
Figure 112013042463355-pat00023
다음으로, 식(A-3)에 있어서 RL34, RL35, RL36은 탄소수 1∼20의 직쇄상, 분기상 또는 환상의 알킬기 등의 1가 탄화수소기이고, 또는 탄소수 2∼20의 직쇄상, 분기상 또는 환상의 알케닐기이며, 산소, 황, 질소, 불소 등의 헤테로 원자를 포함하더라도 좋고, RL34와 RL35, RL34와 RL36, RL35와 RL36은 서로 결합하여 이들이 결합하는 탄소 원자와 함께 탄소수 3∼20의 지환을 형성하더라도 좋다.
식(A-3)에 나타내어지는 3급 알킬기로서는 tert-부틸기, 트리에틸카르빌기, 1-에틸노르보닐기, 1-메틸시클로헥실기, 1-에틸시클로펜틸기, 2-(2-메틸)아다만틸기, 2-(2-에틸)아다만틸기, tert-아밀기 등을 들 수 있다.
또한, 3급 알킬기로서는 하기에 나타내는 식(A-3)-1∼식(A-3)-18을 구체적으로 들 수도 있다.
Figure 112013042463355-pat00024
식(A-3)-1∼식(A-3)-18에서, RL43은 동일 또는 이종의 탄소수 1∼8의 직쇄상, 분기상 또는 환상의 알킬기, 또는 탄소수 6∼20의 페닐기 등의 아릴기를 나타낸다. RL44, RL46은 수소 원자 또는 탄소수 1∼20의 직쇄상, 분기상 또는 환상의 알킬기를 나타낸다. RL45는 탄소수 6∼20의 페닐기 등의 아릴기를 나타낸다.
또한, 하기 식(A-3)-19, 식(A-3)-20에 나타내는 것과 같이, 2가 이상의 알킬렌기, 아릴렌기인 RL47을 포함하고, 폴리머의 분자 내 혹은 분자 사이가 가교되어 있더라도 좋다.
Figure 112013042463355-pat00025
식(A-3)-19, 식(A-3)-20에서, RL43은 전술한 것과 마찬가지이며, RL47은 탄소수 1∼20의 직쇄상, 분기상 또는 환상의 알킬렌기 또는 페닐렌기 등의 아릴렌기를 나타내고, 산소 원자나 황 원자, 질소 원자 등의 헤테로 원자를 포함하고 있더라도 좋다. E1은 1∼3의 정수이다.
특히 식(A-3)의 산불안정기로서는 하기 식(A-3)-21에 나타내어지는 엑소체 구조를 갖는 (메트)아크릴산에스테르의 반복 단위를 바람직하게 들 수 있다.
Figure 112013042463355-pat00026
(식에서, R4는 수소 원자 또는 메틸기, RLc3은 탄소수 1∼8의 직쇄상, 분기상 또는 환상의 알킬기 또는 탄소수 6∼20의 치환되어 있더라도 좋은 아릴기를 나타낸다. RLc4∼RLc9 및 RLc12, RLc13은 각각 독립적으로 수소 원자 또는 탄소수 1∼15의 헤테로 원자를 포함하더라도 좋은 1가의 탄화수소기를 나타내고, RLc10, RLc11은 수소 원자 또는 탄소수 1∼15의 헤테로 원자를 포함하더라도 좋은 1가의 탄화수소기를 나타낸다. RLc4와 RLc5, RLc6과 RLc8, RLc6과 RLc9, RLc7과 RLc9, RLc7과 RLc13, RLc8과 RLc12, RLc10과 RLc11 또는 RLc11과 RLc12는 서로 고리를 형성하고 있더라도 좋으며, 그 경우에는 탄소수 1∼15의 헤테로 원자를 포함하더라도 좋은 2가의 탄화수소기를 나타낸다. 또한 RLc4와 RLc13, RLc10과 RLc13 또는 RLc6과 RLc8은 인접하는 탄소에 결합하는 것끼리 아무것도 통하지 않고서 결합하여, 이중 결합을 형성하더라도 좋다. 또한, 본 식에 의해 경상체(鏡像體)도 나타낸다)
여기서, 일반식(A-3)-21에 나타내는 엑소 구조를 갖는 반복 단위를 얻기 위한 에스테르체의 모노머는 일본 특허공개 2000-327633호 공보에 기재되어 있다. 구체적으로는 하기에 예를 들 수 있지만, 이들에 한정되지 않는다.
Figure 112013042463355-pat00027
또한, 식(A-3)에 나타내어지는 산불안정기로서는, 하기 식(A-3)-22에 나타내어지는 푸란디일기, 테트라히드로푸란디일기 또는 옥사노르보르난디일기를 갖는 (메트)아크릴산에스테르의 산불안정기를 들 수 있다.
Figure 112013042463355-pat00028
(식에서, R4는 전술한 것과 같다. RLc14, RLc15는 각각 독립적으로 탄소수 1∼10의 직쇄상, 분기상 또는 환상의 1가 탄화수소기를 나타낸다. RLc14, RLc15는 서로 결합하여 이들이 결합하는 탄소 원자와 함께 지방족 탄화수소환을 형성하더라도 좋다. RLc16은 푸란디일기, 테트라히드로푸란디일기 또는 옥사노르보르난디일기에서 선택되는 2가의 기를 나타낸다. RLc17은 수소 원자 또는 헤테로 원자를 포함하더라도 좋은 탄소수 1∼10의 직쇄상, 분기상 또는 환상의 1가 탄화수소기를 나타낸다)
푸란디일기, 테트라히드로푸란디일기 또는 옥사노르보르난디일기를 갖는 산불안정기로 치환된 반복 단위를 얻기 위한 모노머는 하기에 예시된다. 한편, Ac는 아세틸기, Me는 메틸기를 나타낸다.
Figure 112013042463355-pat00029
Figure 112013042463355-pat00030
반복 단위 b1의 카르복실기의 수소 원자를 하기 일반식(A-3)-23으로 표시되는 산불안정기에 의해 치환할 수도 있다.
Figure 112013042463355-pat00031
(식에서, R23 -1은 수소 원자, 탄소수 1∼4의 알킬기, 알콕시기, 알카노일기 또는 알콕시카르보닐기, 탄소수 6∼10의 아릴기, 할로겐 원자 또는 시아노기이다. m23은 1∼4의 정수이다)
식(A-3)-23으로 표시되는 산불안정기에 의해 치환된 카르복실기를 갖는 모노머는 구체적으로는 하기에 예시된다.
Figure 112013042463355-pat00032
반복 단위 b1의 카르복실기의 수소 원자를 하기 일반식(A-3)-24로 표시되는 산불안정기에 의해서 치환할 수도 있다.
Figure 112013042463355-pat00033
(식에서, R24 -1, R24 -2는 수소 원자, 탄소수 1∼4의 알킬기, 알콕시기, 알카노일기, 알콕시카르보닐기, 히드록시기, 탄소수 6∼10의 아릴기, 할로겐 원자 또는 시아노기이다. R은 수소 원자, 산소 원자 혹은 황 원자를 갖고 있더라도 좋은 탄소수 1∼12의 직쇄상, 분기상 또는 환상의 알킬기, 탄소수 2∼12의 알케닐기, 탄소수 2∼12의 알키닐기 또는 탄소수 6∼10의 아릴기이다. R24 -3, R24 -4, R24 -5, R24 -6은 수소 원자 혹은 R24 -3과 R24 -4, R24 -4와 R24 -5, R24 -5와 R24 -6이 결합하여 벤젠환을 형성하더라도 좋다. m24, n24는 1∼4의 정수이다)
식(A-3)-24로 표시되는 산불안정기에 의해 치환된 카르복실기를 갖는 모노머는 구체적으로는 하기에 예시된다.
Figure 112013042463355-pat00034
Figure 112013042463355-pat00035
Figure 112013042463355-pat00036
반복 단위 b1의 카르복실기의 수소 원자를 하기 일반식(A-3)-25로 표시되는 산불안정기에 의해서 치환할 수도 있다.
Figure 112013042463355-pat00037
(식에서, R25 -1은 동일하거나 또는 이종이며, 수소 원자 또는 탄소수 1∼6의 직쇄상, 분기상 또는 환상의 알킬기, m25가 2 이상인 경우, R25 -1끼리 결합하여 탄소수 2∼8의 비방향환을 형성하더라도 좋으며, 원은 탄소 CA와 CB와의 에틸렌기, 프로필렌기, 부틸렌기, 펜틸렌기에서 선택되는 결합을 나타내고, R25 -2는 탄소수 1∼4의 알킬기, 알콕시기, 알카노일기, 알콕시카르보닐기, 히드록시기, 니트로기, 탄소수 6∼10의 아릴기, 할로겐 원자 또는 시아노기이다. R은 전술한 것과 같다. 원이 에틸렌기, 프로필렌기일 때, R25 -1이 수소 원자가 되는 일은 없다. m25, n25는 1∼4의 정수이다)
식(A-3)-25로 표시되는 산불안정기에 의해 치환된 카르복실기를 갖는 모노머는 구체적으로는 하기에 예시된다.
Figure 112013042463355-pat00038
Figure 112013042463355-pat00039
Figure 112013042463355-pat00040
Figure 112013042463355-pat00041
Figure 112013042463355-pat00042
반복 단위 b1의 카르복실기의 수소 원자를 하기 일반식(A-3)-26으로 표시되는 산불안정기에 의해서 치환할 수도 있다.
Figure 112013042463355-pat00043
(식에서, R26 -1, R26 -2는 수소 원자, 탄소수 1∼4의 알킬기, 알콕시기, 알카노일기, 알콕시카르보닐기, 히드록시기, 니트로기, 탄소수 6∼10의 아릴기, 할로겐 원자 또는 시아노기이다. R은 전술한 것과 같다. m26, n26은 1∼4의 정수이다)
식(A-3)-26으로 표시되는 산불안정기에 의해서 치환된 카르복실기를 갖는 모노머는 구체적으로는 하기에 예시된다.
Figure 112013042463355-pat00044
Figure 112013042463355-pat00045
반복 단위 b1의 카르복실기의 수소 원자를 하기 일반식(A-3)-27로 표시되는 산불안정기에 의해서 치환할 수도 있다.
Figure 112013042463355-pat00046
(식에서, R27 -1, R27 -2는 수소 원자, 탄소수 1∼4의 알킬기, 알콕시기, 알카노일기, 알콕시카르보닐기, 히드록시기, 탄소수 6∼10의 아릴기, 할로겐 원자 또는 시아노기이다. R은 전술한 것과 같다. m27, n27은 1∼4의 정수이다. J는 메틸렌기, 에틸렌기, 비닐렌기 또는 -CH2-S-이다)
식(A-3)-27로 표시되는 산불안정기에 의해서 치환된 카르복실기를 갖는 모노머는 구체적으로는 하기에 예시된다.
Figure 112013042463355-pat00047
Figure 112013042463355-pat00048
Figure 112013042463355-pat00049
반복 단위 b1의 카르복실기의 수소 원자를 하기 일반식(A-3)-28로 표시되는 산불안정기에 의해서 치환할 수도 있다.
Figure 112013042463355-pat00050
(식에서, R28 -1, R28 -2는 수소 원자, 탄소수 1∼4의 알킬기, 알콕시기, 알카노일기, 알콕시카르보닐기, 히드록시기, 탄소수 6∼10의 아릴기, 할로겐 원자 또는 시아노기이다. R은 전술한 것과 같다. m28, n28은 1∼4의 정수이다. K는 카르보닐기, 에테르기, 술피드기, -S(=O)- 또는 -S(=O)2-이다)
식(A-3)-28로 표시되는 산불안정기에 의해서 치환된 카르복실기를 갖는 모노머는 구체적으로는 하기에 예시된다.
Figure 112013042463355-pat00051
Figure 112013042463355-pat00052
Figure 112013042463355-pat00053
Figure 112013042463355-pat00054
Figure 112013042463355-pat00055
또한, 본 발명에 있어서, 베이스 수지는, 일반식(2) 중의 반복 단위 a와, 카르복실기의 수소 원자가 산불안정기로 치환된 반복 단위 b1 및/또는 페놀성 수산기가 산불안정기로 치환된 반복 단위 b2에 더하여, 히드록시기, 카르복실기, 락톤환, 카르보네이트기, 티오카르보네이트기, 카르보닐기, 환상 아세탈기, 에테르기, 에스테르기, 술폰산에스테르기, 시아노기, 아미드기, -0-C(=O)-G-(G는 황 원자 또는 NH임)에서 선택되는 밀착성 기의 반복 단위 c를 공중합한(여기서, 0<c≤0.9, 0.2≤a+b1+b2+c≤1.0, 바람직하게는 0.6≤a+b1+b2+c≤1.0, 더욱 바람직하게는 0.7≤a+b1+b2+c≤1.0의 범위임) 중량 평균 분자량이 1,000∼500,000의 범위인 고분자 화합물인 것이 바람직하다.
상기 식(1)의 히드록시기 이외의 히드록시기, 카르복실기, 락톤환, 카르보네이트기, 티오카르보네이트기, 카르보닐기, 환상 아세탈기, 에테르기, 에스테르기, 술폰산에스테르기, 시아노기, 아미드기, -O-C(=O)-G-(G는 황 원자 또는 NH임)를 밀착성 기로 하는 반복 단위 c를 얻기 위한 모노머는 구체적으로는 하기에 예시할 수 있다.
Figure 112013042463355-pat00056
Figure 112013042463355-pat00057
Figure 112013042463355-pat00058
Figure 112013042463355-pat00059
Figure 112013042463355-pat00060
Figure 112013042463355-pat00061
Figure 112013042463355-pat00062
히드록시기를 갖는 모노머의 경우, 중합시에 히드록시기를 에톡시에톡시기 등의 산에 의해서 탈보호하기 쉬운 아세탈로 치환해 두고서 중합 후에 약산과 물에 의해서 탈보호를 행하더라도 좋고, 아세틸기, 포르밀기, 피발로일기 등으로 치환해 두고서 중합 후에 알칼리 가수분해를 행하더라도 좋다.
본 발명에서는, 하기 일반식(3)으로 표시되는 술포늄염을 갖는 반복 단위 d1, d2, d3을 공중합할 수 있다. 일본 특허공개 2006-045311호 공보에는, 특정 술폰산이 발생하는 중합성 올레핀을 갖는 술포늄염, 요오드늄염이 제안되어 있다. 일본 특허공개 2006-178317호 공보에는, 술폰산이 주쇄에 직결된 술포늄염이 제안되어 있다.
Figure 112013042463355-pat00063
