KR101622427B1 - 표유 복사 차폐부를 갖는 비접촉식 의료용 온도계 - Google Patents
표유 복사 차폐부를 갖는 비접촉식 의료용 온도계 Download PDFInfo
- Publication number
- KR101622427B1 KR101622427B1 KR1020117011472A KR20117011472A KR101622427B1 KR 101622427 B1 KR101622427 B1 KR 101622427B1 KR 1020117011472 A KR1020117011472 A KR 1020117011472A KR 20117011472 A KR20117011472 A KR 20117011472A KR 101622427 B1 KR101622427 B1 KR 101622427B1
- Authority
- KR
- South Korea
- Prior art keywords
- thermal radiation
- thermal
- sensor
- radiation sensor
- thermometer
- Prior art date
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 124
- 238000010438 heat treatment Methods 0.000 claims abstract description 28
- 230000003287 optical effect Effects 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims description 14
- 230000004907 flux Effects 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 7
- 229920001903 high density polyethylene Polymers 0.000 claims description 5
- 239000004700 high-density polyethylene Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 4
- 230000003595 spectral effect Effects 0.000 claims description 4
- 238000001931 thermography Methods 0.000 claims 10
- 230000004888 barrier function Effects 0.000 claims 2
- 238000001816 cooling Methods 0.000 claims 1
- 239000012212 insulator Substances 0.000 claims 1
- 230000001681 protective effect Effects 0.000 claims 1
- 238000009529 body temperature measurement Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000002329 infrared spectrum Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 210000001061 forehead Anatomy 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 210000000613 ear canal Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000003754 fetus Anatomy 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 210000003454 tympanic membrane Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
- G01J5/061—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/01—Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/07—Arrangements for adjusting the solid angle of collected radiation, e.g. adjusting or orienting field of view, tracking position or encoding angular position
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0803—Arrangements for time-dependent attenuation of radiation signals
- G01J5/0804—Shutters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0806—Focusing or collimating elements, e.g. lenses or concave mirrors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0808—Convex mirrors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0896—Optical arrangements using a light source, e.g. for illuminating a surface
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/0003—Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
- G01J5/0011—Ear thermometers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Radiation Pyrometers (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
물체의 표면으로부터 온도를 측정하기 위한 비접촉식 적외선(IR) 온도계가 가열 요소에 부착되어 있는 IR 복사 센서 및 센서의 시계 내부에 위치하며 높은 복사율을 갖는 내부 표면을 갖는 열 차폐부를 포함한다. 가열 요소를 제어하는 전자 회로는 센서와 차폐부의 온도들을 실질적으로 물체의 예상되는 표면 온도에 가깝게 유지시킨다. IR 복사 센서는 또한 레퍼런스 온도 센서에 열적으로 결합된다. 차폐부가 표유 복사선이 센서에 도달하는 것을 방지하는 동안, 차폐부의 전방에 위치하는 광학 시스템은 물체로부터의 열복사를 센서의 표면 상에 집중시킨다. IR 및 레퍼런스 센서들로부터의 신호들은 물체의 표면 온도를 계산하는데 사용된다.
Description
본 발명은 온도를 측정하기 위한 장치들에 관한 것으로서, 보다 구체적으로는 표유(stray) 복사의 효과들을 감소시키기 위해 차폐부를 포함하는 의료용 비접촉식 적외선 온도계들에 관한 것이다.
열복사 또는 적외선(IR) 온도계는 측정 물체에 물리적으로 접촉하지 않고도 온도를 측정할 수 있는 장치이다. 따라서, 상기 온도계들은 종종 "비접촉식" 또는 "원격" 온도계들로 불린다. IR 온도계의 경우, 물체의 온도는 상기 물체의 표면으로부터 자연적으로 방출되는 IR 복사의 세기를 검출함으로써 측정된다. 0℃에서 100℃ 사이의 물체들의 경우, 이를 위해서는, 대략 3 내지 40 마이크로미터의 파장들을 갖는 복사를 검출하기 위한 IR 센서들을 사용하는 것이 필요하다. 통상적으로, 이 범위의 IR 복사는 열복사라고 불린다.
IR 온도계의 일 예시로는, 인간 또는 동물의 귓구멍의 주변 조직들 및 고막에서 비접촉식 온도 측정들을 달성할 수 있는 "인스턴트 귀(instant ear)" 의료용 온도계가 있다. 인스턴트 귀 온도계들은, 본 명세서에서 참조로써 전체적으로 통합되는, 프래든의 미국 특허 제4,797,840호("'840 특허")에 의하여 예시된다. 다른 예시들은, 본 명세서에서 참조로써 전체적으로 통합되는, 크라우스 외의 미국 특허 제6,789,936호에 의하여 예시되는 바와 같이, 피부 표면의 온도(예를 들어, 이마의 피부 표면의 온도)들을 측정하기 위한 의료용 온도계들을 포함한다.
물체의 표면 온도를 IR 복사 방출들로써 측정하기 위해, 상기 IR 복사가 검출되고 종래의 전자 회로들에 의한 처리에 적합한 전기적 신호로 변환된다. IR 복사를 검출하는 과제는 IR 센서 또는 검출기에 의하여 달성된다.
종래의 열 IR 센서들은 통상적으로 적외선 투과성의 창을 갖는 하우징과, 물체의 표면에서 발산하여 상기 IR 센서의 IR 창을 통과하는 열복사 에너지 플럭스(Φ)에 반응하는 적어도 하나의 감지 요소를 포함한다. 상기 IR 센서는 상기 감지 요소와 측정 물체의 사이에 존재하는 알짜 IR 플럭스(Φ)를 대표하는 전기 신호를 생성시키도록 기능한다. 상기 전기 신호는 이하에서 예시로서 더 기재되는 바와 같이 적절한 데이터 처리에 의하여 물체의 온도에 관련될 수 있다.
열 플럭스(Φ)는 두 온도들(감지 요소 표면 온도 TS 및 물체의 표면 온도 Tb(켈빈 온도로 측정됨))의 함수이다. 이론적으로, 열복사는 플랑크 법칙에 지배되는 것으로 알려져 있다. 그러나 IR 온도계의 광학 시스템에 의하여 결정될 수 있는 넓은 광학 스펙트럼 범위에 있어서, 상기 두 온도들 TS, Tb 및 플럭스(Φ) 사이의 관계식은 4차 포물선으로써 근사화될 수 있다. 물리학에서, 이러한 근사화는 슈테판 볼츠만 법칙으로 알려져 있다.
εb 와 εs는 물체 및 감지 요소 각각의 표면 복사율들이며, σ는 슈테판 볼츠만 상수이며, k는 IR 온도계의 보정(calibration) 동안 측정에 의해 결정될 수 있는 광학 상수이다.
실제 물체의 온도 Tb와 센서의 온도 TS 사이의 비교적 작은 차이에 대하여, 식(1)은 아래와 같이 단순화될 수 있다.
IR 온도계의 궁극적인 목표는 물체의 표면 온도(Tb)를 결정하는 것이며, 이는 도치된 식(2)으로부터 Tbc로 계산될 수 있다.
이상적으로, 계산된 온도 Tbc는 실제 온도 Tb와 동일하여야 한다. 실제로는, 이들 온도들은 오차의 결과로서 다를 수 있다. 식(3)으로부터, 온도 Tbc를 계산하기 위하여, IR 플럭스(Φ)의 크기와 IR 감지 요소의 표면 온도 TS의 두 개의 값들이 결정되어야 함을 알 수 있다. 온도 계산의 정확성은 식(3)의 우변의 모든 변수들의 측정의 정확성에 달려있다. 제1 피가수 TS는 예를 들어, 서미스터(thermistor) 또는 RTD 온도 센서를 사용함으로써, 당해 분야의 공지된 다수의 기술들에 의하여 상당히 정확하게 측정될 수 있다. 제2 피가수는 특히 물체의 복사율 εb가 일반적으로 알려져 있지 않으며 예측할 수 없는 값이기 때문에 더 문제될 수 있다. 예를 들어, 의료용 온도 측정에서, 복사율 εb는 피부의 특성들과 형태에 의해 정의되는 피부의 복사율이다. 피부 복사율은 예를 들어, 0.93부터 0.99의 범위일 수 있다. 복사율이 정확성에 어떻게 영향을 미치는지 결정하기 위하여, 식(2)의 편미분이 다음과 같이 계산될 수 있다.
