KR101727405B1 - Modification of Hoek triaxial cell for SHPB tests and its application to dynamic shear strength measurement of brittle materials - Google Patents
Modification of Hoek triaxial cell for SHPB tests and its application to dynamic shear strength measurement of brittle materials Download PDFInfo
- Publication number
- KR101727405B1 KR101727405B1 KR1020150150172A KR20150150172A KR101727405B1 KR 101727405 B1 KR101727405 B1 KR 101727405B1 KR 1020150150172 A KR1020150150172 A KR 1020150150172A KR 20150150172 A KR20150150172 A KR 20150150172A KR 101727405 B1 KR101727405 B1 KR 101727405B1
- Authority
- KR
- South Korea
- Prior art keywords
- rod
- impact
- sample
- load
- impact load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 19
- 239000000463 material Substances 0.000 title abstract description 14
- 238000005259 measurement Methods 0.000 title description 5
- 238000012986 modification Methods 0.000 title description 2
- 230000004048 modification Effects 0.000 title description 2
- 230000006835 compression Effects 0.000 claims abstract description 37
- 238000007906 compression Methods 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 4
- 239000012528 membrane Substances 0.000 claims description 16
- 230000035939 shock Effects 0.000 claims description 11
- 238000012546 transfer Methods 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 4
- 230000000452 restraining effect Effects 0.000 claims description 2
- 238000004880 explosion Methods 0.000 abstract description 5
- 239000007789 gas Substances 0.000 description 13
- 239000011435 rock Substances 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000007660 shear property test Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/30—Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
- G01N3/307—Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by a compressed or tensile-stressed spring; generated by pneumatic or hydraulic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/02—Details
- G01N3/04—Chucks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0001—Type of application of the stress
- G01N2203/001—Impulsive
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0025—Shearing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/003—Generation of the force
- G01N2203/0042—Pneumatic or hydraulic means
- G01N2203/0044—Pneumatic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/006—Crack, flaws, fracture or rupture
- G01N2203/0067—Fracture or rupture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/026—Specifications of the specimen
- G01N2203/0262—Shape of the specimen
- G01N2203/0278—Thin specimens
- G01N2203/0282—Two dimensional, e.g. tapes, webs, sheets, strips, disks or membranes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/04—Chucks, fixtures, jaws, holders or anvils
- G01N2203/0411—Chucks, fixtures, jaws, holders or anvils using pneumatic or hydraulic pressure
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
본 발명은 SHPB 충격시험기에 적용가능토록 제작된 구속하중 삼축 압축셀 장치 및 이를 이용한 동적 파괴 물성 측정 장치로서, 보다 상세하게는 기존 Hoek 삼축압축셀의 하중봉을 개량한 충격하중봉, 압축셀 충격방지용 고무틀, 고속전단시험용 충격하중봉 및 이를 이용하여 취성재료에 대한 동적압축강도 및 동적 전단 파괴 기준식을 간단하게 획득하는 장치에 관한 것이다. The present invention relates to a constrained load triaxial compression cell apparatus and a dynamic fracture property measurement apparatus using the same, which are made to be applicable to an SHPB impact tester, and more particularly to an apparatus for measuring a dynamic fracture property using an impact load rod improved in a load bar of a conventional Hoek triaxial compression cell, To an apparatus for simply obtaining a dynamic compressive strength and a dynamic shear fracture reference equation for a brittle material using the same.
스플릿 홉킨슨 압력봉(SHPB) 충격시스템은 고 변형률 속도 하에서 발생하는 취성재료의 파괴거동이나 변형특성을 파악하는데 사용된다. SHPB기법은 1949년 Kolsky에 의해 100~10000/s 의 변형률 속도에서 기계 재료의 동적 거동 특성을 규명하기 위해 개발되었으며, 대용량 데이터의 고속으로 저장이 가능한 오실로스코프 및 계측시스템의 개발을 토대로 최대 104s-1의 변형률속도에 대한 동적강도 측정이 가능해졌다.The Split Hopkinson Pressure Bar (SHPB) impact system is used to characterize fracture behavior or deformation behavior of brittle materials under high strain rates. SHPB technique was developed to identify the dynamic behavior characteristics of the machine material at the strain rate of 100 ~ 10000 / s by Kolsky 1949 years, up to 10 4 s based on the development of the possible oscilloscope and data acquisition system stores at a high speed of large amounts of data 0.0 > strain-rate < / RTI >
도 1 은 스플릿 홉킨슨 압력봉(SHPB) 충격시스템의 개요도이다. 충격봉(1), 입력봉(2), 출력봉(3) 등으로 구성되는 SHPB장치에서는 입력봉과 출력봉 사이에 시편을 고정한 후 충격봉을 일정 속도로 발사하여 입력봉에 충돌시킴으로써, 이때 발생한 탄성파가 입력봉으로 전달되고, 시편을 변형시킨 후, 출력봉으로 전달되게 한다.BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic of a Split Hopkinson Pressure Bar (SHPB) impact system. In the SHPB apparatus composed of the impact bar (1), the input rod (2), and the output bar (3), the specimen is fixed between the input rod and the output rod, and the impact rod is fired at a constant speed to collide with the input rod. The elastic waves are transmitted to the input rod, deform the specimen, and then transmit it to the output rod.
입력봉과 출력봉의 대략 중간 지점에 부착된 각각의 스트레인 게이지(5)로부터 발생한 신호 및 입력봉과 출력봉 내에서 1차원 탄성파를 가정한 수식으로부터, 시편과 접촉해 있는 입력봉과 출력봉의 끝에 미치는 시간에 따른 하중과 변위를 결정할 수 있다.From the signals from each strain gage (5) attached at approximately the midpoint of the input and output rods and from the formula assuming the input rod and one-dimensional acoustic wave in the output rod, the time dependence on the end of the input rod and output rod The load and displacement can be determined.
상술한 SHPB장치는, 균일상태 하에서, 단축 압축실험을 통해, 변형률 속도가 대략 102/s~104/s인 변형 범위에서의 재료의 변형 이력에 따른 응력-변형률 관계를 직접 얻을 수 있고, 로드 셀이나 스트레인 게이지를 시편에 직접 붙일 필요가 없다는 장점 때문에 많이 이용되고 있다. The above-described SHPB apparatus can directly obtain the stress-strain relationship according to the deformation history of the material in the deformation range with a strain rate of approximately 10 < 2 > / s to 10 < 4 & It is widely used because it does not need to attach the load cell or strain gauge directly to the specimen.
하지만, 도 1 구조의 SHPB장치는 오직 한 방향에 대한 구속 상태에서의 일축 동적 물성 측정만이 가능하다. 일반적으로 고속충돌이나 폭발에 의하여 발생된 응력상태는 삼축압축(세 방향에서의 가압)상태에 놓여있기 때문에, 봉압(구속압)상태에서의 동적 물성 평가가 중요시 된다. 지금까지 사용되는 봉압장치로는 Hoek 봉압셀 및 유압셀 등이 있으나, SHPB 충격시험기법과 같이 수평으로 놓인 충격하중봉에 적용하면 봉압에 의하여 충격봉이 밀려나 정상적인 데이터획득이 어려워진다. 이러한 단점을 보완하기 위하여 수평으로 놓인 충격봉을 축방향으로 구속할 필요가 있다. However, the SHPB device of Fig. 1 can only measure uniaxial dynamic properties in a constrained state in one direction. In general, the stress state generated by high-speed collision or explosion lies in the state of triaxial compression (pressurization in three directions), so evaluation of the dynamic properties in the bar-pressure (confining pressure) state is important. Unlike the SHPB impact test method, when applied to a horizontally placed impact load rod, the shock absorber is pushed by the pressure, which makes it difficult to obtain normal data. In order to overcome this disadvantage, it is necessary to axially restrain the horizontal impact bar.