(식에서, R20, R24, R28은 수소 원자 또는 메틸기, R21은 단결합, 페닐렌기, -O-R- 또는 -C(=O)-Y0-R-이다. Y0은 산소 원자 또는 NH, R은 탄소수 1∼6의 직쇄상, 분기상 또는 환상의 알킬렌기, 알케닐렌기 또는 페닐렌기이며, 카르보닐기(-CO-), 에스테르기(-CO0-), 에테르기(-0-) 또는 히드록시기를 포함하고 있더라도 좋다. R22, R23, R25, R26, R27, R29, R30, R31은 동일 또는 이종의 탄소수 1∼12의 직쇄상, 분기상 또는 환상의 알킬기이며, 카르보닐기, 에스테르기 또는 에테르기를 포함하고 있더라도 좋고, 또는 탄소수 6∼12의 아릴기, 탄소수 7∼20의 아랄킬기 또는 티오페닐기를 나타낸다. Z0은 단결합, 메틸렌기, 에틸렌기, 페닐렌기, 불소화된 페닐렌기, -O-R32- 또는 -C(=O)-Z1-R32-이다. Z1은 산소 원자 또는 NH, R32는 탄소수 1∼6의 직쇄상, 분기상 또는 환상의 알킬렌기, 알케닐렌기 또는 페닐렌기이며, 카르보닐기, 에스테르기, 에테르기 또는 히드록시기를 포함하고 있더라도 좋다. M-는 비구핵성 대향 이온을 나타낸다)
한편, 0≤d1≤0.5, 0≤d2≤0.5, 0≤d3≤0.5, 0≤d1+d2+d3≤0.5이며, 배합하는 경우, 0<d1+d2+d3≤0.5이고, 0.2≤a+b1+b2+c+d1+d2+d3≤1.0인 것이 바람직하다.
폴리머 주쇄에 산발생제를 결합시킴으로써 산 확산을 작게 하여, 산 확산의 흐려짐에 의한 해상성 저하를 방지할 수 있다. 또한, 산발생제가 균일하게 분산됨으로써 엣지 거칠기(LER, LWR)가 개선된다.
M-의 비구핵성 대향 이온으로서는, 염화물 이온, 브롬화물 이온 등의 할라이드 이온, 트리플레이트, 1,1,1-트리플루오로에탄술포네이트, 노나플루오로부탄술포네이트 등의 플루오로알킬술포네이트, 토실레이트, 벤젠술포네이트, 4-플루오로벤젠술포네이트, 1,2,3,4,5-펜타플루오로벤젠술포네이트 등의 아릴술포네이트, 메실레이트, 부탄술포네이트 등의 알킬술포네이트, 비스(트리플루오로메틸술포닐)이미드, 비스(퍼플루오로에틸술포닐)이미드, 비스(퍼플루오로부틸술포닐)이미드 등의 이미드산, 트리스(트리플루오로메틸술포닐)메티드, 트리스(퍼플루오로에틸술포닐)메티드 등의 메티드산을 들 수 있다.
나아가서는, 하기 일반식(K-1)에 나타내어지는 α 위치가 플루오로 치환된 술포네이트, 하기 일반식(K-2)에 나타내어지는 α, β 위치가 플루오로 치환된 술포네이트를 들 수 있다.
Figure 112013042463355-pat00064
일반식(K-1)에서, R102는 수소 원자, 탄소수 1∼20의 직쇄상, 분기상 또는 환상의 알킬기, 탄소수 2∼20의 알케닐기 또는 탄소수 6∼20의 아릴기이며, 에테르기, 에스테르기, 카르보닐기, 락톤환 또는 불소 원자를 갖고 있더라도 좋다.
일반식(K-2)에서, R103은 수소 원자, 탄소수 1∼30의 직쇄상, 분기상 또는 환상의 알킬기, 아실기, 탄소수 2∼20의 알케닐기, 탄소수 6∼20의 아릴기 또는 아릴옥시기이며, 에테르기, 에스테르기, 카르보닐기 또는 락톤환을 갖고 있더라도 좋다.
한편, 상기 식(3)의 어느 한 반복 단위를 공중합한 고분자 화합물을 레지스트 재료의 베이스 수지에 이용한 경우, 후술하는 광산발생제의 배합을 생략할 수 있다.
또한, 하기 일반식(4)에 나타내어지는 인덴 e1, 아세나프틸렌 e2, 크로몬 e3, 쿠마린 e4, 노르보르나디엔 e5 등의 반복 단위 e를 공중합할 수도 있다.
Figure 112013042463355-pat00065
(식에서, R110∼R114는 수소 원자, 탄소수 1∼30의 알킬기, 일부 또는 모두가 할로겐 원자로 치환된 알킬기, 히드록시기, 알콕시기, 알카노일기, 알콕시카르보닐기, 탄소수 6∼10의 아릴기, 할로겐 원자 또는 1,1,1,3,3,3-헥사플루오로-2-프로판올기이다. X0은 메틸렌기, 산소 원자 또는 황 원자이다. e1은 0≤e1≤0.5, e2는 0≤e2≤0.5, e3은 0≤e3≤0.5, e4는 0≤e4≤0.5, e5는 0≤e5≤0.5, 0<e1+e2+e3+e4+e5≤0.5이다)
반복 단위 a, b, c, d, e 이외에 공중합할 수 있는 반복 단위 f로서는, 스티렌, 비닐나프탈렌, 비닐안트라센, 비닐피렌, 메틸렌인단 등에 유래하는 반복 단위를 들 수 있다.
이들 고분자 화합물을 합성하기 위해서는, 하나의 방법으로서, 반복 단위 a∼f를 부여하는 모노머 중 원하는 모노머를, 유기 용제 중에, 라디칼 중합개시제를 가하여 가열 중합을 하여, 공중합체의 고분자 화합물을 얻을 수 있다.
중합시에 사용하는 유기 용제로서는 톨루엔, 벤젠, 테트라히드로푸란, 디에틸에테르, 디옥산, 시클로헥산, 시클로펜탄, 메틸에틸케톤, γ-부티로락톤 등을 예시할 수 있다. 중합개시제로서는 2,2'-아조비스이소부티로니트릴(AIBN), 2,2'-아조비스(2,4-디메틸발레로니트릴), 디메틸2,2-아조비스(2-메틸프로피오네이트), 벤조일퍼옥사이드, 라우로일퍼옥사이드 등을 예시할 수 있고, 바람직하게는 50∼80℃로 가열하여 중합할 수 있다. 반응 시간은 2∼100시간, 바람직하게는 5∼20시간이다.
히드록시스티렌, 히드록시비닐나프탈렌을 공중합하는 경우는, 히드록시스티렌, 히드록시비닐나프탈렌 대신에 아세톡시스티렌, 아세톡시비닐나프탈렌을 이용하여, 중합 후 상기 알칼리 가수분해에 의해서 아세톡시기를 탈보호하여 폴리히드록시스티렌, 히드록시폴리비닐나프탈렌으로 하는 방법도 있다.
알칼리 가수분해시의 염기로서는 암모니아수, 트리에틸아민 등을 사용할 수 있다. 또한 반응 온도는 -20∼100℃, 바람직하게는 0∼60℃이며, 반응 시간은 0.2∼100시간, 바람직하게는 0.5∼20시간이다.
여기서, 반복 단위 a∼d의 비율은 0<a<1.0, 0≤b1<1.0, 0≤b2<1.0, 0<b1+b2<1.0, 0≤c≤0.9, 0≤d1≤0.5, 0≤d2≤0.5, 0≤d3≤0.5, 0≤d1+d2+d3≤0.5, 바람직하게는 0.02≤a≤0.8, 0≤b1≤0.8, 0≤b2≤0.8, 0.1≤b1+b2≤0.8, 0.1≤c≤0.85, 0≤d1≤0.4, 0≤d2≤0.4, 0≤d3≤0.4, 0≤d1+d2+d3≤0.4이며, 보다 바람직하게는 0.05≤a≤0.75, 0≤b1≤0.7, 0≤b2≤0.7, 0.1≤b1+b2≤0.75, 0.15≤c≤0.8, 0≤d1≤0.3, 0≤d2≤0.3, 0≤d3≤0.3, 0≤d1+d2+d3≤0.3, 더욱 바람직하게는 0.07≤a≤0.7, 0≤b1≤0.65, 0≤b2≤0.65, 0.1≤b1+b2≤0.70, 0.20≤c≤0.8, 0≤d1≤0.2, 0≤d2≤0.2, 0≤d3≤0.2, 0≤d1+d2+d3≤0.25이다.
또한, 반복 단위 e, f의 비율은, 0≤e1≤0.5, 0≤e2≤0.5, 0≤e3≤0.5, 0≤e4≤0.5, 0≤e5≤0.5, 바람직하게는 0≤e1≤0.4, 0≤e2≤0.4, 0≤e3≤0.4, 0≤e4≤0.4, 0≤e5≤0.4, 보다 바람직하게는 0≤e1≤0.3, 0≤e2≤0.3, 0≤e3≤0.3, 0≤e4≤0.3, 0≤e5≤0.3이며, 0≤f≤0.5, 바람직하게는 0≤f≤0.4, 보다 바람직하게는 0≤f≤0.3이다.
한편, a+b1+b2+c+d1+d2+d3+e1+e2+e3+e4+e5+f = 1인 것이 바람직하다.
본 발명의 레지스트 재료에 이용되는 고분자 화합물은, 각각 중량 평균 분자량이 1,000∼500,000, 바람직하게는 2,000∼30,000이다. 중량 평균 분자량이 지나치게 작으면 레지스트 재료가 내열성이 뒤떨어지는 것이 되고, 지나치게 크면 알칼리 용해성이 저하되어, 패턴 형성 후에 풋팅 현상이 일어나기 쉽게 되어 버린다.
한편, 중량 평균 분자량(Mw)은 용제로서 테트라히드로푸란(THF)을 이용한 겔 퍼미에이션 크로마토그래피(GPC)에 의한 폴리스티렌 환산 측정치이다.
또한, 본 발명의 레지스트 재료에 이용되는 고분자 화합물에 있어서는, 다성분 공중합체의 분자량 분포(Mw/Mn)가 넓은 경우는 저분자량이나 고분자량의 폴리머가 존재하기 때문에, 노광 후, 패턴 상에 이물이 보이거나, 패턴의 형상이 악화되거나 한다. 그 때문에, 패턴 룰이 미세화함에 따라서 이와 같은 분자량, 분자량 분포의 영향이 커지기 쉬우므로, 미세한 패턴 치수에 적합하게 이용되는 레지스트 재료를 얻기 위해서는, 사용하는 다성분 공중합체의 분자량 분포는 1.0∼2.0, 특히 1.0∼1.5로 협분산인 것이 바람직하다.
또한, 조성 비율이나 분자량 분포나 분자량이 다른 2개 이상의 폴리머나, 반복 단위 a를 공중합하지 않은 폴리머를 블렌드하는 것도 가능하다.
본 발명에 이용되는 고분자 화합물은 레지스트 재료의 베이스 수지로서 적합하며, 이러한 고분자 화합물을 베이스 수지로 하여, 이것에 유기 용제, 산발생제, 용해 제어제, 염기성 화합물, 계면활성제, 아세틸렌알코올 등을 목적에 따라 적절하게 조합하고 배합하여 레지스트 재료를 구성함으로써, 노광부에서는 상기 고분자 화합물이 촉매 반응에 의해 현상액에 대한 용해 속도가 가속되기 때문에, 매우 고감도의 레지스트 재료로 할 수 있어, 레지스트막의 용해 콘트라스트 및 해상성이 높고, 노광 여유도가 있어, 프로세스 적응성이 우수하고, 노광 후의 패턴 형상이 양호하면서, 보다 우수한 에칭 내성을 보이며, 특히 산 확산을 억제할 수 있으므로 조밀치수차가 작고, 이 때문에 실용성이 높아, 초LSI용 레지스트 재료로서 매우 유효한 것으로 할 수 있다.
특히, 산발생제를 함유시켜, 산 촉매 반응을 이용한 화학 증폭 레지스트 재료로 하면, 보다 고감도의 것으로 할 수 있는 동시에, 제반 특성이 한층 더 우수한 것으로 되어, 매우 유용한 것으로 된다. 산발생제로서는, 활성 광선 또는 방사선에 감응하여 산을 발생하는 화합물(광산발생제)을 들 수 있고, 광산발생제의 성분은, 고에너지선 조사에 의해 산을 발생하는 화합물이라면 어느 것이라도 상관없다. 적합한 광산발생제로서는 술포늄염, 요오드늄염, 술포닐디아조메탄, N-술포닐옥시이미드, 옥심-O-술포네이트형 산발생제 등이 있다. 이들은 단독으로 혹은 2종 이상 혼합하여 이용할 수 있다.
산발생제의 구체예는 일본 특허공개 2008-111103호 공보의 단락 [0122]∼[0142]에 기재되어 있다.
또한, 레지스트 재료에 용해 제어제를 배합함으로써, 노광부와 미노광부와의 용해 속도의 차를 한층 더 크게 할 수 있어, 해상도를 한층 더 향상시킬 수 있다.
나아가, 염기성 화합물을 첨가함으로써, 예컨대 레지스트막 중에서의 산의 확산 속도를 억제하여, 해상도를 한층 더 향상시킬 수 있고, 계면활성제를 첨가함으로써 레지스트 재료의 도포성을 한층 더 향상시키거나 혹은 제어할 수 있다.
유기 용제의 구체예로서는 일본 특허공개 2008-111103호 공보의 단락 [0144]∼[0145], 염기성 화합물로서는 단락 [0146]∼[0164], 계면활성제로서는 단락 [0165]∼[0166], 용해 제어제로서는 일본 특허공개 2008-122932호 공보의 단락 [0155]∼[0178], 아세틸렌알코올류는 단락 [0179]∼[0182]에 기재되어 있다. 일본 특허공개 2008-239918호 공보에 기재된 폴리머형의 켄처를 첨가할 수도 있다. 이것은, 코트 후의 레지스트 표면에 배향함으로써 패턴 후의 레지스트의 구형성(矩形性)을 높인다. 폴리머형의 켄처는 레지스트막 상에 보호막을 적용했을 때의 패턴의 막 감소나 패턴 톱의 라운딩을 방지하는 효과도 있다.
한편, 산발생제의 배합량은 베이스 수지 100 질량부에 대하여 0.01∼100 질량부, 특히 0.1∼80 질량부로 하는 것이 바람직하고, 유기 용제의 배합량은 베이스 수지 100 질량부에 대하여 50∼10,000 질량부, 특히 100∼5,000 질량부인 것이 바람직하다. 또한, 베이스 수지 100 질량부에 대하여, 용해 제어제는 0∼50 질량부, 특히 0∼40 질량부, 염기성 화합물은 0∼100 질량부, 특히 0.001∼50 질량부, 계면활성제는 0∼10 질량부, 특히 0.0001∼5 질량부의 배합량으로 하는 것이 바람직하다.
본 발명의 레지스트 재료, 특히 화학 증폭 포지티브형 레지스트 재료를 여러 가지 집적 회로의 제조에 이용하는 경우는, 특별히 한정되지 않지만 공지된 리소그래피 기술을 적용할 수 있다.
예컨대, 본 발명의 레지스트 재료를, 집적 회로 제조용의 기판(Si, SiO2, SiN, SiON, TiN, WSi, BPSG, SOG, 유기 반사 방지막 등) 혹은 마스크 회로 제조용의 기판(Cr, CrO, CrON, MoSi 등) 상에 스핀코트, 롤코트, 플로우코트, 딥코트, 스프레이코트, 닥터코트 등의 적당한 도포 방법에 의해 도포 막 두께가 0.1∼2.0 ㎛가 되도록 도포한다. 이것을 핫플레이트 상에서 60∼150℃, 10초∼30분간, 바람직하게는 80∼120℃, 30초∼20분간 프리베이크한다. 레지스트막 상에 보호막을 적용시키더라도 좋다. 보호막은 알칼리 현상액에 가용 타입이 바람직하며, 현상시에 레지스트 패턴의 형성과 함께 보호막 박리를 한다. 보호막은, 레지스트막으로부터의 아웃가스를 저감시키는 기능, EUV 레이저로부터 발생하는 13.5 nm 이외의 파장 140∼300 nm의 아웃오브밴드(OOB)를 컷트시키는 필터로서의 기능, 환경의 영향으로 레지스트의 형상이 T-톱이 되거나 막 감소를 일으키거나 하는 것을 막는 기능을 갖는다. 이어서, 자외선, 원자외선, 전자선, X선, 엑시머 레이저, 감마선, 싱크로트론 방사선, 진공자외선(연X선) 등의 고에너지선에서 선택되는 광원으로 목적으로 하는 패턴을 소정의 마스크를 통하여 혹은 직접 노광을 한다. 노광량은 1∼200 mJ/㎠ 정도, 특히 10∼100 mJ/㎠, 또는 0.1∼100 μC/㎠ 정도, 특히 0.5∼50 μC/㎠가 되도록 노광하는 것이 바람직하다. 이어서, 핫플레이트 상에서 60∼150℃, 10초∼30분간, 바람직하게는 80∼120℃, 30초∼20분간 포스트 익스포져 베이크(PEB)한다.
