KR101727405B1 - Modification of Hoek triaxial cell for SHPB tests and its application to dynamic shear strength measurement of brittle materials - Google Patents

Modification of Hoek triaxial cell for SHPB tests and its application to dynamic shear strength measurement of brittle materials Download PDF

Info

Publication number
KR101727405B1
KR101727405B1 KR1020150150172A KR20150150172A KR101727405B1 KR 101727405 B1 KR101727405 B1 KR 101727405B1 KR 1020150150172 A KR1020150150172 A KR 1020150150172A KR 20150150172 A KR20150150172 A KR 20150150172A KR 101727405 B1 KR101727405 B1 KR 101727405B1
Authority
KR
South Korea
Prior art keywords
rod
impact
sample
load
impact load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020150150172A
Other languages
Korean (ko)
Inventor
조상호
민경조
오세욱
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Priority to KR1020150150172A priority Critical patent/KR101727405B1/en
Application granted granted Critical
Publication of KR101727405B1 publication Critical patent/KR101727405B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/307Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by a compressed or tensile-stressed spring; generated by pneumatic or hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/04Chucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/001Impulsive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0025Shearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0044Pneumatic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0067Fracture or rupture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/0282Two dimensional, e.g. tapes, webs, sheets, strips, disks or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/04Chucks, fixtures, jaws, holders or anvils
    • G01N2203/0411Chucks, fixtures, jaws, holders or anvils using pneumatic or hydraulic pressure

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

The present invention relates to an impact compression cell device under confinement load manufactured to be applicable to an SHPB impact tester and a dynamic fracture property measuring device using the same and, more specifically, relates to an impact load bar of a conventional Hoek triaxial compression cell, a rubber frame to prevent impact of cell compression, an impact load bar for high speed shear test, and dynamic triaxial compressive strength and dynamic shear failure criterion for brittle materials in a simpler manner. The present invention devises a triaxial compression cell applicable to SHPB devices; the dynamic property of brittle materials in response to a stress condition at high speed collision or explosion is able to be obtained using the same; and at the same time, a high speed shear test technique proposed.

Description

SHPB 충격시험 전용 삼축 압축셀 및 이를 이용한 동적 삼축 전단 시험기법{Modification of Hoek triaxial cell for SHPB tests and its application to dynamic shear strength measurement of brittle materials}[0001] The present invention relates to a triaxial compression cell for SHPB impact test and a dynamic triaxial shear test method using the same,

본 발명은 SHPB 충격시험기에 적용가능토록 제작된 구속하중 삼축 압축셀 장치 및 이를 이용한 동적 파괴 물성 측정 장치로서, 보다 상세하게는 기존 Hoek 삼축압축셀의 하중봉을 개량한 충격하중봉, 압축셀 충격방지용 고무틀, 고속전단시험용 충격하중봉 및 이를 이용하여 취성재료에 대한 동적압축강도 및 동적 전단 파괴 기준식을 간단하게 획득하는 장치에 관한 것이다. The present invention relates to a constrained load triaxial compression cell apparatus and a dynamic fracture property measurement apparatus using the same, which are made to be applicable to an SHPB impact tester, and more particularly to an apparatus for measuring a dynamic fracture property using an impact load rod improved in a load bar of a conventional Hoek triaxial compression cell, To an apparatus for simply obtaining a dynamic compressive strength and a dynamic shear fracture reference equation for a brittle material using the same.

스플릿 홉킨슨 압력봉(SHPB) 충격시스템은 고 변형률 속도 하에서 발생하는 취성재료의 파괴거동이나 변형특성을 파악하는데 사용된다. SHPB기법은 1949년 Kolsky에 의해 100~10000/s 의 변형률 속도에서 기계 재료의 동적 거동 특성을 규명하기 위해 개발되었으며, 대용량 데이터의 고속으로 저장이 가능한 오실로스코프 및 계측시스템의 개발을 토대로 최대 104s-1의 변형률속도에 대한 동적강도 측정이 가능해졌다.The Split Hopkinson Pressure Bar (SHPB) impact system is used to characterize fracture behavior or deformation behavior of brittle materials under high strain rates. SHPB technique was developed to identify the dynamic behavior characteristics of the machine material at the strain rate of 100 ~ 10000 / s by Kolsky 1949 years, up to 10 4 s based on the development of the possible oscilloscope and data acquisition system stores at a high speed of large amounts of data 0.0 > strain-rate < / RTI >

도 1 은 스플릿 홉킨슨 압력봉(SHPB) 충격시스템의 개요도이다. 충격봉(1), 입력봉(2), 출력봉(3) 등으로 구성되는 SHPB장치에서는 입력봉과 출력봉 사이에 시편을 고정한 후 충격봉을 일정 속도로 발사하여 입력봉에 충돌시킴으로써, 이때 발생한 탄성파가 입력봉으로 전달되고, 시편을 변형시킨 후, 출력봉으로 전달되게 한다.BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic of a Split Hopkinson Pressure Bar (SHPB) impact system. In the SHPB apparatus composed of the impact bar (1), the input rod (2), and the output bar (3), the specimen is fixed between the input rod and the output rod, and the impact rod is fired at a constant speed to collide with the input rod. The elastic waves are transmitted to the input rod, deform the specimen, and then transmit it to the output rod.

입력봉과 출력봉의 대략 중간 지점에 부착된 각각의 스트레인 게이지(5)로부터 발생한 신호 및 입력봉과 출력봉 내에서 1차원 탄성파를 가정한 수식으로부터, 시편과 접촉해 있는 입력봉과 출력봉의 끝에 미치는 시간에 따른 하중과 변위를 결정할 수 있다.From the signals from each strain gage (5) attached at approximately the midpoint of the input and output rods and from the formula assuming the input rod and one-dimensional acoustic wave in the output rod, the time dependence on the end of the input rod and output rod The load and displacement can be determined.

상술한 SHPB장치는, 균일상태 하에서, 단축 압축실험을 통해, 변형률 속도가 대략 102/s~104/s인 변형 범위에서의 재료의 변형 이력에 따른 응력-변형률 관계를 직접 얻을 수 있고, 로드 셀이나 스트레인 게이지를 시편에 직접 붙일 필요가 없다는 장점 때문에 많이 이용되고 있다. The above-described SHPB apparatus can directly obtain the stress-strain relationship according to the deformation history of the material in the deformation range with a strain rate of approximately 10 < 2 > / s to 10 < 4 & It is widely used because it does not need to attach the load cell or strain gauge directly to the specimen.

하지만, 도 1 구조의 SHPB장치는 오직 한 방향에 대한 구속 상태에서의 일축 동적 물성 측정만이 가능하다. 일반적으로 고속충돌이나 폭발에 의하여 발생된 응력상태는 삼축압축(세 방향에서의 가압)상태에 놓여있기 때문에, 봉압(구속압)상태에서의 동적 물성 평가가 중요시 된다. 지금까지 사용되는 봉압장치로는 Hoek 봉압셀 및 유압셀 등이 있으나, SHPB 충격시험기법과 같이 수평으로 놓인 충격하중봉에 적용하면 봉압에 의하여 충격봉이 밀려나 정상적인 데이터획득이 어려워진다. 이러한 단점을 보완하기 위하여 수평으로 놓인 충격봉을 축방향으로 구속할 필요가 있다. However, the SHPB device of Fig. 1 can only measure uniaxial dynamic properties in a constrained state in one direction. In general, the stress state generated by high-speed collision or explosion lies in the state of triaxial compression (pressurization in three directions), so evaluation of the dynamic properties in the bar-pressure (confining pressure) state is important. Unlike the SHPB impact test method, when applied to a horizontally placed impact load rod, the shock absorber is pushed by the pressure, which makes it difficult to obtain normal data. In order to overcome this disadvantage, it is necessary to axially restrain the horizontal impact bar.

본 발명은 기존의 SHPB 장비에 적용하여 축방향 구속을 통해 동적삼축압축강도 및 동적전단파괴식 획득을 가능케 하는 삼축압축셀 및 그 시험장치를 제안하는 것이다. The present invention proposes a triaxial compression cell and its testing apparatus which are applicable to conventional SHPB equipment and enable dynamic triaxial compression strength and dynamic shear failure type acquisition through axial confinement.