본 발명은 기존의 SHPB 장비에 적용하여 축방향 구속을 통해 동적삼축압축강도 및 동적전단파괴식 획득을 가능케 하는 삼축압축셀 및 그 시험장치를 제안하는 것이다. The present invention proposes a triaxial compression cell and its testing apparatus which are applicable to conventional SHPB equipment and enable dynamic triaxial compression strength and dynamic shear failure type acquisition through axial confinement.
본 발명의 하나의 양상은 One aspect of the present invention is
시료의 양면에 위치하여 시료를 수평방향으로 고정하는 제 1 충격하중봉 및 제 2 충격하중봉 ;A first impact load rod and a second impact load rod positioned on both sides of the sample to fix the sample in the horizontal direction;
상기 시료의 측면을 둘러싸고 상기 시료를 축방향으로 구속시키는 원통형의 유압 멤브레인 ; 및 A cylindrical hydraulic membrane surrounding the side surface of the sample and restraining the sample in an axial direction; And
상기 제 1 충격하중봉, 제 2 충격하중봉 및 상기 멤브레인을 고정하는 하우징부를 포함하는 것을 특징으로 하는 삼축 압축셀에 관계한다.And a housing part for fixing the first impact load rod, the second impact load rod, and the membrane.
다른 양상에서 본 발명은 .In another aspect,
충격봉을 발사하는 가스건 ;Gas guns that launch impact rods;
상기 충격봉이 가속되는 건배럴 ;A gun barrel accelerated by the impact rod;
상기 건배럴과 소정 간격이 이격되고, 상기 충격봉과 동일선상에 위치하여 충돌하는 입사봉 ;An incident rod which is spaced apart from the gun barrel by a predetermined distance, and which collides with the impact rod in the same line;
시료에 축방향 구속압을 가하는 삼축 압축셀 ; A triaxial compression cell applying an axial confining pressure to the sample;
상기 입사봉 및 삼축 압축셀과 동일선상에 위치하는 전달봉을 포함하는 고속전단시험 장치에 관계한다.And a transmission rod positioned on the same line as the incident rod and the triaxial compression cell.
본 발명 장치는 기존의 SHPB장치에 삼축 압축셀을 개발, 도입함으로써, 시료에 대한 축방향 구속압을 재현하였다. 이에 따라 기존의 SHPB 시험장치로는 불가능 했던, 취성재료에 대한 동적 삼축압축강도 물성의 획득이 가능하게 되었으며, 추가적으로 고속전단시험 기법의 제안 및 동적 전단파괴기준식의 획득 또한 가능케 한다.The device of the present invention reproduces axial confinement pressure for a sample by developing and introducing a triaxial compression cell into a conventional SHPB device. This makes it possible to obtain dynamic triaxial compressive strength properties for brittle materials which have not been possible with the existing SHPB test equipment. In addition, it is possible to propose a high-speed shear test method and obtain a dynamic shear failure criterion.
본 발명에 의한 삼축 압축셀 및 이를 이용한 고속전단시험 기법은 암석 및 콘크리트 등의 취성재료가 일반적인 고속충돌이나 폭발 시 받게 되는 응력상태를 재현하여, 이에 대한 동적물성평가가 가능하도록 설계되었다.The triaxial compression cell according to the present invention and the high-speed shear test method using the same are designed to reproduce the stress condition to which brittle materials such as rock and concrete are subjected during normal high-speed collision or explosion, and to evaluate the dynamic properties thereof.
도 1 은 스플릿 홉킨슨 압력봉(SHPB) 충격시스템의 개요도이다.
도 2는 본 발명의 일구현예에 의한 삼축 압축셀을 이용한 동적 물성획득 시험장치의 개략도이다.
도 3은 삼축 압축셀을 이용한 동적 삼축압축강도 평가법을 나타낸다.
도 4는 삼축 압축셀에 의해 시료가 구속압 상태에 놓이는 것을 나타낸다.
도 5는 삼축압축셀을 이용한 고속전단시험기법을 나타낸다.
도 6은 삼축 압축셀(250) 부분을 확대한 것을 도시한 것이다.
도 7은 제 1 충격하중봉(251)과 제 2 충격하중봉(252)의 제조예를 보여준다.
도 8은 시료가 입사봉에 타격을 받기 전(상부 좌측)과 타격 받은 후(상부 우측)를 보여주는 사진이다.
도 9는 고속전단시험 결과를 나타낸 그래프이다.
도 10은 실험에서 수집된 충격파 곡선을 나타낸다.BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic of a Split Hopkinson Pressure Bar (SHPB) impact system.
2 is a schematic diagram of a dynamic property acquisition test apparatus using a triaxial compression cell according to an embodiment of the present invention.
3 shows a dynamic triaxial compression strength evaluation method using a triaxial compression cell.
Fig. 4 shows that the sample is placed in the confined pressure state by the triaxial compression cell.
5 shows a high-speed shear test technique using a triaxial compression cell.
FIG. 6 shows an enlarged view of the
Fig. 7 shows a production example of the first
Fig. 8 is a photograph showing a sample before being hit by the incident rod (upper left) and after being blown (upper right).
9 is a graph showing the results of the high-speed shear test.
10 shows the shock wave curves collected in the experiment.
도 2는 본 발명의 일구현예에 의한 삼축 압축셀을 이용한 동적 물성 획득 시험장치의 개략도이다. 도 3은 삼축 압축셀을 이용한 동적 삼축압축강도 평가법을 나타낸다. 2 is a schematic diagram of a dynamic property acquisition test apparatus using a triaxial compression cell according to an embodiment of the present invention. 3 shows a dynamic triaxial compression strength evaluation method using a triaxial compression cell.
도 2 및 도 3을 참고하면, 본 발명의 동적 파괴 물성 시험장치는 가스건(10), 건베럴(20), 입사봉(30), 전달봉(40) 및 압축셀(50)을 포함한다. 상기 삼축 압축셀(50)은 제 1 충격하중봉(51), 제 2 충격하중봉(52), 유압 멤브레인(53), 메탈 하우징(54)를 포함한다.2 and 3, the dynamic fracture toughness testing apparatus of the present invention includes a
상기 제 1 충격하중봉(51)은 암석시료(70)를 수평방향으로 고정시켜주며, 입사봉(30)에서 전달되는 충격하중을 암석시료(70)에 전달한다. The first
상기 제 2 충격하중봉(52)은 암석시료(70)를 수평방향으로 고정시켜주며, 암석시료에서 전달되는 충격하중을 전달봉(40)에 전달한다. The second
상기 유압 멤브레인(53)은 유압을 통해 암석시료(70)를 축방향으로 구속시키며, 유압 멤브레인(53)과 제 1 충격하중봉(51), 제 2 충격하중봉(52)사이에는 충격완화를 위한 고무패킹 장치가 들어있다. The
상기 메탈하우징(54)은 제 1 충격하중봉(51), 제 2 충격하중봉(52), 유압멤브레인(53)을 감싸고 있으며, 고정 및 보호의 역할을 한다. The
상기 원통형 유압 멤브레인은 상기 시료의 중심방향으로, 고압으로 발사되는 충격봉은 제 1 충격하중봉 및 제 2 충격 하중봉을 통해 x 방향으로 상기 시료에 삼축압을 가할 수 있다.The impact rod, which is fired at a high pressure in the direction of the center of the cylindrical hydraulic membrane, can apply triaxial pressure to the sample in the x direction through the first impact load rod and the second impact load rod.
