KR101682749B1 - 정전척 - Google Patents

정전척 Download PDF

Info

Publication number
KR101682749B1
KR101682749B1 KR1020137012717A KR20137012717A KR101682749B1 KR 101682749 B1 KR101682749 B1 KR 101682749B1 KR 1020137012717 A KR1020137012717 A KR 1020137012717A KR 20137012717 A KR20137012717 A KR 20137012717A KR 101682749 B1 KR101682749 B1 KR 101682749B1
Authority
KR
South Korea
Prior art keywords
mgo
electrostatic chuck
plane
solid solution
experimental example
Prior art date
Application number
KR1020137012717A
Other languages
English (en)
Other versions
KR20130126622A (ko
Inventor
겐이치로 아이카와
모리미치 와타나베
아스미 진도
유지 가츠다
요스케 사토
요시노리 이소다
Original Assignee
엔지케이 인슐레이터 엘티디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엔지케이 인슐레이터 엘티디 filed Critical 엔지케이 인슐레이터 엘티디
Publication of KR20130126622A publication Critical patent/KR20130126622A/ko
Application granted granted Critical
Publication of KR101682749B1 publication Critical patent/KR101682749B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • C04B2235/3869Aluminium oxynitrides, e.g. AlON, sialon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

정전척(1A∼1F)은, 반도체를 흡착하는 흡착면(11a)을 갖는 서셉터(11A∼11F)와, 이 서셉터내에 매설되어 있는 정전척 전극(4)을 구비한다. 서셉터가 판형 본체부(3)와, 흡착면에 면하는 표면 내식층(2)을 구비한다. 표면 내식층(2)이 마그네슘, 알루미늄, 산소 및 질소를 주성분으로 하는 세라믹스 재료로서, 산화마그네슘에 질화알루미늄이 고용된 MgO-AlN 고용체의 결정상을 주상으로 하는 세라믹스 재료로 이루어진다.