본 발명의 하나의 양상은 One aspect of the present invention is

시료의 양면에 위치하여 시료를 수평방향으로 고정하는 제 1 충격하중봉 및 제 2 충격하중봉 ;A first impact load rod and a second impact load rod positioned on both sides of the sample to fix the sample in the horizontal direction;

상기 시료의 측면을 둘러싸고 상기 시료를 축방향으로 구속시키는 원통형의 유압 멤브레인 ; 및 A cylindrical hydraulic membrane surrounding the side surface of the sample and restraining the sample in an axial direction; And

상기 제 1 충격하중봉, 제 2 충격하중봉 및 상기 멤브레인을 고정하는 하우징부를 포함하는 것을 특징으로 하는 삼축 압축셀에 관계한다.And a housing part for fixing the first impact load rod, the second impact load rod, and the membrane.

다른 양상에서 본 발명은 .In another aspect,

충격봉을 발사하는 가스건 ;Gas guns that launch impact rods;

상기 충격봉이 가속되는 건배럴 ;A gun barrel accelerated by the impact rod;

상기 건배럴과 소정 간격이 이격되고, 상기 충격봉과 동일선상에 위치하여 충돌하는 입사봉 ;An incident rod which is spaced apart from the gun barrel by a predetermined distance, and which collides with the impact rod in the same line;

시료에 축방향 구속압을 가하는 삼축 압축셀 ; A triaxial compression cell applying an axial confining pressure to the sample;

상기 입사봉 및 삼축 압축셀과 동일선상에 위치하는 전달봉을 포함하는 고속전단시험 장치에 관계한다.And a transmission rod positioned on the same line as the incident rod and the triaxial compression cell.

본 발명 장치는 기존의 SHPB장치에 삼축 압축셀을 개발, 도입함으로써, 시료에 대한 축방향 구속압을 재현하였다. 이에 따라 기존의 SHPB 시험장치로는 불가능 했던, 취성재료에 대한 동적 삼축압축강도 물성의 획득이 가능하게 되었으며, 추가적으로 고속전단시험 기법의 제안 및 동적 전단파괴기준식의 획득 또한 가능케 한다.The device of the present invention reproduces axial confinement pressure for a sample by developing and introducing a triaxial compression cell into a conventional SHPB device. This makes it possible to obtain dynamic triaxial compressive strength properties for brittle materials which have not been possible with the existing SHPB test equipment. In addition, it is possible to propose a high-speed shear test method and obtain a dynamic shear failure criterion.

본 발명에 의한 삼축 압축셀 및 이를 이용한 고속전단시험 기법은 암석 및 콘크리트 등의 취성재료가 일반적인 고속충돌이나 폭발 시 받게 되는 응력상태를 재현하여, 이에 대한 동적물성평가가 가능하도록 설계되었다.The triaxial compression cell according to the present invention and the high-speed shear test method using the same are designed to reproduce the stress condition to which brittle materials such as rock and concrete are subjected during normal high-speed collision or explosion, and to evaluate the dynamic properties thereof.

도 1 은 스플릿 홉킨슨 압력봉(SHPB) 충격시스템의 개요도이다.
도 2는 본 발명의 일구현예에 의한 삼축 압축셀을 이용한 동적 물성획득 시험장치의 개략도이다.
도 3은 삼축 압축셀을 이용한 동적 삼축압축강도 평가법을 나타낸다.
도 4는 삼축 압축셀에 의해 시료가 구속압 상태에 놓이는 것을 나타낸다.
도 5는 삼축압축셀을 이용한 고속전단시험기법을 나타낸다.
도 6은 삼축 압축셀(250) 부분을 확대한 것을 도시한 것이다.
도 7은 제 1 충격하중봉(251)과 제 2 충격하중봉(252)의 제조예를 보여준다.
도 8은 시료가 입사봉에 타격을 받기 전(상부 좌측)과 타격 받은 후(상부 우측)를 보여주는 사진이다.
도 9는 고속전단시험 결과를 나타낸 그래프이다.
도 10은 실험에서 수집된 충격파 곡선을 나타낸다.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic of a Split Hopkinson Pressure Bar (SHPB) impact system.
2 is a schematic diagram of a dynamic property acquisition test apparatus using a triaxial compression cell according to an embodiment of the present invention.
3 shows a dynamic triaxial compression strength evaluation method using a triaxial compression cell.
Fig. 4 shows that the sample is placed in the confined pressure state by the triaxial compression cell.
5 shows a high-speed shear test technique using a triaxial compression cell.
FIG. 6 shows an enlarged view of the triaxial compression cell 250 portion.
Fig. 7 shows a production example of the first impact load rod 251 and the second impact load rod 252. Fig.
Fig. 8 is a photograph showing a sample before being hit by the incident rod (upper left) and after being blown (upper right).
9 is a graph showing the results of the high-speed shear test.
10 shows the shock wave curves collected in the experiment.

도 2는 본 발명의 일구현예에 의한 삼축 압축셀을 이용한 동적 물성 획득 시험장치의 개략도이다. 도 3은 삼축 압축셀을 이용한 동적 삼축압축강도 평가법을 나타낸다. 2 is a schematic diagram of a dynamic property acquisition test apparatus using a triaxial compression cell according to an embodiment of the present invention. 3 shows a dynamic triaxial compression strength evaluation method using a triaxial compression cell.

도 2 및 도 3을 참고하면, 본 발명의 동적 파괴 물성 시험장치는 가스건(10), 건베럴(20), 입사봉(30), 전달봉(40) 및 압축셀(50)을 포함한다. 상기 삼축 압축셀(50)은 제 1 충격하중봉(51), 제 2 충격하중봉(52), 유압 멤브레인(53), 메탈 하우징(54)를 포함한다.2 and 3, the dynamic fracture toughness testing apparatus of the present invention includes a gas gun 10, a gun barrel 20, an incident rod 30, a transfer rod 40, and a compression cell 50. The triaxial compression cell 50 includes a first impact load bar 51, a second impact load bar 52, a hydraulic membrane 53, and a metal housing 54.

상기 제 1 충격하중봉(51)은 암석시료(70)를 수평방향으로 고정시켜주며, 입사봉(30)에서 전달되는 충격하중을 암석시료(70)에 전달한다. The first impact load rod 51 fixes the rock sample 70 in the horizontal direction and transfers the impact load transmitted from the incident rod 30 to the rock sample 70.

상기 제 2 충격하중봉(52)은 암석시료(70)를 수평방향으로 고정시켜주며, 암석시료에서 전달되는 충격하중을 전달봉(40)에 전달한다.      The second impact load bar 52 fixes the rock sample 70 in the horizontal direction and transfers the impact load transmitted from the rock sample to the transmission rod 40.

상기 유압 멤브레인(53)은 유압을 통해 암석시료(70)를 축방향으로 구속시키며, 유압 멤브레인(53)과 제 1 충격하중봉(51), 제 2 충격하중봉(52)사이에는 충격완화를 위한 고무패킹 장치가 들어있다.       The hydraulic membrane 53 restrains the rock sample 70 in the axial direction through the hydraulic pressure and the shock is relieved between the hydraulic membrane 53 and the first impact load rod 51 and the second impact load rod 52 And a rubber packing device.

상기 메탈하우징(54)은 제 1 충격하중봉(51), 제 2 충격하중봉(52), 유압멤브레인(53)을 감싸고 있으며, 고정 및 보호의 역할을 한다.       The metal housing 54 surrounds the first impact load rod 51, the second impact load rod 52, and the hydraulic membrane 53, and functions as a fixing and a protection.

상기 원통형 유압 멤브레인은 상기 시료의 중심방향으로, 고압으로 발사되는 충격봉은 제 1 충격하중봉 및 제 2 충격 하중봉을 통해 x 방향으로 상기 시료에 삼축압을 가할 수 있다.The impact rod, which is fired at a high pressure in the direction of the center of the cylindrical hydraulic membrane, can apply triaxial pressure to the sample in the x direction through the first impact load rod and the second impact load rod.

