KR101629131B1 - 아크식 증발원 - Google Patents

아크식 증발원 Download PDF

Info

Publication number
KR101629131B1
KR101629131B1 KR1020147035083A KR20147035083A KR101629131B1 KR 101629131 B1 KR101629131 B1 KR 101629131B1 KR 1020147035083 A KR1020147035083 A KR 1020147035083A KR 20147035083 A KR20147035083 A KR 20147035083A KR 101629131 B1 KR101629131 B1 KR 101629131B1
Authority
KR
South Korea
Prior art keywords
magnet
magnetic field
target
magnetic
field induction
Prior art date
Application number
KR1020147035083A
Other languages
English (en)
Other versions
KR20150008494A (ko
Inventor
신이치 다니후지
겐지 야마모토
Original Assignee
가부시키가이샤 고베 세이코쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 고베 세이코쇼 filed Critical 가부시키가이샤 고베 세이코쇼
Publication of KR20150008494A publication Critical patent/KR20150008494A/ko
Application granted granted Critical
Publication of KR101629131B1 publication Critical patent/KR101629131B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • C23C14/358Inductive energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32055Arc discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32669Particular magnets or magnet arrangements for controlling the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering

Abstract

타깃과, 링 형상의 자장 유도 자석과, 배면 자장 발생원을 구비한 아크식 증발원. 상기 자장 유도 자석은, 상기 타깃의 증발면과 직교하는 방향을 따름과 함께 전방 또는 후방을 향하는 자화 방향으로 되는 극성을 갖는다. 상기 배면 자장 발생원은, 상기 타깃의 배면측이며 상기 자장 유도 자석의 후방에 배치됨과 함께, 상기 자장 유도 자석의 자화 방향을 따라 자력선을 형성한다. 상기 타깃은, 상기 증발면이 상기 자장 유도 자석보다도 전방에 위치하도록 배치된다.