도 4는 상기 삼축 압축셀(50)에 의해 시료에 삼축압이 가해지는 것을 나타낸다. 원기둥 구조의 제 1 충격하중봉과 제 2 충격하중봉 사이에 고정된 상기 시료(70)는 상기 멤브레인(53)에 의해 Pt, Pi의 방향(x방향이라 함)의 수직방향(y, z 방향임, 시료의 중심 방향이라고도 할 수 있음)으로 구속된다. 즉, 상기 멤브레인은 y, z 방향으로, 고압으로 발사되는 충격봉은 제 1 충격하증봉과 제 2 충격하중봉을 통해 x 방향으로 상기 시료에 압력을 가하게 된다.Fig. 4 shows that triaxial compression is applied to the sample by the
상기 멤브레인에 유압펌프(55)를 이용하여 멤브레인(53)에 유압을 가하여 압력을 높일 수 있다. 일반적으로, 유압에 의한 구속압이 커지면 암석 및 콘크리트의 강도가 증가한다고 알려져 있다. The pressure can be increased by applying hydraulic pressure to the
상기 제 1충격 하중봉과 제 2 충격 하중봉은 돌출된 고정부(511, 521)를 각각 구비하고, 상기 고정부가 상기 유압 멤브레인과 하우징 내벽 사이에 삽입 고정될 수 있다. The first impulse load bar and the second impulse load bar each have protruding
상기 가스건(10)은 공지된 충격봉 발사장치를 제한 없이 사용할 수 있다. 예를 들면, 상기 가스건(10)은 충격봉(60)을 발사시키는 고압용기(11)와 발사속도를 제어하는 충격봉 추진 제어부(12)를 포함할 수 있다. The
상기 고압용기(11)는 압축가스를 저장한다. 상기 압축가스는 불활성 가스 또는 공기일 수 있다. The high-pressure vessel (11) stores compressed gas. The compressed gas may be inert gas or air.
상기 압축가스는 콤프레서에 의해 주입되고, 상기 고압용기(11) 입구측에는 개폐밸브가 구비되어 압축가스 주입을 개폐한다. 상기 고압용기(11)는 충격봉(60)의 추진에 필요한 압축가스를 저장하기 위해 1000psi 이상의 허용압력을 가질 수 있다. 또한, 상기 개폐밸브는 상기 고압용기 허용압력의 1/10을 초과하는 경우 가스를 자동으로 방출하는 안전장치가 부착된다. The compressed gas is injected by a compressor, and an opening / closing valve is provided at the inlet side of the high-
상기 충격봉 추진 제어부(12)는 상기 고압용기(11) 출구 측에 설치된 공압 밸브(121)를 열어 압축가스 방출력으로 충격봉(60)을 발사한다.The impact rod
상기 충격봉 추진 제어부(12)는 상기 공압밸브(121)를 개폐하는 발사밸브(122) 및 상기 발사밸브에 압축가스를 제공하여 공압밸브를 열어주는 압축기(123)를 포함할 수 있다. 콤프레셔 내 공기압은 항상 발사밸브(121)에 압력을 가하고 있다. The impact rod
상기 공압밸브(122)는 스프링 리턴 공압밸브인 것이 바람직하다.The
상기 건베럴(20)은 상기 공압밸브 후단에 설치되고, 발사된 충격봉이 가속되는 파이프이다. The
상기 입사봉(30)은 상기 건베럴과 소정간격 이격되어 동일선상에 형성되는 열처리된 강봉(steel bar)이다. 상기 입사봉(30)에 건베럴을 따라 가속된 충격봉(60)이 충돌하고, 여기서 발생된 충격파가 상기 입사봉을 따라 시료(70)와 전달봉(40)으로 전파된다.The
본 발명의 시험장치는 삼축 압축셀(50) 내부에 암석시료(70)를 위치시켜 입사봉(30)으로부터 전해지는 충격하중을 통한 동적삼축 압축강도 및 변형률을 측정한다. The test apparatus of the present invention measures the dynamic three-axis compressive strength and strain rate of the rock sample (70) by placing the rock sample (70) inside the triaxial compression cell (50)
본 발명의 시험장치는 기존의 SHPB 충격하중시험기를 포함한다. The test apparatus of the present invention includes a conventional SHPB impact load tester.
본 발명의 시험장치에서의 계측은 입사봉(30)과 전달봉(40)에 부착된 반도체 변형률게이지에 의해 이루어진다. The measurement in the test apparatus of the present invention is performed by a semiconductor strain gauge attached to the
좀 더 구체적으로, 본 발명의 시험 장치는 충격봉의 충격속도를 측정하는 충격속도 측정부(90) 및 입력파, 반사파 및 출력파의 변형율을 측정하는 충격파형 계측부(100)를 포함한다.More specifically, the testing apparatus of the present invention includes an impact
상기 충격속도 측정부(90)는 건베럴과 입사봉 사이에 위치한 레이저(91) 및 고속포토다이오드(92)를 포함하여 충격봉의 충격속도를 측정할 수 있다. The impact
상기 충격파형 계측부(100)는 입력파, 반사파 및 전달파의 변형율을 측정한다. 상기 충격파형 계측부(100)는 입사봉과 전달봉 표면에 발생되는 변형을 감지하는 반도체 변형율 게이지(110) 및 반도체 변형율 게이지에 전원을 공급하는 브릿지회로를 포함한 데이터 처리부(120)를 포함한다.The impact
상기 삼축 압축셀(50)은 고속충돌이나 폭발 시 형성되는 응력상태를 시료내에 재현하며, 이를 통해 취성재료에 대한 동적삼축압축강도 및 동적전단파괴 기준식을 획득 할 수 있다. The
도 1은 종래 스플릿 홉킨슨 압력봉(SHPB) 충격시스템의 개요도이다. 도 1의 시스템은 삼축 압축셀을 구비하지 않아 삼축 구속압 상태에서의 시료(70)의 거동을 모사하거나, 물성을 측정하는 것이 불가능하다.BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic diagram of a conventional split Hopkinson pressure sock (SHPB) impact system. 1 does not have a triaxial compression cell, it is impossible to simulate the behavior of the
이에 반해, 본 발명의 삼축 압축셀을 포함한 시험장치는 유압에 의한 구속압을 구현하여, 고속충돌이나 폭발 시 발생하는 응력 상태에서의 거동 및 물성 획득을 가능케 한다.On the other hand, the test apparatus including the triaxial compression cell of the present invention implements the constraint pressure by the hydraulic pressure, thereby enabling the behavior and property acquisition in the stress state occurring at high speed collision or explosion.