Description

정전척{ELECTROSTATIC CHUCK}
본 발명은, 반도체를 흡착하여 처리하는 정전척 장치에 관한 것이다.
반도체 제조에서의 드라이 프로세스나 플라즈마 코팅 등에 이용되는 반도체 제조 장치에는, 에칭용이나 클리닝용으로서, 반응성이 높은 F, Cl 등의 할로겐계 플라즈마가 사용된다. 이 때문에, 이와 같은 반도체 제조 장치에 조립되는 부재에는, 높은 내식성이 요구되고, 일반적으로는 알루마이트 처리를 실시한 알루미늄이나 하스텔로이(hastelloy) 등의 고내식 금속이나 세라믹스 부재가 사용된다. 특히 Si 웨이퍼를 지지 고정하는 정전척재나 히터재에는 고내식과 저발진성이 필요하기 때문에, 질화알루미늄, 알루미나, 사파이어 등의 고내식 세라믹스 부재가 이용되고 있다. 이들의 재료에서는 장기간의 사용에 의해 서서히 부식이 진행되어 발진 원인이 되기 때문에, 더 나은 고내식 재료가 요구되고 있다. 이러한 요구에 응하기 위해, 재료로서 알루미나 등보다 고내식인 마그네시아나 스피넬(MgAl2O4), 이들의 복합재를 이용하는 것이 검토되어 있다(예컨대 특허문헌 1 : 일본 특허 제3559426호 공보).
반도체 디바이스의 제조 공정에서는, 정전척의 웨이퍼 배치면에 반도체 웨이퍼를 흡착 유지하고, 그 흡착 유지된 반도체 웨이퍼에 가열 처리나 에칭 처리 등의 각종 처리가 실시된다. 정전척은, 웨이퍼 배치면이 형성된 원반형의 세라믹스 기체에, 웨이퍼 배치면에 정전기적인 힘을 발생시키기 위한 정전 전극이 매설된 것이며, 필요에 따라 웨이퍼 배치면을 가열하기 위한 히터 전극(저항 발열 소자라고도 함)이 매설되어 있다. 세라믹스 기체는, 알루미나 소결체나 질화알루미늄 소결체로 형성된 것 이외에, 정전척이 불소를 포함하는 가스와 접촉하는 환경하에서 사용되는 것을 고려하여 불소에 대한 내식성이 높은 재료, 예컨대 산화이트륨 소결체나 마그네시아 소결체로 형성된 것도 제안되어 있다. 예컨대 특허문헌 2(일본 특허 공개 제2001-308167호 공보)에서는, 마그네시아(MgO)를 주성분으로 하는 세라믹스를 이용한 존슨 라벡형의 정전척이 제안되어 있다. 또한, 산화마그네슘의 관련으로서, 특허문헌 3(일본 특허 공개 제2009-292688호 공보), 특허문헌 4(일본 특허 공개 제2006-80116호 공보)가 있다.
통상, 반도체 제조 프로세스는 웨이퍼의 오염 방지를 위해, 할로겐계 가스 등의 부식성이 강한 가스를 장치 클리닝에 이용하고 있다. 또한 웨이퍼 위에 균일하게 성막을 행하기 위해, 웨이퍼 위의 온도 균일성이 요구된다.
반도체 제조 장치내에서 Si 웨이퍼를 유지하고 추가로 가온하는 부재로서, 전술과 같이 알루미나제의 세라믹 정전척을 갖는 히터가 기존 기술로서 널리 이용되고 있고, 사용 초기에는 양호한 웨이퍼 위 온도 균일성을 나타낼 수 있다. 그러나, 부식성 가스에 의한 클리닝에 의해, 알루미나가 부식되고, 히터 표면의 형상이나 거칠기가 변화되어 버리는 것에 의해, 사용 기간이 경과함에 따라 온도 분포가 변화되어, 온도 균일성을 유지할 수 없게 되며, 흡착력이 열화된다고 하는 문제가 있었다.
본 발명의 과제는, 반도체 처리에 사용하는 정천척에서, 할로겐계 부식성 가스 또는 그 플라즈마 분위기 하에서 사용했을 때, 양호한 온도 균일성을 장기간에 걸쳐 유지할 수 있고, 흡착력의 열화를 방지할 수 있도록 하는 것이다.
본 발명은, 반도체를 흡착하는 흡착면을 갖는 서셉터와, 이 서셉터내에 매설되어 있는 정전척 전극을 구비하고 있는 정전척으로서,
서셉터가, 판형 본체부와, 흡착면에 면하는 표면 내식층을 구비하며, 표면 내식층은 마그네슘, 알루미늄, 산소 및 질소를 주성분으로 하는 세라믹스 재료로서, 산화마그네슘에 질화알루미늄이 고용(固溶)된 MgO-AlN 고용체의 결정상을 주상(主相)으로 하는 세라믹스 재료로 이루어지는 것을 특징으로 한다.
본 발명의 세라믹스 재료는, 마그네슘-알루미늄 산질화물상을 주상으로 하고 있지만, 예컨대 알루미나와 비교하여, 할로겐계 가스 등의 부식성이 강한 가스에 대한 내식성이 우수하다. 이 세라믹스 재료에 의해 서셉터의 표면 내식층을 형성하면, 부식 환경하에서 길게 사용되어도, 부식에 의한 표면 상태의 변화를 발생시키기 어렵고, 이 결과로서 양호한 웨이퍼 위 온도 균일성 및 흡착력을 장기간에 걸쳐 발현하는 것이 가능해졌다.
또한, 판형 본체부를 상기 세라믹스 재료와 별도의 열전도성이 보다 높은 재질로 형성하는 것이 가능하고, 이에 의해 서셉터의 평면 방향의 열전도를 촉진함으로써, 웨이퍼 위 온도 균일성을 한층 더 향상시킬 수 있다.
도 1은 실험예 1의 XRD 해석 차트이다.
도 2는 실험예 1의 XRD 해석 차트의 MgO-AlN 고용체 피크 확대도이다.
도 3은 실험예 1, 5의 EPMA 원소 맵핑상이다.
도 4는 실험예 2, 5의 벌크재 내습성, 내수성 시험의 미세 구조 사진이다.
도 5는 실험예 8, 9의 벌크재 내습성, 내수성 시험의 미세 구조 사진이다.
도 6의 (a), (b) 및 (c)는 각각, 본 발명의 실시형태에 따른 정전척(1A, 1B, 1C)을 모식적으로 도시하는 단면도이다.
도 7의 (a), (b) 및 (c)는 각각, 본 발명의 실시형태에 따른 정전척(1D, 1E, 1F)을 모식적으로 도시하는 단면도이다. 도 7의 (d)는 본 발명의 실시형태에 따른 정전척의 배면에 냉각판을 접합한 1G를 모식적으로 도시하는 단면도이다.
도 8은 본 발명의 실시형태에 따른 정전척을 모식적으로 도시하는 단면도이다.
도 9의 (a), (b), (c), (d)는 정전척의 적합한 제조 프로세스를 설명하기 위한 도면이다.
이하, 본 발명에서 이용하는 신규인 세라믹스 재료를 설명하고, 이어서 정전척의 구성을 설명한다.
[세라믹스 재료]
본 발명의 세라믹스 재료는 마그네슘, 알루미늄, 산소 및 질소를 주성분으로 하는 세라믹스 재료로서, 산화마그네슘에 알루미늄, 질소 성분이 고용(固溶)된 MgO-AlN 고용체의 결정상을 주상으로 하는 것이다. 본 발명에서는, 산화마그네슘의 결정 격자 내에 알루미늄, 질소 성분이 고용된 것을 MgO-AlN 고용체로 지칭한다.
본 발명의 세라믹스 재료는, 내식성이 산화마그네슘과 비교하여 동등하고, 내습성, 내수성은 산화마그네슘보다 우수하다. 이 때문에, 이 세라믹스 재료로 이루어지는 반도체 제조 장치용 부재는, 반도체 제조 프로세스에서 사용되는 반응성이 높은 F, Cl 등의 할로겐계 플라즈마에 장기간 견딜 수 있어, 이 부재로부터의 발진량을 저감시킬 수 있다. 또한, 내습성, 내수성이 높기 때문에, 통상의 산화마그네슘보다 변질되기 어렵고, 습식의 가공에도 강한 특징이 있다.
또한, 본 발명의 세라믹스 재료는, 산화마그네슘의 결정 구조를 유지하고, 산화마그네슘보다 낮은 전기 저항을 갖는다. 이것은, 산화마그네슘 결정에 알루미늄이나 질소가 고용됨으로써, 산화마그네슘 내의 캐리어가 증가했기 때문이라고 생각된다.
본 발명의 세라믹스 재료는 마그네슘, 알루미늄, 산소 및 질소를 주성분으로 하는 세라믹스 재료로서, 산화마그네슘에 질화알루미늄 성분이 고용된 MgO-AlN 고용체의 결정상을 주상으로 하는 것이다. 이 MgO-AlN 고용체는, 내식성이 산화마그네슘과 동등하고, 내습성이나 내수성은 산화마그네슘보다 우수하다고 생각된다. 이 때문에, 이 MgO-AlN 고용체의 결정상을 주상으로 하는 세라믹스 재료도 내식성, 내습성, 내수성이 높아졌다고 생각된다. 또한, 본 발명의 세라믹스 재료는, 산화마그네슘에 질화알루미늄, 산화알루미늄을 더함으로써, 알루미늄, 질소 성분의 고용량을 현저히 증가시킬 수 있다. 이 때문에, 이 MgO-AlN 고용체에는, 질소의 고용량에 대하여 알루미늄이 많이 포함되어 있는 것으로 하여도 좋다.
이 MgO-AlN 고용체는, CuKα선을 이용했을 때의 (111)면, (200)면 및 (220)면의 XRD 피크가 산화마그네슘의 입방정의 피크와 질화알루미늄의 입방정의 피크 사이인 2θ=36.9˚∼39˚, 42.9˚∼44.8˚, 62.3˚∼65.2˚에 나타나는 것이 바람직하다. 또는 MgO-AlN 고용체는, CuKα선을 이용했을 때의 (200)면 및 (220)면의 XRD 피크가 산화마그네슘의 입방정의 피크와 질화알루미늄의 입방정의 피크 사이인 2θ=42.9˚∼44.8˚, 62.3˚∼65.2˚에 나타나는 것으로 하여도 좋고, 또한 (111)면의 XRD 피크가 산화마그네슘의 입방정의 피크와 질화알루미늄의 입방정의 피크 사이인 2θ=36.9˚∼39˚에 나타나는 것으로 하여도 좋다. (111)면의 피크가 다른 결정상의 피크와의 판별을 행하기 어려운 경우가 있기 때문에, (200)면 및 (220)면의 XRD 피크만 상기 범위에 나타나는 것으로 하여도 좋다. 마찬가지로, (200)면 또는 (220)면의 피크도 다른 결정상의 피크와의 판별을 행하기 어려운 경우가 있다.
알루미늄, 질소 성분의 고용량이 많을수록, 내습, 내수성이 향상된다. 고용량의 증가에 따라, 산화마그네슘의 XRD 피크는 고각측(高角側)으로 시프트한다. 따라서, MgO-AlN 고용체의 (200)면, (220)면의 XRD 피크가 각각 2θ=42.92˚이상, 62.33˚ 이상에 나타나는 것이, 내습성을 보다 높일 수 있어, 보다 바람직하다. 또한 MgO-AlN 고용체의 (200)면, (220)면의 XRD 피크가 각각 2θ=42.95˚이상, 62.35˚ 이상에 나타나는 것이, 내습성 및 내수성을 보다 높일 수 있어, 보다 바람직하다. 또한 MgO-AlN 고용체의 (200)면, (220)면의 XRD 피크가 각각 2θ=43.04˚이상, 62.50˚ 이상이면, 내습성, 내수성을 보다 높일 수 있어, 바람직하다. 또한 MgO-AlN 고용체의 (200)면, (220)면의 XRD 피크가 각각 2θ=43.17˚이상, 62.72˚ 이상이면, 내습성은 물론, 내수성을 보다 높일 수 있어, 보다 바람직하다. 또한 MgO-AlN 고용체의 적분 폭이 작을수록 내수성이 향상되는 것을 발견하였다. 즉 MgO-AlN 고용체의 (200)면의 XRD 피크의 적분 폭은 0.50˚ 이하인 것이 내수성을 향상시키는 데에 있어서 바람직하고, 0.35˚ 이하인 것이 보다 바람직하다.
본 발명의 세라믹스 재료는, 부상(副相)으로서 AlN 결정상을 포함하면 내식성이 저하되는 경향이 있기 때문에, AlN 결정상은 적은 것이 바람직하고, 포함하지 않는 것이 보다 바람직하다.
본 발명의 세라믹스 재료는, CuKα선을 이용했을 때의 XRD 피크가 적어도 2θ=47˚∼49˚에 나타나는 마그네슘-알루미늄 산질화물상을 부상으로서 포함하고 있어도 좋다. 이 마그네슘-알루미늄 산질화물도 내식성이 높기 때문에, 부상으로서 포함되어 있어도 문제없다. 이 마그네슘-알루미늄 산질화물상은, 함유량이 많을수록 기계 특성을 향상시킬 수 있고, 그 중에서도 강도, 파괴 인성의 향상에 유효하게 작용한다. 단, 본 발명의 MgO-AlN 고용체와 비교하면 내식성이 낮기 때문에, 내식성의 점에서 함유량에는 한도가 있다.
마그네슘-알루미늄 산질화물상의 2θ=47˚∼49˚의 XRD 피크 강도를 A, MgO-AlN 고용체의 (220)면의 2θ=62.3˚∼65.2˚의 XRD 피크 강도를 B로 했을 때, A/B가 0.03 이상인 것이 바람직하다. 이렇게 하면, 기계 특성을 보다 높일 수 있다. 이 A/B는 내식성의 관점에서는, A/B=0.14 이하인 것이 바람직하다. 본 발명의 세라믹스 재료는, 혼합 분말 내의 마그네슘/알루미늄의 몰비가 0.5 이상인 것이 바람직하다.
본 발명의 세라믹스 재료에서, 개기공률은 5% 이하인 것이 바람직하다. 여기서, 개기공률은, 순수를 매체로 한 아르키메데스법에 의해 측정한 값으로 한다. 개기공률이 5%를 초과하면, 강도가 저하될 우려나 재료 자신이 탈립(脫粒)에 의해 발진하기 쉬워질 우려가 있고, 재료 가공시 등에서 기공내에 발진 성분이 더 모이기 쉽기 때문에 바람직하지 않다. 또한 개기공률은, 될 수 있는 한 제로에 가까울수록 바람직하다. 이 때문에, 특별히 하한값은 존재하지 않는다.
또한, 본 발명의 세라믹스 재료는, 이상(異相)이 적은 것으로 하여도 좋다. MgO-AlN 고용체를 주상으로 하는 세라믹스 재료의 경우, 마그네슘-알루미늄 산질화물상의 2θ=47˚∼49˚의 XRD 피크 면적을 a, 2θ=62.3˚∼65.2˚의 MgO-AlN 고용체의 (220)면의 XRD 피크 면적을 b, 2θ=45.0˚ 근방의 스피넬(MgAl2O4)의 (400)면의 XRD 피크 면적을 c, 2θ=36.0˚ 근방의 질화알루미늄(AlN)의 (002)면의 XRD 피크 면적을 d로 했을 때에, (a+c+d)/(a+b+c+d)값이 0.1 이하인 것이 바람직하다. (a+c+d)/(a+b+c+d)값이 작을수록, 세라믹스 재료에 차지하는 MgO-AlN 고용체의 비율이 크고, 이상이 될 가능성이 있는 마그네슘-알루미늄 산질화물상, 스피넬(MgAl2O4), 및 질화알루미늄(AlN) 등의 합계량이 적은 것을 나타낸다. 이 이상이 적은 세라믹스 재료, 예컨대 (a+c+d)/(a+b+c+d)값이 0.1 이하인 세라믹스 재료는, 스퍼터링 타겟 부재에 이용하는 것이 바람직하다. 스퍼터링 타겟 부재에 이상을 포함하는 경우, 주상과 이상의 스퍼터링 레이트가 상이할 가능성이 있지만, 이상이 적은 경우에는, 성막되는 막의 균질성의 저하를 보다 억제할 수 있고, 스퍼터링 타겟 부재로부터의 발진의 발생 등을 보다 억제할 수 있다. 이 외에, 알루미늄, 질소의 고용에 의해, 산화마그네슘의 격자 상수가 변화하기 때문에, 고용량에 따라 격자 상수를 조정할 수 있고, 그것에 의해 피성막재와의 격자의 정합성을 조정할 수 있다.