Description

아크식 증발원 {ARC-TYPE EVAPORATION SOURCE}
본 발명은 기계 부품 등의 내마모성 등의 향상을 위해 사용되는, 질화물 및 산화물 등의 세라믹막이나, 비정질 탄소막 등의 박막을 형성하는 성막 장치의 아크식 증발원에 관한 것이다.
종래부터 기계 부품, 절삭 공구, 미끄럼 이동 부품 등의 내마모성, 미끄럼 이동 특성 및 보호 기능을 향상시키는 목적으로, 해당 부품 및 공구 등의 기재의 표면에 박막을 코팅하는 물리 증착법이 널리 사용되고 있다. 이 물리 증착법으로서는, 아크 이온 플레이팅법이나, 스퍼터법이 널리 알려져 있고, 아크 이온 플레이팅법은, 캐소드 방전형 아크식 증발원을 사용하는 기술이다.
캐소드 방전형 아크식 증발원(이하, 아크식 증발원이라고 함)은 캐소드인 타깃의 표면에 아크 방전을 발생시켜, 타깃을 구성하는 물질을 순식간에 용해 및 증발시켜 이온화한다. 아크식 증발원은, 아크 방전에 의해 이온화된 그 물질을 피처리물인 기재측으로 끌어들여, 기재 표면에 박막을 형성한다. 이 아크식 증발원에서는, 타깃의 증발 속도가 빠르고, 또한 증발한 물질의 이온화율이 높으므로, 성막 시에는 기재에 바이어스를 인가함으로써 치밀한 피막을 형성할 수 있다. 이로 인해, 아크식 증발원은, 절삭 공구 등의 표면에 내마모성 피막을 형성하는 목적으로 산업적으로 사용되고 있다.
아크 방전에 의해 증발하는 타깃 원자는, 아크 플라즈마 중에 있어서 고도로 전리 및 이온화한다. 그 경우, 타깃으로부터 기재를 향하는 이온의 수송은, 타깃과 기재 사이의 자계에 영향을 받고, 그 궤적은, 타깃으로부터 기재를 향하는 자력선을 따른 것으로 된다.
그러나, 캐소드(타깃)와 애노드의 사이에서 발생하는 아크 방전에 있어서, 캐소드측의 전자 방출점(아크 스폿)을 중심으로 하여 타깃이 증발할 때에 아크 스폿 근방으로부터 용융된 증발 전의 용융 타깃(매크로 파티클)이 방출되는 경우가 있다. 이 용융 타깃의 피처리체에의 부착은, 박막의 면 조도를 저하시키는 원인으로 된다.
이에 관하여, 아크 스폿이 고속으로 이동하면, 매크로 파티클의 양은 억제되는 경향이 있지만, 그 아크 스폿의 이동 속도는, 타깃 표면에 인가된 자계에 영향을 받는다.
이와 같은 문제를 해소하기 위해, 타깃 표면에 자계를 인가하여, 아크 스폿의 이동을 제어하는 다음과 같은 기술이 제안되어 있다.
특허문헌 1에는, 타깃의 외주를 둘러싸고, 자화 방향이 타깃 표면과 직교하는 방향을 따른 외주 자석과, 극성이 외주 자석과 동일 방향이고 또한 자화 방향이 타깃 표면과 직교하는 방향을 따른 배면 자석을 구비한 아크식 증발원이 개시되어 있다. 이 아크식 증발원에 의하면, 자력선의 직진성을 향상시킬 수 있다고 되어 있다.
특허문헌 2에는, 타깃 주위에 배치된 링 형상 자석과 배면의 전자 코일에 의해 타깃 표면에 평행한 자장을 형성하는 아크 증발 장치가 개시되어 있다. 이 아크 증발 장치에 의하면, 타깃의 중심으로부터 그 외측 테두리부까지의 모든 트랙에 따른 아크의 유도가 달성된다고 되어 있다.
일본 특허 공개 제2010-275625호 공보 일본 특허 공표 제2004-523658호 공보
그러나, 특허문헌 1에 개시된 아크식 증발원은, 타깃의 배면에 간격을 두고 배치된 2매의 원판 자석에 의해, 타깃 표면으로부터 기재를 향하는 방향으로 자력선을 발생시키고 있다. 이들 2매의 원판 자석은, 중앙부에 있어서는 직진성이 높은 자력선을 발생시킬 수 있지만, 중앙부보다도 외주측으로부터 나온 자력선은, 원판 자석의 축심에 대해 외측 방향으로 발산한다. 이것은, 일반적인 자석의 특성으로서 피하기 어려운 현상이며, 이온화된 타깃 물질을 효율적으로 기재 방향으로 유도하기 위해서는, 특허문헌 1의 아크식 증발원에 있어서, 가일층의 개량의 여지가 있다.
또한, 특허문헌 2에 개시된 아크 증발 장치에 의하면, 전자 코일의 중앙부로부터는 직진성이 높은 자력선이 발생하지만, 전자 코일의 중앙부보다도 외주측으로부터 나온 자력선은, 전자 코일의 축심에 대해 외측 방향으로 발산한다.
즉, 특허문헌 1 및 2에 개시된 기술에서는, 타깃의 배면에 설치하는 자석이나 전자석의 특성상, 타깃의 중앙부에만, 타깃의 전방면으로부터 기재를 향하여 직진성이 높은 자력선을 발생시킬 수 있다. 그로 인해, 특허문헌 1 및 2에 개시된 기술에 따라서는, 타깃 전체면에 직진성이 높은 자력선을 형성할 수 없으므로, 성막 속도를 충분히 향상시키는 것이 곤란하다.
또한, 특허문헌 1 및 2와 같이, 외주 자석이나 링 형상 자석을, 기재 방향측의 단부면이 타깃 표면보다도 기재에 근접하도록 배치하고, 타깃의 후방(기재의 반대 방향측)에 외주 자석이나 링 형상 자석과 자화 방향이 동일한 배면 자석이나 전자 코일을 배치한 경우, 타깃 표면 상의 일부에는 타깃 표면과 평행해지는 자력선(평행 자장)이 형성된다. 이와 같은 평행 자장이 타깃 표면 상에 형성되어 있으면, 이 평행 자장에 아크 방전이 트랩되어 아크 방전은 안정되지만 방전 위치가 타깃 표면 상에서 치우치고, 그 결과 타깃의 편소모가 일어나는 경우가 있다.
전술한 문제를 감안하여, 본 발명은 타깃 표면으로부터 기재 방향으로 신장되는 직진성이 높은 자력선을, 타깃 표면의 넓은 영역에 있어서 발생시킬 수 있음과 함께, 타깃의 편소모를 억제할 수 있는 아크식 증발원을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해, 본 발명은 이하의 기술적 수단을 채용하였다.
본 발명에 관한 아크식 증발원은, 타깃과, 링 형상의 자장 유도 자석과, 배면 자장 발생원을 구비한 아크식 증발원이며, 상기 자장 유도 자석은, 상기 타깃의 증발면과 직교하는 방향을 따름과 함께 전방 또는 후방을 향하는 자화 방향으로 되는 극성을 갖고, 상기 배면 자장 발생원은, 상기 타깃의 배면측이며 상기 자장 유도 자석의 후방에 배치됨과 함께, 상기 자장 유도 자석의 자화 방향을 따라 자력선을 형성하고, 상기 타깃은, 상기 증발면이 상기 자장 유도 자석보다도 전방에 위치하도록 배치되어 있는 것을 특징으로 한다.
이때, 상기 자장 유도 자석의 자화 방향이 전방을 향하는 경우, 상기 배면 자장 발생원의 자화 방향은 전방을 향하고, 상기 자장 유도 자석의 자화 방향이 후방을 향하는 경우, 상기 배면 자장 발생원의 자화 방향은 후방을 향하는 것이 바람직하다.
여기서, 상기 자장 유도 자석의 자화 방향에 있어서의 자장 유도 자석 및 타깃의 투영에 있어서, 상기 타깃이, 상기 자장 유도 자석의 직경 방향에 있어서의 내주면과 외주면의 중간 위치보다도 직경 내측에 투영되도록 배치되어 있으면 된다.
또한, 상기 배면 자장 발생원은, 상기 링 형상의 자장 유도 자석의 내주면이 형성하는 구멍부를 상기 자장 유도 자석의 자화 방향을 따라 통과하는 자력선을 형성하고, 상기 타깃은, 상기 증발면을 통과하는 자력선이 상기 링 형상의 자장 유도 자석의 축심에 대해 평행하게 되거나 또는 상기 축심측으로 기우는 위치에 배치되어 있으면 된다.
여기서, 상기 배면 자장 발생원은, 내주면 및 외주면에 극성을 갖는 링 형상의 배면 자석을 포함하고, 상기 자장 유도 자석의 자화 방향이 전방을 향하는 경우, 상기 내주면 및 외주면의 극성에 의한 배면 자석의 자화 방향은 링 직경 내방향을 향하고, 상기 자장 유도 자석의 자화 방향이 후방을 향하는 경우, 상기 내주면 및 외주면의 극성에 의한 배면 자석의 자화 방향은 링 직경 외방향을 향하면 된다.
또한, 상기 배면 자장 발생원은, 복수의 상기 링 형상의 배면 자석을 포함하고, 상기 복수의 링 형상의 배면 자석은, 동일한 자화 방향으로 되는 극성을 갖고, 또한, 동축 형상으로 배치되어 있으면 된다.
또한, 상기 복수의 링 형상의 배면 자석의 직경 내에는, 각 배면 자석을 관통하는 자성체가 설치되어 있고, 상기 자성체의 외주가 각 배면 자석의 내주면과 접하고 있으면 된다.
여기서, 상기 배면 자장 발생원은, 서로 간격을 두고 배치된 원판 형상의 제1 원판 형상 자석과 제2 원판 형상 자석을 포함하고, 상기 제1 원판 형상 자석 및 제2 원판 형상 자석의 각각은, 한쪽의 원판면으로부터 다른 쪽의 원판면을 향하는 자화 방향을 갖도록 원판면에 극성을 가짐과 함께, 서로의 자화 방향이 동일하게 되도록 배치되고, 상기 자장 유도 자석의 자화 방향이 전방을 향하는 경우, 상기 제1 원판 형상 자석 및 제2 원판 형상 자석에 의한 자화 방향은 전방을 향하고, 상기 자장 유도 자석의 자화 방향이 후방을 향하는 경우, 상기 제1 원판 형상 자석 및 제2 원판 형상 자석에 의한 자화 방향은 후방을 향하면 된다.
또한, 상기 제1 원판 형상 자석 및 제2 원판 형상 자석의 사이에는, 각 원판 형상 자석과 접하는 자성체가 설치되어 있으면 된다.
여기서, 상기 배면 자장 발생원은, 공심 형상의 코일 자석이며, 상기 코일 자석의 극성은, 상기 자장 유도 자석의 극성과 동일 방향을 향하면 된다.
또한, 상기 코일 자석의 공심 부분에는, 자성체가 배치되어 있으면 된다.
본 발명의 아크식 증발원에 의하면, 타깃 표면으로부터 기재 방향으로 신장되는 직진성이 높은 자력선을, 타깃 표면의 넓은 영역에 있어서 발생시킬 수 있음과 함께, 타깃의 편소모를 억제할 수 있다.
도 1의 (a)는 본 발명의 제1 실시 형태에 의한 아크식 증발원을 구비한 성막 장치의 개략 구성을 도시하는 측면도이며, 도 1의 (b)는 성막 장치의 개략 구성을 도시하는 평면도이다.
도 2의 (a)는 본 발명의 제1 실시 형태에 의한 아크식 증발원의 기본 구성을 도시하는 도면이며, 도 2의 (b)는 자장 유도 자석과 타깃을 타깃의 증발면과 직교하는 방향을 따라 투영하였을 때의 투영도이다.
도 3은 본 발명의 제1 실시 형태에 의한 아크식 증발원의 구체적 구성을 도시하는 개략도이다.
도 4는 제1 실시 형태에 의한 아크식 증발원의 자력선 분포를 나타내는 도면이다.
도 5는 본 발명의 제2 실시 형태에 의한 아크식 증발원의 구체적 구성을 도시하는 개략도이다.
도 6은 제2 실시 형태에 의한 아크식 증발원의 자력선 분포를 나타내는 도면이다.
도 7은 본 발명의 제3 실시 형태에 의한 아크식 증발원의 구체적 구성을 도시하는 개략도이다.
도 8은 제3 실시 형태에 의한 아크식 증발원의 자력선 분포를 나타내는 도면이다.
이하, 본 발명의 실시 형태를, 도면에 기초하여 설명한다.