도 5는 삼축 압축셀을 이용하 고속 전단 시험장치이다. 도 6은 삼축 압축셀(250) 부분을 확대한 것을 도시한 것이다.5 is a high-speed shear test apparatus using a triaxial compression cell. FIG. 6 shows an enlarged view of the
도 5에 의한 장치는 가스건(210), 건베럴(220), 입사봉(230), 전달봉(240) 및 압축셀(250)을 포함한다. 또한, 상기 장치는 충격봉(260), 시료(270), 충격흡수대(280), 충격속도 측정부(290) 및 입력파, 반사파 및 출력파의 변형율을 측정하는 충격파형 계측부(300)을 추가로 포함할 수 있다. 도 5 및 도 6을 참고하면, 상기 제 1 충격하중봉(251)은 관통구를 구비하고, 제 2 충격하중봉(252)은 대응되는 위치에 소정 깊이로 형성된 홀을 구비한다. 5 includes a
상기 입사바(230)는 상기 관통구와 상기 홀을 통과할 수 있는 직경을 가진다. 상기 입사바(230)는 상기 충격봉의 충돌에 의해 상기 제 1 충격하중봉의 관통구를 통과하여 시료에 직접적인 충격을 가한다. 이때, 상기 입사바(230)는 시료를 천공하고, 천공된 시료를 제 2 충격하중봉의 홀로 이동시킨다.The
상기 장치는 시료가 상기 입사봉에 의해 천공될 때의 충격파형 신호를 받아 전단 파괴 강도를 측정할 수 있다. The apparatus can measure the shear breaking strength by receiving an impact waveform signal when the sample is punctured by the incident rod.
도 7은 제 1 충격하중봉(251)과 제 2 충격하중봉(252)의 제조 예를 보여준다. 도 8은 시료가 입사봉에 타격을 받기 전(상부 좌측)과 타격 받은 후(상부 우측)를 보여주는 사진이다.Fig. 7 shows a production example of the first
도 6을 참고하여, 상기 장치가 전단파괴 강도를 측정할 수 있는 원리를 설명하도록 한다.Referring to FIG. 6, the principle that the device can measure the shear breaking strength will be described.
먼저, 본 발명의 장치는 20mm 입사봉(230)을 통해 전달된 충격하중이 암석시편(270)으로 직접 타격을 한다. 여기서, 상기 제 1 충격하중봉(251)과 제 2 충격하중봉(252)은 시료를 양쪽에서 고정시킨다. 결과적으로 시료(270)는 20mm 직경 면적으로 가해지는 압축하중을 받게 된다.First, the apparatus of the present invention directly hits the
이 때, 입사봉(230)이 타격하는 20mm 면적을 제외한 시료(270) 부분은 제 1 충격하중봉과 제 2 충격하중봉에 의해 고정(구속)되어 있으므로 전단(측면)방향으로 전단력(밀림힘, 마찰력과 비슷한 개념)이 작용한다. 도 8의 하단에 시료가 타격을 받아 천공되는 경우 작용되는 전단력을 연두색으로 표시하였다.At this time, since the portion of the
도 5 내지 도 8을 참고하면, 멤브레인(253)에 의한 힘(y, z 방향), 즉, 축방향 구속압은 지속적으로 작용되는 힘이지만, 충격봉에 의한 타격에 의한 힘(x방향)은 일시적 순간적으로 작용한다. 이때, 시료(270)이 보조바에 의해 구속되어 있는 상태에서 x방향으로의 압축력과 -x 방향으로의 전단력(밀림힘)에 의한 전단 파괴를 일으킨다.5 to 8, the force (y, z direction), that is, the axial confining pressure by the
실험 : 동적 전단 강도 평가 Experiment: Evaluation of Dynamic Shear Strength
도 5의 장치를 사용하여 표 1의 조건으로 전단강도를 측정하여 결과를 표 1과 도 9에 나타내었다. 도 8은 실험 전 후의 시료를 보여준다.The shear strength was measured under the conditions of Table 1 using the apparatus of FIG. 5, and the results are shown in Table 1 and FIG. Figure 8 shows samples before and after the experiment.
동적 전단강도는 재료 파괴 시 가압된 하중 = P, 직경 = D, 시료 두께 = B 일 때, 전단강도는 이다. 시료에 작용하는 하중은 도 10 의 오실로스코프(320)에서 수집된 충격파 화상에서, 입사바 합성충격파 (P1 = Incident wave + Reflected wave ; 초록색 곡선)와 반사바 충격파(P2 = Transmitted wave ; 파란색 곡선) 의 평균값을 사용하였다. 또한, 동적 삼축 전단 강도는 앞서 언급한 전단강도의 식을 적용의 목적에 따라 입사바에 작용하는 충격파와 전달바에 작용하는 충격파의 형상 및 크기가 동일하도록 조정하였다(시료 내 응력 평형상태).The dynamic shear strength is the shear strength at the time of material failure at pressurized load = P, diameter = D, and sample thickness = B. The load acting on the sample is the sum of the incident wave composite shock wave (P1 = Incident wave + Reflected wave) and the reflected bar shock wave (P2 = Transmitted wave) in the shock wave image collected by the
표 1과 도 9를 참고하면, 구속 압력이 증가함에 따라 재료의 강도는 선형성으로 증가하는 경향을 보이며, 하중속도가 증가함에 따라 구속압력에 대한 재료의 강도 증가율은 유지하면서, 재료의 점착력이 증가하는 경향을 보이고 있음을 확인할 수 있다.Referring to Table 1 and FIG. 9, as the restraint pressure increases, the strength of the material tends to increase linearly, and as the load speed increases, the adhesion strength of the material increases The results are shown in Fig.
암석 및 콘크리트 등의 취성재료에 대한 동적 삼축 전단실험은 전례가 없으며, 도 9에서 보이는 결과 값은 이론적 계산 값이나, 수치해석 시뮬레이션 등에 의한 이론 값에 부합하는 양상을 보인다. Dynamic triaxial shear tests on brittle materials such as rocks and concrete are unprecedented. The results shown in FIG. 9 are in accordance with theoretical values calculated by numerical simulation and theoretical calculations.
이상에서 본 발명의 바람직한 구현 예를 예로 들어 상세하게 설명하였으나, 이러한 설명은 단순히 본 발명의 예시적인 실시 예를 설명 및 개시하는 것이다. 당업자는 본 발명의 범위 및 정신으로부터 벗어남이 없이 상기 설명 및 첨부 도면으로부터 다양한 변경, 수정 및 변형예가 가능함을 용이하게 인식할 것이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. Those skilled in the art will readily appreciate that various changes, modifications, and variations may be made without departing from the spirit and scope of the present invention, as defined by the following claims and accompanying drawings.
Claims (10)
상기 시료의 측면을 둘러싸고 상기 시료를 축방향으로 구속시키는 원통형의 유압 멤브레인 ; 및
상기 제 1 충격하중봉, 제 2 충격하중봉 및 상기 멤브레인을 고정하는 하우징부를 포함하되,
상기 제 1충격 하중봉과 제 2 충격 하중봉은 돌출된 고정부를 각각 구비하고, 상기 고정부가 상기 유압 멤브레인과 하우징 내벽 사이에 삽입 고정되는 것을 특징으로 하는 삼축 압축셀.A first impact load rod and a second impact load rod positioned on both sides of the sample to fix the sample in the horizontal direction;
A cylindrical hydraulic membrane surrounding the side surface of the sample and restraining the sample in an axial direction; And
A first impact load rod, a second impact load rod, and a housing for fixing the membrane,
Wherein the first impulse load rod and the second impulse load rod each have a protruded fixed part, and the fixed part is inserted and fixed between the hydraulic membrane and the inner wall of the housing.