도 4는 상기 삼축 압축셀(50)에 의해 시료에 삼축압이 가해지는 것을 나타낸다. 원기둥 구조의 제 1 충격하중봉과 제 2 충격하중봉 사이에 고정된 상기 시료(70)는 상기 멤브레인(53)에 의해 Pt, Pi의 방향(x방향이라 함)의 수직방향(y, z 방향임, 시료의 중심 방향이라고도 할 수 있음)으로 구속된다. 즉, 상기 멤브레인은 y, z 방향으로, 고압으로 발사되는 충격봉은 제 1 충격하증봉과 제 2 충격하중봉을 통해 x 방향으로 상기 시료에 압력을 가하게 된다.Fig. 4 shows that triaxial compression is applied to the sample by the triaxial compression cell 50. Fig. The sample 70 fixed between the first impact load rod and the second impact load rod having a cylindrical structure is moved in the y and z directions by the membrane 53 in the direction perpendicular to the direction of Pt and Pi , Or the center direction of the sample). That is, the impact bar, which is fired at high pressure in the y and z directions, applies pressure to the sample in the x direction through the first impact lowering bar and the second impact load bar.

상기 멤브레인에 유압펌프(55)를 이용하여 멤브레인(53)에 유압을 가하여 압력을 높일 수 있다. 일반적으로, 유압에 의한 구속압이 커지면 암석 및 콘크리트의 강도가 증가한다고 알려져 있다. The pressure can be increased by applying hydraulic pressure to the membrane 53 using the hydraulic pump 55 to the membrane. Generally, it is known that the increase of the confining pressure by hydraulic pressure increases the strength of rock and concrete.

상기 제 1충격 하중봉과 제 2 충격 하중봉은 돌출된 고정부(511, 521)를 각각 구비하고, 상기 고정부가 상기 유압 멤브레인과 하우징 내벽 사이에 삽입 고정될 수 있다. The first impulse load bar and the second impulse load bar each have protruding fixing parts 511 and 521, and the fixing part can be inserted and fixed between the hydraulic membrane and the inner wall of the housing.

상기 가스건(10)은 공지된 충격봉 발사장치를 제한 없이 사용할 수 있다. 예를 들면, 상기 가스건(10)은 충격봉(60)을 발사시키는 고압용기(11)와 발사속도를 제어하는 충격봉 추진 제어부(12)를 포함할 수 있다. The gas gun 10 may use any known impact roulette throwing apparatus without limitation. For example, the gas gun 10 may include a high-pressure vessel 11 that fires the impact rod 60 and an impact rod propulsion control unit 12 that controls the firing velocity.

상기 고압용기(11)는 압축가스를 저장한다. 상기 압축가스는 불활성 가스 또는 공기일 수 있다. The high-pressure vessel (11) stores compressed gas. The compressed gas may be inert gas or air.

상기 압축가스는 콤프레서에 의해 주입되고, 상기 고압용기(11) 입구측에는 개폐밸브가 구비되어 압축가스 주입을 개폐한다. 상기 고압용기(11)는 충격봉(60)의 추진에 필요한 압축가스를 저장하기 위해 1000psi 이상의 허용압력을 가질 수 있다. 또한, 상기 개폐밸브는 상기 고압용기 허용압력의 1/10을 초과하는 경우 가스를 자동으로 방출하는 안전장치가 부착된다. The compressed gas is injected by a compressor, and an opening / closing valve is provided at the inlet side of the high-pressure vessel 11 to open / close the compressed gas injection. The high-pressure vessel 11 may have an allowable pressure of 1000 psi or more to store the compressed gas necessary for propelling the impact rod 60. Further, a safety device for automatically releasing the gas when the on-off valve exceeds 1/10 of the allowable pressure of the high-pressure vessel is attached.

상기 충격봉 추진 제어부(12)는 상기 고압용기(11) 출구 측에 설치된 공압 밸브(121)를 열어 압축가스 방출력으로 충격봉(60)을 발사한다.The impact rod propulsion control unit 12 opens a pneumatic valve 121 provided at an outlet side of the high-pressure vessel 11 and fires the impact rod 60 with a compressed gas discharge.

상기 충격봉 추진 제어부(12)는 상기 공압밸브(121)를 개폐하는 발사밸브(122) 및 상기 발사밸브에 압축가스를 제공하여 공압밸브를 열어주는 압축기(123)를 포함할 수 있다. 콤프레셔 내 공기압은 항상 발사밸브(121)에 압력을 가하고 있다. The impact rod propulsion control unit 12 may include a launch valve 122 for opening and closing the pneumatic valve 121 and a compressor 123 for providing a compressed gas to the launch valve to open the pneumatic valve. The air pressure in the compressor always applies pressure to the firing valve 121.

상기 공압밸브(122)는 스프링 리턴 공압밸브인 것이 바람직하다.The pneumatic valve 122 is preferably a spring return pneumatic valve.

상기 건베럴(20)은 상기 공압밸브 후단에 설치되고, 발사된 충격봉이 가속되는 파이프이다. The gun barrel 20 is a pipe provided at the rear end of the pneumatic valve and accelerated by the impact bar.

상기 입사봉(30)은 상기 건베럴과 소정간격 이격되어 동일선상에 형성되는 열처리된 강봉(steel bar)이다. 상기 입사봉(30)에 건베럴을 따라 가속된 충격봉(60)이 충돌하고, 여기서 발생된 충격파가 상기 입사봉을 따라 시료(70)와 전달봉(40)으로 전파된다.The incident rod 30 is a heat-treated steel bar spaced a predetermined distance apart from the gun barrel. The impact rod 60 accelerated along the gun barrel collides with the incident rod 30 and the shock wave generated thereby propagates to the sample 70 and the transfer rod 40 along the incident rod.

본 발명의 시험장치는 삼축 압축셀(50) 내부에 암석시료(70)를 위치시켜 입사봉(30)으로부터 전해지는 충격하중을 통한 동적삼축 압축강도 및 변형률을 측정한다.       The test apparatus of the present invention measures the dynamic three-axis compressive strength and strain rate of the rock sample (70) by placing the rock sample (70) inside the triaxial compression cell (50)

본 발명의 시험장치는 기존의 SHPB 충격하중시험기를 포함한다.       The test apparatus of the present invention includes a conventional SHPB impact load tester.

본 발명의 시험장치에서의 계측은 입사봉(30)과 전달봉(40)에 부착된 반도체 변형률게이지에 의해 이루어진다.        The measurement in the test apparatus of the present invention is performed by a semiconductor strain gauge attached to the incident rod 30 and the transfer rod 40.

좀 더 구체적으로, 본 발명의 시험 장치는 충격봉의 충격속도를 측정하는 충격속도 측정부(90) 및 입력파, 반사파 및 출력파의 변형율을 측정하는 충격파형 계측부(100)를 포함한다.More specifically, the testing apparatus of the present invention includes an impact velocity measuring unit 90 for measuring the impact velocity of the impact rod, and an impact waveform measuring unit 100 for measuring the input wave, the reflected wave, and the strain of the output wave.

상기 충격속도 측정부(90)는 건베럴과 입사봉 사이에 위치한 레이저(91) 및 고속포토다이오드(92)를 포함하여 충격봉의 충격속도를 측정할 수 있다. The impact velocity measuring unit 90 may include a laser 91 and a high-speed photodiode 92 positioned between the gun barrel and the incident rod to measure the impact velocity of the impact rod.

상기 충격파형 계측부(100)는 입력파, 반사파 및 전달파의 변형율을 측정한다. 상기 충격파형 계측부(100)는 입사봉과 전달봉 표면에 발생되는 변형을 감지하는 반도체 변형율 게이지(110) 및 반도체 변형율 게이지에 전원을 공급하는 브릿지회로를 포함한 데이터 처리부(120)를 포함한다.The impact waveform measuring unit 100 measures strain rates of input waves, reflected waves, and transmission waves. The impact waveform measuring unit 100 includes a data processing unit 120 including a semiconductor strain gauge 110 for detecting strain generated on the incident rod and a surface of a transfer rod, and a bridge circuit for supplying power to the semiconductor strain gage.

상기 삼축 압축셀(50)은 고속충돌이나 폭발 시 형성되는 응력상태를 시료내에 재현하며, 이를 통해 취성재료에 대한 동적삼축압축강도 및 동적전단파괴 기준식을 획득 할 수 있다. The triaxial compression cell 50 reproduces the stress state formed at the time of high-speed collision or explosion in the sample, thereby obtaining the dynamic triaxial compressive strength and the dynamic shear fracture reference equation for the brittle material.

도 1은 종래 스플릿 홉킨슨 압력봉(SHPB) 충격시스템의 개요도이다. 도 1의 시스템은 삼축 압축셀을 구비하지 않아 삼축 구속압 상태에서의 시료(70)의 거동을 모사하거나, 물성을 측정하는 것이 불가능하다.BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic diagram of a conventional split Hopkinson pressure sock (SHPB) impact system. 1 does not have a triaxial compression cell, it is impossible to simulate the behavior of the sample 70 in the triaxial confining pressure state or to measure its physical properties.