[제1 실시 형태]
도 1∼도 4를 참조하여, 본 발명의 제1 실시 형태에 대해 설명한다. 도 1의 (a)∼(b)는 본 발명의 제1 실시 형태에 의한 아크식 증발원(1)[이하, 증발원(1)이라고 함]을 구비한 성막 장치(6)를 도시하고 있고, 도 1의 (a)는 성막 장치(6)의 개략 구성을 도시하는 측면도이며, 도 1의 (b)는 성막 장치(6)의 개략 구성을 도시하는 평면도이다.
성막 장치(6)는 챔버(11)를 구비하고, 챔버(11) 내에는 피처리물인 기재(7)를 지지하는 회전대(12)와, 기재(7)를 향해 배치된 증발원(1)이 구비되어 있다. 챔버(11)에는, 챔버(11) 내로 반응 가스를 도입하는 가스 도입구(13)와, 챔버(11) 내로부터 반응 가스를 배출하는 가스 배기구(14)가 형성되어 있다.
또한, 성막 장치(6)에는, 나중에 상세하게 설명하는 증발원(1)의 타깃(2)에 부의 바이어스를 가하는 아크 전원(15)과, 기재(7)에 부의 바이어스를 가하는 바이어스 전원(16)이 설치되어 있다. 양쪽 전원(15, 16)의 정극측은 그라운드(18)에 접지되어 있다.
도 1의 (a) 및 도 1의 (b)에 도시한 바와 같이, 증발원(1)은 증발면이 기재(7)를 향하도록 배치된 소정의 두께를 갖는 원판 형상(이하, 「원판 형상」이라 함은 소정의 높이를 갖는 원기둥 형상도 포함함)의 타깃(2)과, 타깃(2)의 근방에 배치된 자계 형성 수단(8)[자장 유도 자석(3)과 배면 자장 발생원(4)으로 구성됨]을 구비하고 있다. 또한, 본 실시 형태에서는, 챔버(11)가 애노드로서 작용한다. 이와 같은 구성에 의해, 증발원(1)은 캐소드 방전형의 아크식 증발원으로서 기능한다.
도 1의 (a)∼(b) 및 도 2의 (a)를 참조하여, 성막 장치(6)에 구비된 증발원(1)의 구성에 대해, 이하에 설명한다. 도 2의 (a)는 본 실시 형태에 의한 증발원(1)의 기본 구성을 도시하는 도면이다.
증발원(1)은 상술한 바와 같이, 소정의 두께를 갖는 원판 형상의 타깃(2)과, 타깃(2)의 근방에 배치된 자계 형성 수단(8)으로 구성되어 있다.
또한, 이하의 설명에 있어서, 타깃(2)의 증발면이며 기재(7)측(기재 방향)을 향하는 면을 「전방면(타깃 전방면)」이라고 하고, 그 반대측(기재와 반대 방향)을 향하는 면을 「배면(타깃 배면)」이라고 한다[도 2의 (a)를 참조].
타깃(2)은 기재(7) 상에 형성하고자 하는 박막에 따라 선택된 재료로 구성되어 있다. 그 재료로서는, 예를 들어 크롬(Cr), 티타늄(Ti) 및 티타늄알루미늄(TiAl) 등의 금속 재료나 탄소(C) 등의 이온화 가능한 재료를 들 수 있다.
자계 형성 수단(8)은 타깃(2)의 증발면보다도 배면측에 배치된 링 형상(환 형상 내지는 도넛 형상)의 자장 유도 자석(3)과, 타깃(2)의 배면측에서 자장 유도 자석(3)과 동축 형상으로 배치된 링 형상(환 형상 내지는 도넛 형상) 또는 원기둥 형상의 배면 자장 발생원(4)을 갖고 있다. 이들 자장 유도 자석(3) 및 배면 자장 발생원(4)은 보자력이 높은 네오디뮴 자석에 의해 형성된 영구 자석 등에 의해 구성되어 있다.
즉, 증발원(1)은 타깃(2), 자장 유도 자석(3) 및 배면 자장 발생원(4)을 서로의 축심을 거의 일치시키도록 배치함으로써 구성된다.
자장 유도 자석(3)은 상술한 바와 같이 링체이며, 타깃(2)의 직경(치수)보다도 약간 큰(1∼2배 정도의) 내경(내측 치수)과 축심 방향을 따른 소정의 높이(두께)를 갖고 있다. 자장 유도 자석(3)의 높이(두께)는 타깃(2)의 축심 방향을 따른 높이(두께)와 거의 동일하거나 약간 작다.
이와 같은 링 형상의 자장 유도 자석(3)의 외관은, 서로 평행하고 타깃(2)의 전방면 또는 배면을 향하는 2개의 원환 형상의 면(원환면)과, 당해 2개의 원환면을 축심 방향으로 연결하는 2개의 주면(周面)으로 이루어져 있다. 이 2개의 주면은, 원환면의 내주측(직경 내측)에 형성되는 내주면(31)과, 원환면의 외주측(직경 외측)에 형성되는 외주면(32)이다. 이들 내주면(31)과 외주면(32)의 폭은, 즉 자장 유도 자석(3)의 두께(직경 방향 두께)이다.
여기서, 도 2의 (b)를 참조하면서, 자장 유도 자석(3)에 대한 타깃(2)의 배치에 대해 더 설명한다. 도 2의 (b)는 타깃(2) 및 자장 유도 자석(3)을 타깃(2)의 증발면과 직교하는 방향을 따라 투영하였을 때의 투영도이다. 도 2의 (b)는 타깃(2) 및 자장 유도 자석(3)을 기재(7)측에서 볼 때의 투영도라고 할 수도 있다.
도 2의 (b)의 투영도에 있어서, 타깃(2) 및 자장 유도 자석(3)의 형상은, 자장 유도 자석(3)의 직경 내측의 내주면(31)의 투영 형상과 타깃(2)의 투영 형상이, 서로 상사로 되도록 형성되어 있다. 또한, 타깃(2)은 도 2의 (b)의 투영도에 있어서, 자장 유도 자석(3)의 직경 방향에 있어서의 내주면(31)과 외주면(32)의 중간 위치(33)보다도 직경 내측에 투영되도록 배치되어 있다.
도 2의 (b)에 도시되는 투영도는, 타깃(2)을 전방면에서 볼 때의 타깃(2) 및 자장 유도 자석(3)의 배치를 도시하고 있다고 할 수 있다. 즉, 전방면에서 볼 때, 자장 유도 자석(3)의 직경 방향에 있어서의 내주면(31)과 외주면(32)의 중간 위치(33)보다도 직경 내측에, 타깃(2)이 위치하는 것으로 되어 있다.
도 2의 (a)에 도시한 바와 같이, 자장 유도 자석(3)은 기재(7)측을 향하는 전방의 원환면(전방 단부면)이 N극으로 되고, 그 반대측을 향하는 후방의 원환면(후방 단부면)이 S극으로 되도록 구성되어 있다. 도면 중, 자장 유도 자석(3)의 후방의 원환면의 자극(S극)으로부터 전방의 원환면의 자극(N극)을 향하는 화살표가 나타내어져 있는데, 이후, 이 S극으로부터 N극을 향하는 화살표의 방향을 자화 방향이라고 부른다. 본 실시 형태의 자장 유도 자석(3)은 이 자화 방향이 타깃(2)의 전방면(증발면)과 직교하는 방향을 따름과 함께 전방을 향하도록 배치되어 있다.
여기서, 다시 도 2의 (b)를 참조한다. 도 2의 (b)는 자장 유도 자석(3)의 자화 방향에 있어서의 자장 유도 자석(3) 및 타깃(2)의 투영도라고 할 수도 있으므로, 타깃(2)은 자장 유도 자석(3)의 자화 방향에 있어서의 자장 유도 자석(3) 및 타깃(2)의 투영에 있어서, 자장 유도 자석(3)의 직경 방향에 있어서의 내주면(31)과 외주면(33)의 중간 위치(33)보다도 직경 내측에 투영되도록 배치되어 있다고 할 수도 있다.
상술한 바와 같이, 자장 유도 자석(3)은 링 형상 또는 환 형상의 일체 형상을 이루는 것이면 된다. 그러나, 원기둥 형상 또는 직육면체 형상의 복수의 자석을, 그들 자석의 자화 방향이 타깃(2)의 전방면과 직교하는 방향을 따름과 함께 전방을 향하도록 링 형상 또는 환 형상으로 배열하여 자장 유도 자석(3)을 구성해도 된다.
자장 유도 자석(3)은 타깃(2)의 증발면보다도 후방, 즉 배면측에 위치하도록 배치되어 있고, 이와 같은 배치에 있어서 타깃(2)과 동심 축 형상으로 되어 있다. 이때, 자장 유도 자석(3)의 전방의 원환면은 타깃(2)의 증발면보다도 후방에 위치하고 있으므로, 타깃(2)은 자장 유도 자석(3)의 전방의 원환면보다도 전방에 배치되어 있다고 할 수 있다.
예를 들어, 도 2의 (a)∼(b)에 있어서 타깃(2)은 그 증발면이 자장 유도 자석(3)의 전방 단부면보다도 전방에 위치하도록 배치되어 있다. 이와 같이, 본 실시 형태에서는, 타깃(2)은 타깃(2)의 직경 방향에서 본 투영이 자장 유도 자석(3)의 직경 방향에서 본 투영보다도 전방의 위치로 되도록 배치되어, 증발원(1)에 구비되어 있다.
이어서, 도 2의 (a) 및 도 3을 참조하면서, 배면 자장 발생원(4)의 구체적인 구성에 대해 설명한다. 도 3은 본 실시 형태에 의한 증발원(1)의 구체예인 증발원(1a)의 구성을 도시하는 도면이다.
도 2의 (a)에 화살표로 나타내는 바와 같이, 배면 자장 발생원(4)은 자장 유도 자석(3)의 자화 방향과 동일한 방향의 자화 방향으로 되는 자극을 발생시키는 것이다. 또한, 도 3에 도시한 바와 같이, 증발원(1)의 구체예인 증발원(1a)은 상술한 타깃(2)과, 자계 형성 수단(8a)을 구비하고, 자계 형성 수단(8a)은 자장 유도 자석(3) 및 배면 자장 발생원(4)의 구체적 구성인 배면 자장 발생원(4a)을 포함하고 있다.
배면 자장 발생원(4a)은 자장 유도 자석(3)과 거의 동일한 직경의 링 형상 자석이며, 자장 유도 자석(3)과 거의 동일한 내경(내측 치수) 및 외경(외측 치수)을 갖는 제1 배면 자석(5a) 및 제2 배면 자석(5b)을 동심축 상에 배치하고 있다. 따라서, 제1 배면 자석(5a) 및 제2 배면 자석(5b)은 타깃(2)의 직경보다도 약간 큰(1∼2배 정도의) 내경과 축심 방향을 따른 소정의 높이(두께)를 갖고 있다.
이와 같은 링 형상의 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 외관도, 자장 유도 자석(3)과 마찬가지로, 서로 평행한 2개의 원환 형상의 면(전방 단부면 및 후방 단부면)과, 해당 2개의 원환면을 축심 방향을 따라 연결하는 2개의 주면(내주면 및 외주면)으로 이루어져 있다. 이들 내주면과 외주면의 폭은, 즉 자장 유도 자석(3)의 축심 방향을 따른 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 높이(두께)이다.
도 3에 도시한 바와 같이, 제1 배면 자석(5a) 및 제2 배면 자석(5b)은 직경 내측의 내주면이 N극으로 되고, 그 반대의 직경 외측의 외주면이 S극으로 되는 자화 방향을 갖도록 구성되어 있다. 도면 중, 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 외주면(S극)으로부터 내주면(N극)을 향하여 자화 방향을 나타내는 화살표가 나타내어져 있다. 본 실시 형태의 제1 배면 자석(5a) 및 제2 배면 자석(5b)은 각각의 직경 내방향을 향하는 자화 방향이 타깃(2)의 전방면과 평행해지도록 배치되어 있다.