[세라믹스 재료의 제조]
본 발명의 세라믹스 재료는, 산화마그네슘과 질화알루미늄과 알루미나와의 혼합 분말을, 성형 후 소성함으로써 제조할 수 있다. 원료의 혼합 분말로서는, 49 질량% 이상의 산화마그네슘과, 질화알루미늄과 알루미나(산화알루미늄)를 포함하는 것이 바람직하고, 내식성의 관점에서는, 혼합 분말 조성에서, 산화마그네슘이 70 질량% 이상 99 질량% 이하, 질화알루미늄이 0.5 질량% 이상 25 질량% 이하, 산화알루미늄이 0.5 질량% 이상 25 질량% 이하가 되도록 혼합한 것이 보다 바람직하고, 산화마그네슘이 70 질량% 이상 90 질량% 이하, 질화알루미늄이 5 질량% 이상 25 질량% 이하, 산화알루미늄이 5 질량% 이상 25 질량% 이하가 되도록 혼합한 것이 더 바람직하다. 또한, 기계 특성과 내식성을 동시에 발현시키는 관점에서는, 혼합 분말 조성에서, 산화마그네슘이 49 질량% 이상 99 질량% 이하, 질화알루미늄이 0.5 질량% 이상 25 질량% 이하, 산화알루미늄이 0.5 질량% 이상 30 질량% 이하가 되도록 혼합한 것이 바람직하고, 산화마그네슘이 50 질량% 이상 75 질량% 이하, 질화알루미늄이 5 질량% 이상 20 질량% 이하, 산화알루미늄이 15질량% 이상 30 질량% 이하가 되도록 혼합한 것이 더 바람직하다.
소성 온도는 1650℃ 이상으로 하는 것이 바람직하고, 1700℃ 이상으로 하는 것이 보다 바람직하다. 소성 온도가 1650℃ 미만에서는, 목적으로 하는 MgO-AlN 고용체가 얻어지지 않을 우려가 있기 때문에 바람직하지 않다. 또한, 소성 온도가 1700℃ 미만에서는, 부상으로서 AlN이 포함될 우려가 있고, 고내식을 얻기 위해서는 1700℃ 이상에서 소성하는 편이 좋다. 또한 소성 온도의 상한은, 특별히 한정하는 것이 아니지만, 예컨대 1850℃로 하여도 좋다.
또한, 소성은 핫 프레스 소성을 채용하는 것이 바람직하고, 핫 프레스 소성시의 프레스 압력은, 50 ㎏f/㎠∼300 ㎏f/㎠로 설정하는 것이 바람직하다. 소성시의 분위기는, 산화물 원료의 소성에 영향을 미치지 않는 분위기인 것이 바람직하고, 예컨대 질소 분위기나 아르곤 분위기, 헬륨 분위기 등의 비활성 분위기인 것이 바람직하다. 성형시의 압력은, 특별히 제한되지는 않지만, 형상을 유지할 수 있는 압력으로 적절하게 설정하면 좋다.
[정전척]
도 6∼도 8을 적절하게 참조하면서, 본 발명의 정전척을 설명한다.
도 6의 (a)의 정전척(1A)에서, 서셉터(11A)는, 판형 본체부(3)와 유전체층(2)으로 이루어진다. 본 예에서는, 판형 본체부(3)의 배면(3c)이 서셉터(11A)의 배면(11b)을 이루고 있다. 판형 본체부의 상면(3a)측에는 유전체층(2)이 설치되어 있고, 유전체층(2)의 상면이 흡착면(11a)을 이루고 있다. 본 예에서는, 유전체층(2)의 판형 본체부측의 주면(2a) 위에 정전척 전극(4)이 형성되어 있다. 본 예에서는, 판형 본체부(3)의 측면(3b), 배면(3c)은 내식층에 의해 피복되어 있지 않다.
본 예에서는, 유전체층(2)이 표면 내식층을 이루고 있고, 이것을 본 발명의 상기 세라믹스 재료에 의해 형성한다.
흡착면(11a)은 전체면에 걸쳐 평탄할 필요는 없고, 요철 가공을 행하거나, 기판의 크기에 맞춘 홈을 형성하거나, 퍼지 가스용의 홈을 형성하여도 좋다.
도 6의 (b)의 정전척(1B)에서, 서셉터(11B)는, 판형 본체부(3)와 유전체층(2)으로 이루어진다. 본 예에서는, 판형 본체부(3)의 배면(3c)이 서셉터(11B)의 배면(11b)을 이루고 있다. 판형 본체부의 상면(3a)측에는 유전체층(2)이 설치되어 있고, 유전체층(2)의 상면이 흡착면(11a)을 이루고 있다. 본 예에서는, 또한 판형 본체부의 측면(3b)을 피복하는 측면 내식층(5a)이 설치되어 있다.
본 예에서는, 유전체층(2)이 표면 내식층을 이루고 있고, 이것을 본 발명의 상기 세라믹스 재료에 의해 형성한다. 측면 내식층(5a)도 본 발명의 상기 세라믹스 재료에 의해 형성한다. 서셉터 측면이 부식되면, 파티클의 원인이 될 뿐만 아니라, 측면으로부터의 열방사 특성이 변화함으로써 웨이퍼 위 온도 균일성에도 악영향이 있다. 본 실시형태에서는, 웨이퍼측뿐만 아니라, 측면에서의 부식도 억제할 수 있다.
도 6의 (c)의 정전척(1C)에서는, 서셉터(11C)는, 판형 본체부(3)와 유전체층(2)으로 이루어진다. 본 예에서는, 판형 본체부(3)의 배면(3c)이 서셉터(11C)의 배면(11b)을 이루고 있다. 판형 본체부의 상면(3a)측에는 유전체층(2)이 설치되어 있고, 유전체층(2)의 상면이 흡착면(11a)를 이루고 있다. 본 예에서는, 또한 판형 본체부의 배면(3c)을 피복하는 배면 피복층(5b)이 설치되어 있다. 본 예에서는, 유전체층(2)이 표면 피복층을 이루고 있고, 이것을 본 발명의 상기 세라믹스 재료에 의해 형성한다. 배면 피복층(5b)도 본 발명의 상기 세라믹스 재료에 의해 형성한다.
판형 본체부의 재질로서, 열전도율이 상기 세라믹스 재료보다 높은 재료를 사용한 경우에는, 판형 본체부 전체의 열전도에 의해 웨이퍼 위 온도 균일성은 향상된다. 그러나, 이 경우에는, 판형 본체부(3)의 배면(3c)측으로부터의 방열량도 커지기 때문에, 불균등한 열방사에 의해 웨이퍼 위 온도 균일성이 오히려 열화될 가능성이 있다. 본 실시형태에서는, 판형 본체부의 배면측에 상기 세라믹스 재료로 이루어지는 배면 피복층을 설치하고 있기 때문에, 배면측의 내식을 도모할 수 있을 뿐만 아니라, 서셉터 배면측으로부터의 열방사를 전체적으로 억제하여, 웨이퍼 위 온도 균일성을 한층 더 개선시킬 수 있다.
도 7의 (a)에 도시하는 정전척(1D)은, 도 6의 (a)의 정전척(1A)과 같은 것이지만, 단 서셉터(11D)의 판형 본체부(3) 내에 저항 발열체(6)가 매설되어 있다.
도 7의 (b)에 도시하는 정전척(1E)은, 도 6의 (b)의 정전척(1B)과 같은 것이지만, 단 서셉터(11E)의 판형 본체부(3) 내에 저항 발열체(6)가 매설되어 있다.
도 7의 (c)에 도시하는 정전척(1F)은, 도 6의 (c)의 정전척(1C)과 같은 것이지만, 단 서셉터(11F)의 판형 본체부(3) 내에 저항 발열체(6)가 매설되어 있다.
적합한 실시형태에서는, 정전척의 배면측에 냉각판을 접합한다. 예컨대 도 7의 (d)에 도시하는 정전척(1G)은, 도 6의 (a)의 정전척(1A)의 배면에 냉각판(7)을 접착한 구조이다. 물론, 도 6의 (b), (c), 도 7의 (a), (b), (c)의 각 정전척의 각 배면측에 대해서도 냉각판을 접착하여 일체형의 정전척으로 할 수 있다. 이 냉각판은 금속 재료, 예컨대 알루미늄을 재료로서 제작된 냉각제 통로(바람직하게는 수로)(8)를 갖는 판형 구조를 하고 있고, 정전척의 승강온 기능을 보조한다.
발열체는, 서셉터내에 매설되어 있는 것이 바람직하지만, 서셉터에 부착되어 있어도 좋다. 또한 발열체는, 서셉터로부터 떨어진 위치에 설치된 적외선 가열 소자와 같은 외부 발열체로서 좋다.
또한, 도 8에 도시하는 바와 같이 지지부를 설치할 수도 있다. 즉 서셉터(1A)의 하면(배면)(3c)에 지지부(9)가 접합되어 있다. 본 예에서 지지부는 관형이며, 지지부(9) 내에 전력 공급 부재(10)가 수용되어 있다. 전력 공급 부재는, 급전 단자(8)를 통해 정전척 전극(4)에 접속되어 있다.
지지부는, 바람직하게는 도중에 단차를 갖고 있고, 단차를 경계로 하여 서셉터측이 대직경부(9b), 반대측이 소직경부(9a)로 되어 있다. 대직경부(9b)의 단부에는 플랜지(9c)가 형성되어 있다. 그리고, 지지부는 서셉터와 중심축이 동축이 되도록, 대직경부의 단부가 서셉터의 배면에 접합되어 있다.
서셉터는 판 형상이며, 바람직하게는 대략 원반 형상이다. 서셉터의 크기는, 특별히 한정되지는 않지만, 예컨대 직경 280 ㎜∼380 ㎜, 두께 8 ㎜∼20 ㎜이다.
또한, 지지부를 설치하는 경우에는, 서셉터와 지지부와의 접합 부분의 외경은, 직경으로서 예컨대 40 ㎜∼120 ㎜이다.
전술한 예에서는, 유전체층이 일층의 표면 내식층으로 이루어진다. 그러나, 유전체층이, 표면 내식층과 일층 이상의 중간층으로 이루어져 있어도 좋고, 이 경우에는 유전체층과 판형 본체부의 접착력을 한층 더 향상시킬 수 있다.
본 실시형태의 정전척의 사용예에 대해서 이하에 간단히 설명한다. 이 정전척의 흡착면에 웨이퍼를 배치하고, 전극(4)의 급전 단자를 통해 전극(4)에 직류 고전압을 인가함으로써 정전기적인 힘을 발생시키며, 그것에 의해 웨이퍼를 흡착면에 흡착한다. 또한, 저항 발열체의 급전 단자에 히터 전원을 접속하고, 공급하는 전력을 제어함으로써 웨이퍼를 원하는 온도로 조절한다. 이 상태로, 웨이퍼에 플라즈마 CVD 성막을 실시하거나, 플라즈마 에칭을 실시한다.
[발열체 및 정전척 전극]
발열체, 정전척 전극은, 예컨대 선형의 도체를 굴곡시켜, 권취체로 가공한 것을 사용할 수 있다. 발열체의 선 직경은 0.3 ㎜∼0.5 ㎜ 정도이고, 코일 형상의 경우에는 권취 직경은 2 ㎜∼4 ㎜ 정도이며, 피치는 1 ㎜∼7 ㎜ 정도이다. 여기서 「권취 직경」이란, 코일의 내경을 의미한다.
발열체, 정전척 전극의 형상으로서는, 코일 형상 이외에도, 리본형, 메시형, 코일 스프링형, 시트형, 막형, 인쇄 전극 등의 여러 가지의 형태를 채용할 수도 있다. 또한 리프트핀 등이나 퍼지 가스용에 형성된 관통 구멍에 인접하는 부분에서는, 발열체(12)를 우회시키는 등, 필요에 따라 패턴을 변형시키는 것이 바람직하다.
발열체, 정전척 전극의 재료로서는, 몰리브덴(Mo), 텅스텐(W), 니오븀(Nb), 텅스텐/몰리브덴 화합물 등의 고융점 도전 재료를 바람직하게 사용할 수 있다.
또한, 텅스텐, 니오븀, 몰리브덴, 이것들의 합금, 텅스텐/몰리브덴 화합물, 텅스텐카바이드 등의 고융점 도전성 재료 분말을 포함하는 인쇄 페이스트에 알루미나 분말을 혼합하여, 서멧으로 할 수 있다.
[판형 본체부의 재질]
판형 본체부의 재질은, 산화알루미늄, 산화이트륨, 질화알루미늄을 예시할 수 있고, 산화알루미늄, 산화이트륨, 질화알루미늄이 특히 바람직하다.
특히, 질화알루미늄을 주상으로 하는 재질에 의해 판형 본체부를 형성함으로써, 고열전도를 유지할 수 있고, 고내식인 상기 세라믹스 재료의 표면 온도를 균일하게 유지하기 쉬워진다.
적합한 실시형태에서는, 표면 내식층과 판형 본체부의 선열팽창 계수차가 0.3 ppm/K 이하이다. 이 경우에는 표면 내식층과 판형 본체부를 고온으로 접합(예컨대, 일체 소결에 의해 접합)했을 때나 이 적층체의 고온-저온에서의 사용을 반복했을 때에, 크랙이나 박리가 생길 우려가 없다.
판형 본체부와 각 내식층, 배면 피복층은 중간층을 통해 접합되어 있어도 좋다. 이렇게 하면, 예컨대 열팽창률의 차이에 의한 내식층, 배면 피복층의 박리를, 한층 더 억제할 수 있다. 이 중간층은 내식층, 배면 피복층과 판형 본체부의 중간 성질을 갖는 층으로 한다.
구체적으로는, 중간층은, 상기 세라믹스 재료와, 판형 본체부의 재료의 혼합물을 소결한 복합 세라믹스여도 좋다.
또한, 중간층을 복수층 형성할 수 있어, 각 중간층의 조성을 서로 상이하게 하는 것에 의해, 경사 재료층을 형성할 수 있다.
[지지부의 재질]
지지부(9)(소위 샤프트)의 재질은 반드시 한정은 되지 않고, 이하를 예시할 수 있다.
질화알루미늄, 알루미나, 스피넬, 산화마그네슘
바람직하게는, 지지부(3)의 재질도 상기 세라믹스 재료로 한다. 단, 이 경우에도, 서셉터를 형성하는 상기 세라믹스 재료와, 지지부를 형성하는 상기 세라믹스 재료는, 동일 조성일 필요는 없고, 상기의 범위에서 서로 상이한 조성이면 좋다.
본 발명자 등은, 설계 온도로부터 벗어나면 온도 균일성이 악화되는 원인에 대해서 고찰한 결과, 고온에서는 3종의 열전도의 형태 중 방사열 전도에 의한 방열에의 기여가 커지기 때문이라고 생각했다. 예컨대 서셉터의 중심부에 지지부가 접합되어 있기 때문에, 저온에서 지배적인 고체열 전도가 크게 기여하여, 저온에서는 서셉터 중심부로부터의 열의 배출이 크고, 중심부의 온도는 높아지지 않는다. 그러나, 고온에서는 방사열 전도의 기여가 상대적으로 크고, 서셉터의 중앙 부근과 비교해서 지지부가 없는 외주부 근방이 방사에 의해 열이 배출되기 쉽기 때문에, 외주부의 방사에 의한 방열이 상대적으로 커져, 외주부의 온도가 중심부에 비교하여 낮아지고, 고온에서 온도 균일성이 악화된다고 생각하였다. 이 때문에, 지지부를 상기 세라믹스 재료로 형성하면, 알루미나 등에 비해 열전도성이 낮기 때문에, 넓은 범위의 작동 온도에서 양호한 온도 균일성이 얻어지기 쉽다.
[정전척의 제조]
본 발명의 정전척의 제법은 한정되는 것이 아니지만, 적합한 제법에 대해서, 도 9를 참조하면서 설명한다.
(a) 전술한 제법에 따라, 산화마그네슘과 알루미나와 질화알루미늄과의 혼합 분말을 소성함으로써, 치밀한 소결체를 제작한다. 즉, 전술한 바와 같은 조합 분말을 일축 가압 성형하고, 판형의 성형체를 제작한다. 이 성형체를 핫 프레스 소성함으로써, 유전체층용의 세라믹 소결체(2A)를 얻는다.