또한, 0.1∼10 질량%, 바람직하게는 2∼5 질량%의 테트라메틸암모늄히드록시드(TMAH), 테트라에틸암모늄히드록시드(TEAH), 테트라프로필암모늄히드록시드(TPAH), 테트라부틸암모늄히드록시드(TBAH) 등의 알칼리 수용액의 현상액을 이용하여, 3초∼3분간, 바람직하게는 5초∼2분간, 침지(dip)법, 퍼들(puddle)법, 스프레이(Spray)법 등의 통상의 방법에 의해 현상함으로써, 빛을 조사한 부분은 현상액에 용해되고, 노광되지 않은 부분은 용해되지 않아, 기판 상에 목적으로 하는 포지티브형의 패턴이 형성된다. 한편, 본 발명의 레지스트 재료는, 특히 고에너지선 중에서도 KrF 엑시머 레이저, ArF 엑시머 레이저, 전자선, 진공자외선(연X선), X선, 감마선, 싱크로트론 방사선에 의한 미세 패터닝에 최적이다.
일반적으로 널리 이용되고 있는 TMAH 수용액보다도, 알킬쇄를 길게 한 TEAH, TPAH, TBAH는 현상 중의 팽윤을 저감시켜 패턴의 붕괴를 막는 효과가 있다. 일본 특허 제3429592호 공보에는, 아다만탄메타크릴레이트와 같은 지환 구조를 갖는 반복 단위와, tert-부틸메타크릴레이트와 같은 산불안정기를 갖는 반복 단위를 공중합하여, 친수성기가 없고 발수성이 높은 폴리머의 현상을 위해, TBAH 수용액을 이용한 예가 제시되어 있다.
테트라메틸암모늄히드록시드(TMAH) 현상액은 2.38 질량%의 수용액이 가장 널리 이용되고 있다. 이것은 0.26 N에 상당하며, TEAH, TPAH, TBAH 수용액도 동일한 규정도인 것이 바람직하다. 0.26 N이 되는 TEAH, TPAH, TBAH의 질량은 각각 3.84 질량%, 5.31 질량%, 6.78 질량%이다.
EB, EUV로 해상되는 32 nm 이하의 패턴에 있어서, 라인이 꼬이거나, 라인끼리가 달라붙거나, 달라붙은 라인이 붕괴하거나 하는 현상이 일어나고 있다. 이것은, 현상액 중에 팽윤하여 팽창된 라인끼리가 달라붙는 것이 원인이라고 생각된다. 팽윤된 라인은 현상액을 포함하여 스폰지와 같이 부드럽기 때문에, 린스의 응력으로 붕괴되기 쉽게 된다. 알킬쇄를 길게 한 현상액은 이와 같은 이유에서 팽윤을 막아 패턴 붕괴를 막는 효과가 있다.
유기 용제 현상에 의해서 네가티브형 패턴을 얻을 수도 있다. 현상액으로서는, 2-옥타논, 2-노나논, 2-헵타논, 3-헵타논, 4-헵타논, 2-헥사논, 3-헥사논, 디이소부틸케톤, 메틸시클로헥사논, 아세토페논, 메틸아세토페논, 아세트산프로필, 아세트산부틸, 아세트산이소부틸, 아세트산아밀, 아세트산부테닐, 아세트산이소아밀, 아세트산페닐, 포름산프로필, 포름산부틸, 포름산이소부틸, 포름산아밀, 포름산이소아밀, 발레르산메틸, 펜텐산메틸, 크로톤산메틸, 크로톤산에틸, 프로피온산메틸, 프로피온산에틸, 3-에톡시프로피온산에틸, 젖산메틸, 젖산에틸, 젖산프로필, 젖산부틸, 젖산이소부틸, 젖산아밀, 젖산이소아밀, 2-히드록시이소부티르산메틸, 2-히드록시이소부티르산에틸, 안식향산메틸, 안식향산에틸, 아세트산벤질, 페닐아세트산메틸, 포름산벤질, 포름산페닐에틸, 3-페닐프로피온산메틸, 프로피온산벤질, 페닐아세트산에틸, 아세트산2-페닐에틸에서 선택되는 1종 이상을 들 수 있다.
현상의 종료시에는 린스를 한다. 린스액으로서는, 현상액과 혼용(混溶)하여, 레지스트막을 용해시키지 않는 용제가 바람직하다. 이러한 용제로서는, 탄소수 3∼10의 알코올, 탄소수 8∼12의 에테르 화합물, 탄소수 6∼12의 알칸, 알켄, 알킨, 방향족계의 용제가 바람직하게 이용된다.
구체적으로, 탄소수 6∼12의 알칸으로서는, 헥산, 헵탄, 옥탄, 노난, 데칸, 운데칸, 도데칸, 메틸시클로펜탄, 디메틸시클로펜탄, 시클로헥산, 메틸시클로헥산, 디메틸시클로헥산, 시클로헵탄, 시클로옥탄, 시클로노난 등을 들 수 있다. 탄소수 6∼12의 알켄으로서는, 헥센, 헵텐, 옥텐, 시클로헥센, 메틸시클로헥센, 디메틸시클로헥센, 시클로헵텐, 시클로옥텐 등을 들 수 있고, 탄소수 6∼12의 알킨으로서는, 헥신, 헵틴, 옥틴 등을 들 수 있고, 탄소수 3∼10의 알코올로서는, n-프로필알코올, 이소프로필알코올, 1-부틸알코올, 2-부틸알코올, 이소부틸알코올, tert-부틸알코올, 1-펜탄올, 2-펜탄올, 3-펜탄올, tert-아밀알코올, 네오펜틸알코올, 2-메틸-1-부탄올, 3-메틸-1-부탄올, 3-메틸-3-펜탄올, 시클로펜탄올, 1-헥산올, 2-헥산올, 3-헥산올, 2,3-디메틸-2-부탄올, 3,3-디메틸-1-부탄올, 3,3-디메틸-2-부탄올, 2-에틸-1-부탄올, 2-메틸-1-펜탄올, 2-메틸-2-펜탄올, 2-메틸-3-펜탄올, 3-메틸-1-펜탄올, 3-메틸-2-펜탄올, 3-메틸-3-펜탄올, 4-메틸-1-펜탄올, 4-메틸-2-펜탄올, 4-메틸-3-펜탄올, 시클로헥산올, 1-옥탄올 등을 들 수 있다.
탄소수 8∼12의 에테르 화합물로서는, 디-n-부틸에테르, 디이소부틸에테르, 디-sec-부틸에테르, 디-n-펜틸에테르, 디이소펜틸에테르, 디-sec-펜틸에테르, 디-tert-아밀에테르, 디-n-헥실에테르에서 선택되는 1종 이상의 용제를 들 수 있다.
전술한 용제에 더하여 톨루엔, 크실렌, 에틸벤젠, 이소프로필벤젠, tert-부틸벤젠, 메시틸렌 등의 방향족계 용제를 이용할 수도 있다.
현상 후의 레지스트 패턴을 마스크로 하여 드라이 에칭에 의해서 하지를 가공한다. 하지는, 유기 반사 방지막, SOG막, Si, SiO2, SiON, SiN, p-Si, α-Si, W, W-Si, Al, Cu, Al-Si 등 및 여러 가지 저유전막 및 그 에칭 스토퍼막 혹은 Fin-FET의 단차 기판이 이용되며, 통상 2∼10,000 nm, 특히 3∼5,000 nm 두께로 형성할 수 있다. 본 발명의 레지스트 패턴을 마스크로 하여 이온을 주입하더라도 좋다. 특히, 본 발명의 메타크릴레이트 베이스의 레지스트는, 이온을 주입할 때의 가교가 일어나지 않기 때문에, 이온 주입 후의 박리가 용이하다. 더욱이, 본 발명의 치환된 페놀기를 갖는 메타크릴레이트를 공중합하는 레지스트는, 무치환의 페놀기를 갖는 메타크릴레이트 공중합품에 비해서 현상 후의 패턴의 막 감소를 억제할 수 있어, 이온 주입용의 양호한 패턴을 형성할 수 있다.
실시예
이하, 합성예, 비교 합성예 및 실시예, 비교예를 나타내어 본 발명을 구체적으로 설명하지만, 본 발명은 하기의 실시예에 제한되는 것은 아니다.
한편, 중량 평균 분자량(Mw)은 용제로서 테트라히드로푸란(THF)을 이용한 겔 퍼미에이션 크로마토그래피(GPC)에 의한 폴리스티렌 환산 측정치이다.
또한, 하기 합성예에서 이용한 모노머 1∼13, 밀착성 모노머 1, 2 및 PAG 모노머 1∼6는 다음과 같다.
Figure 112013042463355-pat00066
모노머 1: 메타크릴산(4-히드록시-2-아세틸페닐):메타크릴산(4-히드록시-3-아세틸페닐) 50:50(몰비) 혼합
모노머 2: 메타크릴산(3-히드록시-4-아세틸페닐):메타크릴산(3-히드록시-6-아세틸페닐) 50:50(몰비) 혼합
모노머 3: 메타크릴산(3-히드록시-5-아세틸페닐)
모노머 4: 메타크릴산(3-히드록시-2-아세틸페닐)
모노머 5: 메타크릴산(3-히드록시-5-아세톡시페닐)
모노머 6: 메타크릴산(4-히드록시-2-메톡시카르보닐페닐):메타크릴산(4-히드록시-3-메톡시카르보닐페닐) 50:50(몰비) 혼합
모노머 7: 메타크릴산(3-히드록시-4-메톡시카르보닐페닐):메타크릴산(3-히드록시-6-메톡시카르보닐페닐) 50:50(몰비) 혼합
모노머 8: 메타크릴산(3-히드록시-5-메톡시카르보닐페닐)
모노머 9: 메타크릴산(3-히드록시-2-메톡시카르보닐페닐)
모노머 10: 메타크릴산(3-히드록시-5-에티닐옥시카르보닐페닐)
모노머 11: 메타크릴산(3-히드록시-5-시아노페닐)
모노머 12: 메타크릴산(4-히드록시-2,3-디시아노페닐)
모노머 13: 메타크릴산(3-히드록시-2-니트로페닐)
Figure 112013042463355-pat00067
밀착성 모노머 1: 메타크릴산(2-옥소-1,3-벤조옥사티올-5-일)
밀착성 모노머 2: 메타크릴산(2-옥소-2,3-디히드로벤조옥사졸-5-일)
Figure 112013042463355-pat00068
PAG 모노머 1: 트리페닐술포늄 1,1,3,3,3-펜타플루오로-2-메타크릴로일옥시프로판-1-술포네이트
PAG 모노머 2: 5-페닐디벤조티오페늄 1,1,3,3,3-펜타플루오로-2-(메타크릴로일옥시)프로판-1-술포네이트
PAG 모노머 3: 10-페닐페녹사티이늄 1,1,3,3,3-펜타플루오로-2-(메타크릴로일옥시)프로판-1-술포네이트
PAG 모노머 4: 트리페닐술포늄 1,1,3,3,3-펜타플루오로-2-(3-메타크릴로일옥시-아다만탄-1-카르보닐옥시)-프로판-1-술포네이트
PAG 모노머 5: 5-페닐디벤조티오페늄 1,1,3,3,3-펜타플루오로-2-(3-메타크릴로일옥시-아다만탄-1-카르보닐옥시)-프로판-1-술포네이트
PAG 모노머 6: 10-페닐페녹사티이늄 1,1,3,3,3-펜타플루오로-2-(3-메타크릴로일옥시-아다만탄-1-카르보닐옥시)-프로판-1-술포네이트
[합성예 1]
2 L의 플라스크에 메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐을 8.2 g, 모노머 1를 15.4 g, 용제로서 테트라히드로푸란을 40 g 첨가했다. 이 반응 용기를 질소 분위기 하에, -70℃까지 냉각하여, 감압 탈기, 질소 블로우를 3회 반복했다. 실온까지 승온 후, 중합개시제로서 AIBN(아조비스이소부티로니트릴)을 1.2 g 가하고, 60℃까지 승온 후, 15시간 반응시켰다. 이 반응 용액을 이소프로필알코올 1 L 용액 중에 침전시켜, 얻어진 백색 고체를 여과 후, 60℃에서 감압 건조하여, 백색 중합체를 얻었다.
얻어진 중합체를 13C, 1H-NMR 및 GPC 측정한 바, 이하의 분석 결과가 되었다.
공중합 조성비(몰비)
메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐:모노머 1 = 0.30:0.70
중량 평균 분자량(Mw) = 10,300
분자량 분포(Mw/Mn) = 1.79
이 고분자 화합물을 (폴리머 1)로 한다.
Figure 112013042463355-pat00069
[합성예 2]
2 L의 플라스크에 메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐을 6.3 g, 모노머 2를 6.6 g, 인덴을 1.7 g, 4-아세톡시스티렌을 6.0 g, 용제로서 테트라히드로푸란을 40 g 첨가했다. 이 반응 용기를 질소 분위기 하에, -70℃까지 냉각하여, 감압 탈기, 질소 블로우를 3회 반복했다. 실온까지 승온 후, 중합개시제로서 AIBN(아조비스이소부티로니트릴)을 1.2 g 가하고, 60℃까지 승온 후, 15시간 반응시켰다. 이 반응 용액을 이소프로필알코올 1 L 용액 중에 침전시켜, 얻어진 백색 고체를 메탄올 100 mL 및 테트라히드로푸란 200 mL의 혼합 용제에 재차 용해하고, 트리에틸아민 10 g, 물 10 g을 가하여, 70℃에서 5시간 아세틸기의 탈보호 반응을 행하고, 아세트산을 이용하여 중화했다. 반응 용액을 농축 후, 아세톤 100 mL에 용해하여, 상기와 같은 침전, 여과, 60℃에서 건조하여, 백색 중합체를 얻었다.
얻어진 중합체를 13C, 1H-NMR 및 GPC 측정한 바, 이하의 분석 결과가 되었다.
공중합 조성비(몰비)
메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐:모노머 2:인덴:4-히드록시스티렌 = 0.23:0.30:0.10:0.37
중량 평균 분자량(Mw) = 8,300
분자량 분포(Mw/Mn) = 1.86
이 고분자 화합물을 (폴리머 2)로 한다.
Figure 112013042463355-pat00070
[합성예 3]
2 L의 플라스크에 메타크릴산2에틸-2-아다만틸 6.2 g, 모노머 3을 6.6 g, 아세나프틸렌을 1.7 g, 4-아세톡시스티렌을 6.0 g, 용제로서 테트라히드로푸란을 40 g 첨가했다. 이 반응 용기를 질소 분위기 하에, -70℃까지 냉각하여, 감압 탈기, 질소 블로우를 3회 반복했다. 실온까지 승온 후, 중합개시제로서 AIBN(아조비스이소부티로니트릴)을 1.2 g 가하고, 60℃까지 승온 후, 15시간 반응시켰다. 이 반응 용액을 이소프로필알코올 1 L 용액 중에 침전시켜, 얻어진 백색 고체를 메탄올 100 mL 및 테트라히드로푸란 200 mL의 혼합 용제에 재차 용해하고, 트리에틸아민 10 g, 물 10 g을 가하여, 70℃에서 5시간 아세틸기의 탈보호 반응을 행하고, 아세트산을 이용하여 중화했다. 반응 용액을 농축 후, 아세톤 100 mL에 용해하여, 상기와 같은 침전, 여과, 60℃에서 건조를 하여, 백색 중합체를 얻었다.
얻어진 중합체를 13C, 1H-NMR 및 GPC 측정한 바, 이하의 분석 결과가 되었다.
공중합 조성비(몰비)
메타크릴산2에틸-2-아다만틸:모노머 3:아세나프틸렌:4-히드록시스티렌 = 0.25:0.30:0.10:0.35
중량 평균 분자량(Mw) = 9,100
분자량 분포(Mw/Mn) = 1.79
이 고분자 화합물을 (폴리머 3)으로 한다.