이에 반해, 본 발명의 삼축 압축셀을 포함한 시험장치는 유압에 의한 구속압을 구현하여, 고속충돌이나 폭발 시 발생하는 응력 상태에서의 거동 및 물성 획득을 가능케 한다.On the other hand, the test apparatus including the triaxial compression cell of the present invention implements the constraint pressure by the hydraulic pressure, thereby enabling the behavior and property acquisition in the stress state occurring at high speed collision or explosion.

도 5는 삼축 압축셀을 이용하 고속 전단 시험장치이다. 도 6은 삼축 압축셀(250) 부분을 확대한 것을 도시한 것이다.5 is a high-speed shear test apparatus using a triaxial compression cell. FIG. 6 shows an enlarged view of the triaxial compression cell 250 portion.

도 5에 의한 장치는 가스건(210), 건베럴(220), 입사봉(230), 전달봉(240) 및 압축셀(250)을 포함한다. 또한, 상기 장치는 충격봉(260), 시료(270), 충격흡수대(280), 충격속도 측정부(290) 및 입력파, 반사파 및 출력파의 변형율을 측정하는 충격파형 계측부(300)을 추가로 포함할 수 있다. 도 5 및 도 6을 참고하면, 상기 제 1 충격하중봉(251)은 관통구를 구비하고, 제 2 충격하중봉(252)은 대응되는 위치에 소정 깊이로 형성된 홀을 구비한다. 5 includes a gas gun 210, a gun barrel 220, an incident rod 230, a transfer rod 240, and a compression cell 250. The apparatus further includes an impact rod 260, a sample 270, a shock absorption band 280, an impact velocity measurement unit 290, and an impact waveform measurement unit 300 for measuring the input wave, the reflected wave, As shown in FIG. 5 and 6, the first impact load rod 251 has a through-hole, and the second impact load rod 252 has a hole formed at a corresponding position at a predetermined depth.

상기 입사바(230)는 상기 관통구와 상기 홀을 통과할 수 있는 직경을 가진다. 상기 입사바(230)는 상기 충격봉의 충돌에 의해 상기 제 1 충격하중봉의 관통구를 통과하여 시료에 직접적인 충격을 가한다. 이때, 상기 입사바(230)는 시료를 천공하고, 천공된 시료를 제 2 충격하중봉의 홀로 이동시킨다.The incident bar 230 has a diameter that allows it to pass through the through-hole and the hole. The incident bar 230 passes through the through hole of the first impact load rod by impact of the impact rod and directly impacts the sample. At this time, the incident bar 230 punctures the sample and moves the perforated sample to the hole of the second impact load rod.

상기 장치는 시료가 상기 입사봉에 의해 천공될 때의 충격파형 신호를 받아 전단 파괴 강도를 측정할 수 있다. The apparatus can measure the shear breaking strength by receiving an impact waveform signal when the sample is punctured by the incident rod.

도 7은 제 1 충격하중봉(251)과 제 2 충격하중봉(252)의 제조 예를 보여준다. 도 8은 시료가 입사봉에 타격을 받기 전(상부 좌측)과 타격 받은 후(상부 우측)를 보여주는 사진이다.Fig. 7 shows a production example of the first impact load rod 251 and the second impact load rod 252. Fig. Fig. 8 is a photograph showing a sample before being hit by the incident rod (upper left) and after being blown (upper right).

도 6을 참고하여, 상기 장치가 전단파괴 강도를 측정할 수 있는 원리를 설명하도록 한다.Referring to FIG. 6, the principle that the device can measure the shear breaking strength will be described.

먼저, 본 발명의 장치는 20mm 입사봉(230)을 통해 전달된 충격하중이 암석시편(270)으로 직접 타격을 한다. 여기서, 상기 제 1 충격하중봉(251)과 제 2 충격하중봉(252)은 시료를 양쪽에서 고정시킨다. 결과적으로 시료(270)는 20mm 직경 면적으로 가해지는 압축하중을 받게 된다.First, the apparatus of the present invention directly hits the rock specimen 270 with the impact load transmitted through the 20 mm incident rod 230. Here, the first impact load rod 251 and the second impact load rod 252 fix the sample on both sides. As a result, the sample 270 is subjected to a compressive load applied in a 20 mm diameter area.

이 때, 입사봉(230)이 타격하는 20mm 면적을 제외한 시료(270) 부분은 제 1 충격하중봉과 제 2 충격하중봉에 의해 고정(구속)되어 있으므로 전단(측면)방향으로 전단력(밀림힘, 마찰력과 비슷한 개념)이 작용한다. 도 8의 하단에 시료가 타격을 받아 천공되는 경우 작용되는 전단력을 연두색으로 표시하였다.At this time, since the portion of the sample 270 excluding the area of 20 mm where the incident rod 230 is struck is fixed (constrained) by the first impact load rod and the second impact load rod, the shear force (the pushing force, Concept similar to friction). 8, the shearing force applied when the sample is punctured by the impact is shown in greenish color.

도 5 내지 도 8을 참고하면, 멤브레인(253)에 의한 힘(y, z 방향), 즉, 축방향 구속압은 지속적으로 작용되는 힘이지만, 충격봉에 의한 타격에 의한 힘(x방향)은 일시적 순간적으로 작용한다. 이때, 시료(270)이 보조바에 의해 구속되어 있는 상태에서 x방향으로의 압축력과 -x 방향으로의 전단력(밀림힘)에 의한 전단 파괴를 일으킨다.5 to 8, the force (y, z direction), that is, the axial confining pressure by the membrane 253 is a force that is continuously applied, but the force (x direction) It works momentarily. At this time, shearing failure occurs due to the compressive force in the x direction and the shear force in the -x direction (pushing force) in a state where the sample 270 is restrained by the auxiliary bar.

실험 : 동적 전단 강도 평가 Experiment: Evaluation of Dynamic Shear Strength

도 5의 장치를 사용하여 표 1의 조건으로 전단강도를 측정하여 결과를 표 1과 도 9에 나타내었다. 도 8은 실험 전 후의 시료를 보여준다.The shear strength was measured under the conditions of Table 1 using the apparatus of FIG. 5, and the results are shown in Table 1 and FIG. Figure 8 shows samples before and after the experiment.

동적 전단강도는 재료 파괴 시 가압된 하중 = P, 직경 = D, 시료 두께 = B 일 때, 전단강도는 이다. 시료에 작용하는 하중은 도 10 의 오실로스코프(320)에서 수집된 충격파 화상에서, 입사바 합성충격파 (P1 = Incident wave + Reflected wave ; 초록색 곡선)와 반사바 충격파(P2 = Transmitted wave ; 파란색 곡선) 의 평균값을 사용하였다. 또한, 동적 삼축 전단 강도는 앞서 언급한 전단강도의 식을 적용의 목적에 따라 입사바에 작용하는 충격파와 전달바에 작용하는 충격파의 형상 및 크기가 동일하도록 조정하였다(시료 내 응력 평형상태).The dynamic shear strength is the shear strength at the time of material failure at pressurized load = P, diameter = D, and sample thickness = B. The load acting on the sample is the sum of the incident wave composite shock wave (P1 = Incident wave + Reflected wave) and the reflected bar shock wave (P2 = Transmitted wave) in the shock wave image collected by the oscilloscope 320 of FIG. The mean value was used. In addition, the dynamic triaxial shear strength was adjusted so that the shape and size of the shock wave acting on the incident bar and the shock wave acting on the transfer bar were the same (stress equilibrium state in the sample) according to the purpose of applying the aforementioned shear strength equation.