(b) 이어서, 도 9의 (a)에 도시하는 바와 같이, 소결체(2A)의 한 면(2a)을 연마 가공하여, 평탄면을 얻는다. 후술하는 공정에서는, 판형 본체부용 소결체를 제조할 때의 소성 온도가, 유전체층용 소결체의 소성 온도에 비해, 같은 정도 또는 저온이기 때문에, 공정 (b)에서 연마한 면의 표면 평탄도가 거의 그대로 유지된다고 생각된다. 이 때문에, 소결체 중 전극을 형성하는 주면(2a)의 표면 평탄도는, 최종적으로 웨이퍼 흡착면으로부터 평판 전극까지의 두께의 변동인 두께 변동도에 크게 관여하는 파라미터이다. 그리고 두께 변동도를 100 ㎛ 이하로 하기 위해서는, 공정 (b)의 단계에서 연마한 면(2a)의 표면 평탄도를 10 ㎛ 이하로 하는 것이 바람직하고, 5 ㎛ 이하로 하는 것이 보다 바람직하다.
(c) 이어서, 도 9의 (b)에 도시하는 바와 같이, 소결체(2A)의 연마면(2a)에 정전척 전극(4)을 형성한다.
예컨대 전극이나 저항 발열체는, 소결체 표면에 스크린 인쇄법 등에 의해, 인쇄함으로써 형성할 수 있다. 이 경우 텅스텐, 니오븀, 몰리브덴, 이들의 합금, 텅스텐카바이드 등의 고융점 도전성 재료 분말을 포함하는 인쇄 페이스트에 알루미나 분말을 혼합하는 것이 바람직하다. 이것에 의하면, 전극이나 저항 발열체와 기체와의 밀착성을 향상시킬 수 있다. 전극 재료는, 소결체와의 열팽창률의 차가 작은 것이 바람직하고, 예컨대 탄화몰리브덴이나 탄화텅스텐이 특히 바람직하다. 전극 재료의 평균 입경은, 0.4 ㎛ 이하가 바람직하다. 더 나아가서는, 0.2 ㎛ 이하가 보다 바람직하다. 또한 전극은 소결체 위에 메시형의 고융점 도전성 재료의 벌크체(철망)나, 다수의 구멍이 형성된 고융점 도전성 재료의 벌크체(펀칭 메탈) 등을 배치함으로써 형성할 수 있다. 또한 저항 발열체는, 소결체 위에 코일형 선형상의 고융점 도전성 재료의 벌크체나, 메시형의 고융점 도전성 재료의 벌크체(철망)를 배치하는 것에 의해서도 형성할 수 있다.
(d) 도 9의 (c)에 도시하는 바와 같이, 소결체 중 전극 페이스트를 인쇄한 주면(2a) 위에, 알루미나 등의 세라믹스를 주성분으로 하는 원료 분말을 성형하여, 성형체(14)로 한다. 분말의 평균 입경이 0.2 ㎛ 이하인 것이 특히 바람직하다. 이 분말을 성형하고, 축방향으로 가압하면서, 질소 가스나 아르곤 가스 등의 불활성 가스 분위기 내에서, 소결한다.
알루미나의 경우에는, 질소 가스나 아르곤 가스 등의 불활성 가스 분위기 내에서, 1250℃∼1350℃에서 소결하는 것이 바람직하다. 또한, 최고 온도까지는, 승온 속도 200℃/시간 이하로 승온하는 것이 바람직하다. 또한, 최고 온도에서는 1∼10 시간 유지하는 것이 바람직하다. 소성 방법은 한정되지 않지만, 핫 프레스법을 이용하는 것이 바람직하다. 치밀한 알루미나 소결체로 할 수 있고, 얻어지는 알루미나 소결체의 체적 저항률을 보다 향상시킬 수 있기 때문이다. 이 경우 가하는 압력은, 10 MPa∼30 MPa가 바람직하다. 기체로서 보다 치밀한 소결체를 얻을 수 있기 때문이다.
표면 내식층의 소결 온도가 1750℃ 이상이었기 때문에, 알루미나 소결체의 소성 온도에서는, 표면 내식층이 재소결하는 경우는 거의 없다. 이 때문에, 알루미나 소결체의 소성 온도로 표면 내식층이 변형하지 않고, 평판 전극에 주름이 생기는 경우도 없다. 또한, 알루미나 소결체는 최종적으로는 판형 본체층이 되는 것이며, 본체층도 웨이퍼와 평판 전극 사이에 전압을 인가했을 때에 절연 파괴되지 않는 것이 요구되기 때문에, 치밀한 것이 요구된다.
(e) 이어서, 도 9의 (d)에 도시하는 바와 같이, 소결체(2A) 중 질화알루미늄 분말 소결체(3)와는 반대측의 주면(12)을 연마하여 웨이퍼 흡착면(1a)으로 한다. 이에 의해, 이 웨이퍼 흡착면으로부터 전극(4)까지의 두께의 변동을 나타내는 두께 변동도가 100 ㎛ 이하인 서셉터를 얻을 수 있다.
즉 전극(4)은 알루미나 소결체의 소성 온도에서 주름이 발생하는 경우가 없기 때문에, 웨이퍼 흡착면으로부터 그 평판 전극까지의 두께 변동을 작게 억제할 수 있다. 이렇게 하여 얻어진 서셉터의 판형 본체부(3)의 배면 중앙에 평판 전극에 이르는 삽입 관통 구멍을 형성하고, 그 삽입 관통 구멍에 원통형의 단자(8)(도 8 참조)를 부착하여, 이 단자를 통해 평판 전극에 전압을 인가할 수 있도록 한다.
[할로겐계 부식성 가스]
본 발명의 서셉터는, 할로겐계 부식성 가스 및 그 플라즈마에 대한 내식성이 우수하지만, 특히 이하의 할로겐계 부식성 가스 또는 그 혼합물 또는 이들 플라즈마에 대한 내식성이 특히 우수하다.
NF3, CF4, ClF3, Cl2, BCl3, HBr
[실시예]
[세라믹스 재료의 제조와 평가]
이하에, 본 발명의 적합한 적용예에 대해서 설명한다. 실험예 1∼실험예 16의 MgO 원료, Al2O3 원료 및 AlN 원료는 순도 99.9 질량% 이상, 평균 입경 1 ㎛ 이하의 시판품을 사용하고, 실험예 17∼28에서는 MgO 원료에 순도 99.4 질량%, 평균 입경 3㎛의 시판품, Al2O3 원료에 순도 99.9 질량%, 평균 입경 0.5 ㎛의 시판품, AlN 원료에 실험예 1∼실험예 16과 동일한 평균 입경 1 ㎛ 이하의 시판품을 사용하였다. 여기서, AlN 원료에 대해서는 1 질량% 정도의 산소의 함유는 불가피하기 때문에, 산소를 불순물 원소로부터 제외한 순도이다. 또한 실험예 1∼실험예 4, 실험예 7∼실험예 17, 실험예 21, 실험예 23∼실험예 28이 본 발명의 실시예에 해당하고, 실험예 5∼실험예 6, 실험예 18∼실험예 20, 실험예 22가 비교예에 해당한다.
[실험예 1∼실험예 3]
·조합
MgO 원료, Al2O3 원료 및 AlN 원료를, 표 1에 나타내는 질량%가 되도록 칭량하고, 이소프로필알코올을 용매로 하며, 나일론제의 포트, 직경 5 ㎜의 알루미나 옥석을 이용하여 4시간 습식 혼합하였다. 혼합 후 슬러리를 취출하여, 질소 기류중 110℃에서 건조하였다. 그 후, 30 메시의 체에 통과시켜, 혼합 분말로 하였다. 또한, 이 혼합 분말의 Mg/Al의 몰비는 2.9이다.
·성형
혼합 분말을, 200 ㎏f/㎠의 압력으로 일축 가압 성형하고, 직경 35 ㎜, 두께 10 ㎜ 정도의 원반형 성형체를 제작하여, 소성용 흑연 몰드에 수납하였다.
·소성
원반형 성형체를 핫 프레스 소성함으로써 세라믹스 재료를 얻었다. 핫 프레스 소성에서는, 프레스 압력을 200 ㎏f/㎠로 하고, 표 1에 나타내는 소성 온도(최고 온도)로 소성하며, 소성 종료까지 Ar 분위기로 하였다. 소성 온도에서의 유지 시간은 4시간으로 하였다.
[실험예 4]
소성 온도를 1650℃로 설정한 것 이외는, 실험예 1과 마찬가지로 하여 세라믹스 재료를 얻었다.
[실험예 5]
MgO 원료만을 이용하여 소성 온도를 1500℃로 설정한 것 이외는, 실험예 1과 마찬가지로 하여 세라믹스 재료를 얻었다.
[실험예 6]
MgO 원료 및 Al2O3 원료를, 표 1에 나타내는 질량%가 되도록 칭량하고, 소성 온도를 1650℃로 설정한 것 이외는, 실험예 1과 마찬가지로 하여 세라믹스 재료를 얻었다.
[실험예 7∼실험예 16]
MgO 원료, Al2O3 원료 및 AlN 원료를, 표 1에 나타내는 질량%가 되도록 칭량하고, 표 1에 나타내는 소성 온도(최고 온도)로 설정한 것 이외는 실험예 1과 마찬가지로 하여 세라믹스 재료를 얻었다.
[실험예 17∼실험예 21]
MgO 원료, Al2O3 원료 및 AlN 원료를, 표 3에 나타내는 질량%가 되도록 칭량하고, 혼합 분말의 성형 압력을 100 kgf/㎠, 샘플의 직경을 50 ㎜, 소성 분위기를 N2, 소성 온도(최고 온도)를 표 3에 나타내는 값으로 설정한 것 이외는 실험예 1과 마찬가지로 하여 세라믹스 재료를 얻었다.
[실험예 22]
MgO 원료, Al2O3 원료를, 표 3에 나타내는 질량%가 되도록 칭량한 것 이외는, 실험예 1과 마찬가지로 하여 조합 공정을 행하여 혼합 분말을 얻었다. 혼합 분말을 100 kgf/㎠의 압력으로 일축 가압 성형하고, 직경 20 ㎜, 두께 15 ㎜ 정도의 원기둥형 성형체를 제작하여, 제작된 성형체를 3000 kgf/㎠로 CIP 성형하는 성형 공정을 행하였다. 덮개를 갖는 흑연제 도가니에 상기 혼합 원료를 충전하고, 충전한 혼합 원료 내에 성형체를 매립하였다. 원기둥형 성형체를 상압(常壓) 소성하는 소성 공정을 행하여, 세라믹스 재료를 얻었다. 소성 공정에서는, 표 3에 나타내는 소성 온도(최고 온도)로 소성하고, 소성 종료까지 Ar 분위기로 하였다. 소성 온도에서의 유지 시간은 4시간으로 하였다.
[실험예 23∼28]
MgO, Al2O3 및 AlN의 각 원료를, 표 3에 나타내는 질량%가 되도록 칭량하고, 조합시의 옥석을, 직경 20 ㎜의 철심을 넣은 나일론 볼로 하며, 성형시의 일축 가압 성형시의 압력을 100 kgf/㎠로서 직경 50 ㎜, 두께 20 ㎜ 정도의 원반형 성형체를 제작하고, 표 3에 나타내는 소성 온도(최고 온도)로 설정하며, 소성시의 분위기를 N2 분위기로 한 것 이외는 실험예 1과 마찬가지로 하여 세라믹스 재료를 얻었다.
[평가]
실험예 1∼28에서 얻어진 각 재료를 각종 평가용으로 가공하고, 이하의 평가를 행하였다. 각 평가 결과를 표 1∼표 4에 나타낸다. 또한 실험예 1∼실험예 17에서는, 직경 50 ㎜의 샘플도 제작했지만, 표 1∼표 4와 같은 결과가 얻어졌다.
(1) 부피 밀도·개기공률
순수를 매체로 한 아르키메데스법에 의해 측정하였다.
(2) 결정상(結晶相) 평가
재료를 유발로 분쇄하고, X선 회절 장치에 의해 결정상을 확인하였다. 측정 조건은 CuKα, 40 kV, 40 ㎃, 2θ=5˚ - 70˚로 하고, 봉입관식 X선 회절 장치(브루커 AXS제 D8 ADVANCE)를 사용하였다. 측정의 스텝 폭은 0.02˚로 하고, 피크 톱의 회절각을 특정하는 경우는 내부 표준으로서 NIST제 Si 표준 시료 분말(SRM640C)을 10 질량% 첨가하고, 피크 위치를 보정하였다. 산화마그네슘의 피크 톱의 회절각은 ICDD78-0430의 값으로 하였다. MgO-AlN 고용체와 산화마그네슘과의 피크 간격, 적분 폭은 하기와 같이 산출하였다.
(2)-1 피크 간격(피크 시프트)의 계산
MgO-AlN 고용체 내의 Al, N 고용량을 상대 비교하기 위해, MgO-AlN 고용체의 (220)면을 대상으로서 피크 간격(피크 시프트)을 평가하였다. MgO-AlN 고용체의 (220)면의 피크 톱의 회절각과, ICDD78-0430에 있는 산화마그네슘의 (220)면의 회절각(62.3˚)의 차를 피크 간격으로 하였다.
(2)-2 적분 폭의 계산
MgO-AlN 고용체의 결정성을 상대 비교하기 위해, 적분 폭을 계산하였다. 적분 폭은, MgO-AlN 고용체의 (200) 피크의 피크 면적을 피크 톱의 강도(Imax)로 나눠 계산하였다. 피크 면적은 피크 톱의 회절각으로부터 -1˚∼+1˚의 범위에서, 백그라운드를 빼고, 강도를 적산함으로써 얻었다. 계산식을 하기에 나타낸다. 또한 백그라운드는 피크 톱으로부터 -1˚의 회절각에서의 피크 강도로 하였다. 상기 방법을 이용하여 계산한 NIST제 Si 표준 시료(SRM640C)의 (111)면의 적분 폭은 0.15˚였다.
(적분 폭)=(ΣI(2θ)×(스텝 폭))/Imax
(2)-3 마그네슘-알루미늄 산질화물상과 MgO-AlN 고용체의 XRD 피크 강도비의 계산
부상으로서 포함되는 마그네슘-알루미늄 산질화물상의 함유 비율을 상대 비교하기 위해, 하기의 방법을 이용하여 마그네슘-알루미늄 산질화물상과 MgO-AlN 고용체의 XRD 피크 강도의 비를 계산하였다. 마그네슘-알루미늄 산질화물상의 2θ=47˚∼49˚의 XRD 피크 강도를 A, 2θ=62.3˚∼65.2˚의 MgO-AlN 고용체의 (220)면의 XRD 피크 강도를 B로 했을 때의 A/B값을 구했다. 여기서는, XRD 피크 강도 A는, 2θ=47˚∼49˚의 XRD 피크의 백그라운드를 제외한 적분 강도로 하고, XRD 피크 강도 B는, MgO-AlN 고용체의 (220)면의 XRD 피크의 백그라운드를 제외한 적분 강도로 하였다. 또한 산출에는, 시판되는 소프트웨어 MDI사 제조 JADE5를 이용하여 구하였다.
(2)-4 이상의 함유 비율의 계산
다음에, 전체에 대한 이상의 비율을 상대 비교하기 위해, 이하의 방법에 의해 XRD 피크 면적의 비를 산출하였다. 마그네슘-알루미늄 산질화물상의 2θ=47˚∼49˚의 XRD 피크 면적을 a, 2θ=62.3˚∼65.2˚의 MgO-AlN 고용체의 (220)면의 XRD 피크 면적을 b, 2θ=45.0˚ 근방의 스피넬(MgAl2O4)의 (400)면의 XRD 피크 면적을 c, 2θ=36.0˚ 근방의 질화알루미늄(AlN)의 (002)면의 XRD 피크 면적을 d로 했을 때의, (a+c+d)/(a+b+c+d)값을 구했다. 여기서는, XRD 피크 면적 a, b, c, d는 시판되는 소프트웨어 MDI사 제조 JADE5의 피크 서치 기능으로부터 구한 각각의 상기 각도의 피크 면적으로 하였다. JADE5의 피크 서치 조건은, 필터 타입에 대해서는 포물선 필터, 피크 위치 정의에 대해서는 피크 톱, 임계값과 범위에 대해서는, 임계값 σ=3.00, 피크 강도% 컷오프=0.1, BG 결정의 범위=1.0, BG 평균화의 포인트 수=7, 각도 범위=5.0˚∼70.0˚로 하고, 가변 필터 길이(데이터 포인트) ON, Kα2 피크를 소거 ON, 현존하는 피크 리스트를 소거 ON으로 하였다. 또한, 상기 계산 방법을 이용하여, 피크 면적 a와 피크 면적 b의 비, a/b값도 구했다.