상기 충격봉이 가속되는 건베럴 ;
상기 건베럴과 소정 간격 이격되고, 상기 충격봉과 동일선상에 위치하여 충돌하는 입사봉 ;
상기 입사봉과 동일선상으로 소정 간격 이격되어 형성되는 전달봉 및 ;
상기 전달봉과 입사봉 사이에 위치하고, 시료에 축방향 구속압을 가하는 제1항, 제2항 및 제4항 중 어느 한 항의 삼축 압축셀을 포함하는 동적 파괴 물성 시험 장치. Gas guns that launch impact rods;
A gun barrel accelerating the impact rod;
An incidence bar spaced apart from the gun barrel by a predetermined distance and colliding with the impact bar in the same line position;
A transfer rod formed in a line and spaced apart from the incidence bar by a predetermined distance;
4. The dynamic fracture toughness testing apparatus according to claim 1, wherein the triaxial compression cell is located between the transmission rod and the incident rod and applies an axial confining pressure to the sample.
The apparatus according to claim 8, wherein the apparatus measures a shear breaking strength by receiving an impact waveform signal when the sample is punctured by the incident rod.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150150172A KR101727405B1 (en) | 2015-10-28 | 2015-10-28 | Modification of Hoek triaxial cell for SHPB tests and its application to dynamic shear strength measurement of brittle materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150150172A KR101727405B1 (en) | 2015-10-28 | 2015-10-28 | Modification of Hoek triaxial cell for SHPB tests and its application to dynamic shear strength measurement of brittle materials |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101727405B1 true KR101727405B1 (en) | 2017-05-02 |
Family
ID=58742532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150150172A Expired - Fee Related KR101727405B1 (en) | 2015-10-28 | 2015-10-28 | Modification of Hoek triaxial cell for SHPB tests and its application to dynamic shear strength measurement of brittle materials |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101727405B1 (en) |
Cited By (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107367427A (en) * | 2017-08-28 | 2017-11-21 | 南京理工大学 | A kind of SHPB experimental methods for concrete material |
CN107741364A (en) * | 2017-10-23 | 2018-02-27 | 中国矿业大学 | A true triaxial test device and method for a cuboid rock sample |
CN107796711A (en) * | 2017-09-20 | 2018-03-13 | 天津大学 | A kind of method for testing complete sample and structural plane dynamic shear strength |
CN107907402A (en) * | 2017-11-09 | 2018-04-13 | 北京科技大学 | Chamber palisades are crisp to cut transition type crash simulation instrument |
CN108152155A (en) * | 2017-11-27 | 2018-06-12 | 中国石油天然气股份有限公司 | Shale impact fracturing simulation system and application method thereof |
CN108225709A (en) * | 2018-03-07 | 2018-06-29 | 中国工程物理研究院电子工程研究所 | A kind of impact test loading device and system |
CN108333047A (en) * | 2018-02-07 | 2018-07-27 | 西北工业大学 | A kind of the dynamic symmetry stretching device and its experimental method of I types precracked specimen |
CN108344648A (en) * | 2018-02-07 | 2018-07-31 | 西北工业大学 | A kind of single-axis bidirectional load split hopkinson press bar and pull rod device and experimental method |
KR101902811B1 (en) | 2016-11-22 | 2018-10-01 | 안동대학교 산학협력단 | Impact Shear Testing Apparatus for Metallic Sheets |
CN108663243A (en) * | 2018-04-02 | 2018-10-16 | 清华大学 | A kind of SHPB filling liquid jointed rock mass liquid sample bringing device and method |
CN108844814A (en) * | 2018-08-22 | 2018-11-20 | 宁波大学 | A kind of braid material Hopkinson tension test clamp method |
CN108871931A (en) * | 2018-06-05 | 2018-11-23 | 清华大学 | A kind of flange form SHPB filling liquid jointed rock mass liquid sample bringing device and method |
CN109001062A (en) * | 2018-06-07 | 2018-12-14 | 东南大学 | A kind of compression bar measuring device and measuring method of material compactness |
CN109238884A (en) * | 2018-09-11 | 2019-01-18 | 北京理工大学 | A kind of dynamic mechanical test method of seal coating |
CN109307624A (en) * | 2018-11-29 | 2019-02-05 | 重庆大学 | A large-scale true triaxial hydraulic fracturing experimental device and experimental method |
CN109323937A (en) * | 2018-11-23 | 2019-02-12 | 浙江大学 | A Hopkinson pressure rod damping device |
CN109374408A (en) * | 2018-09-28 | 2019-02-22 | 长安大学 | A test method for dynamic characteristics of artificially filled jointed rock mass |
CN109708955A (en) * | 2019-01-17 | 2019-05-03 | 浙江大学 | A positioning device for Hopkinson pressure bars |
CN109839318A (en) * | 2019-03-13 | 2019-06-04 | 北京林业大学 | A kind of device for realizing high-ductility material high strain-rate pure shear |
CN109916710A (en) * | 2019-04-12 | 2019-06-21 | 中铁三局集团有限公司 | A separate Hopkinson rod rock sample recovery device |
KR20190091143A (en) | 2018-01-26 | 2019-08-05 | 한국원자력연구원 | Apparatus for testing shear stress |
CN110133104A (en) * | 2019-05-30 | 2019-08-16 | 东北大学 | A method for testing the dynamic mechanical properties of filling bodies at all ages |
CN110146394A (en) * | 2018-05-23 | 2019-08-20 | 谭乃根 | Material properties shock acoustic response test simulation system |
CN110261242A (en) * | 2019-07-12 | 2019-09-20 | 中南大学 | A kind of Hopkinson bar rock sample impact test apparatus and method |
CN110441172A (en) * | 2019-08-01 | 2019-11-12 | 深圳大学 | Osmotic pressure and static pressure couple electromagnetic load three axis SHPB devices and test method |
CN110441170A (en) * | 2019-07-17 | 2019-11-12 | 深圳大学 | Single-axis bidirectional synchronously control electromagnetism loads dynamic shear test device and test method |
CN110595916A (en) * | 2019-09-25 | 2019-12-20 | 燕山大学 | A plate shear test device |
CN110749521A (en) * | 2018-07-24 | 2020-02-04 | 中石化石油工程技术服务有限公司 | Dynamic and static load combined rock breaking test device and test method |
CN110926927A (en) * | 2019-12-03 | 2020-03-27 | 四川大学 | Flip formula hopkinson pole confined pressure device |
CN111044352A (en) * | 2019-12-31 | 2020-04-21 | 太原理工大学 | Separated Hopkinson bar pressure and torsion load composite loading device and use method thereof |
CN111044353A (en) * | 2019-12-31 | 2020-04-21 | 太原理工大学 | Split Hopkinson bar tension-torsion load composite loading device and using method thereof |
WO2020134579A1 (en) * | 2018-12-26 | 2020-07-02 | 深圳大学 | Dynamic and static load synchronous servo control system for three-axis six-direction hopkinson pressure bar |
WO2020134580A1 (en) * | 2018-12-26 | 2020-07-02 | 深圳大学 | Method of using true-triaxial hopkinson bar to test dynamic damage to solid and ultrasonic propagation |
CN111579402A (en) * | 2020-05-21 | 2020-08-25 | 西北工业大学 | A uniaxial biaxial dynamic tensile test method for brittle materials |
CN111678806A (en) * | 2020-05-11 | 2020-09-18 | 江苏禹治流域管理技术研究院有限公司 | SHPB rock shear test device and method under normal stress condition |
CN111929150A (en) * | 2020-08-25 | 2020-11-13 | 中南大学 | Surrounding rock dynamics test system and method for railway tunnel under rainy mountain area |