이와 같이, 자화 방향이 동일한 제1 배면 자석(5a) 및 제2 배면 자석(5b)을 병렬로 배치하면, 제1 배면 자석(5a)의 내측 측면으로부터 발생한 자력선과 제2 배면 자석(5b)의 내주면으로부터 발생한 자력선은 서로 반발한다. 이 반발에 의해, 링 형상인 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 축심 방향을 향하는 자력선을 다수 발생시킬 수 있다. 또한, 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 축심 방향을 향하여 발생한 자력선은, 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 내주면으로부터 발생한 자력선끼리 서로 반발하여, 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 축심 방향을 따른 직진성이 높은 자력선을 발생시킬 수 있다.
이와 같은 구성의 자장 유도 자석(3)의 자화 방향과 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 자화 방향은, 자장 유도 자석(3)의 전방 단부면과 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 각 내주면이 동일한 극성을 가짐과 아울러, 서로 수직한 방향으로 되어 있다.
상술한 바와 같이, 자장 유도 자석(3)의 자화 방향과 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 자화 방향을 서로 수직한 방향으로 하면, 자장 유도 자석(3)에 의해 형성되는 자계와 제1 배면 자석(5a) 및 제2 배면 자석(5b)에 의해 형성되는 자계를 조합할 수 있고, 배면 자장 발생원(4a)은 도 3에 도시한 바와 같은 자장 유도 자석(3)의 전방을 향하는 자화 방향과 동일하게, 전방을 향하는 자화 방향을 갖는 것으로 된다.
상술한 자장 유도 자석(3), 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 구성, 나아가 타깃(2)을 자장 유도 자석(3)의 전방에 배치하는 구성에 의해, 링 형상의 자장 유도 자석(3)의 내주면이 형성하는 구멍부를 자장 유도 자석(3)의 자화 방향을 따라 통과하는 자력선을 형성할 수 있다. 이에 의해, 타깃(2)의 증발면을 통과하는 자력선은, 링 형상의 자장 유도 자석(3)의 축심에 대해 평행하게 되거나, 또는 해당 축심측으로 기운다. 즉, 타깃(2)의 증발면을 통과하는 자력선의 방향을 증발면에 대해 거의 수직으로 할 수 있고, 또한 타깃(2)의 증발면으로부터 기재(7)를 향하여 신장되는 직진성이 높은 자력선을 증발면이 넓은 영역에 있어서 발생시킬 수 있다고 하는 효과가 얻어진다.
배면 자장 발생원(4a)은 상술한 바와 같은 구성의 제1 배면 자석(5a) 및 제2 배면 자석(5b) 외에, 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 직경 내에는 단일의 자성체(9a)를 구비하고 있다.
자성체(9a)는 비(非)링 형상의 중실의 자성체이며, 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 자심으로 되는 것이다. 자성체(9a)는 제1 배면 자석(5a) 및 제2 배면 자석(5b)을 관통하도록 설치되어 있고, 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 내경과 동일한 직경을 갖는 원판 형상 또는 원기둥 형상을 갖고 있다. 여기서, 「비링 형상」이라 함은, 도넛 형상으로 직경 방향 내부에 구멍이 형성되어 있는 환 형상이 아니라, 원판 형상이나 원기둥 형상 등의 중실의 형상을 가리킨다.
바꿔 말하면, 제1 배면 자석(5a) 및 제2 배면 자석(5b)은 하나의 자성체(9a)의 외주를 밀착(밀접)하여 둘러싸도록 배치되어 있다고 할 수도 있다. 이와 같은 배치에 있어서, 제1 배면 자석(5a)의 전방 단부면은, 자성체(9a)의 전방 단부면과 대략 동일한 높이이며, 제2 배면 자석(5b)의 후방 단부면은, 자성체(9a)의 후방 단부면과 대략 동일한 높이이다.
제1 배면 자석(5a) 및 제2 배면 자석(5b)의 내주면과 자성체(9a)를 밀착시킴으로써, 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 단부면으로부터 발생한 자력선을 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 축심 방향으로 유도하는 것이 가능하게 되고, 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 축심 근방에서의 자력의 반발 작용을 크게 하는 것이 가능하게 된다. 그 결과, 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 축심 방향을 따른 직진성이 높은 자력선을 발생시킬 수 있어, 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 전방에 배치된 타깃(2)의 증발면의 넓은 영역에 있어서, 직진성이 높은 자력선을 다수 발생시킬 수 있다.
증발원(1a)의 구성을 정리하면, 타깃(2), 자장 유도 자석(3), 제1 배면 자석(5a), 제2 배면 자석(5b) 및 자성체(9a)는 각각의 각 축심이 서로 일치하도록 동축 형상으로 배치되어 있다고 할 수 있다.
도 3에 도시한 바와 같이, 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 내주면과 자성체(9a)의 측면을 밀착시켜 배면 자장 발생원(4a)을 구성함으로써, 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 내주면으로부터 나온 자력선을, 자성체(9a)를 통하여 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 축심 방향으로 직선적으로 유도하는 것이 가능하게 된다. 따라서, 자성체(9a)에 있어서, 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 축심에 가까운 위치에서의 자력선의 반발 작용을 크게 하는 것이 가능하게 된다. 그 결과, 배면 자장 발생원(4a)은 자성체(9a)의 전방 단부면의 축심에 가까운 위치로부터, 타깃(2)을 향하여 직진성이 높은 자력선을 다수 발생시킬 수 있다.
또한, 배면 자장 발생원(4a)이 자장 유도 자석(3)의 자화 방향과 동일한 방향의 자화 방향으로 되는 자극을 발생시킴으로써 배면 자장 발생원(4a)으로부터의 자력선 중 기재(7)로부터 벗어나기 시작하는 자력선은, 자장 유도 자석(3)의 자력선과 서로 반발하여 다시 기재(7) 방향으로 신장된다. 이에 의해, 타깃(2)의 증발면의 넓은 영역에 걸쳐 직진성이 높은 자력선을 다수 발생시키는 것이 가능하게 된다.
또한, 상술한 바와 같이, 자장 유도 자석(3)의 자화 방향과 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 각 자화 방향은, 자장 유도 자석(3)의 전방 단부면과 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 각 내주면이, 동일한 극성을 가짐과 아울러 서로 수직한 방향으로 되어 있으면 된다. 따라서, 자장 유도 자석(3)의 극성과 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 극성을, 도 3에 도시한 상술한 구성과는 반대로 하여, 자장 유도 자석(3)의 자화 방향과 제1 배면 자석(5a) 및 제2 배면 자석(5b)의 각 자화 방향을 각각 반전시켜도 된다.
이어서, 증발원(1a)을 사용한 성막 장치(6)에 있어서의 성막의 방법을 설명한다.
먼저, 챔버(11)를 진공화하여 진공으로 한 후, 아르곤 가스(Ar) 등의 불활성 가스를 가스 도입구(13)로부터 도입하고, 타깃(2) 및 기재(7) 상의 산화물 등의 불순물을 스퍼터에 의해 제거한다. 불순물의 제거 후, 챔버(11) 내를 다시 진공으로 하여, 진공으로 된 챔버(11) 내에 가스 도입구(13)로부터 반응 가스를 도입한다.
이 상태에서 챔버(11)에 설치된 타깃(2) 상에서 아크 방전을 발생시키면, 타깃(2)을 구성하는 물질이 플라즈마화하여 반응 가스와 반응한다. 이에 의해, 회전대(12)에 놓인 기재(7) 상에 질화막, 산화막, 탄화막, 탄질화막, 또는 비정질 탄소막 등을 성막할 수 있다.
또한, 반응 가스로서는, 질소 가스(N2)나 산소 가스(O2) 또는 메탄(CH4) 등의 탄화수소 가스를 용도에 맞추어 선택하면 되고, 챔버(11) 내의 반응 가스의 압력은 1∼10㎩ 정도로 하면 된다. 또한, 성막 시, 타깃(2)은 100∼200A의 아크 전류를 흘림으로써 방전시킴과 함께, 10∼30V의 부전압을 아크 전원(15)에 의해 인가하면 된다. 또한, 기재(7)에는 10∼200V의 부전압을 바이어스 전원(16)에 의해 인가하면 된다.
또한, 타깃(2)의 전방면에 있어서의 자속 밀도가 50가우스 이상으로 되도록, 자장 유도 자석(3) 및 배면 자장 발생원(4a)을 구성 및 배치하면 바람직하다. 이와 같이 타깃(2)의 전방면에 있어서의 자속 밀도의 하한을 설정함으로써, 성막을 확실하게 행할 수 있다. 또한, 타깃(2)의 전방면에 있어서의 자속 밀도는 75가우스 이상이면 보다 바람직하고, 100가우스 이상이면 더욱 바람직하다.
이들 자속 밀도의 하한 외에, 타깃(2)의 전방면에 있어서의 자속 밀도를 250가우스 이하로 하면 바람직하다. 타깃(2)의 전방면에 있어서의 자속 밀도의 상한을 설정함으로써, 성막을 보다 확실하게 행할 수 있다. 또한, 타깃(2)의 전방면에 있어서의 자속 밀도는 225가우스 이하이면 보다 바람직하고, 200가우스 이하이면 더욱 바람직하다.
상기한 바와 같은 자속 밀도를 채용함으로써, 타깃(2)의 표면 상에 아크 스폿을 가둘 수 있음과 함께, 아크 방전에 의한 성막을 안정적으로 행할 수 있다.
(실시예 1)
도 4를 참조하면서, 제1 실시 형태에 의한 증발원(1a)에서 발생하는 자력선의 분포에 대해 설명한다. 또한, 도 4에서 나타내어지는 자력선 분포도는, 배면 자장 발생원(4a)의 후방으로부터 기재(7)의 표면까지의 자력선 분포를 나타내고 있다. 도 4의 자력선 분포도에 있어서, 우측 단부는 기재(7)의 표면의 위치를 나타내고 있다.