(3) 에칭률
각 재료의 표면을 경면 연마하고, ICP 플라즈마 내식 시험 장치를 이용하여 하기 조건의 내식 시험을 행하였다. 단차계에 의해 측정한 마스크면과 노출면과의 단차를 시험 시간으로 나누는 것에 의해 각 재료의 에칭률을 산출하였다.
ICP:800 W, 바이어스: 450 W, 도입 가스: NF3/O2/Ar=75/35/100 sccm 0.05 Torr, 노출 시간: 10 h, 시료 온도: 실온
(4) 구성 원소
EPMA를 이용하여, 구성 원소의 검출 및 확인과, 각 구성 원소의 농도 분석을 행하였다.
(5) 내습성
각 재료를 유발로 메디안 직경 10 ㎛ 이하까지 분쇄한 분말을 제작하고, 실온에서 포화수증기압 분위기에 4일간 노출하였다. 그 후, TG-DTA 장치로 40℃∼500℃ 사이의 탈수량을 측정하였다.
(6) 벌크재 내습성
각 재료의 표면을 경면 연마하고, 40℃, 상대 습도 90%의 분위기 하에 28일간 노출하였다. 그 후, 주사형 전자현미경(필립스사 제조 XL30)으로 시료 표면을 관측하고, 변화가 없는 것을 (○), 표면의 40% 이상에 바늘형이나 입자형의 석출물이 생긴 것을 (×), 그 중간을 (△)로 하였다.
(7) 벌크재 내수성
각 재료의 표면을 경면 연마하고, 실온에서 수중에 15일간 침지하였다. 그 후, 주사형 전자현미경으로 시료 표면을 관측하고, 변화가 없는 것을 (○), 표면의 40% 이상에 용출한 흔적이 보이는 것을 (×), 그 중간을 (△)로 하였다.
(8) 파괴 인성
JIS-R1607에 따라, SEPB법에 의해 파괴 인성을 평가하였다.
(9) 굽힘 강도
JIS-R1601에 준거한 굽힘 강도 시험에 의해 측정하였다.
(10) 체적 저항률 측정
JIS-C2141에 준한 방법에 의해, 대기중, 실온에서 측정하였다. 시험편 형상은, 직경 50 ㎜×(0.5 ㎜∼1 ㎜)로 하고, 주전극은 직경 20 ㎜, 가드 전극은 내경 30 ㎜, 외경 40 ㎜, 인가 전극은 직경 40 ㎜가 되도록 각 전극을 은으로 형성하였다. 인가 전압은 2 kV/㎜로 하고, 전압 인가 후 1분일 때의 전류값을 판독하여, 그 전류값으로부터 실온 체적 저항률을 산출하였다.
또한, 실험예 1, 실험예 3, 실험예 5, 실험예 12, 실험예 23∼실험예 28에 대해서, 같은 방법에 의해, 진공중(0.01 Pa 이하), 600℃에서 측정하였다. 시험편 형상은 직경 50 ㎜×(0.5 ㎜∼1 ㎜)로 하고, 주전극은 직경 20 ㎜, 가드 전극은 내경 30 ㎜, 외경 40 ㎜, 인가 전극은 직경 40 ㎜가 되도록 각 전극을 은으로 형성하였다. 인가 전압은 500 V/㎜로 하고, 전압 인가 후 1시간일 때의 전류값을 판독하여, 그 전류값으로부터 체적 저항률을 산출하였다. 또한 표 2, 4의 체적 저항률에서, 「aEb」는 a×10b를 나타내고, 예컨대 「1E16」은 1×1016을 나타낸다.
Figure 112013043381041-pct00001
표 1의 주:
1) MgO-AlNss: MgO-AlN 고용체(입방정)
2) Mg-Al-O-N: Mg, Al 산질화물
3) MgO-AlNss (220)면과 MgO(220)면의 XRD 피크 간격
4) MgO-AlNss의 (200)면의 적분 폭
Figure 112013043381041-pct00002
표 2의 주:
1) A: 2θ=47˚∼49˚의 Mg-Al-O-N 피크 강도, B: 2θ=62.3˚∼65.2˚의 MgO 피크 강도로 정의
2) Mg-Al-O-N의 2θ=47˚∼49˚의 XRD 피크 면적을 a,
MgO-AlNss의 (220)면의 2θ=62.3˚∼65.2˚의 XRD 피크 면적을 b,
MgAl2O4의 (400)면의 2θ=45.0˚ 근방의 XRD 피크 면적을 c,
AlN의 (002)면의 2θ=36.0˚ 근방의 XRD 피크 면적을 d로 정의
3) 경면 연마 시료를 40℃ 90 RH%의 수증기 분위기 하에 28일 노출한 전후의 미세 구조 변화로 판정.
변화 없음을 (○), 표면의 40% 이상에 석출물이 생긴 것을 (×), 그 중간을 (△)로 하였다.
4) 경면 연마 시료를 RT로 수중에 침지하고, 15일 노출한 전후의 미세 구조 변화로 판정.
변화가 없는 것을 (○), 표면의 40% 이상에 용출된 흔적이 보이는 것을 (×), 그 중간을 (△)로 하였다.
5) 파괴 인성의 단위: MPa·m1/2
6) 「-」는 미측정
Figure 112013043381041-pct00003
표 3의 주:
1) MgO-AlNss: MgO-AlN 고용체(입방정)
2) Mg-Al-O-N: Mg, Al 산질화물
3) MgO-AlNss (220)면과 MgO(220)면의 XRD 피크 간격
4) MgO-AlNss의 (200)면의 적분 폭
Figure 112013043381041-pct00004
표 4의 주:
1) A: 2θ=47˚∼49˚의 Mg-Al-O-N 피크 강도, B: 2θ=62.3˚∼65.2˚의 MgO 피크 강도로 정의
2) Mg-Al-O-N의 2θ=47˚∼49˚의 XRD 피크 면적을 a,
MgO-AlNss의 (220)면의 2θ=62.3˚∼65.2˚의 XRD 피크 면적을 b,
MgAl2O4의 (400)면의 2θ=45.0˚ 근방의 XRD 피크 면적을 c,
AlN의 (002)면의 2θ=36.0˚ 근방의 XRD 피크 면적을 d로 정의
3) 경면 연마 시료를 40℃ 90 RH%의 수증기 분위기 하에 28일 노출한 전후의 미세 구조 변화로 판정.
변화 없음을 (○), 표면의 40% 이상에 석출물이 생긴 것을 (×), 그 중간을 (△)로 하였다.
4) 경면 연마 시료를 RT로 수중에 침지하고, 15일 노출한 전후의 미세 구조 변화로 판정.
변화가 없는 것을 (○), 표면의 40% 이상에 용출된 흔적이 보이는 것을 (×), 그 중간을 (△)로 하였다.
5) 파괴 인성의 단위: MPa·m1/2
6) 「-」는 미측정
[평가 결과]
표 1∼표 4에 나타내는 바와 같이, 실험예 1∼실험예 3, 실험예 7∼실험예 17, 실험예 21, 실험예 24∼실험예 28의 세라믹스 재료는, 결정상 평가의 결과, (111)면, (200)면 및 (220)면의 XRD 피크가 산화마그네슘의 입방정의 피크와 질화알루미늄의 입방정의 피크 사이인 2θ=36.9˚∼39˚, 42.9˚∼44.8˚, 62.3˚∼65.2˚에 나타나는 MgO-AlN 고용체(MgO-AlNss)를 주상으로서 포함하고, 적어도 2θ=47˚∼49˚에 XRD의 피크를 갖는 마그네슘-알루미늄 산질화물(Mg-Al-O-N)이나 스피넬(MgAl2O4)을 부상으로서 포함하고 있었지만, AlN은 포함되어 있지 않았다.
대표예로서 도 1에 실험예 1의 XRD 해석 차트, 도 2에 실험예 1의 MgO-AlN 고용체의 XRD 피크 확대도, 표 1, 표 3에 실험예 1∼실험예 28의 MgO-AlN 고용체의 (111), (200), (220)면 피크 톱, MgO-AlN 고용체 (220)면의 XRD 피크 톱과 산화마그네슘 피크 톱과의 간격(피크 시프트), 및 MgO-AlN 고용체의 (200)면의 XRD 피크의 적분 폭을 나타낸다. 또한 실험예 6∼실험예 11, 실험예 13, 실험예 16, 실험예 17, 실험예 19∼실험예 21에서는, 스피넬 피크와 MgO-AlN 고용체의 (111)면의 피크와의 중복이 현저하고, (111)면의 피크 톱을 판별할 수 없었기 때문에, 이들의 (111)면의 피크 톱의 값은, 표 3에 기재하지 않는다. 피크 시프트가 클수록 고용량이 많고, 적분 폭이 작을수록 고용 상태가 균질하다고 생각된다. 또한 실험예 2, 실험예 3, 실험예 7∼실험예 17, 실험예 20, 실험예 21, 실험예 24∼실험예 28의 XRD 해석 차트는, 실험예 1에 포함되는 MgO-AlN 고용체, 마그네슘-알루미늄 산질화물, 스피넬의 함유량이 변화된 것이며, 도시를 생략한다.
여기서, 주상이란, 체적 비율에서 50% 이상을 갖는 성분을 말하고, 부상이란, 주상 이외에서 XRD 피크가 확인된 상을 말한다. 단면 관찰에서의 면적비는 체적 비율을 반영하는 것으로 생각되기 때문에, 주상은 EPMA 원소 맵핑상으로 50% 이상의 면적을 갖는 영역으로 하고, 부상은 주상 이외의 영역으로 한다. 실험예 20은, 실험예 1 등과 마찬가지로 MgO-AlN 고용체, 마그네슘-알루미늄 산질화물 및 스피넬의 3성분을 포함하고 있었지만, 각 성분의 양에 치우침이 없고, 어떤 성분도 주상이 되지 않는 복합재였다. 이 때문에, 표 3의 주상, 부상의 란에는 상기 3성분을 기재하였다.
도 3에 실험예 1의 EPMA 원소 맵핑상을 도시한다. 도 3으로부터, 실험예 1의 주상부는 주로 Mg과 O로 구성되지만, Al, N도 동시에 검출되기 때문에 도 1, 2에 도시하는 MgO-AlN 고용체인 것이 도시된다. 또한, 부상으로서 스피넬부와 소량의 마그네슘-알루미늄 산질화물부가 확인된다. 도 3의 MgO-AlN 고용체의 면적비는 약 86%이며, 실험예 1은 MgO-AlN 고용체가 주상인 것을 알 수 있다. 그 외의 실험예에 관해서도 같은 해석을 행하여, 예컨대 실험예 15, 실험예 26, 실험예 28의 MgO-AlN 고용체의 면적비는 각각 약 75%, 약 91%, 약 99%이며, MgO-AlN 고용체가 주상인 것을 알 수 있다. 또한 여기서는, 일례로서, 주상과 부상의 판정을 EPMA 원소 맵핑으로 행하는 것으로 했지만, 각 상의 체적 비율을 식별할 수 있는 방법이면, 다른 방법을 채용하여도 좋다.
또한 EPMA 원소 맵핑상은, 농도에 따라, 적색ㆍ등색ㆍ황색ㆍ황녹색ㆍ녹색ㆍ청색ㆍ남색으로 나눠져 있고, 적색이 가장 고농도, 남색이 가장 저농도, 흑색은 제로를 나타낸다. 그러나, 도 3은 모노크롬으로 표시되어 있기 때문에, 이하에 도 3의 본래의 색에 대해서 설명한다. 실험예 1(저배)에서는, Mg은 바탕색이 등색이며 점부분이 청색, Al은 바탕색이 청색이며 점부분이 등색, N은 바탕색이 청색이며 점부분이 남색, O는 바탕색이 등색이며 점부분이 적색이었다. 실험예 1(고배)에서는, Mg은 바탕색(MgO-AlNss)이 등색이며 섬 부분(MgAl2O4)이 청색이며 선형 부분(Mg-Al-O-N)이 녹색, Al은 바탕색이 청색이며 섬 부분과 선형 부분이 등색, N은 바탕색이 청색이며 섬 부분이 남색이며 선형 부분이 녹색, O는 바탕색이 등색이고 섬 부분이 적색이며 선형 부분이 녹색이었다. 실험예 5(저배)는 Mg 및 O는 적색, Al 및 N는 흑색이었다.
또한 실험예 4, 실험예 23의 세라믹스 재료는, 결정상 평가의 결과, 모두 앞에 나온 MgO-AlN 고용체를 주상으로서 포함하는 것이었지만, 실험예 23은 AlN을 부상으로서 포함하고, 실험예 4는 스피넬이나 AlN을 부상으로서 포함하고 있었다. 표 1에 실험예 4, 실험예 23의 MgO-AlN 고용체의 XRD 피크와 산화마그네슘의 XRD 피크와의 간격(피크 시프트)을 나타낸다. 실험예 4와 같이, 소성 온도가 1650℃에서는 반응이 충분히 일어나지 않고, 고용량이 적은 것으로 추찰되었다. 소성 온도 1600℃에서는 반응이 거의 일어나지 않기 때문에, 실험예 18, 19의 세라믹스 재료에서는, MgO-AlN 고용체는 생성되지 않았다.
또한, 실험예 5의 세라믹스 재료는, MgO을 주상으로서 포함하는 것이고, 실험예 6의 세라믹스 재료는, 스피넬을 주상으로서 포함하며, MgO을 부상으로서 포함하는 것이었다. 또한, 실험예 22의 세라믹스 재료는, MgO를 주상, 스피넬을 부상으로서 포함하는 것이었다. 따라서, 원료 내에 AlN 성분이 포함되어 있지 않으면 핫 프레스, 상압 소성 중 어느 것이라도 MgO에 Al 성분이 고용되지 않는 것을 알 수 있다.
그리고, 실험예 1∼실험예 3, 실험예 7∼실험예 13, 실험예 17, 실험예 20, 실험예 21의 세라믹스 재료는, 수분 감소율(TG-DTA에 의한 40℃∼500℃의 질량 감소율)이 2% 이하, 실험예 4, 실험예 6, 실험예 14∼실험예 16의 세라믹스 재료는, 수분 감소율이 3% 이하이며, MgO 세라믹스 즉 실험예 5의 세라믹스 재료에 비해 각별히 높은 내습성을 갖고 있었다. 벌크재 내습성, 내수성 시험의 대표예로서 실험예 2(좌측), 5(우측)의 미세 구조 사진을 도 4에 도시하고, 실험예 8(좌측), 실험예 9(우측)의 미세 구조 사진을 도 5에 도시한다.
벌크재의 내습성은 고용량이 많은 편이 좋고, MgO-AlN 고용체 (220)면의, 산화마그네슘으로부터의 피크 시프트가 0.2˚ 이상인 실험예 1∼실험예 3, 실험예 7∼실험예 14, 실험예 17, 실험예 20, 실험예 21, 실험예 26은 벌크재 내습 시험(40℃, 90 RH% 분위기 하에서 28일간 노출)에서 표면 상태에 변화가 없고, 양호했다. 또한 실험예 4, 실험예 15, 실험예 16, 실험예 23∼실험예 25, 실험예 27, 실험예 28은 벌크재 내습 시험으로 표면 상태가 변화되었지만, 표면의 40% 이상에 걸쳐 바늘형, 입자형의 석출물이 형성되는 실험예 5, 실험예 6, 실험예 18, 실험예 19, 실험예 22와 비교하여 변화가 작았다. 이 결과로부터, 벌크재의 내습성은, MgO에의 Al, N 성분 고용량에 의존하는 것을 알 수 있다. 즉 MgO-AlN 고용체의 (220)면의 산화마그네슘으로부터의 피크 시프트가 0.03˚ 미만인 것은 표면의 40% 이상에서 변화가 생겨 내습성이 낮고, 피크 시프트가 0.03˚ 이상 0.2˚ 미만에서는 내습성이 좋으며, 피크 시프트가 0.2˚ 이상이면 내습성이 더 좋았다. 즉, MgO-AlN 고용체의 (220)면의 XRD 피크가, 산화마그네슘의 입방정의 피크와 질화알루미늄의 입방정의 피크 사이인 62.33˚ 이상 62.50˚ 미만(2θ)에 나타나면 내습성이 좋고, 62.50˚ 이상에 나타나면 내습성이 더 좋았다. 또한 MgO-AlN 고용체의 (200)면의 XRD 피크가, 산화마그네슘의 입방정의 피크와 질화알루미늄의 입방정의 피크 사이인 42.92˚ 이상 43.04˚ 미만에 나타나면 내습성이 좋고, 43.04˚ 이상에 나타나면 내습성이 더 좋았다.