상기 편미분은 물체의 알려지지 않은 복사율 εb에 의한 측정 오차를 나타낸다. 식(4)에 따르면, 상기 센서의 온도 TS가 물체의 온도 Tb에 근접할 때, 즉 Tb TS 일 때, 상기 오차가 실질적으로 0에 근접한다. 따라서, 오차들을 최소화하기 위하여, IR 센서의 온도 TS를 물체의 온도 Tb에 실현 가능한 한 가깝게 유지시키는 것이 바람직하다. 인스턴트 귀 온도계에 대하여, 예를 들어, 프래든의 미국 특허 제5,645,349호는 온도 TS와 Tb를 근접하게 하기 위한 가열된 감지 요소를 교시한다. 크라우스 외에게 등록된 미국 특허 제7,014,358호는 대안으로 IR 센서 하우징을 데우기 위한 가열 요소를 교시한다. 미국 특허 제5,645,349호 및 미국 특허 제7,014,358호는 본 명세서에서 참조로써 전체적으로 통합된다.
표면으로부터 온도가 측정될 때, 관련된 IR 복사 플럭스(Φ)를 광학 시스템의 시계 내에 나타날 수 있는 임의의 표유 물체들로부터가 아니라, 오직 측정되는 표면으로부터 IR 센서로 지향시키는 것이 중요하다. 표유 물체들로부터의 IR 복사는 측정되는 플럭스를 변하게 하며, 이에 따라 오차가 나타난다.
표유 물체들로부터 플럭스를 얻을 확률을 최소화하기 위한 하나의 방법은 IR 온도계의 광학 시계를 좁히는 것이다. IR 렌즈들을 사용하여 광학 시계를 좁히는 하나의 방법이 노무라 외의 미국 특허 제5,172,978호(집광 렌즈를 일단부에 그리고 IR 검출기를 타단부에 장착하는 렌즈 배럴을 포함하는 복사 온도계)와, 리들리 외의 미국 특허 제5,655,838호(복수 요소의 초점 렌즈, 접안 렌즈, 빔 스플리터, 및 IR 검출기를 갖는 복사 온도계)에 의해 예시되며, 이들 각각은 본 명세서에서 참조로써 전체적으로 통합된다.
표유 물체들로부터 플럭스를 얻을 확률을 최소화하기 위한 또 다른 방법은 시계를 좁히도록 곡면 거울들을 사용한다. 이러한 접근은 에베레스트의 미국 특허 제4,494,881호에 의해 예시되며, 이는 본 명세서에서 참조로써 전체적으로 통합된다.
이들 방법들은 주변 물체들로부터의 표유 IR 신호들을 제거하는 문제를 성공적으로 해결하나, 상기 IR 센서를 둘러싸는 IR 온도계의 내부 구성품들로부터의 표유 복사를 더 방지하는 것에는 여전히 비효과적이다. 상기 표유 복사의 원천은 광학 시계를 제한하기 위한 노력들에 영향을 받지 않는다. IR 센서를 둘러싸는 IR 온도계의 내부 구성품들로부터의 표유 복사에 의해 영향을 받지 않는 IR 센서를 가지는 IR 온도계를 개발한다면, 이는 상당히 이득이 될 것이다.
본 발명에 따른 비접촉식 적외선(IR) 온도계는 가열 요소에 열적으로 결합되는 IR 복사 센서 및 상기 센서의 시계 내부에 위치하는 내부 표면을 갖는 열 차폐부를 포함하며, 상기 내부 표면은 높은 복사율을 갖는다. 상기 가열 요소를 제어하는 전자 회로는 상기 센서 및 차폐부의 온도들을 물체의 예상되는 표면 온도에 실질적으로 가깝게 유지시킨다. 상기 IR 복사 센서는 또한 레퍼런스 온도 센서에 열적으로 결합된다. 상기 차폐부가 온도계 파트들로부터의 표유 복사를 센서에 도달하지 않도록 방지하는 동안, 차폐부 전방에 위치하는 광학 시스템은 물체로부터의 열복사를 센서의 표면 상에 집중시킨다. IR 및 레퍼런스 온도 센서들로부터의 신호들은 물체의 표면 온도를 계산하기 위해 사용된다.
상기 열 차폐부는 어느 정도는 열복사 센서와 열 차폐부의 온도들을 실질적으로 동일하게 유지함으로써, 열복사 센서의 시계 내부에 위치하는 내부 표면으로부터 방출되는 표유 열 발생을 감소시키도록 구성된다. 또한, 내부 표면은 (예를 들어, 상기 표면을 0.9 또는 더 높은 복사율을 갖는 유기 페인트로 코팅함으로써) IR 복사를 반사하지 않도록 처리될 수 있다.
광학 시스템은 바람직하게는 렌즈를 포함할 수 있다. 대안으로서, 광학 시스템은 바람직하게는 곡면 거울을 포함할 수 있다.
온도계는 또한 차폐부 외부에서 방출되는 열복사로부터 열복사 센서 및 열 차폐부의 내부 표면을 차폐하도록 움직일 수 있는 셔터를 포함할 수 있다(예를 들어, 물체로부터 방출되는 열복사). 차폐 시, 센서의 보정을 위하여 열복사 센서의 기준 출력이 얻어질 수 있다. 곡면 거울을 포함하는 온도계에서, 상기 곡면 거울은 바람직하게는 움직일 수 있는 셔터처럼 회전 가능하게 구성된다.
온도계는 또한 바람직하게는 물체의 표면 상에 열복사 센서의 시계의 적어도 일 부분을 조명하는 조명기를 구비한다. 곡면 거울을 포함하는 온도계에서, 상기 조명기는 바람직하게는 곡면 거울의 보조 표면 밖에서 물체의 표면을 향하여 광선을 투사할 수 있다.
본 발명의 전술된 및 다른 특징들은 본 발명의 예시적인 실시예들에 대한 후술하는 상세한 설명과 도면들로부터 보다 쉽게 분명해질 것이다.
도1은 본 발명의 일 실시예에 따른 IR 온도계의 단면도를 도시한다.
도2는 본 발명의 또 다른 실시예에 따른 IR 온도계의 광학 파트를 도시한다.
도3은 본 발명의 또 다른 실시예에 따른 센서 차폐부의 개략도를 도시한다.
도4는 본 발명의 일 실시예에 따른 원격 온도계의 광학 파트와 결합하는 셔터 구성을 도시한다.
도5는 본 발명의 일 실시예에 따른 또 다른 셔터 구성을 도시한다.
도6은 본 발명의 일 실시예에 따른 IR 온도계의 광학 파트 내에 포함되는 경사진 거울을 도시한다.
도7은 도6의 경사진 거울과 함께 작동할 수 있는 조명기를 도시한다.
도8은 조명기가 온도계 하우징의 외부 표면 상에 제공되는 본 발명에 따른 IR 온도계의 개략도를 도시한다.
도9는 초점 렌즈를 갖는 본 발명에 따른 IR 온도계를 위한 센서의 단면도를 도시한다.
동일한 도면 부호들은 도면들 내에서 온도계의 동일한 구성 요소들을 의미하도록 사용된다.
도1은 본 발명의 일 실시예에 따른 IR 온도계의 단면도를 도시한다.
도2는 본 발명의 또 다른 실시예에 따른 IR 온도계의 광학 파트를 도시한다.
도3은 본 발명의 또 다른 실시예에 따른 센서 차폐부의 개략도를 도시한다.
도4는 본 발명의 일 실시예에 따른 원격 온도계의 광학 파트와 결합하는 셔터 구성을 도시한다.
도5는 본 발명의 일 실시예에 따른 또 다른 셔터 구성을 도시한다.
도6은 본 발명의 일 실시예에 따른 IR 온도계의 광학 파트 내에 포함되는 경사진 거울을 도시한다.
도7은 도6의 경사진 거울과 함께 작동할 수 있는 조명기를 도시한다.
도8은 조명기가 온도계 하우징의 외부 표면 상에 제공되는 본 발명에 따른 IR 온도계의 개략도를 도시한다.