이하에, 각종 실험 조건을 나타낸다. 예를 들어, 타깃(2)의 치수는, (100㎜φ×16㎜ 두께)이다. 자장 유도 자석(3)의 치수는, (내경 150㎜, 외경 170㎜, 높이 10㎜)이며, 자장 유도 자석(3)의 전방 단부면으로부터 타깃(2)의 후방면까지의 거리는 25㎜로 되어 있다.
제1 배면 자석(5a)의 치수는, (내경 150㎜, 외경 170㎜, 높이 20㎜)이며, 제1 배면 자석(5a)의 전방 단부면으로부터 타깃(2)의 후방면까지의 거리는 100㎜로 되어 있다. 제2 배면 자석(5b)의 치수는, (내경 150㎜, 외경 170㎜, 높이 20㎜)이며, 제2 배면 자석(5b)의 전방 단부면으로부터 타깃(2)의 후방면까지의 거리는 130㎜로 되어 있다. 제1 배면 자석(5a)과 제2 배면 자석(5b)의 간격은 10㎜이다.
자성체(9a)의 치수는, (150㎜φ×높이 50㎜)이다. 또한, 타깃(2)의 증발면에서의 자계 강도는, 50가우스 이상이다.
도 4를 참조하면, 제1 배면 자석(5a) 및 제2 배면 자석(5b)으로부터 직경 내방향을 향하여, 직진성이 높은 자력선이 다수 나와 있다. 이들 자력선은, 자성체(9a)의 축심 근처에서, 진행 방향을 해당 축심 방향을 따르도록 거의 수직으로 변화시켜, 타깃(2)을 향하여 신장된다. 이들 자력선은, 자장 유도 자석(3)으로부터 나온 자력선과 조합되어 타깃(2)의 증발면을 통과한다. 타깃(2)의 증발면으로부터는, 직진성이 높은 자력선이 타깃(2)의 증발면의 거의 전체면에 걸치는 넓은 영역에 있어서 존재하고, 기재 방향으로 신장되어 있다. 바꿔 말하면, 타깃(2)의 증발면의 거의 전체면에 걸치는 넓은 영역에 있어서, 수직의 자력선(수직 성분)이 존재하고 있다.
타깃(2)의 증발면을 통과하는 자력선의 각도의 효과에 대해 설명한다. 전술한 바와 같이 아크 방전 중, 타깃(2)의 증발면에는 음극점이라고 불리는 열전자 방출 점(아크 스폿)이 형성되고, 음극점은 타깃(2)의 증발면의 자장의 영향을 강하게 받는다. 타깃(2)의 증발면을 통과하는 자력선이 증발면의 법선에 대해 경사져 있는 경우, 타깃(2)의 증발면에는 수평 자력 성분이 발생한다. 여기서, 경사진 자력선의 자속 밀도를 B라고 하고, 자력선과 타깃 증발면의 각도를 각도 θ라고 하면, 수평 자력 성분은, Bcosθ로 된다. 음극점은, j×B와 반대 방향으로 움직인다고 하는 특성에 의해(j는 아크 전류), 음극점에는, F=-j×Bcosθ의 힘이 작용한다.
즉, 자력선의 각도가 외측 방향[타깃(2)의 외주 방향]인 경우, 음극점은 타깃(2)의 외주 방향을 향하는 힘을 받아 이동한다. 음극점이 외측 방향의 힘을 받아 외주 방향으로 이동하면, 타깃 표면으로부터 음극점이 튀어나와, 방전 이상이 발생할 가능성이 있다. 한편, 자력선의 각도가 내측 방향(타깃 중심 방향)인 경우, 음극점은 타깃(2)의 중심 방향을 향하는 힘을 받아 이동한다. 따라서, 전술한 바와 같은 아크 방전 이상을 억제하기 위해서는, 타깃(2)의 증발면의 최외주부에 있어서는 자력선의 각도를 외주 방향보다도 내측 방향으로 되는 자장을 형성하는 것이 바람직하다고 할 수 있다.
이와 같이, 본 실시 형태에서 설명한 증발원(1a)은 자장 유도 자석(3)과 배면 자장 발생원(4a)에 의해 기재 방향을 향하여 신장되는 직진성이 높은 자력선을 형성하고, 그 형성된 자력선 중에서, 타깃(2)의 증발면의 거의 전체면에 걸치는 넓은 영역을 수직의 자력선(수직 성분)이 통과하는 위치에 타깃(2)을 배치한 것이라고 할 수 있다.
본 실시 형태에 의한 증발원(1a)에 의하면, 타깃(2)의 증발면의 거의 전체면에 걸치는 넓은 영역에 있어서 수직의 자력선(수직 성분)이 존재함으로써, 타깃(2)의 증발면 상에 아크 스폿을 가둘 수 있음과 함께, 타깃(2)의 증발면의 편소모를 억제할 수 있어, 아크 방전에 의한 성막을 안정적으로 행할 수 있다.
[제2 실시 형태]
도 5 및 도 6을 참조하여, 본 발명의 제2 실시 형태에 대해 설명한다.
도 5는 본 실시 형태에 의한 성막 장치(6)에 구비된 아크식 증발원(1)의 구체적 구성인 아크식 증발원(1b)[이하, 증발원(1b)이라고 함]의 개략 구성을 도시하는 도면이다. 본 실시 형태에 의한 성막 장치(6)에 있어서, 증발원(1b) 이외의 구성은 제1 실시 형태에서 설명한 구성과 마찬가지이므로, 이들 동일한 구성 요소에 대해서는 설명을 생략하고 동일한 참조 번호를 부여한다.
본 실시 형태에 있어서의 증발원(1b)은 제1 실시 형태에 있어서의 증발원(1a)과 마찬가지로, 소정의 두께를 갖는 원판 형상의 타깃(2)과, 타깃(2)의 근방에 배치된 자계 형성 수단(8b)으로 구성되어 있다. 자계 형성 수단(8b)은 제1 실시 형태와 동일한 자장 유도 자석(3)과, 배면 자장 발생원(4b)을 구비하고 있다.
배면 자장 발생원(4b)은 자심으로 되는 비링 형상의 중실의 자성체(9b)와, 자성체(9b)를 사이에 끼우는 원판 형상의 제1 원판 배면 자석(10a) 및 제2 원판 배면 자석(10b)으로 구성되어 있다. 제1 원판 배면 자석(10a) 및 제2 원판 배면 자석(10b)도, 자성체(9b)와 마찬가지로 비링 형상이다. 지금까지의 지식으로부터, 기재 방향으로 효율적으로 자력선을 연장시키기 위해서는 배면의 자석은 두께가 필요한 것을 알 수 있다. 본 실시 형태에서는, 그 두께를 확보하기 위해 2매의 자석판인 제1 원판 배면 자석(10a) 및 제2 원판 배면 자석(10b)을 병렬로 이격시켜 배치하고, 또한 그 사이를 자성체(9b)로 메움으로써 자력의 저하를 방지하고 있다.
도 5에 도시한 바와 같이, 제1 원판 배면 자석(10a) 및 제2 원판 배면 자석(10b)에서는, 각각의 원판 배면 자석의 한쪽의 원판면이 N극으로 되고, 다른 쪽의 원판면이 S극으로 되도록 자화되어 있다. 제1 원판 배면 자석(10a) 및 제2 원판 배면 자석(10b)은 제1 원판 배면 자석(10a)의 S극측의 원판면과 제2 원판 배면 자석(10b)의 N극측의 원판면 사이에서 자성체(9b)를 끼우고 있고, 서로의 자화 방향을 동일한 방향으로 하여 타깃(2)을 향하게 하고 있다.
자화 방향이 동일한 2매의 원판 배면 자석(10a, 10b)을 병렬로 간격을 두어 배치하고, 자성체(9b)를 2매의 원판 배면 자석(10a, 10b)에 밀착시켜 배치하였을 때에 얻어지는 효과는, 다음과 같다.
제1 원판 배면 자석(10a) 및 제2 원판 배면 자석(10b)을 병렬로 간격을 두어 배치함으로써, 각 원판 배면 자석으로부터 발생하는 자력선의 직진성이 증가한다. 또한, 제1 원판 배면 자석(10a) 및 제2 원판 배면 자석(10b)의 사이에 자성체(9b)를 배치함으로써, 자성체(9b)가 자기 가이드의 역할을 하므로, 원판 배면 자석으로부터 발생하는 자력선의 직진성을 더욱 증가시킬 수 있다.
이와 같이, 2매의 원판 배면 자석이 자성체(9b)를 사이에 끼우도록 구성된 배면 자장 발생원(4b)을 타깃(2)의 배면에 배치함으로써, 타깃(2)의 증발면의 넓은 영역에 걸쳐 직진성이 높은 자력선을 다수 발생시킬 수 있다.
상술한 바와 같이 구성된 배면 자장 발생원(4b)은 그 자화 방향이 타깃(2)의 축심을 따르는 것이며 타깃(2)의 증발면에 대해 수직으로 되도록, 또한 제1 원판 배면 자석(10a)의 N극측이 타깃(2)을 향하도록, 타깃(2)의 배면측에 배치된다. 이때, 배면 자장 발생원(4b)은 축심이 타깃(2)의 축심과 거의 일치하도록 배치된다.
도 5에 도시한 바와 같이, 증발원(1b)은 상술한 바와 같이 구성된 배면 자장 발생원(4b)의 전방, 즉 자장 유도 자석(3)의 전방에, 배면 자장 발생원(4b) 및 자장 유도 자석(3)과 동축 형상으로 타깃(2)을 배치함으로써 구성된다. 이때, 자장 유도 자석(3)의 자화 방향은 타깃(2)의 증발면과 수직으로 되는 방향, 즉 기재 방향을 향하도록 구성되어 있다. 자장 유도 자석(3)의 원환면인 전방 단부면측의 자극은 N극이며, 배면 자장 발생원(4b)의 타깃(2)측의 자극도 N극으로, 자장 유도 자석(3)의 전방 단부면측의 자극과 배면 자장 발생원(4b)의 타깃(2)측의 자극은 서로 동일한 극성이다.
이와 같이, 자장 유도 자석(3)과 배면 자장 발생원(4b)이 타깃(2)에 동일한 극성을 향하게 함으로써 자장 유도 자석(3)에 의해 형성되는 자계와 배면 자장 발생원(4b)에 의해 형성되는 자계를 조합할 수 있다. 따라서, 타깃(2)의 증발면을 통과하는 자력선의 방향을 증발면에 대해 거의 수직으로 할 수 있고, 또한 자력선을 기재(7)의 방향으로 직선적으로 유도하는 것이 가능하게 된다고 하는 효과가 얻어진다.
또한, 상술한 바와 같이, 자장 유도 자석(3)과 배면 자장 발생원(4b)은 동일한 자극을 타깃(2)을 향하게 하고 있으면 되기 때문에, 증발원(1b)은 자장 유도 자석(3)과 배면 자장 발생원(4b)이 서로 S극을 타깃(2)을 향하게 하도록 구성되어 있어도 된다.
(실시예 2)
도 6을 참조하면서, 제2 실시 형태에 의한 증발원(1b)에서 발생하는 자력선의 분포에 대해 설명한다. 또한, 도 6에서 나타내어지는 자력선 분포도는, 배면 자장 발생원(4b)의 후방으로부터 기재(7)의 표면까지의 자력선 분포를 나타내고 있다. 도 6의 자력선 분포도에 있어서, 우측 단부는 기재(7)의 표면 위치를 나타내고 있다.
이하에 설명하는 실시예 2에서의, 실험 조건을 나타낸다. 예를 들어, 타깃(2)의 치수는, (100㎜φ×16㎜ 두께)이다. 제1 원판 배면 자석(10a) 및 제2 원판 배면 자석(10b)의 치수는, 각각 (100㎜φ×4㎜ 두께)이다. 자성체(9b)의 치수는, (100㎜φ×30㎜ 두께)이다. 자장 유도 자석(3)의 치수는, (내경 150㎜φ, 외경 170㎜, 두께 10㎜)이다. 타깃(2)의 표면에서의 자속 밀도는, 50가우스 이상이다.
또한, 자장 유도 자석(3)의 전방 단부면으로부터 타깃(2)의 후방면까지의 거리는, 25㎜이다. 또한, 제1 원판 배면 자석(10a)의 전방 단부면으로부터 타깃(2)의 후방면까지의 거리는 100㎜이다.