또한 벌크재의 내수성은, 피크 시프트가 크고, 적분 폭이 작은 재료일수록, 양호한 것을 알 수 있다. 즉, (220)면의 XRD 피크 시프트가 0.42˚ 이상이며, 적분 폭이 0.35˚ 이하인, 실험예 1, 실험예 2, 실험예 7, 실험예 8, 실험예 10∼실험예 13, 실험예 17, 실험예 20은 벌크재 내수성 시험에서 표면 상태에 변화가 없었다. 실험예 3, 실험예 9, 실험예 14, 실험예 15, 실험예 23∼실험예 28은 벌크재의 내수 시험에서 용출에 의한 구멍부가 소수 확인되었지만, 실험예 4∼실험예 6, 실험예 16, 실험예 18, 실험예 19, 실험예 22나 적분 폭이 0.50˚보다 큰 실험예 21에서는 표면의 40% 이상에서 용출된 모습이 확인되었다. 이 결과로부터, 벌크재의 내수성은, MgO에의 Al, N 성분의 고용량이 많고, 균질인 것이 좋은 것을 알 수 있다. 즉 MgO-AlN 고용체의 (220)면의 산화마그네슘으로부터의 피크 시프트가 0.05˚ 이하인 재료는 표면의 40% 이상이 용출되어 내수성이 낮고, 피크 시프트가 0.05˚ 이상 0.42˚ 미만인 재료, 또는 피크 시프트가 0.42˚ 이상이지만 MgO-AlN 고용체의 (200)면의 적분 폭이 0.35˚를 초과하는 재료는, 내수성이 좋고, 피크 시프트가 0.42˚이상이며, 적분 폭이 0.35˚ 이하인 재료는 내수성이 더 좋았다. 즉, MgO-AlN 고용체의 (220)면의 XRD 피크가, 산화마그네슘의 입방정의 피크와 질화알루미늄의 입방정의 피크 사이인 62.35˚ 이상 62.72˚ 미만(2θ)에 나타나는 재료, 또는 (220)면의 XRD 피크가 62.72˚ 이상이지만 (200)면의 적분 폭이 0.35˚를 초과하는 재료는, 내수성이 좋고, (220)면의 XRD 피크가 62.72˚이상이며 적분 폭이 0.35˚ 이하인 재료는 내수성이 더 좋았다. 또한 MgO-AlN 고용체의 (200)면의 XRD 피크가 산화마그네슘의 입방정의 피크와 질화알루미늄의 입방정의 피크 사이인 42.95˚ 이상 43.17˚ 미만에 나타나면 내수성이 좋고, 2θ=43.17˚ 이상의 재료는, 내수성이 더 좋았다.
또한, 실험예 1∼실험예 3, 실험예 12, 실험예 14∼실험예 16의 세라믹스 재료는, 에칭률의 결과로부터, 실험예 5의 MgO 세라믹스와 필적하는 높은 내식성을 갖고 있는 것을 알 수 있다. 실험예 4, 실험예 7∼실험예 11, 실험예 13, 실험예 21의 세라믹스 재료는, 에칭률의 결과로부터, 내식성은 실험예 5의 MgO와 비교하여 약간 뒤떨어지지만, 실험예 6의 세라믹스 재료, 즉 스피넬을 주상으로 하는 재료나 표에 나타내지 않은 산화이트륨(에칭률 약 240 ㎚/h)보다 높은 내식성을 갖고 있는 것을 알 수 있다. 실험예 1∼실험예 3, 실험예 7∼실험예 15는, 부상으로서 마그네슘-알루미늄 산질화물(Mg-Al-O-N)상을 포함하지만, Mg-Al-O-N상의 함유량이 많을수록 기계 특성이 향상되고 있었다. 마그네슘-알루미늄 산질화물상의 2θ=47˚∼49˚의 XRD 피크 강도를 A, 2θ=62.3˚∼65.2˚의 MgO-AlN 고용체의 (220)면의 XRD 피크 강도를 B로 했을 때의 A/B값을 표 2, 표 4에 나타낸다. A/B가 클수록 Mg-Al-O-N양이 많은 것을 의미하고, A/B가 증가함에 따라 파괴 인성, 굽힘 강도 모두 향상하였다. A/B가 0.03 이상인 실험예 7∼실험예 11, 실험예 13, 실험예 15, 실험예 17, 실험예 20, 실험예 21은 파괴 인성 2.5 이상이며, 굽힘 강도가 180 MPa 이상인 높은 굽힘 강도를 갖는 것을 알 수 있다. 또한 실험예 7∼실험예 10, 실험예 13, 실험예 15, 실험예 17, 실험예 20, 실험예 21은 굽힘 강도가 200 MPa 이상인 높은 굽힘 강도를 갖는 것을 알 수 있다. 예컨대 실험예 8의 A는 4317 카운트, B는 83731 카운트이며, A/B값은 0.039가 되고, 파괴 인성은 2.5, 강도는 222 MPa였다. 또한 실험예 15의 A는 13566 카운트, B는 108508 카운트이며, A/B값은 0.125가 되고, 파괴 인성은 4.4, 강도는 350 MPa였다. 그러나, 마그네슘-알루미늄 산질화물(Mg-Al-O-N)의 양의 증가에 따라 고내식인 MgO-AlN 고용체의 함유량이 저하되기 때문에, 내식성은 저하되었다. 예컨대 A/B가 0.3 이상의 실험예 17에서는 에칭률이 181 ㎚/h에 도달하고, A/B가 0.4를 초과하는 실험예 20에서는 스피넬과 동일한 레벨의 내식성이 되었다. 이 결과로부터, A/B값이 0.03 이상 0.14 이하로 함으로써 내식성과 기계 강도를 동시에 발현하는 것을 알 수 있다. 또한 실험예 13의 굽힘 강도는, 당초 측정한 결과는 188 MPa였지만, 재측정하여 재현성을 검토한 바 251 MPa였다. 또한 피크 면적 a, b를 이용하여 계산한 a/b값도 표 2, 4에 나타낸다.
실험예 2, 실험예 3, 실험예 8, 실험예 10, 실험예 15, 실험예 23, 실험예 26의 실온에서의 체적 저항률은 모두 1×1017 Ωcm 이상으로 실험예 5의 MgO와 동등하고, 고저항이 필요해지는 정전척이나 히터 등의 반도체 제조 장치용에 적합한 것을 알 수 있다.
또한, 실험예 5와 실험예 12의 600℃에서의 체적 저항률은 각각 2×1012 Ωcm, 2×1010 Ωcm이며, 실험예 12의 세라믹스 재료는 MgO(실험예 5)에 비해 낮은 전기 저항을 갖는 것을 알 수 있다. 이 외에 실험예 1, 실험예 3, 실험예 23∼실험예 28의 세라믹스 재료에 대해서도 실험예 12와 마찬가지로, 실험예 5에 비해 낮은 전기 저항을 갖는 것을 알 수 있다.
또한, 전술한 마그네슘-알루미늄 산질화물상의 2θ=47˚∼49˚의 XRD 피크 면적을 a, 2θ=62.3˚∼65.2˚의 MgO-AlN 고용체의 (220)면의 XRD 피크 면적을 b, 2θ=45.0˚ 근방의 스피넬(MgAl2O4)의 (400)면의 XRD 피크 면적을 c, 2θ=36.0˚ 근방의 질화알루미늄(AlN)의 (002)면의 XRD 피크 면적을 d로 했을 때의, (a+c+d)/(a+b+c+d)값을 표 2, 표 4에 나타낸다. (a+c+d)/(a+b+c+d)값이 작을수록, 세라믹스 재료에 차지하는 MgO-AlN 고용체의 비율이 크고, 이상이 될 가능성이 있는 마그네슘-알루미늄 산질화물상, 스피넬(MgAl2O4), 및 질화알루미늄(AlN)의 합계량이 적은 것을 나타낸다. 실험예 1∼실험예 3, 실험예 5, 실험예 12, 실험예 14, 실험예 23∼실험예 28에서는 (a+c+d)/(a+b+c+d)값이 0.1 이하이기 때문에, 이상이 적은 이들 세라믹스 재료는, 스퍼터링 타겟 부재에 이용하는 것이 적합한 것을 알 수 있다. 예컨대 실험예 14의 a는 782 카운트, b는 123644 카운트, c는 2613 카운트, d는 0 카운트이며, (a+c+d)/(a+b+c+d)값은 0.027로 이상이 적은 것을 알 수 있다. 마찬가지로 실험예 23의 a는 0 카운트, b는 109166 카운트, c는 0 카운트, d는 2775 카운트, (a+c+d)/(a+b+c+d)값은 0.025로 이상이 적은 것을 알 수 있다.
이와 같이, 제작한 세라믹스 재료는, 산화마그네슘의 결정 구조를 유지한 산화마그네슘보다 낮은 전기 저항을 갖는다. 이것은 산화마그네슘 결정에 알루미늄이나 질소가 고용됨으로써, 산화마그네슘 내의 캐리어가 증가했기 때문이라고 생각된다. 이 때문에, 본 재료를 스퍼터링 타겟으로서, 예컨대 하드 디스크의 자기헤드 및 자기 저항 랜덤 액세스 메모리 등의 자기 터널 접합 소자를 제작한 경우에서, 전기 저항 및/또는 자기 저항비의 특성 향상이 예측된다.
[정전척의 제조와 평가]
도 6의 (a) 타입의 정전척을, 도 9를 참조하면서 설명한 제법에 의해 제작하였다. 단, 구체적으로는 이하와 같이 실시하였다.
(a) MgO 원료, Al2O3 원료, AlN 원료를, 상기 표 1의 각 실험예 1에 나타내는 질량%가 되도록 칭량하고, 이소프로필알코올을 용매로 하며, 나일론제의 포트, 직경 5 ㎜의 알루미나 옥석을 이용하여 4시간 습식 혼합하였다. 혼합 후 슬러리를 취출하여, 질소 기류중 110℃에서 건조하였다. 그 후 30 메시의 체에 통과시켜, 조합 분말로 하였다. 이어서, 조합 분말을 200 kgf/㎠의 압력으로 일축 가압 성형하여, 원반형 성형체를 얻었다. 이 성형체를 핫 프레스 소결함으로써 세라믹 소결체(2A)를 얻었다. 핫 프레스 소결은, 프레스 압력을 200 kgf/㎠로 하고, 표 1에 나타내는 각 온도로 소성하여, 소성 종료까지 Ar 분위기로 하였다. 소성 온도에서의 유지 시간은 4시간으로 하였다. 공정 (a)에서는 평균 입경 1 ㎛ 이하의 시판품을 사용하였다.
(b) 소결체(2A)의 주면(2a)을, 표면 평탄도가 10 ㎛가 되도록 연마한다.
(c) 평균 입경 0.2 ㎛의 텅스텐카바이드 분말과 알루미나 분말을 혼합하고, 테르피네올을 더하여 페이스트로 한다. 이 페이스트를 연마면(2a) 위에 인쇄한다.
(d) 소결체(2A)의 주면(2a) 위에, 평균 입경 0.2 ㎛의 알루미나 분말을 성형하여, 알루미나 성형체(14)로 한다. 축방향으로 가압하면서, 아르곤 가스 분위기중에서, 1250℃∼1350℃에서 소결한다. 또한, 최고 온도까지는, 승온 속도 100℃/시간으로 승온하고, 최고 온도에서는 2시간 유지한다. 압력은 20 MPa로 한다.
(e) 소결체(2A)의 주면(12)을 연마하여 흡착면(1a)을 형성함으로써, 두께 변동도가 100 ㎛ 이하인 서셉터를 얻는다. 얻어진 서셉터의 판형 지지부(3)의 배면 중앙에 전극(4)에 이르는 삽입 관통 구멍을 형성하고, 그 삽입 관통 구멍에 원통형의 단자(8)를 부착하고, 이 단자를 통해 전극(4)에 전압을 인가할 수 있도록 한다.
표 3의 실험 No.1, 2, 3에서 유전체층(표면 내식층)을 형성한 재질은, 상기 실시예(표 1)에서의 실험예 1의 것이다.
(실험 No.4)
실험 No.4로서, 전술한 유전체층(2)을, 상기 공정 (d)의 알루미나 소결체와 동일 재질로 하였다. 다른 것은 실험 No.1∼3과 마찬가지로 하여 정전척을 제조하였다.
[시험 조건]
·내식 시험: ICP: 800 W, 바이어스: 450 W, 도입 가스: NF3/O2/Ar=75/35/100 sccm, 0.05 Torr, 노출 시간: 100 hrs., 시료 온도: 500℃
·평가 특성: 상기 내식 시험 전후에서의 웨이퍼 위 온도 균일성, 흡착력, 표면 조도를 측정한다.
균열성 측정
Si 웨이퍼를 정전척의 배치면에 두고, ±500 V의 직류 전압을 정전 전극에 인가하여 Si 웨이퍼를 흡착시켰다. 챔버 진공도: 1E-4Torr로 설정하고, 저항 발열체에 파워를 인가함으로써 승온 속도 10℃/min로 평가 온도 100℃까지 가열하였다. 입열 파워가 일정하게 된 것을 확인하고, IR 카메라(니혼덴시 제조: 6100, 21 pts)에 의해 온도를 확인하여, 웨이퍼 위의 온도의 최대값과 최소값의 차(ΔT)를 균열성(단위: ℃)으로 하였다. 균열성(ΔT)의 값이 작은 쪽이 양호한 균열성을 나타내고, 예컨대 웨이퍼의 에칭 처리 등에서 균질한 에칭을 가능하게 한다.
흡착력
Si 프로브(5 ㎠)를 제품 위에 세팅하고, 진공 상태(1E-4 Torr)로 ±500 V의 직류 전압을 정전 전극에 인가하여 Si 프로브를 흡착시켰다. 1 min 후 프로브를 인상하여 이탈시의 힘을 측정하였다. 측정 포인트는 면내의 4지점 (-40, 40)(-40, -40)(40-40)(40, 40)이다. 이 때, 제품 외경의 임의의 3점을 지나는 원의 중심을 (0, 0)으로 한다.
표면 조도
제품 표면의 거칠기를 테일러 홉슨 거칠기 측정기로 측정하였다. 측정 지점은 면내의 내측과 외측의 임의의 2지점이다.
Figure 112013043381041-pct00005
실험 No.1, 2, 3에서는, 내식 시험 전의 웨이퍼 위 온도 균일성이 비교적 양호하고, 내식 시험 후에서의 웨이퍼 위 온도 균일성의 열화가 매우 적으며, 흡착력의 저하가 매우 적다.
실험 No.4에서는, 초기의 웨이퍼 위 온도 균일성은 매우 양호하지만, 내식 시험 후의 웨이퍼 위 온도 균일성, 흡착력 모두 현저히 열화되어 있었다.
이것들의 작용 효과는, 반도체 처리 장치 분야에서 획기적이며, 산업상 많은 이용을 기대할 수 있는 것이 분명하다.
본 발명의 특정한 실시형태를 설명했지만, 본 발명은 이들 특정한 실시형태로 한정되지 않으며, 청구범위의 범위에서 멀어지지 않고, 여러 가지의 변경이나 개변을 행하면서 실시할 수 있다.