Figure 112013042463355-pat00071
[합성예 4]
2 L의 플라스크에 메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐을 8.2 g, 모노머 4를 4.4 g, 메타크릴산5-옥소-4-옥사트리시클로[4.2.1.03,7]노난-2-일을 11.1 g, 용제로서 테트라히드로푸란을 40 g 첨가했다. 이 반응 용기를 질소 분위기 하에, -70℃까지 냉각하여, 감압 탈기, 질소 블로우를 3회 반복했다. 실온까지 승온 후, 중합개시제로서 AIBN(아조비스이소부티로니트릴)을 1.2 g 가하고, 60℃까지 승온 후, 15시간 반응시켰다. 이 반응 용액을 이소프로필알코올 1 L 용액 중에 침전시켜, 얻어진 백색 고체를 여과 후, 60℃에서 감압 건조하여, 백색 중합체를 얻었다.
얻어진 중합체를 13C, 1H-NMR 및 GPC 측정한 바, 이하의 분석 결과가 되었다.
공중합 조성비(몰비)
메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐:모노머 4:메타크릴산5-옥소-4-옥사트리시클로[4.2.1.03,7]노난-2-일 = 0.30:0.20:0.50
중량 평균 분자량(Mw) = 7,800
분자량 분포(Mw/Mn) = 1.89
이 고분자 화합물을 (폴리머 4)로 한다.
Figure 112013042463355-pat00072
[합성예 5]
2 L의 플라스크에 메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐을 8.2 g, 모노머 3을 6.6 g, 밀착성 모노머 1을 7.1 g, PAG 모노머 1을 5.6 g, 용제로서 테트라히드로푸란을 40 g 첨가했다. 이 반응 용기를 질소 분위기 하에, -70℃까지 냉각하여, 감압 탈기, 질소 블로우를 3회 반복했다. 실온까지 승온 후, 중합개시제로서 AIBN(아조비스이소부티로니트릴)을 1.2 g 가하고, 60℃까지 승온 후, 15시간 반응시켰다. 이 반응 용액을 이소프로필알코올 1 L 용액 중에 침전시켜, 얻어진 백색 고체를 여과 후, 60℃에서 감압 건조하여, 백색 중합체를 얻었다.
얻어진 중합체를 13C, 1H-NMR 및 GPC 측정한 바, 이하의 분석 결과가 되었다.
공중합 조성비(몰비)
메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐:모노머 3:밀착성 모노머 1:PAG 모노머 1 = 0.30:0.30:0.30:0.10
중량 평균 분자량(Mw) = 7,000
분자량 분포(Mw/Mn) = 1.79
이 고분자 화합물을 (폴리머 5)로 한다.
Figure 112013042463355-pat00073
[합성예 6]
2 L의 플라스크에 메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐을 8.2 g, 모노머 3을 8.8 g, 밀착성 모노머 2를 4.4 g, PAG 모노머 1을 5.6 g, 용제로서 테트라히드로푸란을 40 g 첨가했다. 이 반응 용기를 질소 분위기 하에, -70℃까지 냉각하여, 감압 탈기, 질소 블로우를 3회 반복했다. 실온까지 승온 후, 중합개시제로서 AIBN(아조비스이소부티로니트릴)을 1.2 g 가하고, 60℃까지 승온 후, 15시간 반응시켰다. 이 반응 용액을 이소프로필알코올 1 L 용액 중에 침전시켜, 얻어진 백색 고체를 여과 후, 60℃에서 감압 건조하여, 백색 중합체를 얻었다.
얻어진 중합체를 13C, 1H-NMR 및 GPC 측정한 바, 이하의 분석 결과가 되었다.
공중합 조성비(몰비)
메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐:모노머 3:밀착성 모노머 2:PAG 모노머 1 = 0.30:0.40:0.20:0.10
중량 평균 분자량(Mw) = 7,000
분자량 분포(Mw/Mn) = 1.70
이 고분자 화합물을 (폴리머 6)으로 한다.
Figure 112013042463355-pat00074
[합성예 7]
2 L의 플라스크에 메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐을 5.5 g, 메타크릴산4-tert-부톡시페닐을 3.5 g, 모노머 3을 6.6 g, 메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일을 5.5 g, PAG 모노머 1을 5.6 g, 용제로서 테트라히드로푸란을 40 g 첨가했다. 이 반응 용기를 질소 분위기 하에, -70℃까지 냉각하여, 감압 탈기, 질소 블로우를 3회 반복했다. 실온까지 승온 후, 중합개시제로서 AIBN(아조비스이소부티로니트릴)을 1.2 g 가하고, 60℃까지 승온 후, 15시간 반응시켰다. 이 반응 용액을 이소프로필알코올 1 L 용액 중에 침전시켜, 얻어진 백색 고체를 여과 후, 60℃에서 감압 건조하여, 백색 중합체를 얻었다.
얻어진 중합체를 13C, 1H-NMR 및 GPC 측정한 바, 이하의 분석 결과가 되었다.
공중합 조성비(몰비)
메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐:메타크릴산4-tert-부톡시페닐:모노머 3: 메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일:PAG 모노머 1 = 0.20:0.15:0.30:0.25:0.10
중량 평균 분자량(Mw) = 7,800
분자량 분포(Mw/Mn) = 1.77
이 고분자 화합물을 (폴리머 7)로 한다.
Figure 112013042463355-pat00075
[합성예 8]
2 L의 플라스크에 메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐을 5.5 g, tert-아밀옥시스티렌을 2.9 g, 모노머 4를 7.7 g, 메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일을 4.4 g, PAG 모노머 2를 5.6 g, 용제로서 테트라히드로푸란을 40 g 첨가했다. 이 반응 용기를 질소 분위기 하에, -70℃까지 냉각하여, 감압 탈기, 질소 블로우를 3회 반복했다. 실온까지 승온 후, 중합개시제로서 AIBN(아조비스이소부티로니트릴)을 1.2 g 가하고, 60℃까지 승온 후, 15시간 반응시켰다. 이 반응 용액을 이소프로필알코올 1 L 용액 중에 침전시켜, 얻어진 백색 고체를 여과 후, 60℃에서 감압 건조하여, 백색 중합체를 얻었다.
얻어진 중합체를 13C, 1H-NMR 및 GPC 측정한 바, 이하의 분석 결과가 되었다.
공중합 조성비(몰비)
메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐:tert-아밀옥시스티렌:모노머 4:메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일:PAG 모노머 2 = 0.20:0.15:0.35:0.20:0.10
중량 평균 분자량(Mw) = 9,100
분자량 분포(Mw/Mn) = 1.91
이 고분자 화합물을 (폴리머 8)로 한다.
Figure 112013042463355-pat00076
[합성예 9]
2 L의 플라스크에 메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5,17,10]도데카닐을 5.5 g, 6-tert-부톡시-2-비닐나프탈렌을 3.6 g, 모노머 5를 8.3 g, 메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일을 4.4 g, PAG 모노머 3을 5.7 g, 용제로서 테트라히드로푸란을 40 g 첨가했다. 이 반응 용기를 질소 분위기 하에, -70℃까지 냉각하여, 감압 탈기, 질소 블로우를 3회 반복했다. 실온까지 승온 후, 중합개시제로서 AIBN(아조비스이소부티로니트릴)을 1.2 g 가하고, 60℃까지 승온 후, 15시간 반응시켰다. 이 반응 용액을 이소프로필알코올 1 L 용액 중에 침전시켜, 얻어진 백색 고체를 여과 후, 60℃에서 감압 건조하여, 백색 중합체를 얻었다.
얻어진 중합체를 13C, 1H-NMR 및 GPC 측정한 바, 이하의 분석 결과가 되었다.
공중합 조성비(몰비)
메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐:6-tert-부톡시-2-비닐나프탈렌:모노머 5:메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일:PAG 모노머 3 = 0.20:0.15:0.35:0.20:0.10
중량 평균 분자량(Mw) = 9,500
분자량 분포(Mw/Mn) = 1.91
이 고분자 화합물을 (폴리머 9)로 한다.
Figure 112013042463355-pat00077
[합성예 10]
2 L의 플라스크에 메타크릴산6,7,8,9-테트라히드로-5H-벤조시클로헵텐-5-일을 6.9 g, 모노머 6을 7.1 g, 메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일을 6.6 g, PAG 모노머 1을 5.6 g, 용제로서 테트라히드로푸란을 40 g 첨가했다. 이 반응 용기를 질소 분위기 하에, -70℃까지 냉각하여, 감압 탈기, 질소 블로우를 3회 반복했다. 실온까지 승온 후, 중합개시제로서 AIBN(아조비스이소부티로니트릴)을 1.2 g 가하고, 60℃까지 승온 후, 15시간 반응시켰다. 이 반응 용액을 이소프로필알코올 1 L 용액 중에 침전시켜, 얻어진 백색 고체를 여과 후, 60℃에서 감압 건조하여, 백색 중합체를 얻었다.
얻어진 중합체를 13C, 1H-NMR 및 GPC 측정한 바, 이하의 분석 결과가 되었다.
공중합 조성비(몰비)
메타크릴산6,7,8,9-테트라히드로-5H-벤조시클로헵텐-5-일:모노머 6:메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일:PAG 모노머 1 = 0.30:0.30:0.30:0.10
중량 평균 분자량(Mw) = 9,300
분자량 분포(Mw/Mn) = 1.83
이 고분자 화합물을 (폴리머 10)으로 한다.
Figure 112013042463355-pat00078
[합성예 11]
2 L의 플라스크에 메타크릴산1-(아다만탄-1-일)-1-메틸에틸을 5.2 g, tert-아밀옥시스티렌을 2.9 g, 모노머 7을 7.1 g, 메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일을 4.5 g, PAG 모노머 4를 11.0 g, 용제로서 테트라히드로푸란을 40 g 첨가했다. 이 반응 용기를 질소 분위기 하에, -70℃까지 냉각하여, 감압 탈기, 질소 블로우를 3회 반복했다. 실온까지 승온 후, 중합개시제로서 AIBN(아조비스이소부티로니트릴)을 1.2 g 가하고, 60℃까지 승온 후, 15시간 반응시켰다. 이 반응 용액을 이소프로필알코올 1 L 용액 중에 침전시켜, 얻어진 백색 고체를 여과 후, 60℃에서 감압 건조하여, 백색 중합체를 얻었다.
얻어진 중합체를 13C, 1H-NMR 및 GPC 측정한 바, 이하의 분석 결과가 되었다.
공중합 조성비(몰비)
메타크릴산1-(아다만탄-1-일)-1-메틸에틸:tert-아밀옥시시스티렌:모노머 7:메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일:PAG 모노머 4 = 0.20:0.15:0.30:0.20:0.15
중량 평균 분자량(Mw) = 9,100
분자량 분포(Mw/Mn) = 1.84
이 고분자 화합물을 (폴리머 11)로 한다.
Figure 112013042463355-pat00079
[합성예 12]
2 L의 플라스크에 메타크릴산1-(아다만탄-1-일)-1-메틸에틸을 5.2 g, tert-아밀옥시스티렌을 2.9 g, 모노머 8을 7.1 g, 메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일을 4.5 g, PAG 모노머 5를 11.0 g, 용제로서 테트라히드로푸란을 40 g 첨가했다. 이 반응 용기를 질소 분위기 하에, -70℃까지 냉각하여, 감압 탈기, 질소 블로우를 3회 반복했다. 실온까지 승온 후, 중합개시제로서 AIBN(아조비스이소부티로니트릴)을 1.2 g 가하고, 60℃까지 승온 후, 15시간 반응시켰다. 이 반응 용액을 이소프로필알코올 1 L 용액 중에 침전시켜, 얻어진 백색 고체를 여과 후, 60℃에서 감압 건조하여, 백색 중합체를 얻었다.
얻어진 중합체를 13C, 1H-NMR 및 GPC 측정한 바, 이하의 분석 결과가 되었다.
공중합 조성비(몰비)
메타크릴산1-(아마만탄-1-일)-1-메틸에틸:tert-아밀옥시스티렌:모노머 8:메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일:PAG 모노머 5 = 0.20:0.15:0.30:0.20:0.15
중량 평균 분자량(Mw) = 9,700
분자량 분포(Mw/Mn) = 1.78
이 고분자 화합물을 (폴리머 12)로 한다.
Figure 112013042463355-pat00080
[합성예 13]
2 L의 플라스크에 메타크릴산1-(아다만탄-1-일)-1-메틸에틸을 5.2 g, tert-아밀옥시스티렌을 2.9 g, 모노머 9를 7.8 g, 메타크릴산-2-옥소옥솔란-3-일을 3.4 g, PAG 모노머 6을 11.0 g, 용제로서 테트라히드로푸란을 40 g 첨가했다. 이 반응 용기를 질소 분위기 하에, -70℃까지 냉각하여, 감압 탈기, 질소 블로우를 3회 반복했다. 실온까지 승온 후, 중합개시제로서 AIBN(아조비스이소부티로니트릴)을 1.2 g 가하고, 60℃까지 승온 후, 15시간 반응시켰다. 이 반응 용액을 이소프로필알코올 1 L 용액 중에 침전시켜, 얻어진 백색 고체를 여과 후, 60℃에서 감압 건조하여, 백색 중합체를 얻었다.