도 6을 참조하면, 배면 자장 발생원(4b)의 제1 원판 배면 자석(10a) 및 제2 원판 배면 자석(10b)으로부터 타깃(2)을 향하여, 직진성이 높은 자력선이 다수 나와 있다. 이들 자력선은, 진행 방향을 자성체(9b)의 축심 방향을 따르도록 타깃(2)을 향하여 신장되어 있다. 이들 자력선은, 자장 유도 자석(3)으로부터 나온 자력선과 조합되어 타깃(2)의 증발면을 통과한다. 제1 실시 형태에 의한 증발원(1a)과 마찬가지로, 타깃(2)의 증발면으로부터는, 직진성이 높은 자력선이 타깃(2)의 증발면의 거의 전체면에 걸치는 넓은 영역에 있어서 존재하고, 기재 방향으로 신장되어 있다. 바꿔 말하면, 타깃(2)의 증발면의 거의 전체면에 걸치는 넓은 영역에 있어서, 수직의 자력선(수직 성분)이 존재하고 있다.
이와 같이, 본 실시 형태에서 설명한 증발원(1b)은 자장 유도 자석(3)과 배면 자장 발생원(4b)에 의해 기재 방향을 향하여 신장되는 직진성이 높은 자력선을 형성하고, 그 형성된 자력선 중에서, 타깃(2)의 증발면의 거의 전체면에 걸치는 넓은 영역을 수직의 자력선(수직 성분)이 통과하는 위치에 타깃(2)을 배치한 것이라고 할 수 있다.
본 실시 형태에 의한 증발원(1b)에 의하면, 타깃(2)의 증발면의 거의 전체면에 걸치는 넓은 영역에 있어서 수직의 자력선(수직 성분)이 존재한다. 이에 의해, 타깃(2)의 증발면 상에 아크 스폿을 가둘 수 있음과 함께, 타깃(2)의 증발면의 편소모를 억제할 수 있어, 아크 방전에 의한 성막을 안정적으로 행할 수 있다.
[제3 실시 형태]
도 7 및 도 8을 참조하여, 본 발명의 제3 실시 형태에 대해 설명한다.
도 7은 본 실시 형태에 의한 성막 장치(6)에 구비된 아크식 증발원(1)의 구체적 구성인 아크식 증발원(1c)[이하, 증발원(1c)이라고 함]의 개략 구성을 도시하는 도면이다. 본 실시 형태에 의한 성막 장치(6)에 있어서, 증발원(1c) 이외의 구성은 제1 실시 형태에서 설명한 구성과 마찬가지이므로, 이들 동일한 구성 요소에 대해서는 설명을 생략하고 동일한 참조 번호를 부여한다.
본 실시 형태에 있어서의 증발원(1c)은 제1 실시 형태에 있어서의 증발원(1a)과 마찬가지로, 소정의 두께를 갖는 원판 형상의 타깃(2)과, 타깃(2)의 근방에 배치된 자계 형성 수단(8c)으로 구성되어 있다. 자계 형성 수단(8c)은 제1 실시 형태와 동일한 자장 유도 자석(3)과, 배면 자장 발생원(4c)을 구비하고 있다.
배면 자장 발생원(4c)은 도체를 거의 동심의 링 형상(환 형상)으로 권회하여 형성된 공심 형상의 전자 코일(코일 자석)(17)과, 링 형상의 전자 코일(17)의 직경 내측에 형성된 구멍인 공심 부분에 삽입된 단일의 자성체(9c)를 구비하고 있다.
전자 코일(17)은 링 형상으로 형성된 솔레노이드이며, 예를 들어 권취수가 수백회 정도(예를 들어, 410회)로 되어 있어, 타깃(2)의 직경보다도 큰 직경의 코일로 되도록 권회되어 있다. 본 실시 형태에서는, 약 5000A·T 정도의 암페어 횟수로 자장을 발생시킨다.
자성체(9c)는 비링 형상의 중실의 자성체(9c)이며, 전자 코일(17)의 자심으로 되는 것이다. 자성체(9c)는 전자 코일(17)을 관통하도록 전자 코일(17)의 공심 부분에 설치되어 있고, 전자 코일(17)의 내경과 거의 동일한 직경을 갖는 원판 형상 또는 원기둥 형상을 갖고 있다.
바꿔 말하면, 전자 코일(17)은 하나의 자성체(9c)의 외주를 밀착(밀접)하여 둘러싸도록 배치되어 있다고 할 수도 있다. 이와 같은 배치에 있어서, 전자 코일(17)의 전방 단부면은, 자성체(9c)의 전방 단부면과 대략 동일한 높이이고, 전자 코일(17)의 후방 단부면은, 자성체(9c)의 후방 단부면과 대략 동일한 높이이다.
전자 코일(17)을 배치한 것으로 얻어지는 효과는, 다음과 같다.
전자 코일(17)은 코일 축심 주변으로부터 직진성이 높은 자력선을 발생시킬 수 있으므로, 전자 코일(17)의 공심 부분에 자성체(9c)를 배치함으로써, 코일 축심 주변으로부터 발생하는 자력선의 직진성을 증가시킬 수 있다. 따라서, 전자 코일(17)을 타깃(2)의 배면에 배치함으로써, 타깃(2)의 증발면의 넓은 영역에 걸쳐 직진성이 높은 자력선을 다수 발생시킬 수 있다.
증발원(1c)의 구성을 정리하면, 타깃(2), 자장 유도 자석(3), 전자 코일(17) 및 자성체(9c)는 각각의 각 축심이 서로 일치하도록 동축 형상으로 배치되어 있다. 도 7에 도시한 바와 같이, 전자 코일(17)의 내주면과 자성체(9c)의 측면을 밀착시킴으로써, 전자 코일(17)로부터 발생한 자력선의 밀도를, 전자 코일(17)의 축심에 근접한 위치에서 높이는 것이 가능하게 된다. 그 결과, 자성체(9c)의 전방 단부면의 축심에 근접한 위치로부터, 타깃(2)을 향하여 직진성이 높은 자력선을 다수 발생시킬 수 있다.
(실시예 3)
도 8을 참조하면서, 제3 실시 형태에 의한 증발원(1c)에서 발생하는 자력선의 분포에 대해 설명한다. 또한, 도 8에서 나타내어지는 자력선 분포도는, 배면 자장 발생원(4c)의 후방으로부터 기재(7)의 표면까지의 자력선 분포를 나타내고 있다. 도 8의 자력선 분포도에 있어서, 우측 단부는 기재(7)의 표면 위치를 나타내고 있다.
이하에 설명하는 실시예 3에서의, 실험 조건을 나타낸다. 예를 들어, 자장 유도 자석(3)의 치수는, (내경 150㎜φ, 외경 170㎜, 두께 10㎜)이다. 타깃(2)의 치수는, (100㎜φ×16㎜ 두께)이다. 타깃(2)의 표면에서의 자속 밀도는, 50가우스 이상이다. 전자 코일(17)은 공심부에 있어서의 내경이 100㎜φ이고, 외경이 170㎜, 두께 50㎜의 링 형상으로 형성된 솔레노이드이며, 예를 들어 권취수가 410회이다. 전자 코일(17)의 공심부에 구비된 자성체(9c)의 치수는, (100㎜φ×50㎜ 두께)이다.
자장 유도 자석(3)의 전방 단부면으로부터 타깃(2)의 후방면까지의 거리는, 25㎜이다. 또한, 자성체(9c)의 전방 단부면으로부터 타깃(2)의 후방면까지의 거리는 100㎜이다.
도 8을 참조하면, 배면 자장 발생원(4c)의 자성체(9c)로부터 타깃(2)을 향하여 직진성이 높은 자력선이 다수 나와 있다. 이들 자력선은, 진행 방향이 자성체(9c)의 축심 방향을 따르도록 타깃(2)을 향하여 신장되어 있다. 이들 자력선은, 자장 유도 자석(3)으로부터 나온 자력선과 조합되어 타깃(2)의 증발면을 통과한다. 제1 실시 형태에 의한 증발원(1a)과 마찬가지로, 타깃(2)의 증발면으로부터는, 직진성이 높은 자력선이 타깃(2)의 증발면의 거의 전체면에 걸치는 넓은 영역에 있어서 존재하고, 기재 방향으로 신장되어 있다. 바꿔 말하면, 타깃(2)의 증발면의 거의 전체면에 걸치는 넓은 영역에 있어서, 수직의 자력선(수직 성분)이 존재하고 있다.
이와 같이, 본 실시 형태에서 설명한 증발원(1c)은 자장 유도 자석(3)과 배면 자장 발생원(4c)에 의해 기재 방향을 향하여 신장되는 직진성이 높은 자력선을 형성하고, 그 형성된 자력선 중에서, 타깃(2)의 증발면의 거의 전체면에 걸치는 넓은 영역을 수직의 자력선(수직 성분)이 통과하는 위치에 타깃(2)을 배치한 것이라고 할 수 있다.
본 실시 형태에 의한 증발원(1c)에 의하면, 타깃(2)의 증발면의 거의 전체면에 걸치는 넓은 영역에 있어서 수직의 자력선(수직 성분)이 발생한다. 이에 의해, 타깃(2)의 증발면 상에 아크 스폿을 가둘 수 있음과 함께, 타깃(2)의 증발면의 편소모를 억제할 수 있어, 아크 방전에 의한 성막을 안정적으로 행할 수 있다.
상술한 제1∼제3 실시 형태에 따르면, 타깃(2)의 증발면의 법선에 대해 내측 방향 내지, 거의 평행하게 되는 자력선을 형성할 수 있다. 이 자력선의 방향에 의해 아크 방전 시의 이상 방전을 억제할 수 있을 뿐만 아니라 종래보다도 안정적인 방전을 얻을 수 있다. 이 방전의 안정화는, 타깃(2)의 증발면 전체면에서의 아크 방전을 실현할 수 있으므로, 타깃(2)의 사용 수율을 높일 수 있다.
또한, 본 발명의 제1∼제3 실시 형태에 따르면, 타깃(2)의 증발면 전체로부터 기재(7)의 방향을 향하여 직진성이 높은 자력선을 다수 형성할 수 있으므로, 아크 방전 시, 타깃(2)으로부터 증발한 입자(이온)의 워크에의 수송 효율이 높여지고, 성막 속도를 향상시킬 수 있다.
그런데, 금회 개시된 실시 형태는 모든 점에서 예시이며 제한적인 것은 아니라고 생각되어야 한다. 특히, 금회 개시된 실시 형태에 있어서, 명시적으로 개시되어 있지 않은 사항, 예를 들어 동작 조건이나 측정 조건, 각종 파라미터, 구성물의 치수, 중량, 체적 등은, 당업자가 통상 실시하는 범위를 일탈하는 것은 아니고, 통상의 당업자라면 용이하게 상정하는 것이 가능한 값을 채용하고 있다.
예를 들어, 각 실시 형태에 의한 증발원의 설명에 있어서, 각 구성 요소의 형상이나 치수에 대해, 평행, 직교 및 동일 등의 표현, 또한, 동축과 같은 표현을 사용하고 있지만, 이것은, 수학적인 엄밀함을 갖고 평행, 직교, 동일 및 동축을 규정하고 있는 것은 아니다. 통상의 기계 부품의 공작 정밀도 및 조립 정밀도에 있어서, 평행, 직교, 동일 및 동축이라고 간주할 수 있는 범위의 오차는, 당연히 허용된다.
또한, 타깃(2)은 원판 형상으로 한정되지 않고, 예를 들어 사각 형상 등의 다각 형상을 갖고 있어도 된다. 또한, 자장 유도 자석(3) 및 배면 자장 발생원(4a∼4c)은 원환 형상으로 한정되지 않고, 예를 들어 사각형 등의 다각형의 환 형상으로 되어 있어도 된다.
본 출원을 상세하게 또한 특정한 실시 형태를 참조하여 설명하였지만, 본 발명의 정신과 범위를 일탈하는 일 없이 다양한 변형이나 수정을 가할 수 있는 것은 당업자에게 있어서 명백하다.
본 출원은, 2012년 6월 20일 출원의 일본 특허 출원(일본 특허 출원 제2012-139078)에 기초하는 것이고, 그 내용은 여기에 참조로서 원용된다.
본 발명의 아크식 증발원에 의하면, 타깃 표면으로부터 기재 방향으로 신장되는 직진성이 높은 자력선을, 타깃 표면이 넓은 영역에 있어서 발생시킬 수 있음과 함께, 타깃의 편소모를 억제할 수 있다.
1, 1a, 1b, 1c : 아크식 증발원(증발원)
2 : 타깃
3 : 자장 유도 자석
4, 4a, 4b, 4c : 배면 자장 발생원
5a : 제1 배면 자석
5b : 제2 배면 자석
6 : 성막 장치
7 : 기재
8a, 8b, 8c : 자계 형성 수단
9a, 9b, 9c : 자성체
10a : 제1 원판 배면 자석
10b : 제2 원판 배면 자석
11 : 진공 챔버
12 : 회전대
13 : 가스 도입구
14 : 가스 배기구
15 : 아크 전원
16 : 바이어스 전원
17 : 전자 코일
18 : 그라운드