Claims (17)

  1. 반도체를 흡착하는 흡착면을 갖는 서셉터와, 이 서셉터내에 매설되어 있는 정전척 전극을 구비하는 정전척으로서,
    상기 서셉터는 판형 본체부와, 상기 흡착면에 면하는 표면 내식층을 구비하며, 상기 표면 내식층은 마그네슘, 알루미늄, 산소 및 질소를 주성분으로 하는 세라믹스 재료로서, 산화마그네슘에 질화알루미늄이 고용(固溶)된 MgO-AlN 고용체의 결정상을 주상(主相)으로 하는 세라믹스 재료로 이루어지는 것을 특징으로 하는 정전척.
  2. 제1항에 있어서, 상기 정전척 전극에 직류 고전압을 인가할 수 있는 것을 특징으로 하는 정전척.
  3. 제1항 또는 제2항에 있어서, 상기 표면 내식층의 상기 판형 본체부측의 주면 위에 상기 정전척 전극이 설치되어 있는 것을 특징으로 하는 정전척.
  4. 제1항 또는 제2항에 있어서, 상기 판형 본체부의 내부에 매설되어 있는 발열체를 구비하는 것을 특징으로 하는 정전척.
  5. 제1항 또는 제2항에 있어서, 상기 MgO-AlN 고용체는, CuKα선을 이용했을 때의 (200)면 및 (220)면의 XRD 피크가 산화마그네슘의 입방정의 피크와 질화알루미늄의 입방정의 피크 사이인 2θ=42.9˚∼44.8˚, 62.3˚∼65.2˚에 나타나는 것인 정전척.
  6. 제5항에 있어서, 상기 MgO-AlN 고용체는, CuKα선을 이용했을 때의 (111)면, (200)면 및 (220)면의 XRD 피크가 산화마그네슘의 입방정의 피크와 질화알루미늄의 입방정의 피크 사이인 2θ=36.9˚∼39˚, 42.9˚∼44.8˚, 62.3˚∼65.2˚에 나타나는 것인 정전척.
  7. 제5항에 있어서, 상기 MgO-AlN 고용체의 (200)면, (220)면의 XRD 피크가 각각 2θ=42.92˚ 이상, 62.33˚ 이상에 나타나는 것인 정전척.
  8. 제5항에 있어서, 상기 MgO-AlN 고용체의 (200)면, (220)면의 XRD 피크가 각각 2θ=42.95˚이상, 62.35˚ 이상에 나타나는 것인 정전척.
  9. 제5항에 있어서, 상기 MgO-AlN 고용체의 (200)면, (220)면의 XRD 피크가 각각 2θ=43.04˚이상, 62.50˚ 이상에 나타나는 것인 정전척.
  10. 제5항에 있어서, 상기 MgO-AlN 고용체의 (200)면, (220)면의 XRD 피크가 각각 2θ=43.17˚ 이상, 62.72˚ 이상에 나타나는 것인 정전척.
  11. 제1항 또는 제2항에 있어서, 상기 MgO-AlN 고용체의 (200)면의 XRD 피크의 적분 폭이 0.50˚ 이하인 것인 정전척.
  12. 제1항 또는 제2항에 있어서, 상기 세라믹스 재료는 AlN 결정상을 포함하지 않는 것인 정전척.
  13. 제1항 또는 제2항에 있어서, 상기 세라믹스 재료는, CuKα선을 이용했을 때의 XRD 피크가 적어도 2θ=47˚∼49˚에 나타나는 마그네슘-알루미늄 산질화물상을 부상(副相)으로서 포함하는 것인 정전척.
  14. 제13항에 있어서, 상기 마그네슘-알루미늄 산질화물상의 2θ=47˚∼49˚의 XRD 피크 강도를 A, 상기 MgO-AlN 고용체의 (220)면의 2θ=62.3˚∼65.2˚의 XRD 피크 강도를 B로 했을 때, A/B가 0.03 이상인 것인 정전척.
  15. 제14항에 있어서, 상기 A/B는 0.14 이하인 것인 정전척.
  16. 제13항에 있어서, 상기 마그네슘-알루미늄 산질화물상의 2θ=47˚∼49˚의 XRD 피크 면적을 a, 상기 MgO-AlN 고용체의 (220)면의 2θ=62.3˚∼65.2˚의 XRD 피크 면적을 b, 스피넬(MgAl2O4)의 (400)면의 2θ=45.0˚의 XRD 피크 면적을 c, 질화알루미늄(AlN)의 (002)면의 2θ=36.0˚의 XRD 피크 면적을 d로 했을 때, (a+c+d)/(a+b+c+d)값이 0.1 이하인 것인 정전척.
  17. 제1항 또는 제2항에 있어서, 상기 판형 본체부는 질화알루미늄, 산화이트륨 또는 산화알루미늄을 주상으로 하는 세라믹스로 이루어지는 것을 특징으로 하는 정전척.
KR1020137012717A 2010-10-25 2011-10-11 정전척 KR101682749B1 (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2010238999 2010-10-25
JPJP-P-2010-238999 2010-10-25
JPJP-P-2011-135313 2011-06-17
JP2011135313 2011-06-17
PCT/JP2011/069491 WO2012056808A1 (ja) 2010-10-25 2011-08-29 セラミックス材料、半導体製造装置用部材、スパッタリングターゲット部材及びセラミックス材料の製造方法
WOPCT/JP2011/069491 2011-08-29
PCT/JP2011/073771 WO2012056918A1 (ja) 2010-10-25 2011-10-11 静電チャック