도9는 초점 렌즈를 갖는 본 발명에 따른 IR 온도계를 위한 센서의 단면도를 도시한다.
동일한 도면 부호들은 도면들 내에서 온도계의 동일한 구성 요소들을 의미하도록 사용된다.
본원은 미국 특허법 제35 U.S.C. 119조(e)에 의해 2008년 10월 23일에 출원된 미국 가출원 제61/197,023호의 우선권의 이익을 향유하며, 상기 출원은 본 명세서에서 참조로써 전체적으로 통합된다.
센서의 시계에 의하여 커버되는 표면을 갖는 열 차폐부를 포함하는 IR 온도계가 개시된다. 상기 표면은 바람직하게는 차폐부로부터의 표유 복사를 최소화하는 높은 복사율 코팅을 포함한다. 본 발명의 원리들을 설명하기 위한 목적으로, 열 차폐부 및 IR 온도계의 복수의 제한되지 않은 실시예들이 이하에서 기술된다. 따라서, 본 발명은 단지 청구항들과 이들의 균등 범위에 의하여만 제한된다.
도1은 원격 온도계의 개략적인 단면도를 도시한다. 도1의 온도계는 적외선 센서(7), 본 명세서에서 더 개시될 복수의 광학 구성 부품들, 전자 회로(14)를 갖는 회로 기판(13), 전원 장치(power supply)(17), 제어 버튼(15), 표시 장치(16)를 내장하는 하우징(3)을 포함한다. 상기 광학 구성 부품들은 IR 복사를 센서(7) 내로 허용하는 조리개(9), 렌즈(5), 및 열 차폐부(10)를 포함한다. 센서(7)는 또한 바람직하게는 조리개(9)에 근접하게 광학 필터(도시되지 않음)를 내장할 수 있다. 센서(7)는 열 차폐부(10)의 내부에 위치하며 작동 동안 센서(7)와 열평형에 있는 열 차폐부(10)와 열적으로 결합된다.
도1에 또한 도시되는 바와 같이, 센서(7)는 레퍼런스 온도 센서(30)에 열적으로 결합되는 IR 감지 요소(8)를 포함한다. 가열 요소(12)는 열 차폐부(10)와 결합되며 또한 센서(7)와, 감지 요소(8) 및 레퍼런스 센서(30)를 포함하는 센서(7)의 모든 내부 구성 부품들과 열적으로 결합된다. 이러한 방식으로, 이들 구성 부품들은 서로 열평형에 놓일 수 있다. 초점 렌즈(5)는 하우징(3)의 IR 복사 수용 개구(4)의 근처에 제공되며, 물체(1)의 시계(2)로부터 오는 거의 평행인 IR 복사선들(18)이 조리개(9)로 지향되게 수렴시키도록 구성되어서, IR 복사선들(18)은 감지 요소(8) 상에 집중되어 감지 요소(8)에 의해 흡수된다.
도1의 버튼(15)은 감지 요소(8) 및 레퍼런스 센서(7)로부터 수용되는 데이터를 처리하도록 회로(14)를 동작시켜서 물체(1)의 온도 측정을 시작하도록 가동된다. 회로(14)는 또한 미리 정해진 알고리즘(예를 들어, 비례적분미분(Proportional-Integral-Derivative, PID) 교정 알고리즘)에 따라 가열 요소(12)에 공급되는 에너지의 양을 제어하도록 작동하며, 처리된 데이터에 따라 측정된 온도를 표시하기 위한 표시 장치에 출력을 제공한다. 회로(14)는 증폭기, 멀티플렉서(multiplexer), 디스플레이 드라이버를 갖는 마이크로컨트롤러(microcontroller)와 가열 요소(12)로의 전류를 제어하는 출력 트랜지스터를 포함한다. 회로(14)는 "840 특허"에 의해 예시되는 바와 같이 당해 기술분야에 잘 알려진 설계이다.
열 차폐부(10)의 내부 표면(11)은 감지 요소(8)의 시계 내에 있도록 구성된다. 열 차폐부(10)는 바람직하게는 좋은 열 전도율을 갖는 금속(예를 들어, 구리 또는 알루미늄)을 사용하여 제작되며, 바람직하게는 예를 들어, KRYLON과 같이 0.9 이상의 복사율을 갖는 유기 페인트와 같은, 열 흡수(비반사) 코팅(19)으로 덮이는 내부 표면(11)을 포함한다. 차폐부(10)의 외부 표면은 (도시되지 않은) 열 절연층으로 덮일 수 있으며, 및/또는 IR 스펙트럼 범위에서 반사하도록 만들어질 수 있다. 상기 절연층은 우레탄 발포체일 수 있으며 반사 특성은 차폐부(10)의 외부 표면을 연마함으로써 달성될 수 있다. 차폐부(10)는 실질적으로 하우징(3)의 내부 표면(6)으로부터의 어떠한 표유 복사라도 조리개(9)에 도달하는 것을 막는 크기이다. 결과적으로, 초점 광학 장치(렌즈(5))를 통해서 들어오는 IR 복사선들(18) 및 차폐부(10)의 내부 표면(11)으로부터 방출되는 IR 복사선들만이 감지 요소(8)에 도달할 수 있다.
본 발명의 바람직한 일 실시예가 다음과 같이 작동한다. IR 복사선들(18)은 자연적으로 물체(1)의 표면(예를 들어, 인체의 피부 표면)으로부터 방출된다. IR 복사선들(18)은 초점 광학 장치(렌즈(5))에 의하여 수용된다. 감지 요소(8)는 렌즈(5)의 초점 또는 그 근처에 위치한다. 결과적으로, 시계(2)로부터 렌즈(5)로 복사되는 열 IR 에너지의 상당한 부분이 열 IR 플럭스를 전기 신호로 변환하는 감지 요소(8) 상에 집중된다. (예를 들어, 식(3) 또는 이의 근사 또는 변형을 사용하여) 시계(2) 내의 표면에서의 표면 온도를 계산하기 위하여 레퍼런스 온도(감지 요소(8)의 레퍼런스 온도) 역시 측정되어야 한다. 이는 IR 감지 요소(8)와 열적으로 결합되는 레퍼런스 센서(30)에 의하여 달성될 수 있다. 감지 요소를 레퍼런스 센서와 결합하는 상기 구성들은 당해 분야에서 잘 알려져 있다.
또한, 본 발명에 따르면, 열 차폐부(10)는 실질적으로 어떠한 표유 선들이라도 감지 요소(8)에 도달하지 않게 하는 방식으로, 시계(2)로부터 복사되는 IR 복사선들(18)을 둘러싸도록 구성 및 제공된다.
측정 정확성을 더 향상시키기 위하여, 감지 요소(8)의 온도는 바람직하게는 시계(2) 내 물체(1)의 예상되는 표면 온도와 실질적으로 동일하도록 제어된다. 예를 들어, 물체(1)가 인체의 이마라면, 표면 온도는 건강하거나 열이 있는 환자들을 포함하는 그룹에서 31℃부터 38℃의 범위일 수 있다. 이 경우, 가열 요소(12)의 온도는 바람직하게는 34-35℃의 근처로 설정된다. 이 온도에 도달 및 유지하기 위하여, 레퍼런스 센서(30)는 감지 요소(8)의 온도를 감시하며 회로(14)로 피드백을 제공하며, 회로(14)는 결국 가열 요소(12)로 에너지를 제공한다. 사실상, 이러한 구성은 항온으로 작동한다. 또한, 열 차폐부(10)는 바람직하게는, 하우징(3)과 내부 표면(6)의 온도들과는 상당히 다를 수 있는, 동일한 제어 온도 또는 그 근처로 유지된다.
차폐부(10)의 내부 표면(11)의 온도를 감지 요소(8)의 온도와 가깝게 유지함으로써, 식(2)에 따라, 표면(11)으로부터 감지 요소(8)를 향해 방출되는 IR 복사가 거의 없거나 전무하다. 결과적으로, 열 차폐부(10)는 효과적으로 감지 요소(8)에게 열적으로 "보이지" 않게 된다.