얻어진 중합체를 13C, 1H-NMR 및 GPC 측정한 바, 이하의 분석 결과가 되었다.
공중합 조성비(몰비)
메타크릴산1-(아다만탄-1-일)-1-메틸에틸:tert-아밀옥시스티렌:모노머 9:메타크릴산-2-옥소옥솔란-3-일:PAG 모노머 6 = 0.20:0.15:0.30:0.20:0.15
중량 평균 분자량(Mw) = 8,700
분자량 분포(Mw/Mn) = 1.88
이 고분자 화합물을 (폴리머 13)으로 한다.
Figure 112013042463355-pat00081
[합성예 14]
2 L의 플라스크에 메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐을 8.2 g, 모노머 10을 7.4 g, 메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일을 6.7 g, PAG 모노머 1을 5.6 g, 용제로서 테트라히드로푸란을 40 g 첨가했다. 이 반응 용기를 질소 분위기 하에, -70℃까지 냉각하여, 감압 탈기, 질소 블로우를 3회 반복했다. 실온까지 승온 후, 중합개시제로서 AlBN(아조비스이소부티로니트릴)을 1.2 g 가하고, 60℃까지 승온 후, 15시간 반응시켰다. 이 반응 용액을 이소프로필알코올 1 L 용액 중에 침전시켜, 얻어진 백색 고체를 여과 후, 60℃에서 감압 건조하여, 백색 중합체를 얻었다.
얻어진 중합체를 13C, 1H-NMR 및 GPC 측정한 바, 이하의 분석 결과가 되었다.
공중합 조성비(몰비)
메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐:모노머 10:메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일:PAG 모노머 1 = 0.30:0.30:0.30:0.10
중량 평균 분자량(Mw) = 7,800
분자량 분포(Mw/Mn) = 1.88
이 고분자 화합물을 (폴리머 14)로 한다.
Figure 112013042463355-pat00082
[합성예 15]
2 L의 플라스크에 메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐을 8.2 g, 모노머 11을 6.1 g, 메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일을 6.7 g, PAG 모노머 1을 5.6 g, 용제로서 테트라히드로푸란을 40 g 첨가했다. 이 반응 용기를 질소 분위기 하에, -70℃까지 냉각하여, 감압 탈기, 질소 블로우를 3회 반복했다. 실온까지 승온 후, 중합개시제로서 AIBN(아조비스이소부티로니트릴)을 1.2 g 가하고, 60℃까지 승온 후, 15시간 반응시켰다. 이 반응 용액을 이소프로필알코올 1 L 용액 중에 침전시켜, 얻어진 백색 고체를 여과 후, 60℃에서 감압 건조하여, 백색 중합체를 얻었다.
얻어진 중합체를 13C, 1H-NMR 및 GPC 측정한 바, 이하의 분석 결과가 되었다.
공중합 조성비(몰비)
메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐:모노머 11:메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일:PAG 모노머 1 = 0.30:0.30:0.30:0.10
중량 평균 분자량(Mw) = 7,300
분자량 분포(Mw/Mn) = 1.82
이 고분자 화합물을 (폴리머 15)로 한다.
Figure 112013042463355-pat00083
[합성예 16]
2 L의 플라스크에 메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐을 8.2 g, 모노머 12를 6.8 g, 메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일을 6.7 g, PAG 모노머 1을 5.6 g, 용제로서 테트라히드로푸란을 40 g 첨가했다. 이 반응 용기를 질소 분위기 하에, -70℃까지 냉각하여, 감압 탈기, 질소 블로우를 3회 반복했다. 실온까지 승온 후, 중합개시제로서 AIBN(아조비스이소부티로니트릴)을 1.2 g 가하고, 60℃까지 승온 후, 15시간 반응시켰다. 이 반응 용액을 이소프로필알코올 1 L 용액 중에 침전시켜, 얻어진 백색 고체를 여과 후, 60℃에서 감압 건조하여, 백색 중합체를 얻었다.
얻어진 중합체를 13C, 1H-NMR 및 GPC 측정한 바, 이하의 분석 결과가 되었다.
공중합 조성비(몰비)
메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐:모노머 12:메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일:PAG 모노머 1 = 0.30:0.30:0.30:0.10
중량 평균 분자량(Mw) = 7,300
분자량 분포(Mw/Mn) = 1.82
이 고분자 화합물을 (폴리머 16)으로 한다.
Figure 112013042463355-pat00084
[합성예 17]
2 L의 플라스크에 메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐을 8.2 g, 모노머 13을 6.7 g, 메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일을 6.7 g, PAG 모노머 1을 5.6 g, 용제로서 테트라히드로푸란을 40 g 첨가했다. 이 반응 용기를 질소 분위기 하에, -70℃까지 냉각하여, 감압 탈기, 질소 블로우를 3회 반복했다. 실온까지 승온 후, 중합개시제로서 AIBN(아조비스이소부티로니트릴)을 1.2 g 가하고, 60℃까지 승온 후, 15시간 반응시켰다. 이 반응 용액을 이소프로필알코올 1 L 용액 중에 침전시켜, 얻어진 백색 고체를 여과 후, 60℃에서 감압 건조하여, 백색 중합체를 얻었다.
얻어진 중합체를 13C, 1H-NMR 및 GPC 측정한 바, 이하의 분석 결과가 되었다.
공중합 조성비(몰비)
메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐:모노머 13:메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일:PAG 모노머 1 = 0.30:0.30:0.30:0.10
중량 평균 분자량(Mw) = 7,600
분자량 분포(Mw/Mn) = 1.88
이 고분자 화합물을 (폴리머 17)로 한다.
Figure 112013042463355-pat00085
[비교 합성예 1]
상기 합성예와 같은 방법으로 하기 폴리머를 합성했다.
공중합 조성비(몰비)
메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐:메타크릴산4-히드록시페닐 = 0.30:0.70
중량 평균 분자량(Mw) = 9,900
분자량 분포(Mw/Mn) = 1.99
이 고분자 화합물을 (비교 폴리머 1)로 한다.
Figure 112013042463355-pat00086
[비교 합성예 2]
상기 합성예와 같은 방법으로 하기 폴리머를 합성했다.
공중합 조성비(몰비)
메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,517,10]도데카닐:4-메톡시-3-히드록시스티렌 = 0.30:0.70
중량 평균 분자량(Mw) = 9,700
분자량 분포(Mw/Mn) = 1.79
이 고분자 화합물을 (비교 폴리머 2)로 한다.
Figure 112013042463355-pat00087
[비교 합성예 3]
상기 합성예와 같은 방법으로 하기 폴리머를 합성했다.
공중합 조성비(몰비)
메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐:4-히드록시-3,5-디메틸벤질메타크릴아미드 = 0.30:0.70
중량 평균 분자량(Mw) = 9,300
분자량 분포(Mw/Mn) = 1.72
이 고분자 화합물을 (비교 폴리머 3)으로 한다.
Figure 112013042463355-pat00088
[비교 합성예 4]
상기 합성예와 같은 방법으로 하기 폴리머를 합성했다.
공중합 조성비(몰비)
메타크릴산3-에틸-3-엑소테트라시클로[4.4.0.12,5.17,10]도데카닐:메타크릴산4-히드록시페닐:메타크릴산3-옥소-2,7-디옥사트리시클로[4.2.1.04,8]노난-9-일:PAG 모노머 1 = 0.30:0.20:0.40:0.10
중량 평균 분자량(Mw) = 7,300
분자량 분포(Mw/Mn) = 1.88
이 고분자 화합물을 (비교 폴리머 4)로 한다.
Figure 112013042463355-pat00089
[실시예, 비교예]
상기에서 합성한 고분자 화합물을 이용하여, 계면활성제로서 스미토모쓰리엠(주) 제조 계면활성제인 FC-4430을 100 ppm 용해시킨 용제에 표 1, 2에 나타내는 조성으로 용해시킨 용액을, 0.2 ㎛ 사이즈의 필터로 여과하여 포지티브형 레지스트 재료를 조제했다.
하기 표에서의 각 조성은 다음과 같다.
폴리머 1∼17: 상기 합성예 1∼17에서 얻어진 고분자 화합물
비교 폴리머 1∼4: 상기 비교 합성예 1∼4에서 얻어진 고분자 화합물
유기 용제: PGMEA(프로필렌글리콜모노메틸에테르아세테이트)
PGME(프로필렌글리콜모노메틸에테르)
CyH(시클로헥사논)
CyP(시클로펜타논)
산발생제: PAG 1, PAG 2(하기 구조식 참조)
Figure 112013042463355-pat00090
염기성 화합물: Amine 1(하기 구조식 참조)
Figure 112013042463355-pat00091
전자빔 묘화 평가
얻어진 포지티브형 레지스트 재료를 직경 6 인치Φ의 헥사메틸디실라잔(HMDS) 베이퍼 프라임 처리한 Si 기판 상에, 클린트랙 Mark 5(도쿄일렉트론(주) 제조)를 이용하여 스핀코트하고, 핫플레이트 상에서 110℃에서 60초간 프리베이크하여 100 nm의 레지스트막을 제작했다. 이것에, (주)히타치세이사쿠쇼 제조 HL-800D를 이용하여 HV 전압 50 kV로 진공 챔버내 묘화를 했다.
묘화 후 즉시 클린트랙 Mark 5(도쿄일렉트론(주) 제조)를 이용하여 핫플레이트 상에서 표 1, 2에 기재한 온도에서 60초간 포스트 익스포져 베이크(PEB)하고, 2.38 질량%의 TMAH 수용액으로 30초간 퍼들 현상을 하여, 포지티브형의 패턴을 얻었다.
얻어진 레지스트 패턴을 다음과 같이 평가했다.
100 nm의 라인&스페이스를 1:1로 해상하는 노광량에 있어서의, 최소의 치수를 해상력으로 하여, 100 nmLS의 엣지 거칠기(LWR)를 SEM으로 측정했다.
레지스트 조성과 EB 노광에 있어서의 감도, 해상도, LWR의 결과를 표 1, 2에 나타낸다.
Figure 112013042463355-pat00092
Figure 112013042463355-pat00093
EUV 노광 평가
상기에서 합성한 고분자 화합물을 이용하여, 표 3에 나타내는 조성으로 용해시킨 용액을, 0.2 ㎛ 사이즈의 필터로 여과하여 포지티브형 레지스트 재료를 조제했다.
얻어진 포지티브형 레지스트 재료를 헥사메틸디실라잔(HMDS) 베이퍼 프라임 처리한 직경 4 인치Φ의 Si 기판 상에 스핀코트하고, 핫플레이트 상에서 105℃에서 60초간 프리베이크하여 40 nm의 레지스트막을 제작했다. 이것에, NA 0.3, 다이폴 조명으로 EUV 노광을 했다.
노광 후 즉시 핫플레이트 상에서 표 3에 기재한 온도에서 60초간 포스트 익스포져 베이크(PEB)하고, 2.38 질량%의 TMAH 수용액으로 30초간 퍼들 현상을 하여, 포지티브형의 패턴을 얻었다.
얻어진 레지스트 패턴을 다음과 같이 평가했다.
30 nm의 라인&스페이스를 1:1로 해상하는 노광량에 있어서의, 최소의 치수를 해상력으로 하여, 35 nmLS의 엣지 거칠기(LWR)를 SEM으로 측정했다.
레지스트 조성과 EUV 노광에 있어서의 감도, 해상도, LWR의 결과를 표 3에 나타낸다.
Figure 112013042463355-pat00094
KrF 노광 평가
하기 표 4에 기재한 레지스트 재료를, HMDS 베이퍼 프라임 처리한 8 인치 웨이퍼 상에 도포하여, 막 두께 200 nm의 레지스트막을 제작했다. 이어서, KrF 노광 장치((주)니콘 제조; S203B, NA 0.68, σ0.75, 2/3륜체 조명, 6% 하프톤 위상 시프트)로 노광하여, 표 4에 기재한 온도에서 포스트 익스포져 베이크(PEB)하고, 2.38 질량%의 TMAH 수용액으로 30초간 현상을 하여, 포지티브형의 150 nm 라인&스페이스 패턴을 얻었다. 웨이퍼를 할단(割斷)하여, 라인&스페이스 패턴의 단면을 SEM으로 관찰했다.
레지스트 조성과 KrF 노광에 있어서의 감도, 단면 형상의 결과를 표 4에 나타낸다.
Figure 112013042463355-pat00095
표 1∼4의 결과로부터, 본 발명의 하나의 아실기, 아실옥시기 또는 알콕시카르보닐기, 시아노기, 니트로기로 치환된 히드록시페닐메타크릴레이트를 공중합한 고분자 화합물을 이용한 레지스트 재료는, 충분한 해상력과 감도와 엣지 거칠기를 만족하고 있고, 또한 산발생제를 공중합함으로써 해상도와 엣지 거칠기의 특성을 한층 더 향상시킬 수 있음을 알 수 있었다.