WO2021012459A1 (en) * | 2019-07-19 | 2021-01-28 | 深圳大学 | Biaxial four-direction dynamic and static combined electromagnetic loading hopkinson plate impact loading device |
CN112461639A (en) * | 2020-11-25 | 2021-03-09 | 煤炭科学研究总院 | Impact test equipment |
US10955382B2 (en) * | 2018-11-12 | 2021-03-23 | Beijing University Of Technology | Experimental device for studying the propagation characteristics of stress wave in jointed rock mass at high temperature |
CN112782007A (en) * | 2021-01-28 | 2021-05-11 | 天津大学 | Dynamic shearing and friction measuring device and method based on Hopkinson pressure bar |
WO2021088238A1 (en) * | 2019-11-08 | 2021-05-14 | 山东科技大学 | Shpb test system-based dynamic lateral strain measurement device and method for test piece |
CN112964540A (en) * | 2021-02-10 | 2021-06-15 | 江西理工大学 | Device and method for testing dynamic performance of rock under high water pressure and high ground stress coupling |
CN113376035A (en) * | 2021-06-19 | 2021-09-10 | 中国人民解放军国防科技大学 | Device and method for testing energy release of active material under different atmospheres |
CN113400090A (en) * | 2021-06-07 | 2021-09-17 | 扬州市久盈精密主轴有限公司 | Main shaft strength detection device and method for numerical control machine tool |
CN113504131A (en) * | 2021-07-09 | 2021-10-15 | 中国矿业大学 | Test system and test method for testing II-type dynamic fracture toughness of rock under different normal stresses |
CN113899634A (en) * | 2021-08-27 | 2022-01-07 | 北京工业大学 | Device and method for evaluating rock breaking efficiency of drill bit teeth under impact load |
CN113984523A (en) * | 2021-10-28 | 2022-01-28 | 中国矿业大学 | Test device and test method for dynamic and static combined loading strength of rock simulation material |
CN114112733A (en) * | 2021-11-29 | 2022-03-01 | 中交文山高速公路建设发展有限公司 | Dynamic test method for high-speed shear strength of asphalt concrete |
CN114112732A (en) * | 2021-09-03 | 2022-03-01 | 北京理工大学 | Specimen suitable for the study of dynamic shear mechanical properties of explosive welding materials |
CN114993858A (en) * | 2022-06-16 | 2022-09-02 | 河海大学 | Device and method for testing impact shear resistance of concrete-rock interface for Hopkinson pressure bar |
CN114985093A (en) * | 2022-06-14 | 2022-09-02 | 山东和创瑞思环保科技有限公司 | High shearing machine of cyclone separation |
CN116009405A (en) * | 2023-03-21 | 2023-04-25 | 中国科学院武汉岩土力学研究所 | Servo control method and system for rock dynamic triaxial test with medium strain rate |
US11703433B2 (en) | 2018-12-26 | 2023-07-18 | Shenzhen University | Dynamic true triaxial electromagnetic Hopkinson bar system and testing method |
CN116773328A (en) * | 2023-06-25 | 2023-09-19 | 中国地质大学(北京) | True triaxial hopkinson pressure bar test device |
CN116818557A (en) * | 2022-12-07 | 2023-09-29 | 天津大学 | Mechanical test device and test method |
CN116818567A (en) * | 2023-08-30 | 2023-09-29 | 北京建筑大学 | Dynamic impact damage mechanical property evaluation method for brittle solid material |
KR102642062B1 (en) | 2023-10-17 | 2024-03-04 | 국방과학연구소 | Apparatus for testing the crash characteristics of crashing bodies |
US11988645B2 (en) | 2018-12-26 | 2024-05-21 | Shenzhen University | Dynamic true triaxial electromagnetic Hopkinson bar system |
CN118111828A (en) * | 2024-04-07 | 2024-05-31 | 北京理工大学 | Experimental device for extrusion-shear coupling loading of energetic materials based on SHPB platform |
KR102788032B1 (en) * | 2024-08-01 | 2025-03-31 | 국방과학연구소 | A stress-conversion specimen structure that enables the measurement of high-speed tensile properties in a high-speed compression testing device and Method for correcting constitutive equations by simulation-based reverse engineering thereof |
CN120121437A (en) * | 2025-05-15 | 2025-06-10 | 北京理工大学 | Particle explosive dynamic compression response X-ray synchronous diagnosis device and method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001116673A (en) * | 1999-10-21 | 2001-04-27 | Mitsubishi Heavy Ind Ltd | Impact compression testing device for ceramics |
JP2008216082A (en) | 2007-03-05 | 2008-09-18 | Ihi Corp | Dynamic tensile test method and device |
KR101281339B1 (en) | 2012-01-11 | 2013-07-02 | (주)스마텍 | Double impact test unit |
-
2015
- 2015-10-28 KR KR1020150150172A patent/KR101727405B1/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001116673A (en) * | 1999-10-21 | 2001-04-27 | Mitsubishi Heavy Ind Ltd | Impact compression testing device for ceramics |
JP2008216082A (en) | 2007-03-05 | 2008-09-18 | Ihi Corp | Dynamic tensile test method and device |
KR101281339B1 (en) | 2012-01-11 | 2013-07-02 | (주)스마텍 | Double impact test unit |
Cited By (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101902811B1 (en) | 2016-11-22 | 2018-10-01 | 안동대학교 산학협력단 | Impact Shear Testing Apparatus for Metallic Sheets |
CN107367427A (en) * | 2017-08-28 | 2017-11-21 | 南京理工大学 | A kind of SHPB experimental methods for concrete material |
CN107796711A (en) * | 2017-09-20 | 2018-03-13 | 天津大学 | A kind of method for testing complete sample and structural plane dynamic shear strength |
CN107796711B (en) * | 2017-09-20 | 2019-11-19 | 天津大学 | A method for testing the dynamic shear strength of intact specimens and structural surfaces |
CN107741364A (en) * | 2017-10-23 | 2018-02-27 | 中国矿业大学 | A true triaxial test device and method for a cuboid rock sample |
CN107907402A (en) * | 2017-11-09 | 2018-04-13 | 北京科技大学 | Chamber palisades are crisp to cut transition type crash simulation instrument |
CN107907402B (en) * | 2017-11-09 | 2020-08-11 | 北京科技大学 | Brittle-shear transition type destruction simulator for chamber rock wall |
CN108152155A (en) * | 2017-11-27 | 2018-06-12 | 中国石油天然气股份有限公司 | Shale impact fracturing simulation system and application method thereof |
CN108152155B (en) * | 2017-11-27 | 2020-08-11 | 中国石油天然气股份有限公司 | Shale impact fracturing simulation system and application method thereof |
KR20190091143A (en) | 2018-01-26 | 2019-08-05 | 한국원자력연구원 | Apparatus for testing shear stress |
CN108344648A (en) * | 2018-02-07 | 2018-07-31 | 西北工业大学 | A kind of single-axis bidirectional load split hopkinson press bar and pull rod device and experimental method |
CN108333047A (en) * | 2018-02-07 | 2018-07-27 | 西北工业大学 | A kind of the dynamic symmetry stretching device and its experimental method of I types precracked specimen |
CN108333047B (en) * | 2018-02-07 | 2020-11-20 | 西北工业大学 | A Dynamic Symmetrical Tensile Device for Type I Crack Specimen and Its Experimental Method |
CN108344648B (en) * | 2018-02-07 | 2020-11-20 | 西北工业大学 | Uniaxial Bidirectional Loading Separate Hopkinson Compression Rod and Tie Rod Device and Experimental Method |
CN108225709A (en) * | 2018-03-07 | 2018-06-29 | 中国工程物理研究院电子工程研究所 | A kind of impact test loading device and system |
CN108225709B (en) * | 2018-03-07 | 2024-04-26 | 中国工程物理研究院电子工程研究所 | Impact test loading device and system |