렌즈(5)는 예를 들어 게르마늄, 실리콘, 및 셀렌화 아연을 포함하는 임의의 적합한 IR 투과성 재료로 제작될 수 있다. 렌즈(5)의 표면들은 바람직하게는 4 내지 15 마이크로미터 파장의 스펙트럼 범위를 위한 IR 비반사성 코팅들로 덮일 수 있다. 상기 코팅들은 당해 분야에서 잘 알려져 있으며 일반적으로 상기 렌즈의 양 측면 상에 진공에서 증착되는 티타늄 질화물, 니오비움 질화물, 및 다른 것들과 같은 금속 질화물들의 얇은 복합층들(5-40nm)을 포함한다. 저비용의 응용들에서, 예를 들어, 렌즈(5)는 0.2mm 내지 0.6mm 범위의 두께를 갖는 고밀도 폴리에틸렌(HDPE) 시트(sheet)로 몰딩되는 프레넬(Fresnel) 렌즈일 수 있다.
도1에 도시된 구성에 대한 대안으로, 렌즈(5)는 차폐부(10) 내부에 설치되거나, 도9에서 도시되는 바와 같이 IR 센서(7)의 하우징 내에 설치될 수 있다. 도9에서 센서(7)의 내부 공간(56)은 레퍼런스 온도 센서(30)와 열적으로 결합되는 적어도 하나의 IR 감지 요소(8)를 내장한다. 감지 요소(8)는 센서(7)의 전방 단부로 통합되는 (프레넬 렌즈로 도시된) 렌즈(55)의 초점 또는 그 근처에 위치한다.
본 발명의 또 다른 실시예에서, 도2에 도시되는 바와 같이, 초점 광학 장치는 초점 거울(20)의 형태로 제공된다. 도2에 도시되는 바와 같이, 거울(20)은 광 축(22)에 대하여 IR 복사선들(18)의 반사가 조리개(9)를 향해 방향 변경(redirect)되도록 위치하는 포물면의 반사 표면(23)을 가진다. 감지 요소(8)는 거울(20)의 초점 또는 그 근처에 위치한다. 바람직하게는 보호 창(21)이 IR 복사선들(18)의 경로내에서 거울(20)의 전방에서 사용될 수 있다. 상기 창은 IR 스펙트럼 범위 내에서 비교적 높은 투과성을 갖는 적합한 재료(예를 들어, HDPE, 실리콘 등과 같은)로 제작될 수 있다. 더 좋은 반사율을 위하여, 거울 표면(23)은 금, 알루미늄 또는 다른 적합한 IR 반사 금속으로 덮일 수 있다. 도1에서와 같이, 열 차폐부(10)는 감지 요소(8)의 시계 내에 있도록 구성되며, 실질적으로 하우징(3)의 내부로부터의 어떠한 표유 복사라도 조리개(9)에 도달하지 않게 하는 크기이다.
도2에서, 가열 요소(12)는 센서(7)와 열 차폐부(10) 사이에 끼워 넣어진다. 상기 가열 요소(12)는 구리 전도체들이 심어진 폴리이미드로 제조된 가요성의 필름의 형태로 제작될 수 있다. 다르게는, 가열 요소(12)는 상기 조립체의 우수한 열적 결합(coupling)이 유지되는 한, 조립체 상의 또 다른 위치에 있을 수 있다. 예를 들어, 도3에서 가열 요소(12)는 예를 들어 명확성을 위해 파선으로 도시되는 수축 배관(28)에 의하여 열 차폐부(10)의 외부 벽들에 체결되며 열 차폐부(10)와 열적으로 결합되는 두 개의 저항들(25, 125)을 포함한다. 상기 저항들은 와이어(27)에 의하여 상호 연결되며 단자들(26, 126)에 의하여 회로 기판(13)에 연결된다. 저항들(25, 125)은 다른 개수로 제공될 수 있으며(예를 들어, 단지 1개의 저항 또는 열 차폐부(10)의 주위를 원주 방향으로 이격되는 4개의 저항들), 분리형 저항들, 필름 저항들, 인쇄 저항들을 포함하는 다양한 형태로 제공될 수 있다.
정확한 온도 측정을 위하여, IR 감지 요소(8) 반응의 열적 기준을 설정하는 것이 바람직할 수 있다. 상기 기준은 어떠한 외부 물체로부터도 IR 플럭스가 감지 요소(8)에 도달하지 않는 상태들 하에서 설정될 것이다. 이는 복수의 방법들로 달성될 수 있다. 하나의 바람직한 방법은 도4에 도시된 바와 같이 셔터(31)의 사용을 포함한다.
기준을 설정하기 위하여, 셔터(31)는 외부 IR 복사선들이 열 차폐부(10)의 내부 공간(37)에 들어와서 센서(7)에 도달하는 것을 실질적으로 차단하는 제1 위치(34)에 배치된다. 내부 공간(37)을 대면하는 표면(32)은 알루미늄 또는 금으로 덮여서 IR 스펙트럼 범위에서 반사를 잘한다(즉, 0.9보다 작지 않은 반사율 계수를 갖는다). 이러한 구성으로 이루어진 온도 측정들로부터 감지 요소(8)의 기준 출력이 설정된 후, 물체(1)의 온도 측정이 이루어질 때, 셔터(31)는 일 방향(36)을 따라 IR 복사선들의 광로 밖의 제2 위치(35)로 이동된다. 상기 동작은 공간(37)을 개방하여 물체의 시계(2)로부터 오는 외부 IR 복사가 센서(7)에 도달하는 것이 허용된다. 물체(1)의 온도 측정이 완료된 이후, 셔터(31)는 제1 위치(34)인 폐쇄 위치로 복귀한다. 셔터(31)는 바람직하게는 버튼(15) 또는 회로(14)의 작동에 의하여 제어되는 셔터 기구(33)에 의하여 이동된다. 상기 셔터 기구들은 당해 분야에서 잘 알려져 있다(예를 들어, '840 특허 참조). 도4의 구성의 대안으로서, 셔터(31)는, 예를 들어 도5에 도시된 바와 같이 차폐부(10)의 일 측벽 내로 절삭된 슬롯(38) 내부에 위치하여 방향(39)을 따라 이동할 수 있다.
본 발명의 또 다른 실시예에서, 감지 요소(8)의 기준은 도6에 도시된 바와 같이 회전 가능한 경사진 거울(20)을 사용하여 설정될 수 있다. 제1 위치(41)에서, 거울(20)은 방향(42)을 따라서 회전되어 열 차폐부(10)의 내부 공간을 광학적으로 폐쇄한다. 상기 위치에서, 실질적으로 IR 복사선들은 센서(7)에 도달할 수 없다. 물체(1)의 온도 측정이 수행될 때, 거울(20)은 (명확성을 위해 파선으로 도시된) 제2 위치(40)로 회전하여, IR 복사선들이 창(21)으로부터 도착하여 IR 감지 요소(8)에 도달하도록 허용한다. 측정 후, 거울(20)은 제1 위치(41)로 복귀한다. 거울 회전을 좌우하는 기구는 전자 회로(14)에 의하여 제어되는 종래의 설계일 수 있으며, 본 명세서에서 더 개시되지 않는다.
시계(2)를 양호하게 식별하기 위하여, 온도가 측정될 영역을 조명하는 것이 바람직하다. 이를 달성하기 위한 일 방법은 도7에서 도시된다. 광원(44)(예를 들어, 램프, LED 또는 레이저 다이오드)은 차폐부(10)의 외부에서 거울(20)에 근접하게 위치한다. 거울(20)의 표면(45)은 거울(20)이 제1 위치(41)에 있을 때 광원(44)으로부터의 빛을 반사하여 창(21)을 통해 시계(2)를 향하여 광선(43)을 형성하는 각도로 위치한다. 광선(43)은 상기 거울이 제2 위치(40)로 회전할 때 온도가 측정될, 시계(2)의 동일한 부분을 조명하도록 정렬된다. 이 순간, 바람직하게는 광원(44)은 조명을 점멸한다.
시계(2)를 조명하는 대체적인 방법이 도8에서 도시된다. 여기에서, 조명기(50)(예를 들어, 좁은 빔 LED)는 하우징(3) 상에서 외부에 IR 창(21)과 근접하게 위치한다. 조명기(50)에 의하여 생성되는 빔(51)은 시계(2)를 향해 지향되며, 시계(2)와 거의 중첩하여 조명되는 지점(52)을 형성한다.