Publications (2)

Publication Number Publication Date
KR20130126622A KR20130126622A (ko) 2013-11-20
KR101682749B1 true KR101682749B1 (ko) 2016-12-05

Family

ID=45993538

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020127013650A KR101881171B1 (ko) 2010-10-25 2011-10-11 세라믹스 재료, 반도체 제조 장치용 부재, 스퍼터링 타겟 부재 및 세라믹스 재료의 제조 방법
KR1020137012717A KR101682749B1 (ko) 2010-10-25 2011-10-11 정전척

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020127013650A KR101881171B1 (ko) 2010-10-25 2011-10-11 세라믹스 재료, 반도체 제조 장치용 부재, 스퍼터링 타겟 부재 및 세라믹스 재료의 제조 방법

Country Status (6)

Country Link
US (2) US8541328B2 (ko)
JP (2) JP5683602B2 (ko)
KR (2) KR101881171B1 (ko)
CN (2) CN103201235B (ko)
TW (2) TWI587439B (ko)
WO (3) WO2012056808A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140077910A (ko) * 2011-10-11 2014-06-24 엔지케이 인슐레이터 엘티디 세라믹스 부재, 반도체 제조 장치용 부재 및 세라믹스 부재의 제조 방법
US11251061B2 (en) 2018-11-08 2022-02-15 Ksm Component Co., Ltd. Electrostatic chuck and manufacturing method therefor
WO2022055813A1 (en) * 2020-09-10 2022-03-17 Lam Research Corporation Spinel coating for plasma processing chamber components

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012056808A1 (ja) * 2010-10-25 2012-05-03 日本碍子株式会社 セラミックス材料、半導体製造装置用部材、スパッタリングターゲット部材及びセラミックス材料の製造方法
JP6279482B2 (ja) * 2012-11-07 2018-02-14 日本碍子株式会社 スパッタリングターゲット部材
JP6170066B2 (ja) * 2012-11-07 2017-07-26 日本碍子株式会社 セラミックス材料及びスパッタリングターゲット部材
JP6038698B2 (ja) * 2013-03-22 2016-12-07 日本碍子株式会社 セラミックス部材及び半導体製造装置用部材
JP6450163B2 (ja) 2013-12-06 2019-01-09 日本碍子株式会社 溶射膜、半導体製造装置用部材、溶射用原料及び溶射膜製造方法
JP6349100B2 (ja) * 2014-02-14 2018-06-27 株式会社アテクト アルミナ焼結体及びその製造方法
KR101994006B1 (ko) * 2014-06-23 2019-06-27 니혼도꾸슈도교 가부시키가이샤 정전 척
WO2016002480A1 (ja) * 2014-06-30 2016-01-07 日本碍子株式会社 MgO系セラミックス膜、半導体製造装置用部材及びMgO系セラミックス膜の製法
JP6579194B2 (ja) * 2015-07-31 2019-09-25 株式会社村田製作所 温度センサ
US10464849B2 (en) * 2015-12-08 2019-11-05 Edward J. A. Pope Fast-densified ceramic matrix composite and fabrication method
JP6783528B2 (ja) * 2016-02-29 2020-11-11 日本碍子株式会社 セラミック構造体、その製法及び半導体製造装置用部材
JP6670189B2 (ja) * 2016-06-27 2020-03-18 新光電気工業株式会社 ベースプレート構造体及びその製造方法、基板固定装置
US11069553B2 (en) * 2016-07-07 2021-07-20 Lam Research Corporation Electrostatic chuck with features for preventing electrical arcing and light-up and improving process uniformity
CN109996903A (zh) * 2016-11-25 2019-07-09 宇部材料工业株式会社 物理蒸镀用靶构件和溅射靶构件以及物理蒸镀膜和层结构的制造方法
US10910195B2 (en) 2017-01-05 2021-02-02 Lam Research Corporation Substrate support with improved process uniformity
WO2018138993A1 (ja) * 2017-01-30 2018-08-02 株式会社村田製作所 温度センサ
JP6976799B2 (ja) * 2017-10-02 2021-12-08 京セラ株式会社 載置用部材
JP6583897B1 (ja) * 2018-05-25 2019-10-02 ▲らん▼海精研股▲ふん▼有限公司 セラミック製静電チャックの製造方法
JP7307299B2 (ja) * 2018-06-29 2023-07-12 北陸成型工業株式会社 静電チャック
JP2020155565A (ja) * 2019-03-20 2020-09-24 キオクシア株式会社 磁気記憶装置
CN111816766B (zh) * 2020-08-27 2020-11-27 长江先进存储产业创新中心有限责任公司 相变存储器及相变存储器的制作方法
KR20220101566A (ko) * 2021-01-11 2022-07-19 에이에스엠 아이피 홀딩 비.브이. 정전기 척

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044345A (ja) 1998-07-24 2000-02-15 Ngk Insulators Ltd 窒化アルミニウム質焼結体、耐蝕性部材、金属埋設品および半導体保持装置
JP2007084367A (ja) 2005-09-21 2007-04-05 Matsushita Electric Works Ltd 高熱伝導性セラミックス焼結体の製造方法及び高熱伝導性セラミックス焼結体

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3531245A (en) 1968-04-01 1970-09-29 Du Pont Magnesium-aluminum nitrides
JPS559426A (en) 1978-07-07 1980-01-23 Hitachi Ltd Semiconductor device
JPH0660061B2 (ja) * 1985-07-29 1994-08-10 株式会社日立製作所 簿膜磁気ヘツド用スライダおよびその製造方法
US5231062A (en) 1990-08-09 1993-07-27 Minnesota Mining And Manufacturing Company Transparent aluminum oxynitride-based ceramic article
FR2671339B1 (fr) * 1991-01-03 1993-08-27 Pechiney Electrometallurgie Procede de nitruration directe de metaux a bas point de fusion.
FR2675158B1 (fr) * 1991-04-15 1994-05-06 Pechiney Electrometallurgie Produits abrasifs et/ou refractaires a base d'oxynitrures, fondus et solidifies.
JPH05319937A (ja) * 1992-05-21 1993-12-03 Toshiba Corp 傾斜機能材料
JP3197617B2 (ja) * 1992-07-15 2001-08-13 イビデン株式会社 GaAs半導体素子用基板
US5457075A (en) 1993-05-11 1995-10-10 Hitachi Metals, Ltd. Sintered ceramic composite and molten metal contact member produced therefrom
JP2783980B2 (ja) 1994-09-01 1998-08-06 日本碍子株式会社 接合体およびその製造方法
JP3297288B2 (ja) 1996-02-13 2002-07-02 株式会社東芝 半導体装置の製造装置および製造方法
US6447937B1 (en) 1997-02-26 2002-09-10 Kyocera Corporation Ceramic materials resistant to halogen plasma and components using the same
JP3559426B2 (ja) 1997-05-30 2004-09-02 京セラ株式会社 耐食性部材
JP3851489B2 (ja) 2000-04-27 2006-11-29 日本発条株式会社 静電チャック
CN1225570C (zh) * 2000-10-23 2005-11-02 独立行政法人产业技术综合研究所 复合构成物及其制作方法和制作装置
JP2003124541A (ja) 2001-10-12 2003-04-25 Nec Corp 交換結合膜、磁気抵抗効果素子、磁気ヘッド及び磁気ランダムアクセスメモリ
JP3888531B2 (ja) 2002-03-27 2007-03-07 日本碍子株式会社 セラミックヒーター、セラミックヒーターの製造方法、および金属部材の埋設品
JP4424659B2 (ja) * 2003-02-28 2010-03-03 日本碍子株式会社 窒化アルミニウム質材料および半導体製造装置用部材
JP4376070B2 (ja) * 2004-01-14 2009-12-02 日本碍子株式会社 加熱装置
JP4292128B2 (ja) 2004-09-07 2009-07-08 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
KR100918190B1 (ko) 2005-04-22 2009-09-22 주식회사 코미코 치밀질 질화알루미늄 소결체, 그 제조 방법 및 상기소결체를 이용한 반도체 제조용 부재
DE602006013948D1 (de) * 2006-05-04 2010-06-10 Hitachi Ltd Magnetspeichervorrichtung
JP2008115065A (ja) * 2006-11-02 2008-05-22 Okayama Ceramics Gijutsu Shinko Zaidan 使用済みマグネシア質、スピネル質およびアルミナ質耐火物のリサイクル方法
JP2009292688A (ja) 2008-06-06 2009-12-17 Sumitomo Electric Ind Ltd 透光性セラミックスおよびその製造方法、それを用いた光学素子、カラー液晶プロジェクター
JP5307671B2 (ja) 2008-10-23 2013-10-02 日本碍子株式会社 窒化アルミニウム基複合材料、その製造方法及び半導体製造装置用部材
EP2419077B1 (en) * 2009-04-15 2016-10-12 Rhodia Opérations Process of treating damaged hair
DE102009002417A1 (de) * 2009-04-16 2010-10-21 Evonik Goldschmidt Gmbh Verwendung organomodifizierter, im Siliconteil verzweigter Siloxane zur Herstellung kosmetischer oder pharmazeutischer Zusammensetzungen
WO2012056808A1 (ja) * 2010-10-25 2012-05-03 日本碍子株式会社 セラミックス材料、半導体製造装置用部材、スパッタリングターゲット部材及びセラミックス材料の製造方法
WO2012056807A1 (ja) * 2010-10-25 2012-05-03 日本碍子株式会社 セラミックス材料、積層体、半導体製造装置用部材及びスパッタリングターゲット部材

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000044345A (ja) 1998-07-24 2000-02-15 Ngk Insulators Ltd 窒化アルミニウム質焼結体、耐蝕性部材、金属埋設品および半導体保持装置
JP2007084367A (ja) 2005-09-21 2007-04-05 Matsushita Electric Works Ltd 高熱伝導性セラミックス焼結体の製造方法及び高熱伝導性セラミックス焼結体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140077910A (ko) * 2011-10-11 2014-06-24 엔지케이 인슐레이터 엘티디 세라믹스 부재, 반도체 제조 장치용 부재 및 세라믹스 부재의 제조 방법
KR102020957B1 (ko) * 2011-10-11 2019-09-11 엔지케이 인슐레이터 엘티디 세라믹스 부재, 반도체 제조 장치용 부재 및 세라믹스 부재의 제조 방법
US11251061B2 (en) 2018-11-08 2022-02-15 Ksm Component Co., Ltd. Electrostatic chuck and manufacturing method therefor
WO2022055813A1 (en) * 2020-09-10 2022-03-17 Lam Research Corporation Spinel coating for plasma processing chamber components

Also Published As

Publication number Publication date
TW201630109A (zh) 2016-08-16
JP5680644B2 (ja) 2015-03-04
WO2012056876A1 (ja) 2012-05-03
JP5683602B2 (ja) 2015-03-11
CN103201235A (zh) 2013-07-10
US20120231945A1 (en) 2012-09-13
WO2012056808A1 (ja) 2012-05-03
WO2012056918A1 (ja) 2012-05-03
KR20130121664A (ko) 2013-11-06
US8541328B2 (en) 2013-09-24
US20130235507A1 (en) 2013-09-12
JPWO2012056876A1 (ja) 2014-03-20
TW201246443A (en) 2012-11-16
TWI587439B (zh) 2017-06-11
US9184081B2 (en) 2015-11-10
TWI590374B (zh) 2017-07-01
KR101881171B1 (ko) 2018-07-23
CN102639463B (zh) 2014-11-12
CN103201235B (zh) 2015-02-18
JPWO2012056918A1 (ja) 2014-03-20
CN102639463A (zh) 2012-08-15
KR20130126622A (ko) 2013-11-20

Similar Documents

Publication Publication Date Title
KR101682749B1 (ko) 정전척
KR101661385B1 (ko) 가열 장치
US9177847B2 (en) Ceramic member and member for semiconductor manufacturing equipment
US7744780B2 (en) Yttrium oxide material, member for use in semiconductor manufacturing apparatus, and method for producing yttrium oxide material
KR20140077910A (ko) 세라믹스 부재, 반도체 제조 장치용 부재 및 세라믹스 부재의 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right