하중속도Load speed 구속압력 (MPa)Constraining Pressure (MPa) 전단강도 (MPa)Shear strength (MPa) 하중속도Load speed 구속압력 (MPa)Constraining Pressure (MPa) 전단강도 (MPa)Shear strength (MPa) 3311GPa/s3311 GPa / s 00 30.94930.949 2528GPa/s2528 GPa / s 00 32.6332.63 00 34.6934.69 00 28.6128.61 00 37.94737.947 00 12.7512.75 1One 26.16426.164 1One 28.13528.135 1One 36.3936.39 1One 21.449821.4498 1One 38.1338.13 1One 21.00521.005 55 37.20237.202 55 26.38826.388 55 42.5742.57 55 31.4131.41 55 32.4832.48 55 30.04530.045 1010 42.79742.797 1010 26.8426.84 1010 3838 1010 31.9931.99 1010 49.8949.89 1010 34.31434.314

표 1과 도 9를 참고하면, 구속 압력이 증가함에 따라 재료의 강도는 선형성으로 증가하는 경향을 보이며, 하중속도가 증가함에 따라 구속압력에 대한 재료의 강도 증가율은 유지하면서, 재료의 점착력이 증가하는 경향을 보이고 있음을 확인할 수 있다.Referring to Table 1 and FIG. 9, as the restraint pressure increases, the strength of the material tends to increase linearly, and as the load speed increases, the adhesion strength of the material increases The results are shown in Fig.

암석 및 콘크리트 등의 취성재료에 대한 동적 삼축 전단실험은 전례가 없으며, 도 9에서 보이는 결과 값은 이론적 계산 값이나, 수치해석 시뮬레이션 등에 의한 이론 값에 부합하는 양상을 보인다. Dynamic triaxial shear tests on brittle materials such as rocks and concrete are unprecedented. The results shown in FIG. 9 are in accordance with theoretical values calculated by numerical simulation and theoretical calculations.

이상에서 본 발명의 바람직한 구현 예를 예로 들어 상세하게 설명하였으나, 이러한 설명은 단순히 본 발명의 예시적인 실시 예를 설명 및 개시하는 것이다. 당업자는 본 발명의 범위 및 정신으로부터 벗어남이 없이 상기 설명 및 첨부 도면으로부터 다양한 변경, 수정 및 변형예가 가능함을 용이하게 인식할 것이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. Those skilled in the art will readily appreciate that various changes, modifications, and variations may be made without departing from the spirit and scope of the present invention, as defined by the following claims and accompanying drawings.

Claims (10)

시료의 양면에 위치하여 시료를 수평방향으로 고정하는 제 1 충격하중봉 및 제 2 충격하중봉 ;
상기 시료의 측면을 둘러싸고 상기 시료를 축방향으로 구속시키는 원통형의 유압 멤브레인 ; 및
상기 제 1 충격하중봉, 제 2 충격하중봉 및 상기 멤브레인을 고정하는 하우징부를 포함하되,
상기 제 1충격 하중봉과 제 2 충격 하중봉은 돌출된 고정부를 각각 구비하고, 상기 고정부가 상기 유압 멤브레인과 하우징 내벽 사이에 삽입 고정되는 것을 특징으로 하는 삼축 압축셀.
A first impact load rod and a second impact load rod positioned on both sides of the sample to fix the sample in the horizontal direction;
A cylindrical hydraulic membrane surrounding the side surface of the sample and restraining the sample in an axial direction; And
A first impact load rod, a second impact load rod, and a housing for fixing the membrane,
Wherein the first impulse load rod and the second impulse load rod each have a protruded fixed part, and the fixed part is inserted and fixed between the hydraulic membrane and the inner wall of the housing.
제 1항에 있어서, 상기 원통형의 유압 멤브레인은 상기 시료의 중심방향으로, 고압으로 발사되는 충격봉은 제 1 충격하중봉 및 제 2 충격 하중봉을 통해 x축 방향으로 상기 시료에 삼축압을 가하는 것을 특징으로 하는 삼축 압축셀.The method according to claim 1, wherein the cylindrical hydraulic membrane has a structure in which the impact rod, which is fired at a high pressure in the center direction of the sample, applies the triaxial pressure to the sample in the x-axis direction through the first impact load rod and the second impact load rod Characterized by a triaxial compression cell. 삭제delete 제 1항에 있어서, 상기 제 1 하중봉은 관통구를 구비하고, 제 2 충격하중봉은 대응되는 위치에 소정 깊이로 형성된 홀을 구비하는 것을 특징으로 하는 삼축압축셀.2. The triaxial compression cell of claim 1, wherein the first load bar comprises a through-hole, and the second impact load bar has a hole formed at a corresponding position at a predetermined depth. 충격봉을 발사하는 가스건 ;
상기 충격봉이 가속되는 건베럴 ;
상기 건베럴과 소정 간격 이격되고, 상기 충격봉과 동일선상에 위치하여 충돌하는 입사봉 ;
상기 입사봉과 동일선상으로 소정 간격 이격되어 형성되는 전달봉 및 ;
상기 전달봉과 입사봉 사이에 위치하고, 시료에 축방향 구속압을 가하는 제1항, 제2항 및 제4항 중 어느 한 항의 삼축 압축셀을 포함하는 동적 파괴 물성 시험 장치.
Gas guns that launch impact rods;
A gun barrel accelerating the impact rod;
An incidence bar spaced apart from the gun barrel by a predetermined distance and colliding with the impact bar in the same line position;
A transfer rod formed in a line and spaced apart from the incidence bar by a predetermined distance;
4. The dynamic fracture toughness testing apparatus according to claim 1, wherein the triaxial compression cell is located between the transmission rod and the incident rod and applies an axial confining pressure to the sample.
제 5항에 있어서, 상기 장치는 상기 압축셀에 의한 구속압력과 입사봉으로 전달되는 충격하중을 조절하여 시료의 압축강도 또는 전단 파괴강도를 측정하는 것을 특징으로 하는 동적 파괴 물성 시험장치.The apparatus of claim 5, wherein the apparatus measures the compressive strength or the shear fracture strength of the sample by adjusting the confining pressure by the compression cell and the impact load transmitted to the incident rod. 제 5항에 있어서, 상기 입사봉을 통해 전달된 충격하중이 제 1 충격하중봉을 통해 시료로 가해지면, 상기 장치는 시료의 압축강도를 측정하는 것을 특징으로 하는 동적 파괴 물성 시험장치.The apparatus according to claim 5, wherein when the impact load transmitted through the incident rod is applied to the sample through the first impact load rod, the apparatus measures the compressive strength of the sample. 제 5항에 있어서, 상기 제 1 충격 하중봉은 관통구를 구비하고, 제 2 충격하중봉은 대응되는 위치에 소정 깊이로 형성된 홀을 구비하는 경우, 상기 입사봉은 상기 관통구와 상기 홀을 통과할 수 있는 직경으로 형성된 것을 특징으로 하는 동적 파괴 물성 시험장치.6. The apparatus of claim 5, wherein the first impulse load bar has a through-hole and the second impulse load bar has a hole formed at a corresponding position at a predetermined depth, the incurving rod is capable of passing through the through- Diameter of the test piece. 제 8항에 있어서, 상기 충격봉의 충돌에 의해 상기 입사봉은 상기 제 1 충격하중봉을 관통하여 시료에 충격파를 전달하는 것을 특징으로 하는 동적 파괴 물성 시험장치.The apparatus according to claim 8, wherein the impact rod penetrates through the first impulse load rod to transmit a shock wave to the specimen by the impact rod. 제 8항에 있어서, 상기 장치는 시료가 상기 입사봉에 의해 천공될 때의 충격파형 신호를 받아 전단 파괴 강도를 측정하는 것을 특징으로 하는 동적 파괴 물성 시험장치.
The apparatus according to claim 8, wherein the apparatus measures a shear breaking strength by receiving an impact waveform signal when the sample is punctured by the incident rod.
KR1020150150172A 2015-10-28 2015-10-28 Modification of Hoek triaxial cell for SHPB tests and its application to dynamic shear strength measurement of brittle materials Expired - Fee Related KR101727405B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150150172A KR101727405B1 (en) 2015-10-28 2015-10-28 Modification of Hoek triaxial cell for SHPB tests and its application to dynamic shear strength measurement of brittle materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150150172A KR101727405B1 (en) 2015-10-28 2015-10-28 Modification of Hoek triaxial cell for SHPB tests and its application to dynamic shear strength measurement of brittle materials

Publications (1)

Publication Number Publication Date
KR101727405B1 true KR101727405B1 (en) 2017-05-02

Family

ID=58742532

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150150172A Expired - Fee Related KR101727405B1 (en) 2015-10-28 2015-10-28 Modification of Hoek triaxial cell for SHPB tests and its application to dynamic shear strength measurement of brittle materials

Country Status (1)