시계(2)의 표면 온도 값이 계산된 후, 표시 장치(16) 상에 직접 표시되며, 및/또는 뒤이은 데이터 처리를 위한 입력으로 사용되는 것이 바람직하다. 의료용 온도 측정에서의 뒤이은 데이터 처리의 예는 당해 분야에서 알려진 종래의 알고리즘에 의해 피부 온도로부터 환자의 내부(중심) 온도를 계산하는 것이고, 그 값은 이후에 표시 장치(16) 상에 표시될 수 있다.
도8을 참조하면, 본 발명에 따른 예시적인 온도 측정 과정은 예를 들어, 다음의 단계들을 포함한다.
1. 적외선 센서(7)의 온도를 실질적으로 대략 34℃의 일정 레벨에서 유지하도록 가열 요소(12)의 온도를 상승시키는 단계. (열 차폐부(10)는 열복사가 단지 초점 장치로부터 수용되는 것을 보장한다.)
2. 광원(44)을 키고 광선(51)을 물체(1)의 시계(2)를 향해서 지향하는 단계.
3. 측정 사이클을 개시하도록 버튼(15)을 작동하는 단계.
4. 열복사 측정 과정에 간섭하는 것을 방지하도록 가열 요소(12)를 끄는 단계.
5. 물체의 표면 온도를 계산하도록 감지 요소(8) 및 레퍼런스 센서(30)에 의해 제공되는 신호들을 회로(14) 내에서 처리하는 단계.
6. 표시 장치(16)에 계산된 표면 온도를 제공하는 단계.
본 발명이 다수의 바람직한 이의 실시예들을 참조하여 특정하게 도시되고 개시되었으나, 당해 분야의 통상의 기술자에게는 형태 및 세부항목들의 다양한 변형들이 본 발명의 요지 및 범위를 벗어나지 않으며 만들어질 수 있음이 이해될 것이다. 따라서, 본 발명은 단지 청구항들과 이들의 균등 범위에 의하여만 제한된다.
Claims (26)
- 열복사 센서와,
물체에 의하여 방출되는 열복사를 수용하고 상기 열복사를 상기 열복사 센서로 지향시키도록 구성되는 광학 장치와,
상기 열복사 센서에 열적으로 결합되는 레퍼런스 온도 센서와,
열 차폐부와,
상기 열복사 센서 및 상기 열 차폐부에 열적으로 결합되는 가열 요소와,
상기 열복사 센서, 상기 레퍼런스 온도 센서 및 상기 가열 요소에 전기적으로 결합되며, 상기 열복사 센서 및 상기 레퍼런스 온도 센서에 의하여 생성되는 신호들을 처리하여 상기 물체의 표면 온도를 계산하고, 상기 열복사 센서의 온도가 상기 물체의 예상되는 표면 온도들의 범위 내에 유지되도록 구성되는 전자 회로와,
상기 열복사 센서, 상기 광학 장치, 및 상기 열 차폐부를 수납하며 서로에게 상대적으로 고정되게 위치시키도록 구성되는 하우징을 포함하며,
상기 열 차폐부는 상기 열복사 센서를 수용하고 상기 열복사 센서를 열 차폐부에 열적으로 결합시키도록 구성되는 내부 공동, 열 흡수 코팅으로 덮이는 내부 표면 및 외부 표면을 포함하며,
상기 열 차폐부의 상기 내부 공동은 상기 열복사 센서의 시계 내부에 있으며,
상기 열 차폐부는 또한 상기 하우징의 내부 표면들로부터 방출되는 표유 열복사로부터 상기 열복사 센서를 차폐하도록 상기 하우징 내부에 구성되는, 물체의 표면 온도를 측정하기 위한 열복사 온도계. - 삭제
- 삭제
- 삭제
- 제1항에 있어서, 상기 가열 요소는 상기 열 차폐부의 외부 표면 상에 있는, 물체의 표면 온도를 측정하기 위한 열복사 온도계.
- 제1항에 있어서, 상기 열복사 센서는
하우징과,
상기 광학 장치에 의하여 지향된 상기 열복사를 수용하도록 구성되는 상기 하우징 내의 조리개와,
상기 조리개에 의하여 수용되는 상기 열복사를 감지하도록 위치하는 열 감지 요소를 포함하는 내부 공동을 포함하며,
상기 열 감지 요소는 상기 레퍼런스 온도 센서에 열적으로 결합되는, 물체의 표면 온도를 측정하기 위한 열복사 온도계. - 제6항에 있어서, 상기 광학 장치는 상기 열복사 센서의 상기 하우징 내에 상기 조리개 내부에 위치하는 렌즈를 포함하는, 물체의 표면 온도를 측정하기 위한 열복사 온도계.
- 제7항에 있어서, 상기 렌즈는 프레넬(Fresnel) 렌즈인, 물체의 표면 온도를 측정하기 위한 열복사 온도계.
- 제1항에 있어서, 상기 광학 장치는 상기 광학 장치의 초점 거리와 실질적으로 동일한 상기 열복사 센서로부터의 거리에서 상기 시계 내에 위치하는, 물체의 표면 온도를 측정하기 위한 열복사 온도계.
- 제9항에 있어서, 상기 광학 장치는 렌즈를 포함하는, 물체의 표면 온도를 측정하기 위한 열복사 온도계.
- 제10항에 있어서, 상기 렌즈는 고밀도 폴리에틸렌(HDPE)을 포함하는, 물체의 표면 온도를 측정하기 위한 열복사 온도계.
- 제9항에 있어서, 상기 광학 장치는 거울을 포함하는, 물체의 표면 온도를 측정하기 위한 열복사 온도계.
- 제12항에 있어서, 상기 거울은 상기 물체에 의하여 방출되는 상기 열복사에 대하여 상기 열 차폐부의 상기 내부 공동을 폐쇄하는 폐쇄 위치와 상기 물체에 의하여 방출되는 상기 열복사에 대하여 상기 열 차폐부의 상기 내부 공동을 개방하는 개방 위치 사이에서 회전할 수 있는, 물체의 표면 온도를 측정하기 위한 열복사 온도계.
- 제12항에 있어서, 상기 거울은 포물면의 반사 표면을 포함하고,
상기 반사 표면은 상기 거울이 개방 위치에 있을 때 상기 열복사를 상기 열복사 센서를 향해 지향하기 위한, 물체의 표면 온도를 측정하기 위한 열복사 온도계. - 제12항에 있어서, 상기 물체의 표면 상의 상기 시계의 적어도 일 부분을 조명하기 위한 조명기를 더 포함하며,
상기 거울은 경사진 반사 표면을 포함하고,
상기 반사 표면은 상기 거울이 폐쇄 위치에 있을 때 상기 조명기의 광선을 상기 물체의 상기 표면을 향해서 지향하기 위한, 물체의 표면 온도를 측정하기 위한 열복사 온도계. - 제1항에 있어서, 상기 물체의 표면 상의 상기 시계의 적어도 일 부분을 조명하기 위한 조명기를 더 포함하는, 물체의 표면 온도를 측정하기 위한 열복사 온도계.
- 제1항에 있어서, 상기 시계의 내부와 외부에서 이동 가능한 내부 표면을 갖는 셔터와,
상기 내부 표면을 상기 시계의 내부와 외부에서 이동시키기 위한 셔터 제어 장치를 더 포함하며,
상기 내부 표면은 상기 셔터가 상기 시계의 내부에 있을 때 상기 내부 공동에 근접하게 위치하는, 물체의 표면 온도를 측정하기 위한 열복사 온도계. - 제17항에 있어서, 상기 셔터는 상기 물체에 의하여 방출되는 상기 열복사에 대하여 상기 열 차폐부의 상기 내부 공동을 폐쇄하는 폐쇄 위치와 상기 물체에 의하여 방출되는 상기 열복사에 대하여 상기 열 차폐부의 상기 내부 공동을 개방하는 개방 위치 사이에서 이동할 수 있는, 물체의 표면 온도를 측정하기 위한 열복사 온도계.