Claims (11)

  1. 타깃과, 링 형상의 자장 유도 자석과, 배면 자장 발생원을 구비한 아크식 증발원이며,
    상기 자장 유도 자석은, 상기 타깃의 증발면과 직교하는 방향을 따름과 함께 전방 또는 후방을 향하는 자화 방향으로 되는 극성을 갖고,
    상기 배면 자장 발생원은, 상기 타깃의 배면측이며 상기 자장 유도 자석의 후방에 배치됨과 함께, 상기 자장 유도 자석의 자화 방향을 따라 자력선을 형성하고,
    상기 타깃은, 상기 증발면이 상기 자장 유도 자석보다도 전방에 위치하도록 배치되어 있고,
    상기 타깃은, 타깃 표면 상에 있어서 자력선이 타깃 표면과 평행해지는 위치가 존재하지 않는 위치에 배치되어 있는 것을 특징으로 하는, 아크식 증발원.
  2. 제1항에 있어서,
    상기 자장 유도 자석의 자화 방향이 전방을 향하는 경우, 상기 배면 자장 발생원의 자화 방향은 전방을 향하고, 상기 자장 유도 자석의 자화 방향이 후방을 향하는 경우, 상기 배면 자장 발생원의 자화 방향은 후방을 향하는 것을 특징으로 하는, 아크식 증발원.
  3. 제1항에 있어서,
    상기 자장 유도 자석의 자화 방향에 있어서의 자장 유도 자석 및 타깃의 투영에 있어서, 상기 타깃이, 상기 자장 유도 자석의 직경 방향에 있어서의 내주면과 외주면의 중간 위치보다도 직경 내측에 투영되도록 배치되어 있는 것을 특징으로 하는, 아크식 증발원.
  4. 제1항에 있어서,
    상기 배면 자장 발생원은, 상기 링 형상의 자장 유도 자석의 내주면이 형성하는 구멍부를 상기 자장 유도 자석의 자화 방향을 따라 통과하는 자력선을 형성하고,
    상기 타깃은, 상기 증발면을 통과하는 자력선이 상기 링 형상의 자장 유도 자석의 축심에 대해 평행하게 되거나 또는 상기 축심측으로 기우는 위치에 배치되어 있는 것을 특징으로 하는, 아크식 증발원.
  5. 제1항에 있어서,
    상기 배면 자장 발생원은, 내주면 및 외주면에 극성을 갖는 링 형상의 배면 자석을 포함하고, 상기 자장 유도 자석의 자화 방향이 전방을 향하는 경우, 상기 내주면 및 외주면의 극성에 의한 배면 자석의 자화 방향은 링 직경 내방향을 향하고, 상기 자장 유도 자석의 자화 방향이 후방을 향하는 경우, 상기 내주면 및 외주면의 극성에 의한 배면 자석의 자화 방향은 링 직경 외방향을 향하는 것을 특징으로 하는, 아크식 증발원.
  6. 제5항에 있어서,
    상기 배면 자장 발생원은, 복수의 상기 링 형상의 배면 자석을 포함하고, 상기 복수의 링 형상의 배면 자석은, 동일한 자화 방향으로 되는 극성을 갖고, 또한, 동축 형상으로 배치되어 있는 것을 특징으로 하는, 아크식 증발원.
  7. 제6항에 있어서,
    상기 복수의 링 형상의 배면 자석의 직경 내에는, 각 배면 자석을 관통하는 자성체가 설치되어 있고, 상기 자성체의 외주가 각 배면 자석의 내주면과 접하고 있는 것을 특징으로 하는, 아크식 증발원.
  8. 제1항에 있어서,
    상기 배면 자장 발생원은, 서로 간격을 두고 배치된 원판 형상의 제1 원판 형상 자석과 제2 원판 형상 자석을 포함하고, 상기 제1 원판 형상 자석 및 제2 원판 형상 자석의 각각은, 한쪽의 원판면으로부터 다른 쪽의 원판면을 향하는 자화 방향을 갖도록 원판면에 극성을 가짐과 함께, 서로의 자화 방향이 동일하게 되도록 배치되고, 상기 자장 유도 자석의 자화 방향이 전방을 향하는 경우, 상기 제1 원판 형상 자석 및 제2 원판 형상 자석에 의한 자화 방향은 전방을 향하고, 상기 자장 유도 자석의 자화 방향이 후방을 향하는 경우, 상기 제1 원판 형상 자석 및 제2 원판 형상 자석에 의한 자화 방향은 후방을 향하는 것을 특징으로 하는, 아크식 증발원.
  9. 제8항에 있어서,
    상기 제1 원판 형상 자석 및 제2 원판 형상 자석의 사이에는, 각 원판 형상 자석과 접하는 자성체가 설치되어 있는 것을 특징으로 하는, 아크식 증발원.
  10. 제1항에 있어서,
    상기 배면 자장 발생원은, 공심 형상의 코일 자석이며, 상기 코일 자석의 극성은, 상기 자장 유도 자석의 극성과 동일 방향을 향하는 것을 특징으로 하는, 아크식 증발원.
  11. 제10항에 있어서,
    상기 코일 자석의 공심 부분에는, 자성체가 배치되어 있는 것을 특징으로 하는, 아크식 증발원.
KR1020147035083A 2012-06-20 2013-06-11 아크식 증발원 KR101629131B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012139078A JP5946337B2 (ja) 2012-06-20 2012-06-20 アーク式蒸発源
JPJP-P-2012-139078 2012-06-20
PCT/JP2013/066088 WO2013191038A1 (ja) 2012-06-20 2013-06-11 アーク式蒸発源