Country Link
KR (1) KR101727405B1 (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107367427A (en) * 2017-08-28 2017-11-21 南京理工大学 A kind of SHPB experimental methods for concrete material
CN107741364A (en) * 2017-10-23 2018-02-27 中国矿业大学 A true triaxial test device and method for a cuboid rock sample
CN107796711A (en) * 2017-09-20 2018-03-13 天津大学 A kind of method for testing complete sample and structural plane dynamic shear strength
CN107907402A (en) * 2017-11-09 2018-04-13 北京科技大学 Chamber palisades are crisp to cut transition type crash simulation instrument
CN108152155A (en) * 2017-11-27 2018-06-12 中国石油天然气股份有限公司 Shale impact fracturing simulation system and application method thereof
CN108225709A (en) * 2018-03-07 2018-06-29 中国工程物理研究院电子工程研究所 A kind of impact test loading device and system
CN108333047A (en) * 2018-02-07 2018-07-27 西北工业大学 A kind of the dynamic symmetry stretching device and its experimental method of I types precracked specimen
CN108344648A (en) * 2018-02-07 2018-07-31 西北工业大学 A kind of single-axis bidirectional load split hopkinson press bar and pull rod device and experimental method
KR101902811B1 (en) 2016-11-22 2018-10-01 안동대학교 산학협력단 Impact Shear Testing Apparatus for Metallic Sheets
CN108663243A (en) * 2018-04-02 2018-10-16 清华大学 A kind of SHPB filling liquid jointed rock mass liquid sample bringing device and method
CN108844814A (en) * 2018-08-22 2018-11-20 宁波大学 A kind of braid material Hopkinson tension test clamp method
CN108871931A (en) * 2018-06-05 2018-11-23 清华大学 A kind of flange form SHPB filling liquid jointed rock mass liquid sample bringing device and method
CN109001062A (en) * 2018-06-07 2018-12-14 东南大学 A kind of compression bar measuring device and measuring method of material compactness
CN109238884A (en) * 2018-09-11 2019-01-18 北京理工大学 A kind of dynamic mechanical test method of seal coating
CN109307624A (en) * 2018-11-29 2019-02-05 重庆大学 A large-scale true triaxial hydraulic fracturing experimental device and experimental method
CN109323937A (en) * 2018-11-23 2019-02-12 浙江大学 A Hopkinson pressure rod damping device
CN109374408A (en) * 2018-09-28 2019-02-22 长安大学 A test method for dynamic characteristics of artificially filled jointed rock mass
CN109708955A (en) * 2019-01-17 2019-05-03 浙江大学 A positioning device for Hopkinson pressure bars
CN109839318A (en) * 2019-03-13 2019-06-04 北京林业大学 A kind of device for realizing high-ductility material high strain-rate pure shear
CN109916710A (en) * 2019-04-12 2019-06-21 中铁三局集团有限公司 A separate Hopkinson rod rock sample recovery device
KR20190091143A (en) 2018-01-26 2019-08-05 한국원자력연구원 Apparatus for testing shear stress
CN110133104A (en) * 2019-05-30 2019-08-16 东北大学 A method for testing the dynamic mechanical properties of filling bodies at all ages
CN110146394A (en) * 2018-05-23 2019-08-20 谭乃根 Material properties shock acoustic response test simulation system
CN110261242A (en) * 2019-07-12 2019-09-20 中南大学 A kind of Hopkinson bar rock sample impact test apparatus and method
CN110441172A (en) * 2019-08-01 2019-11-12 深圳大学 Osmotic pressure and static pressure couple electromagnetic load three axis SHPB devices and test method
CN110441170A (en) * 2019-07-17 2019-11-12 深圳大学 Single-axis bidirectional synchronously control electromagnetism loads dynamic shear test device and test method
CN110595916A (en) * 2019-09-25 2019-12-20 燕山大学 A plate shear test device
CN110749521A (en) * 2018-07-24 2020-02-04 中石化石油工程技术服务有限公司 Dynamic and static load combined rock breaking test device and test method
CN110926927A (en) * 2019-12-03 2020-03-27 四川大学 Flip formula hopkinson pole confined pressure device
CN111044352A (en) * 2019-12-31 2020-04-21 太原理工大学 Separated Hopkinson bar pressure and torsion load composite loading device and use method thereof
CN111044353A (en) * 2019-12-31 2020-04-21 太原理工大学 Split Hopkinson bar tension-torsion load composite loading device and using method thereof
WO2020134579A1 (en) * 2018-12-26 2020-07-02 深圳大学 Dynamic and static load synchronous servo control system for three-axis six-direction hopkinson pressure bar
WO2020134580A1 (en) * 2018-12-26 2020-07-02 深圳大学 Method of using true-triaxial hopkinson bar to test dynamic damage to solid and ultrasonic propagation
CN111579402A (en) * 2020-05-21 2020-08-25 西北工业大学 A uniaxial biaxial dynamic tensile test method for brittle materials
CN111678806A (en) * 2020-05-11 2020-09-18 江苏禹治流域管理技术研究院有限公司 SHPB rock shear test device and method under normal stress condition
CN111929150A (en) * 2020-08-25 2020-11-13 中南大学 Surrounding rock dynamics test system and method for railway tunnel under rainy mountain area
WO2021012459A1 (en) * 2019-07-19 2021-01-28 深圳大学 Biaxial four-direction dynamic and static combined electromagnetic loading hopkinson plate impact loading device
CN112461639A (en) * 2020-11-25 2021-03-09 煤炭科学研究总院 Impact test equipment
US10955382B2 (en) * 2018-11-12 2021-03-23 Beijing University Of Technology Experimental device for studying the propagation characteristics of stress wave in jointed rock mass at high temperature
CN112782007A (en) * 2021-01-28 2021-05-11 天津大学 Dynamic shearing and friction measuring device and method based on Hopkinson pressure bar
WO2021088238A1 (en) * 2019-11-08 2021-05-14 山东科技大学 Shpb test system-based dynamic lateral strain measurement device and method for test piece
CN112964540A (en) * 2021-02-10 2021-06-15 江西理工大学 Device and method for testing dynamic performance of rock under high water pressure and high ground stress coupling
CN113376035A (en) * 2021-06-19 2021-09-10 中国人民解放军国防科技大学 Device and method for testing energy release of active material under different atmospheres
CN113400090A (en) * 2021-06-07 2021-09-17 扬州市久盈精密主轴有限公司 Main shaft strength detection device and method for numerical control machine tool
CN113504131A (en) * 2021-07-09 2021-10-15 中国矿业大学 Test system and test method for testing II-type dynamic fracture toughness of rock under different normal stresses
CN113899634A (en) * 2021-08-27 2022-01-07 北京工业大学 Device and method for evaluating rock breaking efficiency of drill bit teeth under impact load
CN113984523A (en) * 2021-10-28 2022-01-28 中国矿业大学 Test device and test method for dynamic and static combined loading strength of rock simulation material
CN114112733A (en) * 2021-11-29 2022-03-01 中交文山高速公路建设发展有限公司 Dynamic test method for high-speed shear strength of asphalt concrete
CN114112732A (en) * 2021-09-03 2022-03-01 北京理工大学 Specimen suitable for the study of dynamic shear mechanical properties of explosive welding materials
CN114993858A (en) * 2022-06-16 2022-09-02 河海大学 Device and method for testing impact shear resistance of concrete-rock interface for Hopkinson pressure bar
CN114985093A (en) * 2022-06-14 2022-09-02 山东和创瑞思环保科技有限公司 High shearing machine of cyclone separation
CN116009405A (en) * 2023-03-21 2023-04-25 中国科学院武汉岩土力学研究所 Servo control method and system for rock dynamic triaxial test with medium strain rate
US11703433B2 (en) 2018-12-26 2023-07-18 Shenzhen University Dynamic true triaxial electromagnetic Hopkinson bar system and testing method
CN116773328A (en) * 2023-06-25 2023-09-19 中国地质大学(北京) True triaxial hopkinson pressure bar test device
CN116818557A (en) * 2022-12-07 2023-09-29 天津大学 Mechanical test device and test method
CN116818567A (en) * 2023-08-30 2023-09-29 北京建筑大学 Dynamic impact damage mechanical property evaluation method for brittle solid material
KR102642062B1 (en) 2023-10-17 2024-03-04 국방과학연구소 Apparatus for testing the crash characteristics of crashing bodies
US11988645B2 (en) 2018-12-26 2024-05-21 Shenzhen University Dynamic true triaxial electromagnetic Hopkinson bar system
CN118111828A (en) * 2024-04-07 2024-05-31 北京理工大学 Experimental device for extrusion-shear coupling loading of energetic materials based on SHPB platform
KR102788032B1 (en) * 2024-08-01 2025-03-31 국방과학연구소 A stress-conversion specimen structure that enables the measurement of high-speed tensile properties in a high-speed compression testing device and Method for correcting constitutive equations by simulation-based reverse engineering thereof
CN120121437A (en) * 2025-05-15 2025-06-10 北京理工大学 Particle explosive dynamic compression response X-ray synchronous diagnosis device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116673A (en) * 1999-10-21 2001-04-27 Mitsubishi Heavy Ind Ltd Impact compression testing device for ceramics
JP2008216082A (en) 2007-03-05 2008-09-18 Ihi Corp Dynamic tensile test method and device
KR101281339B1 (en) 2012-01-11 2013-07-02 (주)스마텍 Double impact test unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116673A (en) * 1999-10-21 2001-04-27 Mitsubishi Heavy Ind Ltd Impact compression testing device for ceramics
JP2008216082A (en) 2007-03-05 2008-09-18 Ihi Corp Dynamic tensile test method and device
KR101281339B1 (en) 2012-01-11 2013-07-02 (주)스마텍 Double impact test unit