- 제17항에 있어서, 상기 셔터의 상기 내부 표면은 4㎛ 내지 15㎛의 스펙트럼 범위 내에서 반사적인, 물체의 표면 온도를 측정하기 위한 열복사 온도계.
- 제1항에 있어서, 상기 외부 표면에 근접하게 위치하는 열 절연체를 더 포함하는, 물체의 표면 온도를 측정하기 위한 열복사 온도계.
- 제1항에 있어서, 상기 열 차폐부의 상기 내부 공동의 표면은 4㎛ 내지 15㎛의 스펙트럼 범위 내에서 반사하지 않는, 물체의 표면 온도를 측정하기 위한 열복사 온도계.
- 제1항에 있어서, 상기 하우징 내에 고정되며, 상기 물체에 의해 방출되는 상기 열복사를 수용하고 상기 열복사를 상기 광학 장치로 전달하도록 구성되는, 보호 창을 더 포함하는, 물체의 표면 온도를 측정하기 위한 열복사 온도계.
- 열복사 센서와,
물체에 의하여 방출되는 열복사를 수용하고 상기 열복사를 상기 열복사 센서로 지향시키도록 구성되는 렌즈와,
열 차폐부와,
상기 열복사 센서에 열적으로 결합되는 레퍼런스 온도 센서와,
상기 열복사 센서 및 상기 열 차폐부에 열적으로 결합되는 가열 요소와,
상기 열복사 센서의 시계의 내부와 외부에서 이동 가능한 내부 표면을 갖는 셔터와,
상기 내부 표면을 상기 시계의 내부와 외부에서 이동시키기 위한 셔터 제어 장치와,
상기 열복사 센서 및 상기 레퍼런스 온도 센서로부터 신호들을 수용하고, 상기 열복사 센서의 온도가 상기 물체의 예상되는 표면 온도들의 범위 내에 유지되도록 상기 가열 요소를 활성화 및 비활성화시키며, 상기 셔터 제어 장치를 제어시키도록 구성되는 전자 회로와,
상기 열복사 센서, 상기 렌즈, 상기 열 차폐부, 상기 레퍼런스 온도 센서, 상기 가열 요소, 및 상기 전자 회로를 수납하며 위치시키도록 구성되는 하우징을 포함하며,
상기 열 차폐부는 상기 열복사 센서를 둘러싸도록 구성되어 열 차폐부의 내부 공동이 상기 열복사 센서의 시계의 내부에 있으며, 상기 내부 공동의 내부 표면은 열 흡수 코팅으로 덮이고,
상기 열 차폐부는 또한 상기 열복사 센서에 열적으로 결합되며,
상기 열 차폐부는 또한 상기 하우징의 내부 표면들로부터 방출되는 표유 열복사로부터 상기 열복사 센서를 차폐하도록 상기 하우징 내부에 구성되는, 물체의 표면 온도를 측정하기 위한 열복사 온도계. - 열복사 센서와,
물체에 의하여 방출되는 열복사를 수용하고 상기 열복사를 상기 열복사 센서로 지향시키기 위한 거울과,
열 차폐부와,
상기 열복사 센서에 열적으로 결합되는 레퍼런스 온도 센서와,
상기 열복사 센서 및 상기 열 차폐부에 열적으로 결합되는 가열 요소와,
상기 열복사 센서 및 상기 레퍼런스 온도 센서로부터 신호들을 수용하고, 상기 열복사 센서의 온도가 상기 물체의 예상되는 표면 온도들의 범위 내에 유지되도록 상기 가열 요소를 활성화 및 비활성화시키며, 이동 가능한 셔터를 작동시키도록 구성되는 전자 회로와,
상기 열복사 센서, 상기 거울, 상기 열 차폐부, 상기 레퍼런스 온도 센서, 상기 가열 요소, 및 상기 전자 회로를 수납하며 위치시키도록 위해 구성되는 하우징을 포함하며,
상기 열 차폐부는 상기 열복사 센서를 둘러싸도록 구성되어 열 차폐부의 내부 공동이 상기 열복사 센서의 시계의 내부에 있으며, 상기 내부 공동의 내부 표면은 열 흡수 코팅으로 덮이고,
상기 열 차폐부는 또한 상기 열복사 센서에 열적으로 결합되며,
상기 열 차폐부는 또한 상기 하우징의 내부 표면들로부터 방출되는 표유 열복사로부터 상기 열복사 센서를 차폐하도록 상기 하우징 내부에 구성되는, 물체의 표면 온도를 측정하기 위한 열복사 온도계. - 열복사 센서를 포함하는 열복사 온도계에 의해 물체의 표면 온도를 원격으로 측정하는 방법이며,
열 차폐부를 갖는 상기 열복사 센서를 제공하는 단계와,
상기 열복사 센서의 온도가 상기 물체의 예상되는 표면 온도들의 범위 내의 온도가 되도록 상기 열복사 센서를 가열하는 단계와,
물체로부터 방출되는 열복사를 상기 열복사 센서 상에 수용하는 단계와,
상기 열복사 센서의 출력 신호에 따라 상기 물체로부터 방출되는 상기 열복사의 열 플럭스(Φ)를 결정하는 단계와,
상기 열 플럭스 및 상기 열복사 센서의 온도의 함수로서 상기 물체의 표면온도를 계산하는 단계와,
상기 물체의 계산된 온도를 상기 열복사 온도계의 표시 장치 상에 표시하는 단계를 포함하며,
상기 열 차폐부는 열복사 센서에 열적으로 결합되며, 상기 열복사 센서의 시계 내부에 열 흡수 코팅으로 덮이는 내부 표면을 포함하며, 상기 열복사 센서를 열복사 온도계의 하우징의 내부 표면들로부터 방출되는 표유 열복사로부터 차폐하도록 구성되는,
물체의 표면 온도를 원격으로 측정하는 방법. - 제25항에 있어서, 상기 물체의 예상되는 표면 온도들의 범위 내의 센서 온도에 도달하도록 상기 열복사 센서를 가열 또는 냉각하는 단계를 더 포함하는, 물체의 표면 온도를 원격으로 측정하는 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US19702308P | 2008-10-23 | 2008-10-23 | |
US61/197,023 | 2008-10-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110089405A KR20110089405A (ko) | 2011-08-08 |
KR101622427B1 true KR101622427B1 (ko) | 2016-05-31 |
Family
ID=42119697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020117011472A KR101622427B1 (ko) | 2008-10-23 | 2009-10-23 | 표유 복사 차폐부를 갖는 비접촉식 의료용 온도계 |
Country Status (8)
Country | Link |
---|---|
US (1) | US8834019B2 (ko) |
EP (1) | EP2347233A4 (ko) |
JP (2) | JP2012507007A (ko) |
KR (1) | KR101622427B1 (ko) |
CN (1) | CN102265125B (ko) |
CA (1) | CA2762188C (ko) |
MX (1) | MX2011004364A (ko) |
WO (1) | WO2010048505A1 (ko) |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9900478B2 (en) | 2003-09-04 | 2018-02-20 | Flir Systems, Inc. | Device attachment with infrared imaging sensor |
US9986175B2 (en) * | 2009-03-02 | 2018-05-29 | Flir Systems, Inc. | Device attachment with infrared imaging sensor |
US10782187B2 (en) * | 2010-07-08 | 2020-09-22 | Cvg Management Corporation | Infrared temperature measurement and stabilization thereof |
US9228902B2 (en) * | 2010-07-08 | 2016-01-05 | Cvg Management Corporation | Infrared temperature measurement and stabilization thereof |
DE102011009128B4 (de) * | 2011-01-21 | 2015-11-19 | Excelitas Technologies Singapore Pte Ltd | Heizung für einen Sensor, beheizter Strahlungssensor, Strahlungserfassungsverfahren |
EP2482049A1 (en) * | 2011-01-31 | 2012-08-01 | Microlife Intellectual Property GmbH | IR thermometer baffles |
CN102727189B (zh) * | 2011-04-12 | 2014-08-20 | 深圳市金亿帝科技有限公司 | 一种红外体温计测量方法 |
AU2012203158B2 (en) * | 2011-06-08 | 2014-01-30 | Embertec Pty Ltd | Apparatus and method for shielding an IR detecting diode |
EP2756276A2 (de) * | 2011-09-15 | 2014-07-23 | Oerlikon Trading AG, Trübbach | Verfahren zur temperaturmessung von substraten in einer vakuumkammer |
US20130223472A1 (en) * | 2012-02-27 | 2013-08-29 | Cvg Management Corporation | Infrared temperature sensor calibration system and method |
JP6032909B2 (ja) * | 2012-03-21 | 2016-11-30 | 株式会社Okiデータ・インフォテック | インクジェット記録装置 |
US9606003B2 (en) * | 2012-03-28 | 2017-03-28 | Yonatan Gerlitz | Clinical hand-held infrared thermometer with special optical configuration |
US8452382B1 (en) | 2012-09-21 | 2013-05-28 | Brooklands Inc. | Non-contact thermometer sensing a carotid artery |
CN103808412B (zh) * | 2012-11-02 | 2016-11-09 | 中国石油化工集团公司 | 一种炉膛工件测温装置及方法 |
WO2014087253A2 (en) * | 2012-11-19 | 2014-06-12 | Kaz Europe Sa | Medical thermometer having an improved optics system |
CN104994781A (zh) * | 2012-12-19 | 2015-10-21 | 捷通国际有限公司 | 近似热量能量摄入和/或常量营养素组成的系统和方法 |
JP6273293B2 (ja) * | 2013-01-07 | 2018-01-31 | セキュラス メディカル グループ インク | 温度測定システム、方法、および装置 |
US9658109B2 (en) | 2013-03-15 | 2017-05-23 | Heptagon Micro Optics Pte. Ltd. | Non-contact thermal sensor module |
US10054495B2 (en) | 2013-07-02 | 2018-08-21 | Exergen Corporation | Infrared contrasting color temperature measurement system |