Publications (2)

Publication Number Publication Date
KR20150008494A KR20150008494A (ko) 2015-01-22
KR101629131B1 true KR101629131B1 (ko) 2016-06-09

Family

ID=49768638

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147035083A KR101629131B1 (ko) 2012-06-20 2013-06-11 아크식 증발원

Country Status (10)

Country Link
US (1) US9818586B2 (ko)
EP (1) EP2865783B1 (ko)
JP (1) JP5946337B2 (ko)
KR (1) KR101629131B1 (ko)
BR (1) BR112014031757B1 (ko)
CA (1) CA2871419C (ko)
IL (1) IL235153A0 (ko)
MX (1) MX2014015146A (ko)
TW (1) TWI491752B (ko)
WO (1) WO2013191038A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6403269B2 (ja) * 2014-07-30 2018-10-10 株式会社神戸製鋼所 アーク蒸発源

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523658A (ja) 2001-03-27 2004-08-05 フンダシオン テクニケル 大きい表面領域を有するターゲットのための強力な磁気ガイドを伴うアーク蒸着装置
JP2012026026A (ja) * 2010-06-23 2012-02-09 Kobe Steel Ltd 成膜速度が速いアーク式蒸発源、このアーク式蒸発源を用いた皮膜の製造方法及び成膜装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269634A (ja) * 1998-03-20 1999-10-05 Kobe Steel Ltd 真空アーク蒸発源
TWI242049B (en) * 1999-01-14 2005-10-21 Kobe Steel Ltd Vacuum arc evaporation source and vacuum arc vapor deposition apparatus
JP4456374B2 (ja) * 2003-02-07 2010-04-28 株式会社神戸製鋼所 硬質皮膜及びその製造方法並びに硬質皮膜形成用ターゲット
US7211138B2 (en) 2003-02-07 2007-05-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hard film, method of forming the same and target for hard film formation
DE602005019800D1 (de) * 2005-12-16 2010-04-15 Fundacion Tekniker Kathodenverdampfungsmaschine
RU2448388C2 (ru) * 2006-05-16 2012-04-20 Эрликон Трейдинг Аг, Трюббах Электродуговой источник и магнитное приспособление
JP5063143B2 (ja) * 2007-03-02 2012-10-31 株式会社リケン アーク式蒸発源
EP2140476B1 (de) * 2007-04-17 2016-05-18 Oerlikon Surface Solutions AG, Pfäffikon Vakuum lichtbogenverdampfungsquelle, sowie eine lichtbogenverdampfungskammer mit einer vakuum lichtbogenverdampfungsquelle
KR20100102150A (ko) * 2008-01-15 2010-09-20 가부시키가이샤 아루박 기판 스테이지, 이를 구비한 스퍼터 장치 및 성막 방법
JP5496223B2 (ja) * 2008-12-26 2014-05-21 フンダシオン テクニケル アーク・エバポレーターおよびアーク・エバポレーターの操作方法
JP5649308B2 (ja) 2009-04-28 2015-01-07 株式会社神戸製鋼所 成膜速度が速いアーク式蒸発源及びこのアーク式蒸発源を用いた皮膜の製造方法
BR112013021546B1 (pt) * 2011-02-23 2020-10-27 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) fonte de evaporação do arco
KR20130106575A (ko) * 2012-03-20 2013-09-30 (주)유진에스엠씨 진공 아크 증발 유닛 및 이를 포함하는 아크 이온 플레이팅 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523658A (ja) 2001-03-27 2004-08-05 フンダシオン テクニケル 大きい表面領域を有するターゲットのための強力な磁気ガイドを伴うアーク蒸着装置
JP2012026026A (ja) * 2010-06-23 2012-02-09 Kobe Steel Ltd 成膜速度が速いアーク式蒸発源、このアーク式蒸発源を用いた皮膜の製造方法及び成膜装置

Also Published As

Publication number Publication date
EP2865783A1 (en) 2015-04-29
JP5946337B2 (ja) 2016-07-06
TWI491752B (zh) 2015-07-11
US9818586B2 (en) 2017-11-14
TW201414866A (zh) 2014-04-16
CA2871419A1 (en) 2013-12-27
EP2865783B1 (en) 2019-12-11
IL235153A0 (en) 2014-12-31
EP2865783A4 (en) 2015-12-30
JP2014001440A (ja) 2014-01-09
MX2014015146A (es) 2015-03-05
KR20150008494A (ko) 2015-01-22
BR112014031757A2 (pt) 2017-06-27
US20150122644A1 (en) 2015-05-07
BR112014031757B1 (pt) 2021-05-25
WO2013191038A1 (ja) 2013-12-27
CA2871419C (en) 2019-03-12

Similar Documents

Publication Publication Date Title
KR101374488B1 (ko) 아크식 증발원 및 이것을 사용한 피막의 제조 방법
US10982318B2 (en) Arc evaporation source
KR101471269B1 (ko) 성막 속도가 빠른 아크식 증발원, 이 아크식 증발원을 사용한 피막의 제조 방법 및 성막 장치
KR101629131B1 (ko) 아크식 증발원
JP5648532B2 (ja) アークイオンプレーティング装置
JP5081315B2 (ja) アーク式蒸発源
JP5081320B2 (ja) アーク式蒸発源
JP5081327B1 (ja) アーク式蒸発源
JP2514830Y2 (ja) マグネトロンスパッタ装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190515

Year of fee payment: 4