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101902811B1 (en) 2016-11-22 2018-10-01 안동대학교 산학협력단 Impact Shear Testing Apparatus for Metallic Sheets
CN107367427A (en) * 2017-08-28 2017-11-21 南京理工大学 A kind of SHPB experimental methods for concrete material
CN107796711A (en) * 2017-09-20 2018-03-13 天津大学 A kind of method for testing complete sample and structural plane dynamic shear strength
CN107796711B (en) * 2017-09-20 2019-11-19 天津大学 A method for testing the dynamic shear strength of intact specimens and structural surfaces
CN107741364A (en) * 2017-10-23 2018-02-27 中国矿业大学 A true triaxial test device and method for a cuboid rock sample
CN107907402A (en) * 2017-11-09 2018-04-13 北京科技大学 Chamber palisades are crisp to cut transition type crash simulation instrument
CN107907402B (en) * 2017-11-09 2020-08-11 北京科技大学 Brittle-shear transition type destruction simulator for chamber rock wall
CN108152155A (en) * 2017-11-27 2018-06-12 中国石油天然气股份有限公司 Shale impact fracturing simulation system and application method thereof
CN108152155B (en) * 2017-11-27 2020-08-11 中国石油天然气股份有限公司 Shale impact fracturing simulation system and application method thereof
KR20190091143A (en) 2018-01-26 2019-08-05 한국원자력연구원 Apparatus for testing shear stress
CN108344648A (en) * 2018-02-07 2018-07-31 西北工业大学 A kind of single-axis bidirectional load split hopkinson press bar and pull rod device and experimental method
CN108333047A (en) * 2018-02-07 2018-07-27 西北工业大学 A kind of the dynamic symmetry stretching device and its experimental method of I types precracked specimen
CN108333047B (en) * 2018-02-07 2020-11-20 西北工业大学 A Dynamic Symmetrical Tensile Device for Type I Crack Specimen and Its Experimental Method
CN108344648B (en) * 2018-02-07 2020-11-20 西北工业大学 Uniaxial Bidirectional Loading Separate Hopkinson Compression Rod and Tie Rod Device and Experimental Method
CN108225709A (en) * 2018-03-07 2018-06-29 中国工程物理研究院电子工程研究所 A kind of impact test loading device and system
CN108225709B (en) * 2018-03-07 2024-04-26 中国工程物理研究院电子工程研究所 Impact test loading device and system
CN108663243A (en) * 2018-04-02 2018-10-16 清华大学 A kind of SHPB filling liquid jointed rock mass liquid sample bringing device and method
CN110146394A (en) * 2018-05-23 2019-08-20 谭乃根 Material properties shock acoustic response test simulation system
CN108871931A (en) * 2018-06-05 2018-11-23 清华大学 A kind of flange form SHPB filling liquid jointed rock mass liquid sample bringing device and method
CN109001062A (en) * 2018-06-07 2018-12-14 东南大学 A kind of compression bar measuring device and measuring method of material compactness
CN109001062B (en) * 2018-06-07 2019-12-13 东南大学 Compression bar measuring device and method for material compactness
CN110749521A (en) * 2018-07-24 2020-02-04 中石化石油工程技术服务有限公司 Dynamic and static load combined rock breaking test device and test method
CN110749521B (en) * 2018-07-24 2022-07-12 中石化石油工程技术服务有限公司 Dynamic and static load combined rock breaking test device and test method
CN108844814A (en) * 2018-08-22 2018-11-20 宁波大学 A kind of braid material Hopkinson tension test clamp method
CN109238884A (en) * 2018-09-11 2019-01-18 北京理工大学 A kind of dynamic mechanical test method of seal coating
CN109374408B (en) * 2018-09-28 2021-10-22 长安大学 A test method for dynamic characteristics of artificially filled jointed rock mass
CN109374408A (en) * 2018-09-28 2019-02-22 长安大学 A test method for dynamic characteristics of artificially filled jointed rock mass
US10955382B2 (en) * 2018-11-12 2021-03-23 Beijing University Of Technology Experimental device for studying the propagation characteristics of stress wave in jointed rock mass at high temperature
CN109323937A (en) * 2018-11-23 2019-02-12 浙江大学 A Hopkinson pressure rod damping device
CN109323937B (en) * 2018-11-23 2023-10-31 浙江大学 A kind of Hopkinson pressure rod damping device
CN109307624A (en) * 2018-11-29 2019-02-05 重庆大学 A large-scale true triaxial hydraulic fracturing experimental device and experimental method
US11988645B2 (en) 2018-12-26 2024-05-21 Shenzhen University Dynamic true triaxial electromagnetic Hopkinson bar system
US11703433B2 (en) 2018-12-26 2023-07-18 Shenzhen University Dynamic true triaxial electromagnetic Hopkinson bar system and testing method
WO2020134579A1 (en) * 2018-12-26 2020-07-02 深圳大学 Dynamic and static load synchronous servo control system for three-axis six-direction hopkinson pressure bar
WO2020134580A1 (en) * 2018-12-26 2020-07-02 深圳大学 Method of using true-triaxial hopkinson bar to test dynamic damage to solid and ultrasonic propagation
CN109708955A (en) * 2019-01-17 2019-05-03 浙江大学 A positioning device for Hopkinson pressure bars
CN109839318A (en) * 2019-03-13 2019-06-04 北京林业大学 A kind of device for realizing high-ductility material high strain-rate pure shear
CN109916710B (en) * 2019-04-12 2022-07-29 中铁三局集团有限公司 A separate Hopkinson rod rock sample recovery device
CN109916710A (en) * 2019-04-12 2019-06-21 中铁三局集团有限公司 A separate Hopkinson rod rock sample recovery device
CN110133104B (en) * 2019-05-30 2021-07-30 东北大学 A test method for dynamic mechanical properties of filling bodies at all ages
CN110133104A (en) * 2019-05-30 2019-08-16 东北大学 A method for testing the dynamic mechanical properties of filling bodies at all ages
CN110261242B (en) * 2019-07-12 2022-04-26 中南大学 Hopkinson bar rock sample impact test device and method
CN110261242A (en) * 2019-07-12 2019-09-20 中南大学 A kind of Hopkinson bar rock sample impact test apparatus and method
CN110441170B (en) * 2019-07-17 2023-12-22 深圳大学 Single-shaft bidirectional synchronous control electromagnetic loading dynamic shear test device and test method
CN110441170A (en) * 2019-07-17 2019-11-12 深圳大学 Single-axis bidirectional synchronously control electromagnetism loads dynamic shear test device and test method
WO2021012459A1 (en) * 2019-07-19 2021-01-28 深圳大学 Biaxial four-direction dynamic and static combined electromagnetic loading hopkinson plate impact loading device
CN110441172A (en) * 2019-08-01 2019-11-12 深圳大学 Osmotic pressure and static pressure couple electromagnetic load three axis SHPB devices and test method
CN110441172B (en) * 2019-08-01 2023-11-10 深圳大学 Osmotic pressure and static pressure coupling electromagnetic loading triaxial SHPB device and test method
CN110595916A (en) * 2019-09-25 2019-12-20 燕山大学 A plate shear test device
WO2021088238A1 (en) * 2019-11-08 2021-05-14 山东科技大学 Shpb test system-based dynamic lateral strain measurement device and method for test piece
CN110926927A (en) * 2019-12-03 2020-03-27 四川大学 Flip formula hopkinson pole confined pressure device
CN111044352A (en) * 2019-12-31 2020-04-21 太原理工大学 Separated Hopkinson bar pressure and torsion load composite loading device and use method thereof
CN111044353A (en) * 2019-12-31 2020-04-21 太原理工大学 Split Hopkinson bar tension-torsion load composite loading device and using method thereof
CN111044352B (en) * 2019-12-31 2022-02-15 太原理工大学 Separated Hopkinson rod compression and torsional load composite loading device and its use method
CN111044353B (en) * 2019-12-31 2022-02-15 太原理工大学 Separated Hopkinson rod tension-torsional load composite loading device and its use method
CN111678806A (en) * 2020-05-11 2020-09-18 江苏禹治流域管理技术研究院有限公司 SHPB rock shear test device and method under normal stress condition
CN111579402A (en) * 2020-05-21 2020-08-25 西北工业大学 A uniaxial biaxial dynamic tensile test method for brittle materials
CN111929150A (en) * 2020-08-25 2020-11-13 中南大学 Surrounding rock dynamics test system and method for railway tunnel under rainy mountain area
CN111929150B (en) * 2020-08-25 2021-07-20 中南大学 Dynamic testing system and method for surrounding rock of a railway tunnel passing through a rainy mountain area
CN112461639A (en) * 2020-11-25 2021-03-09 煤炭科学研究总院 Impact test equipment
CN112782007A (en) * 2021-01-28 2021-05-11 天津大学 Dynamic shearing and friction measuring device and method based on Hopkinson pressure bar
CN112964540A (en) * 2021-02-10 2021-06-15 江西理工大学 Device and method for testing dynamic performance of rock under high water pressure and high ground stress coupling
CN113400090A (en) * 2021-06-07 2021-09-17 扬州市久盈精密主轴有限公司 Main shaft strength detection device and method for numerical control machine tool
CN113376035A (en) * 2021-06-19 2021-09-10 中国人民解放军国防科技大学 Device and method for testing energy release of active material under different atmospheres
CN113504131A (en) * 2021-07-09 2021-10-15 中国矿业大学 Test system and test method for testing II-type dynamic fracture toughness of rock under different normal stresses
CN113899634A (en) * 2021-08-27 2022-01-07 北京工业大学 Device and method for evaluating rock breaking efficiency of drill bit teeth under impact load
CN113899634B (en) * 2021-08-27 2024-05-24 北京工业大学 Device and method for evaluating rock breaking efficiency of drill bit teeth under impact load effect
CN114112732A (en) * 2021-09-03 2022-03-01 北京理工大学 Specimen suitable for the study of dynamic shear mechanical properties of explosive welding materials
CN113984523B (en) * 2021-10-28 2022-09-09 中国矿业大学 Test device and test method for dynamic and static combined loading strength of rock simulation material
US11644398B1 (en) 2021-10-28 2023-05-09 China University Of Mining And Technology Apparatus and method for testing combined dynamic-static loading strength of rock-like material
CN113984523A (en) * 2021-10-28 2022-01-28 中国矿业大学 Test device and test method for dynamic and static combined loading strength of rock simulation material
CN114112733B (en) * 2021-11-29 2023-09-15 中交文山高速公路建设发展有限公司 Dynamic test method for high-speed shear strength of asphalt concrete
CN114112733A (en) * 2021-11-29 2022-03-01 中交文山高速公路建设发展有限公司 Dynamic test method for high-speed shear strength of asphalt concrete
CN114985093A (en) * 2022-06-14 2022-09-02 山东和创瑞思环保科技有限公司 High shearing machine of cyclone separation
CN114985093B (en) * 2022-06-14 2024-04-05 山东和创瑞思环保科技有限公司 Cyclone separation high shear
CN114993858A (en) * 2022-06-16 2022-09-02 河海大学 Device and method for testing impact shear resistance of concrete-rock interface for Hopkinson pressure bar
CN116818557A (en) * 2022-12-07 2023-09-29 天津大学 Mechanical test device and test method
CN116818557B (en) * 2022-12-07 2024-04-19 天津大学 Mechanical testing device and testing method
CN116009405A (en) * 2023-03-21 2023-04-25 中国科学院武汉岩土力学研究所 Servo control method and system for rock dynamic triaxial test with medium strain rate
CN116009405B (en) * 2023-03-21 2023-06-13 中国科学院武汉岩土力学研究所 Servo control method and system for rock dynamic triaxial test with medium strain rate
CN116773328A (en) * 2023-06-25 2023-09-19 中国地质大学(北京) True triaxial hopkinson pressure bar test device
CN116818567B (en) * 2023-08-30 2023-11-14 北京建筑大学 Dynamic impact damage mechanical property evaluation method for brittle solid material
CN116818567A (en) * 2023-08-30 2023-09-29 北京建筑大学 Dynamic impact damage mechanical property evaluation method for brittle solid material
KR102642062B1 (en) 2023-10-17 2024-03-04 국방과학연구소 Apparatus for testing the crash characteristics of crashing bodies
CN118111828A (en) * 2024-04-07 2024-05-31 北京理工大学 Experimental device for extrusion-shear coupling loading of energetic materials based on SHPB platform
KR102788032B1 (en) * 2024-08-01 2025-03-31 국방과학연구소 A stress-conversion specimen structure that enables the measurement of high-speed tensile properties in a high-speed compression testing device and Method for correcting constitutive equations by simulation-based reverse engineering thereof
CN120121437A (en) * 2025-05-15 2025-06-10 北京理工大学 Particle explosive dynamic compression response X-ray synchronous diagnosis device and method