JP6318599B2 (ja) * | 2013-12-17 | 2018-05-09 | 株式会社リコー | 半導体集積回路 |
CN104068832A (zh) * | 2014-06-20 | 2014-10-01 | 京东方科技集团股份有限公司 | 一种体表温度计及可佩戴显示装置 |
GB2528044B (en) | 2014-07-04 | 2018-08-22 | Arc Devices Ni Ltd | Non-touch optical detection of vital signs |
US8965090B1 (en) | 2014-07-06 | 2015-02-24 | ARC Devices, Ltd | Non-touch optical detection of vital signs |
US9854973B2 (en) | 2014-10-25 | 2018-01-02 | ARC Devices, Ltd | Hand-held medical-data capture-device interoperation with electronic medical record systems |
CN105043558B (zh) * | 2015-06-06 | 2017-11-28 | 中国科学院云南天文台 | 一种用于高反面红外辐射测量的屏蔽方法及装置 |
KR102363540B1 (ko) * | 2015-07-13 | 2022-02-17 | 삼성전자주식회사 | 조리 기기 |
US10568726B2 (en) * | 2015-08-06 | 2020-02-25 | Transparent Materials, Llc | Photocomposite, light source and thermal detector |
KR20170050954A (ko) * | 2015-11-02 | 2017-05-11 | 엘지전자 주식회사 | 스마트 디바이스 및 이의 제어방법 |
US10390692B2 (en) * | 2015-11-25 | 2019-08-27 | Htc Corporation | Hybrid detection apparatus |
US10151607B2 (en) | 2016-02-26 | 2018-12-11 | Alliance For Sustainable Energy, Llc | Shield devices, systems, and methods for improved measurements and detection |
FR3059824B1 (fr) | 2016-12-07 | 2019-06-21 | Ulis | Capteur d'image infrarouge |
US10506926B2 (en) | 2017-02-18 | 2019-12-17 | Arc Devices Limited | Multi-vital sign detector in an electronic medical records system |
US10492684B2 (en) | 2017-02-21 | 2019-12-03 | Arc Devices Limited | Multi-vital-sign smartphone system in an electronic medical records system |
EP3603494B1 (en) * | 2017-03-21 | 2022-03-16 | LG Electronics Inc. | Body temperature measurement device |
US20190038455A1 (en) * | 2017-08-01 | 2019-02-07 | Verily Life Sciences Llc | Ambient Condition Resistant Body Mountable Thermal Coupling Devices |
US10602987B2 (en) | 2017-08-10 | 2020-03-31 | Arc Devices Limited | Multi-vital-sign smartphone system in an electronic medical records system |
US11041617B2 (en) * | 2018-04-20 | 2021-06-22 | Signify Holding B.V. | Luminaire with an integrated camera |
US10485431B1 (en) | 2018-05-21 | 2019-11-26 | ARC Devices Ltd. | Glucose multi-vital-sign system in an electronic medical records system |
CA3155403A1 (en) * | 2018-05-24 | 2019-11-28 | Cvg Management Corporation | Infrared temperature measurement and stabilization thereof |
KR101930898B1 (ko) * | 2018-06-26 | 2019-03-11 | (주)힌지코리아 | 비접촉식 온도센서 조립체 |
US10948571B1 (en) * | 2018-08-28 | 2021-03-16 | Rockwell Collins, Inc. | Long wave infrared emitter systems |
US11635344B2 (en) * | 2019-02-01 | 2023-04-25 | Optikos Corporation | Portable optic metrology thermal chamber module and method therefor |
US11391634B2 (en) | 2019-02-12 | 2022-07-19 | Accure Acne, Inc. | Temperature sensing apparatus for use with a photo-thermal targeted treatment system and associated methods |
JP7031646B2 (ja) * | 2019-09-24 | 2022-03-08 | カシオ計算機株式会社 | 検出装置及び検出装置の製造方法 |
US20210108967A1 (en) | 2019-10-14 | 2021-04-15 | Justin Thrash | TempTech |
WO2021247300A1 (en) | 2020-06-01 | 2021-12-09 | Arc Devices Limited | Apparatus and methods for measuring blood pressure and other vital signs via a finger |
US11187586B2 (en) | 2020-08-17 | 2021-11-30 | SoCal Dab Tools, LLC | Temperature sensing system |
CN114383731A (zh) * | 2020-10-20 | 2022-04-22 | 热映光电股份有限公司 | 红外线感测模块与额温测量装置 |
CN114577341A (zh) * | 2020-11-30 | 2022-06-03 | 华为技术有限公司 | 一种探测器及移动终端 |
US11808631B2 (en) * | 2020-12-23 | 2023-11-07 | Radiant Innovation Inc. | Infrared sensor module and forehead thermometer |
TW202240132A (zh) * | 2021-03-31 | 2022-10-16 | 眾智光電科技股份有限公司 新竹縣寶山鄉工業東九路25號 2樓 | 紅外線溫度感測器 |
CN113340438B (zh) * | 2021-07-08 | 2022-05-03 | 电子科技大学 | 一种航空发动机热端部件非接触温度场距离误差校准方法 |
TWI841861B (zh) * | 2021-07-29 | 2024-05-11 | 原相科技股份有限公司 | 高穩定度溫度計結構及使用該溫度計結構的系統 |
CN114593822A (zh) * | 2021-10-27 | 2022-06-07 | 中国科学院合肥物质科学研究院 | 一种能够扣除杂散辐射的红外辐射测量方法及装置 |
CN115993189B (zh) * | 2023-03-22 | 2023-06-06 | 成都华安视讯科技有限公司 | 一种手腕测温设备 |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4005605A (en) * | 1974-07-22 | 1977-02-01 | Mikron Instrument Company, Inc. | Remote reading infrared thermometer |
US4290182A (en) * | 1979-10-03 | 1981-09-22 | Western Electric Co., Inc. | Methods and apparatus for measuring the temperature of a continuously moving strand of material |
US4435092A (en) * | 1980-07-25 | 1984-03-06 | Nippon Steel Corporation | Surface temperature measuring apparatus for object within furnace |
US4602642A (en) * | 1984-10-23 | 1986-07-29 | Intelligent Medical Systems, Inc. | Method and apparatus for measuring internal body temperature utilizing infrared emissions |
USRE34789E (en) * | 1985-04-17 | 1994-11-15 | Thermoscan Inc. | Infrared electronic thermometer and method for measuring temperature |
DE3650723T2 (de) * | 1985-04-17 | 2000-03-16 | Thermoscan Inc. | Elektronisches infrarot-thermometer und temperaturmessung |
US4722612A (en) * | 1985-09-04 | 1988-02-02 | Wahl Instruments, Inc. | Infrared thermometers for minimizing errors associated with ambient temperature transients |
JPS63157628U (ko) * | 1987-04-03 | 1988-10-17 | ||
WO1989006348A1 (en) * | 1987-12-25 | 1989-07-13 | Nippon Steel Corporation | Optical thermometer |
JPH0816629B1 (ko) * | 1987-12-25 | 1996-02-21 | ||
US5018872A (en) * | 1988-11-01 | 1991-05-28 | Diatek, Inc. | Probe assembly for infrared thermometer |
US6219573B1 (en) * | 1989-04-14 | 2001-04-17 | Exergen Corporation | Radiation detector probe |