CN108663243A (en) * | 2018-04-02 | 2018-10-16 | 清华大学 | A kind of SHPB filling liquid jointed rock mass liquid sample bringing device and method |
CN110146394A (en) * | 2018-05-23 | 2019-08-20 | 谭乃根 | Material properties shock acoustic response test simulation system |
CN108871931A (en) * | 2018-06-05 | 2018-11-23 | 清华大学 | A kind of flange form SHPB filling liquid jointed rock mass liquid sample bringing device and method |
CN109001062A (en) * | 2018-06-07 | 2018-12-14 | 东南大学 | A kind of compression bar measuring device and measuring method of material compactness |
CN109001062B (en) * | 2018-06-07 | 2019-12-13 | 东南大学 | Compression bar measuring device and method for material compactness |
CN110749521A (en) * | 2018-07-24 | 2020-02-04 | 中石化石油工程技术服务有限公司 | Dynamic and static load combined rock breaking test device and test method |
CN110749521B (en) * | 2018-07-24 | 2022-07-12 | 中石化石油工程技术服务有限公司 | Dynamic and static load combined rock breaking test device and test method |
CN108844814A (en) * | 2018-08-22 | 2018-11-20 | 宁波大学 | A kind of braid material Hopkinson tension test clamp method |
CN109238884A (en) * | 2018-09-11 | 2019-01-18 | 北京理工大学 | A kind of dynamic mechanical test method of seal coating |
CN109374408B (en) * | 2018-09-28 | 2021-10-22 | 长安大学 | A test method for dynamic characteristics of artificially filled jointed rock mass |
CN109374408A (en) * | 2018-09-28 | 2019-02-22 | 长安大学 | A test method for dynamic characteristics of artificially filled jointed rock mass |
US10955382B2 (en) * | 2018-11-12 | 2021-03-23 | Beijing University Of Technology | Experimental device for studying the propagation characteristics of stress wave in jointed rock mass at high temperature |
CN109323937A (en) * | 2018-11-23 | 2019-02-12 | 浙江大学 | A Hopkinson pressure rod damping device |
CN109323937B (en) * | 2018-11-23 | 2023-10-31 | 浙江大学 | A kind of Hopkinson pressure rod damping device |
CN109307624A (en) * | 2018-11-29 | 2019-02-05 | 重庆大学 | A large-scale true triaxial hydraulic fracturing experimental device and experimental method |
US11988645B2 (en) | 2018-12-26 | 2024-05-21 | Shenzhen University | Dynamic true triaxial electromagnetic Hopkinson bar system |
US11703433B2 (en) | 2018-12-26 | 2023-07-18 | Shenzhen University | Dynamic true triaxial electromagnetic Hopkinson bar system and testing method |
WO2020134579A1 (en) * | 2018-12-26 | 2020-07-02 | 深圳大学 | Dynamic and static load synchronous servo control system for three-axis six-direction hopkinson pressure bar |
WO2020134580A1 (en) * | 2018-12-26 | 2020-07-02 | 深圳大学 | Method of using true-triaxial hopkinson bar to test dynamic damage to solid and ultrasonic propagation |
CN109708955A (en) * | 2019-01-17 | 2019-05-03 | 浙江大学 | A positioning device for Hopkinson pressure bars |
CN109839318A (en) * | 2019-03-13 | 2019-06-04 | 北京林业大学 | A kind of device for realizing high-ductility material high strain-rate pure shear |
CN109916710B (en) * | 2019-04-12 | 2022-07-29 | 中铁三局集团有限公司 | A separate Hopkinson rod rock sample recovery device |
CN109916710A (en) * | 2019-04-12 | 2019-06-21 | 中铁三局集团有限公司 | A separate Hopkinson rod rock sample recovery device |
CN110133104B (en) * | 2019-05-30 | 2021-07-30 | 东北大学 | A test method for dynamic mechanical properties of filling bodies at all ages |
CN110133104A (en) * | 2019-05-30 | 2019-08-16 | 东北大学 | A method for testing the dynamic mechanical properties of filling bodies at all ages |
CN110261242B (en) * | 2019-07-12 | 2022-04-26 | 中南大学 | Hopkinson bar rock sample impact test device and method |
CN110261242A (en) * | 2019-07-12 | 2019-09-20 | 中南大学 | A kind of Hopkinson bar rock sample impact test apparatus and method |
CN110441170B (en) * | 2019-07-17 | 2023-12-22 | 深圳大学 | Single-shaft bidirectional synchronous control electromagnetic loading dynamic shear test device and test method |
CN110441170A (en) * | 2019-07-17 | 2019-11-12 | 深圳大学 | Single-axis bidirectional synchronously control electromagnetism loads dynamic shear test device and test method |
WO2021012459A1 (en) * | 2019-07-19 | 2021-01-28 | 深圳大学 | Biaxial four-direction dynamic and static combined electromagnetic loading hopkinson plate impact loading device |
CN110441172A (en) * | 2019-08-01 | 2019-11-12 | 深圳大学 | Osmotic pressure and static pressure couple electromagnetic load three axis SHPB devices and test method |
CN110441172B (en) * | 2019-08-01 | 2023-11-10 | 深圳大学 | Osmotic pressure and static pressure coupling electromagnetic loading triaxial SHPB device and test method |
CN110595916A (en) * | 2019-09-25 | 2019-12-20 | 燕山大学 | A plate shear test device |
WO2021088238A1 (en) * | 2019-11-08 | 2021-05-14 | 山东科技大学 | Shpb test system-based dynamic lateral strain measurement device and method for test piece |
CN110926927A (en) * | 2019-12-03 | 2020-03-27 | 四川大学 | Flip formula hopkinson pole confined pressure device |
CN111044352A (en) * | 2019-12-31 | 2020-04-21 | 太原理工大学 | Separated Hopkinson bar pressure and torsion load composite loading device and use method thereof |
CN111044353A (en) * | 2019-12-31 | 2020-04-21 | 太原理工大学 | Split Hopkinson bar tension-torsion load composite loading device and using method thereof |
CN111044352B (en) * | 2019-12-31 | 2022-02-15 | 太原理工大学 | Separated Hopkinson rod compression and torsional load composite loading device and its use method |
CN111044353B (en) * | 2019-12-31 | 2022-02-15 | 太原理工大学 | Separated Hopkinson rod tension-torsional load composite loading device and its use method |
CN111678806A (en) * | 2020-05-11 | 2020-09-18 | 江苏禹治流域管理技术研究院有限公司 | SHPB rock shear test device and method under normal stress condition |
CN111579402A (en) * | 2020-05-21 | 2020-08-25 | 西北工业大学 | A uniaxial biaxial dynamic tensile test method for brittle materials |
CN111929150A (en) * | 2020-08-25 | 2020-11-13 | 中南大学 | Surrounding rock dynamics test system and method for railway tunnel under rainy mountain area |
CN111929150B (en) * | 2020-08-25 | 2021-07-20 | 中南大学 | Dynamic testing system and method for surrounding rock of a railway tunnel passing through a rainy mountain area |
CN112461639A (en) * | 2020-11-25 | 2021-03-09 | 煤炭科学研究总院 | Impact test equipment |
CN112782007A (en) * | 2021-01-28 | 2021-05-11 | 天津大学 | Dynamic shearing and friction measuring device and method based on Hopkinson pressure bar |
CN112964540A (en) * | 2021-02-10 | 2021-06-15 | 江西理工大学 | Device and method for testing dynamic performance of rock under high water pressure and high ground stress coupling |
CN113400090A (en) * | 2021-06-07 | 2021-09-17 | 扬州市久盈精密主轴有限公司 | Main shaft strength detection device and method for numerical control machine tool |
CN113376035A (en) * | 2021-06-19 | 2021-09-10 | 中国人民解放军国防科技大学 | Device and method for testing energy release of active material under different atmospheres |
CN113504131A (en) * | 2021-07-09 | 2021-10-15 | 中国矿业大学 | Test system and test method for testing II-type dynamic fracture toughness of rock under different normal stresses |