Similar Documents

Publication Publication Date Title
KR101727405B1 (en) Modification of Hoek triaxial cell for SHPB tests and its application to dynamic shear strength measurement of brittle materials
Chi et al. Measurement of shock pressure and shock-wave attenuation near a blast hole in rock
JP6173866B2 (en) Explosive impact sensitivity test method and test apparatus
Ibekwe et al. Impact and post impact response of laminated beams at low temperatures
CN108375509A (en) A kind of active confining pressure and the sound loading experimental apparatus that explodes
CN110320115A (en) The Hopkinson rock lever apparatus and method of test are propagated for rock mass stress wave
CN110987593B (en) Steel fiber concrete layer crack strength algorithm considering impact compression damage influence
KR20150061189A (en) Apparatus for generating and controlling shock wave and dynamic property measuring system using the apparatus and semi-conduct strain gauges
CN101852705A (en) Evaluation method for dynamic damage of materials under multiple impacts
US7733466B2 (en) Measurement of constitutive properties of a powder subject to compressive axial and radial loading, using optical sensing
CN110146394A (en) Material properties shock acoustic response test simulation system
KR102642062B1 (en) Apparatus for testing the crash characteristics of crashing bodies
Elkarous et al. Experimental techniques for ballistic pressure measurements and recent development in means of calibration
Konstantinov et al. Investigation of wood anisotropy under dynamic loading
Singh et al. Experimental and numerical investigation of vertical shock tube performance for blast load testing of geological media
Hawass et al. Multi-layer protective armour for underwater shock wave mitigation
Zhou et al. Calibration of split Hopkinson pressure bar system with special shape striker
CN104236384B (en) A kind of test method simulating the overload of launching shock in thorax
KR101026421B1 (en) Shock wave generator using elastic strain energy and method
Kang et al. Experimental and numerical study of the dynamic failure behavior of rock materials subjected to various impact loads
Kojima et al. Fracture mode of glass plate subject to low-velocity impact: experimental investigation and finite element simulation
CN210742027U (en) Hopkinson rock rod setup for rock mass stress wave propagation testing
Cao et al. Failure behavior and regularity analysis of aluminum panel subjected to high-velocity sandstone impact
Gardner et al. Development of a shock loading simulation facility
Su et al. Experimental investigation of a novel blast wave mitigation device

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20151028

PA0201 Request for examination
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20161019

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20170404

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20170410

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20170410

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20200402

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20210310

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20220304

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20230131

Start annual number: 7

End annual number: 7

PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20250121