US5325863A (en) * | 1988-12-06 | 1994-07-05 | Exergen Corporation | Radiation detector with high thermal stability |
US4900162A (en) * | 1989-03-20 | 1990-02-13 | Ivac Corporation | Infrared thermometry system and method |
DE4004408A1 (de) * | 1990-02-13 | 1991-08-14 | Ultrakust Electronic Gmbh | Infrarot-temperatursensor |
JPH0428341A (ja) | 1990-04-20 | 1992-01-30 | Sanyo Electric Co Ltd | 検温装置 |
JPH081460Y2 (ja) * | 1990-05-23 | 1996-01-17 | 株式会社堀場製作所 | 放射温度計 |
JPH0741026B2 (ja) * | 1990-08-30 | 1995-05-10 | ヒロセ電機株式会社 | 体温計 |
BR9107167A (pt) * | 1990-12-12 | 1994-02-22 | Sherwood Ims Inc | Termometro de temperatura do corpo e metodo de medicao da temperatura do corpo humano utilizando um mapeamento de calibracao |
JPH06147995A (ja) * | 1992-11-06 | 1994-05-27 | Murata Mfg Co Ltd | 赤外線検出装置 |
JP3184659B2 (ja) * | 1993-04-01 | 2001-07-09 | テルモ株式会社 | 体温計 |
US5419312A (en) * | 1993-04-20 | 1995-05-30 | Wildflower Communications, Inc. | Multi-function endoscope apparatus |
US20030185273A1 (en) * | 1993-09-17 | 2003-10-02 | Hollander Milton Bernard | Laser directed temperature measurement |
US5645349A (en) * | 1994-01-10 | 1997-07-08 | Thermoscan Inc. | Noncontact active temperature sensor |
GB9411160D0 (en) * | 1994-06-03 | 1994-07-27 | Land Infrared Ltd | Improvements relating to radiation thermometers |
EP0794415A1 (fr) * | 1996-03-06 | 1997-09-10 | Koninklijke Philips Electronics N.V. | Dispositif de mesure de température sans contact |
JPH1075934A (ja) * | 1996-09-04 | 1998-03-24 | Matsushita Electric Ind Co Ltd | 放射体温計 |
JPH10227699A (ja) * | 1997-02-14 | 1998-08-25 | Matsushita Electric Ind Co Ltd | 非接触測温センサ |
DE19710946A1 (de) * | 1997-03-15 | 1998-09-24 | Braun Ag | Thermopile-Sensor und Strahlungsthermometer mit einem Thermopile-Sensor |
JPH10290790A (ja) * | 1997-04-18 | 1998-11-04 | Matsushita Electric Ind Co Ltd | 放射体温計 |
US6129673A (en) * | 1998-06-08 | 2000-10-10 | Advanced Monitors, Corp. | Infrared thermometer |
AU8129698A (en) * | 1998-07-14 | 2000-02-07 | Kazuhito Sakano | Radiation thermometer |
KR100370001B1 (ko) * | 1998-10-31 | 2003-01-29 | 엘지전자 주식회사 | 온도감지장치 |
DE19913672A1 (de) * | 1999-03-25 | 2000-11-02 | Braun Gmbh | Infrarot-Thermometer mit einer beheizbaren Meßspitze und Schutzkappe |
JP2001054505A (ja) | 1999-08-19 | 2001-02-27 | Matsushita Electric Ind Co Ltd | 耳孔式体温計 |
US7014358B2 (en) * | 2001-02-19 | 2006-03-21 | Braun Gmbh | Radiation thermometer comprising a heated measuring tip |
US6556852B1 (en) * | 2001-03-27 | 2003-04-29 | I-Medik, Inc. | Earpiece with sensors to measure/monitor multiple physiological variables |
JP2002333370A (ja) | 2001-05-07 | 2002-11-22 | Matsushita Electric Ind Co Ltd | 赤外線検出器およびこれを用いた放射体温計 |
JP2003156395A (ja) * | 2001-11-20 | 2003-05-30 | Bio Ekoonetto:Kk | 赤外線温度センサー |
US8303514B2 (en) * | 2002-01-25 | 2012-11-06 | Vital Accuracy Partners | Means and apparatus for rapid, accurate, non-contacting measurement of the core temperature of animals and humans |
JP3743394B2 (ja) | 2002-05-31 | 2006-02-08 | 株式会社村田製作所 | 赤外線センサおよびそれを用いた電子装置 |
JP2004085459A (ja) * | 2002-08-28 | 2004-03-18 | Bio Ekoonetto:Kk | 赤外線温度センサーおよびそれを用いた温度測定回路並びにその測定方法 |
-
2009
- 2009-10-23 CN CN200980151773.7A patent/CN102265125B/zh not_active Expired - Fee Related
- 2009-10-23 JP JP2011533369A patent/JP2012507007A/ja active Pending
- 2009-10-23 US US13/125,954 patent/US8834019B2/en not_active Expired - Fee Related
- 2009-10-23 EP EP09822770.5A patent/EP2347233A4/en not_active Withdrawn
- 2009-10-23 CA CA2762188A patent/CA2762188C/en not_active Expired - Fee Related
- 2009-10-23 MX MX2011004364A patent/MX2011004364A/es active IP Right Grant
- 2009-10-23 KR KR1020117011472A patent/KR101622427B1/ko active IP Right Grant
- 2009-10-23 WO PCT/US2009/061842 patent/WO2010048505A1/en active Application Filing
-
2015
- 2015-05-07 JP JP2015095023A patent/JP6389444B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012507007A (ja) | 2012-03-22 |
JP2015166743A (ja) | 2015-09-24 |
CA2762188C (en) | 2017-01-03 |
MX2011004364A (es) | 2011-07-20 |
US20110228811A1 (en) | 2011-09-22 |
CA2762188A1 (en) | 2010-04-29 |
US8834019B2 (en) | 2014-09-16 |
KR20110089405A (ko) | 2011-08-08 |
EP2347233A4 (en) | 2017-12-20 |
CN102265125B (zh) | 2015-09-30 |
CN102265125A (zh) | 2011-11-30 |
WO2010048505A1 (en) | 2010-04-29 |
JP6389444B2 (ja) | 2018-09-12 |
EP2347233A1 (en) | 2011-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101622427B1 (ko) | 표유 복사 차폐부를 갖는 비접촉식 의료용 온도계 | |
US4854730A (en) | Radiation thermometer and method for measuring temperature | |
US4907895A (en) | Optical chopper for infrared thermometer | |
JP4604033B2 (ja) | 非冷却マイクロボロメータ検出器を使用する放射測定 | |
JP5491636B2 (ja) | 体内物質の非侵襲的測定のための装置および方法 | |
JP2015166743A5 (ko) | ||
US20060232675A1 (en) | Thermal imaging system and method | |
TW440686B (en) | Method for determining a temperature and radiation thermometer with multiple infrared sensor elements | |
US10054490B2 (en) | Medical thermometer having an improved optics system | |
Small IV et al. | Two-color infrared thermometer for low-temperature measurement using a hollow glass optical fiber | |
JP2813331B2 (ja) | 放射温度計 | |
CZ35949U1 (cs) | Zařízení pro termografické měření teploty | |
WO2023072325A1 (en) | Device for thermographic temperature measurement | |
JPH08275925A (ja) | 放射体温計 | |
JPH0663860B2 (ja) | 低温用放射計 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20190425 Year of fee payment: 4 |