Claims (8)

  1. 하기 일반식(1)으로 표시되는 반복 단위 a;
    하기 일반식(2-1)으로 표시되는 산불안정기를 갖는 반복 단위 b1;
    하기 일반식(2-2)으로 표시되는 산불안정기를 갖는 반복 단위 b2;
    히드록시기, 카르복실기, 락톤환, 카르보네이트기, 티오카르보네이트기, 카르보닐기, 환상 아세탈기, 에테르기, 에스테르기, 술폰산에스테르기, 시아노기, 아미드기, -O-C(=O)-G-(G는 황 원자 또는 NH임)에서 선택되는 밀착성 기의 반복 단위 c; 및
    하기 일반식(3)으로 표시되는 술포늄염 d1∼d3에서 선택되는 하나 이상의 반복 단위를 공중합한(여기서, 0.2≤a+b1+b2+c<1.0, 0≤d1≤0.5, 0≤d2≤0.5, 0≤d3≤0.5, 0<d1+d2+d3≤0.5의 범위임), 중량 평균 분자량이 1,000∼500,000의 범위인 고분자 화합물을 베이스 수지로 하고 있는 것을 특징으로 하는 레지스트 재료.
    Figure 112017008349534-pat00100

    (식에서, R1은 -C(=O)-R3, -O-C(=O)-R3, -C(=O)-O-R3, 시아노기 또는 니트로기, R2는 수소 원자 또는 메틸기이다. R3은 동일 또는 이종의 탄소수 1∼4의 알킬기 또는 탄소수 2∼4의 알케닐기 혹은 알키닐기이다. R4, R6은 수소 원자 또는 메틸기, R5, R9는 산불안정기를 나타낸다. R7은 단결합 또는 탄소수 1∼6의 직쇄상 또는 탄소수 2∼6의 분기상의 알킬렌기이며, R8은 수소 원자, 불소 원자, 트리플루오로메틸기, 시아노기 또는 탄소수 1∼6의 직쇄상, 탄소수 3∼6의 분기상 또는 탄소수 3∼6의 환상의 알킬기이고, p는 1 또는 2이며, q는 0∼4의 정수이다. Y1은 단결합, 에스테르기 또는 에테르기 또는 락톤환을 갖는 탄소수 1∼12의 2가의 연결기, 페닐렌기 또는 나프틸렌기이다. Y2는 단결합, -C(=O)-O- 또는 -C(=O)-NH-이다)
    Figure 112017008349534-pat00101