CN113899634A (en) * | 2021-08-27 | 2022-01-07 | 北京工业大学 | Device and method for evaluating rock breaking efficiency of drill bit teeth under impact load |
CN113899634B (en) * | 2021-08-27 | 2024-05-24 | 北京工业大学 | Device and method for evaluating rock breaking efficiency of drill bit teeth under impact load effect |
CN114112732A (en) * | 2021-09-03 | 2022-03-01 | 北京理工大学 | Specimen suitable for the study of dynamic shear mechanical properties of explosive welding materials |
CN113984523B (en) * | 2021-10-28 | 2022-09-09 | 中国矿业大学 | Test device and test method for dynamic and static combined loading strength of rock simulation material |
US11644398B1 (en) | 2021-10-28 | 2023-05-09 | China University Of Mining And Technology | Apparatus and method for testing combined dynamic-static loading strength of rock-like material |
CN113984523A (en) * | 2021-10-28 | 2022-01-28 | 中国矿业大学 | Test device and test method for dynamic and static combined loading strength of rock simulation material |
CN114112733B (en) * | 2021-11-29 | 2023-09-15 | 中交文山高速公路建设发展有限公司 | Dynamic test method for high-speed shear strength of asphalt concrete |
CN114112733A (en) * | 2021-11-29 | 2022-03-01 | 中交文山高速公路建设发展有限公司 | Dynamic test method for high-speed shear strength of asphalt concrete |
CN114985093A (en) * | 2022-06-14 | 2022-09-02 | 山东和创瑞思环保科技有限公司 | High shearing machine of cyclone separation |
CN114985093B (en) * | 2022-06-14 | 2024-04-05 | 山东和创瑞思环保科技有限公司 | Cyclone separation high shear |
CN114993858A (en) * | 2022-06-16 | 2022-09-02 | 河海大学 | Device and method for testing impact shear resistance of concrete-rock interface for Hopkinson pressure bar |
CN116818557A (en) * | 2022-12-07 | 2023-09-29 | 天津大学 | Mechanical test device and test method |
CN116818557B (en) * | 2022-12-07 | 2024-04-19 | 天津大学 | Mechanical testing device and testing method |
CN116009405A (en) * | 2023-03-21 | 2023-04-25 | 中国科学院武汉岩土力学研究所 | Servo control method and system for rock dynamic triaxial test with medium strain rate |
CN116009405B (en) * | 2023-03-21 | 2023-06-13 | 中国科学院武汉岩土力学研究所 | Servo control method and system for rock dynamic triaxial test with medium strain rate |
CN116773328A (en) * | 2023-06-25 | 2023-09-19 | 中国地质大学(北京) | True triaxial hopkinson pressure bar test device |
CN116818567B (en) * | 2023-08-30 | 2023-11-14 | 北京建筑大学 | Dynamic impact damage mechanical property evaluation method for brittle solid material |
CN116818567A (en) * | 2023-08-30 | 2023-09-29 | 北京建筑大学 | Dynamic impact damage mechanical property evaluation method for brittle solid material |
KR102642062B1 (en) | 2023-10-17 | 2024-03-04 | 국방과학연구소 | Apparatus for testing the crash characteristics of crashing bodies |
CN118111828A (en) * | 2024-04-07 | 2024-05-31 | 北京理工大学 | Experimental device for extrusion-shear coupling loading of energetic materials based on SHPB platform |
KR102788032B1 (en) * | 2024-08-01 | 2025-03-31 | 국방과학연구소 | A stress-conversion specimen structure that enables the measurement of high-speed tensile properties in a high-speed compression testing device and Method for correcting constitutive equations by simulation-based reverse engineering thereof |
CN120121437A (en) * | 2025-05-15 | 2025-06-10 | 北京理工大学 | Particle explosive dynamic compression response X-ray synchronous diagnosis device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101727405B1 (en) | Modification of Hoek triaxial cell for SHPB tests and its application to dynamic shear strength measurement of brittle materials | |
Chi et al. | Measurement of shock pressure and shock-wave attenuation near a blast hole in rock | |
JP6173866B2 (en) | Explosive impact sensitivity test method and test apparatus | |
Ibekwe et al. | Impact and post impact response of laminated beams at low temperatures | |
CN108375509A (en) | A kind of active confining pressure and the sound loading experimental apparatus that explodes | |
CN110320115A (en) | The Hopkinson rock lever apparatus and method of test are propagated for rock mass stress wave | |
CN110987593B (en) | Steel fiber concrete layer crack strength algorithm considering impact compression damage influence | |
KR20150061189A (en) | Apparatus for generating and controlling shock wave and dynamic property measuring system using the apparatus and semi-conduct strain gauges | |
CN101852705A (en) | Evaluation method for dynamic damage of materials under multiple impacts | |
US7733466B2 (en) | Measurement of constitutive properties of a powder subject to compressive axial and radial loading, using optical sensing | |
CN110146394A (en) | Material properties shock acoustic response test simulation system | |
KR102642062B1 (en) | Apparatus for testing the crash characteristics of crashing bodies | |
Elkarous et al. | Experimental techniques for ballistic pressure measurements and recent development in means of calibration | |
Konstantinov et al. | Investigation of wood anisotropy under dynamic loading | |
Singh et al. | Experimental and numerical investigation of vertical shock tube performance for blast load testing of geological media | |
Hawass et al. | Multi-layer protective armour for underwater shock wave mitigation | |
Zhou et al. | Calibration of split Hopkinson pressure bar system with special shape striker | |
CN104236384B (en) | A kind of test method simulating the overload of launching shock in thorax | |
KR101026421B1 (en) | Shock wave generator using elastic strain energy and method | |
Kang et al. | Experimental and numerical study of the dynamic failure behavior of rock materials subjected to various impact loads | |
Kojima et al. | Fracture mode of glass plate subject to low-velocity impact: experimental investigation and finite element simulation | |
CN210742027U (en) | Hopkinson rock rod setup for rock mass stress wave propagation testing | |
Cao et al. | Failure behavior and regularity analysis of aluminum panel subjected to high-velocity sandstone impact | |
Gardner et al. | Development of a shock loading simulation facility | |
Su et al. | Experimental investigation of a novel blast wave mitigation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20151028 |
|
PA0201 | Request for examination | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20161019 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20170404 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20170410 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20170410 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20200402 Start annual number: 4 End annual number: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20210310 Start annual number: 5 End annual number: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20220304 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20230131 Start annual number: 7 End annual number: 7 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20250121 |