    (식에서, R20, R24, R28은 수소 원자 또는 메틸기, R21은 단결합, 페닐렌기, -O-R- 또는 -C(=O)-Y0-R-이다. Y0은 산소 원자 또는 NH, R은 탄소수 1∼6의 직쇄상, 탄소수 2∼6의 분기상 또는 탄소수 3∼6의 환상의 알킬렌기, 탄소수 2∼6의 알케닐렌기 또는 페닐렌기이며, 카르보닐기, 에스테르기, 에테르기 또는 히드록시기를 포함하고 있더라도 좋다. R22, R23, R25, R26, R27, R29, R30, R31은 동일 또는 이종의 탄소수 1∼12의 직쇄상, 탄소수 3∼12의 분기상 또는 탄소수 3∼12의 환상의 알킬기이며, 카르보닐기, 에스테르기 또는 에테르기를 포함하고 있더라도 좋고, 또는 탄소수 6∼12의 아릴기, 탄소수 7∼20의 아랄킬기 또는 티오페닐기를 나타낸다. Z0은 단결합, 메틸렌기, 에틸렌기, 페닐렌기, 불소화된 페닐렌기, -O-R32- 또는 -C(=O)-Z1-R32-이다. Z1은 산소 원자 또는 NH, R32는 탄소수 1∼6의 직쇄상, 탄소수 2∼6의 분기상 또는 탄소수 3∼6의 환상의 알킬렌기, 탄소수 2∼6의 알케닐렌기 또는 페닐렌기이며, 카르보닐기, 에스테르기, 에테르기 또는 히드록시기를 포함하고 있더라도 좋다. M-는 비구핵성 대향 이온을 나타낸다)
  2. 삭제
  3. 삭제
  4. 삭제
  5. 제1항에 있어서, 유기 용제 및 산발생제를 더 함유하는 화학 증폭형 레지스트 재료인 것을 특징으로 하는 레지스트 재료.
  6. 제5항에 있어서, 첨가제로서 염기성 화합물 또는 계면활성제 또는 둘다를 더 배합하여 이루어지는 것을 특징으로 하는 레지스트 재료.
  7. 제1항에 기재한 레지스트 재료를 기판 상에 도포하는 공정과, 가열 처리 후, KrF 엑시머 레이저, ArF 엑시머 레이저, 전자빔 또는 파장 3∼15 nm 범위의 연X선으로 노광하는 공정과, 현상액을 이용하여 현상하는 공정을 포함하는 것을 특징으로 하는 패턴 형성 방법.
  8. 삭제
KR1020130054300A 2012-05-16 2013-05-14 레지스트 재료 및 이것을 이용한 패턴 형성 방법 KR101748902B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2012-112246 2012-05-16
JP2012112246 2012-05-16

Publications (2)

Publication Number Publication Date
KR20130128332A KR20130128332A (ko) 2013-11-26
KR101748902B1 true KR101748902B1 (ko) 2017-06-19

Family

ID=49670648

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130054300A KR101748902B1 (ko) 2012-05-16 2013-05-14 레지스트 재료 및 이것을 이용한 패턴 형성 방법

Country Status (4)

Country Link
US (1) US9052593B2 (ko)
JP (1) JP5954252B2 (ko)
KR (1) KR101748902B1 (ko)
TW (1) TWI476519B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2583664A (en) * 2018-01-29 2020-11-04 Jeonjin Bio Co Ltd Composition for preventing or treating parasitic infections in fish, comprising Sophora flavescens Aiton extract or fraction thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5987802B2 (ja) * 2013-09-04 2016-09-07 信越化学工業株式会社 ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP6536207B2 (ja) * 2015-06-19 2019-07-03 信越化学工業株式会社 高分子化合物、化学増幅ポジ型レジスト材料及びパターン形成方法
JP6411967B2 (ja) 2015-07-29 2018-10-24 信越化学工業株式会社 レジスト材料並びにこれを用いたパターン形成方法
JP6520753B2 (ja) * 2016-02-19 2019-05-29 信越化学工業株式会社 ポジ型レジスト材料、及びパターン形成方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000010282A (ja) * 1998-06-19 2000-01-14 Mitsubishi Electric Corp 透明性化合物、透明性樹脂およびこの透明性樹脂を用いた感光性樹脂組成物並びにこの感光性樹脂組成物を用いた半導体装置の製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2938883A (en) * 1956-11-19 1960-05-31 Dow Chemical Co Chloroethylene polymers stabilized with monoacrylic esters of hydroxy phenones
NL257095A (ko) * 1959-10-21 1900-01-01
NL289640A (ko) * 1962-03-02
BE629480A (ko) * 1962-03-14 1900-01-01
US3320116A (en) * 1963-06-12 1967-05-16 Du Pont Benzophenone and acetophenone stabilized polymers
DE3528930A1 (de) * 1985-08-13 1987-02-26 Hoechst Ag Polymere verbindungen und diese enthaltendes strahlungsempfindliches gemisch
JPH04226944A (ja) * 1990-06-08 1992-08-17 Fuji Photo Film Co Ltd 重合性エチレン基を有するレゾルシン酸エステル誘導体
JP3429592B2 (ja) 1995-02-10 2003-07-22 富士通株式会社 レジストパターンの形成方法
JP3944669B2 (ja) 1999-05-19 2007-07-11 信越化学工業株式会社 エステル化合物
WO2002021214A2 (en) * 2000-09-08 2002-03-14 Shipley Company, L.L.C. Use of acetal/ketal polymers in photoresist compositions suitable for short wave imaging
JP4794835B2 (ja) 2004-08-03 2011-10-19 東京応化工業株式会社 高分子化合物、酸発生剤、ポジ型レジスト組成物、およびレジストパターン形成方法
JP4425776B2 (ja) 2004-12-24 2010-03-03 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
JP4871693B2 (ja) * 2006-09-29 2012-02-08 富士フイルム株式会社 ポジ型レジスト組成物及びこれを用いたパターン形成方法
JP4858714B2 (ja) 2006-10-04 2012-01-18 信越化学工業株式会社 高分子化合物、レジスト材料、及びパターン形成方法
KR101116963B1 (ko) 2006-10-04 2012-03-14 신에쓰 가가꾸 고교 가부시끼가이샤 고분자 화합물, 레지스트 재료, 및 패턴 형성 방법
JP4849267B2 (ja) 2006-10-17 2012-01-11 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
KR101242332B1 (ko) 2006-10-17 2013-03-12 신에쓰 가가꾸 고교 가부시끼가이샤 레지스트 재료 및 이것을 이용한 패턴 형성 방법
US7569326B2 (en) * 2006-10-27 2009-08-04 Shin-Etsu Chemical Co., Ltd. Sulfonium salt having polymerizable anion, polymer, resist composition, and patterning process
TWI460535B (zh) * 2007-03-12 2014-11-11 羅門哈斯電子材料有限公司 酚系聚合物及含該酚系聚合物之光阻
JP4435196B2 (ja) 2007-03-29 2010-03-17 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
JP4961324B2 (ja) 2007-10-26 2012-06-27 富士フイルム株式会社 電子線、x線又はeuv用ポジ型レジスト組成物及びそれを用いたパターン形成方法
JP5201363B2 (ja) 2008-08-28 2013-06-05 信越化学工業株式会社 重合性アニオンを有するスルホニウム塩及び高分子化合物、レジスト材料及びパターン形成方法
JP6020361B2 (ja) * 2012-06-26 2016-11-02 信越化学工業株式会社 高分子化合物、ポジ型レジスト材料並びにこれを用いたパターン形成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000010282A (ja) * 1998-06-19 2000-01-14 Mitsubishi Electric Corp 透明性化合物、透明性樹脂およびこの透明性樹脂を用いた感光性樹脂組成物並びにこの感光性樹脂組成物を用いた半導体装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2583664A (en) * 2018-01-29 2020-11-04 Jeonjin Bio Co Ltd Composition for preventing or treating parasitic infections in fish, comprising Sophora flavescens Aiton extract or fraction thereof
GB2583664B (en) * 2018-01-29 2022-09-14 Jeonjin Bio Co Ltd Composition for preventing or treating sea lice infections in fish, comprising an extract of Sophora Flavescens Aiton or a fraction thereof

Also Published As

Publication number Publication date
US20130323646A1 (en) 2013-12-05
JP2013257541A (ja) 2013-12-26
US9052593B2 (en) 2015-06-09
TWI476519B (zh) 2015-03-11
JP5954252B2 (ja) 2016-07-20
KR20130128332A (ko) 2013-11-26
TW201407272A (zh) 2014-02-16

Similar Documents

Publication Publication Date Title
KR101797801B1 (ko) 포지티브형 레지스트 재료 및 이를 사용한 패턴 형성 방법
KR101761974B1 (ko) 포지티브형 레지스트 재료, 중합성 모노머, 고분자 화합물 및 이것을 이용한 패턴 형성 방법
KR101732217B1 (ko) 포지티브형 레지스트 재료 및 이것을 사용한 패턴 형성 방법
KR101761970B1 (ko) 고분자 화합물, 포지티브형 레지스트 재료 및 이것을 이용한 패턴 형성 방법
JP5601309B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
JP6609225B2 (ja) レジスト材料及びこれを用いたパターン形成方法
KR101960570B1 (ko) 고분자 화합물, 화학 증폭 포지티브형 레지스트 재료 및 패턴 형성 방법
KR101809321B1 (ko) 포지티브형 레지스트 재료 및 이것을 이용한 패턴 형성 방법
KR101761969B1 (ko) 레지스트 재료, 이것을 이용한 패턴 형성 방법, 및 중합성 모노머 및 고분자 화합물
JP5954269B2 (ja) ポジ型レジスト材料及びこれを用いたパターン形成方法
KR101813318B1 (ko) 포지티브형 레지스트 재료 및 이것을 이용한 패턴 형성 방법
KR101748902B1 (ko) 레지스트 재료 및 이것을 이용한 패턴 형성 방법
JP6028687B2 (ja) ポジ型レジスト材料、重合性モノマー、高分子化合物並びにこれを用いたパターン形成方法
KR101757970B1 (ko) 포지티브형 레지스트 재료 및 이것을 이용한 패턴 형성 방법
KR101839183B1 (ko) 포지티브형 레지스트 재료 및 이것을 이용한 패턴 형성 방법
JP5920288B2 (ja) ポジ型レジスト材料並びにこれを用いたパターン形成方法
KR101856287B1 (ko) 포지티브형 레지스트 재료 및 이것을 이용한 패턴 형성 방법
JP6003833B2 (ja) ポジ型レジスト材料、重合性モノマー、高分子化合物並びにこれを用いたパターン形成方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant