KR101590521B1 - 식물의 탄소,질소,바이오매스 및 수율을 증진시키기 위한 발현 구조체 및 방법 - Google Patents

식물의 탄소,질소,바이오매스 및 수율을 증진시키기 위한 발현 구조체 및 방법 Download PDF

Info

Publication number
KR101590521B1
KR101590521B1 KR1020137030563A KR20137030563A KR101590521B1 KR 101590521 B1 KR101590521 B1 KR 101590521B1 KR 1020137030563 A KR1020137030563 A KR 1020137030563A KR 20137030563 A KR20137030563 A KR 20137030563A KR 101590521 B1 KR101590521 B1 KR 101590521B1
Authority
KR
South Korea
Prior art keywords
seq
aspat
pepcase
leu
plant
Prior art date
Application number
KR1020137030563A
Other languages
English (en)
Other versions
KR20140019438A (ko
Inventor
아니쉬 카아크라
수렌더 쿠마르 바츠
파람비르 싱 아후자
산제이 쿠마르
Original Assignee
카운슬 오브 사이언티픽 앤드 인더스트리얼 리서치
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 카운슬 오브 사이언티픽 앤드 인더스트리얼 리서치 filed Critical 카운슬 오브 사이언티픽 앤드 인더스트리얼 리서치
Publication of KR20140019438A publication Critical patent/KR20140019438A/ko
Application granted granted Critical
Publication of KR101590521B1 publication Critical patent/KR101590521B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Abstract

동화된 C 및 N은 대체로 식물 성장 및 농작물 수율에 영향을 미친다. 식물의 탄소 및 질소 상태를 변경하려는 이전의 시도는 하나 또는 두 개의 유전자로 시도되었다. 본 발명은 세 개의 유전자의 동시적인 공동-과발현을 수반하고, 하나의 유전자(PEPCase)는 효율적으로 CO2를 포획하는 반면, 다른 두 개는 질소 동화에 관련된 효소(Asp AT 및 GS)를 코딩한다. 조합된 효과는 식물의 탄소 및 질소 상태 및 생산성의 증진이다.

Description

식물의 탄소,질소,바이오매스 및 수율을 증진시키기 위한 발현 구조체 및 방법{An expression construct and process for enhancing the carbon,nitrogen,biomass and yield of plants}
하기 명세서는 구체적으로 본 발명 및 본 발명이 수행되는 방식을 기술한다:
본 발명은 식물의 탄소(C), 질소(N), 바이오매스(biomass) 및 수율(yield)을 증진시키기 위한 발현 구조체에 관한 것이다.
또한, 본 발명은 효소 포스포에놀피루베이트 카르복실라제(phosphoenolpyruvate carboxylase)(이하, "PEPase"라 함), 글루타민 신세타제(glutamine synthetase)(이하, "GS"라 함) 및 아스파르테이트 아미노트랜스퍼라제(aspartate aminotransferase)(이하, "AspAT"라 함) 유전자의 동시 과발현(co-overexpression)을 이용하는 전술된 발현 구조체를 사용하여, 식물의 C 및 N 수준의 증진 및 바이오매스 및 수율의 후속적인 향상을 위한 방법을 제공한다. 구체적으로, 본 발명은 상기 단백질을 코딩하는 핵산 서열이 식물 세포에서 발현되는 것인 형질전환 식물(transgenic plant)에 관한 것이다.
보다 구체적으로, 본 발명은 세 개의 유전자의 동시 과발현을 수반하는 유전적 구조체에 의한 식물의 형질전환(transformation)에 관한 것이고, 여기서 하나의 유전자 PEPCase는 CO2를 포획(capture)하는 것을 담당하는 효소를 코딩하고, 나머지 두 개는 N 동화(assimilation)에 관련된 효소(AspAT 및 GS)를 코딩하며, N 동화는 AspAT + GS + PEPCase 유전자로 형질전환된 식물 아라비돕시스 탈리아나( Arabidopsis thaliana )에 포함된 구성적 프로모터(constitutive promoter)의 조절 하에 있는, PEPCase 및 식물에서 이러한 유전자의 발현에 의해 C 골격(skeleton)을 필요로 하고, 이에 의해 식물의 C 및 N의 상태, 바이오매스 및 수율을 증진한다.
본 발명은 증진된 C, N 함량, 바이오매스, 및 수율(yield component)을 가져오는, 세 개의 유전자, 즉 AspAT, GSPEPCase의 동시 과발현을 갖는 형질전환된 식물에 관한 것이다.
PEPCase (EC. 4.1.1.31)는 HCO3 - Mg2 +의 존재하에서, 포스포에놀피루베이트(phosphoenolpyruvate)(이하, "PEP"라 함)의 β-카르복실화(carboxylation)를 촉매하여 옥살로아세테이트(oxaloacetate)(이하, "OAA"라 함) 및 무기 인산염(inorganic phosphate)(이하, "Pi"라 함)을 생산하는 식물의 흔한(ubiquitous) 효소이고, 이는 주로 트리카르복실산 회로(tricarboxylic acid cycle)에 중간체(intermediate)를 충전하는(replenishing) 보충 기능(anaplerotic function)을 갖는다. 고등 식물에서, 상이한 기관 특이성(organ specificity)을 갖는 PEPCase의 여러 개의 이소형(isoform)이 있고, 이들은 기공 개방(stomata opening), 열매 숙성(fruit ripening) 및 종자 성숙(seed maturation)을 포함한 다양한 기능에 관여한다. C4 및 CAM 식물의 잎은 높은 수준의 PEPCase를 함유하고, 이는 광합성의 초기 CO2 고정(fixation)을 촉매한다. C3 식물의 잎에서 보이는 훨씬 낮은 수준의 PEPCase는 보충 기능에 기여하고, 세포 pH의 조절에 역할을 한다.
GS(EC 6.3.1.2)는 암모니아(이하, "NH3"라 함)와 글루타메이트(glutamate)(이하, "Glu"라 함)의 ATP-의존 축합(ATP-dependent condensation)을 촉매하여 글루타민(glutamine)(이하, "Gln"이라 함)을 생성시킨다. 그 뒤, 글루타메이트 신타제(glutamate synthase, GOGAT)가 Gln의 아미드기를 α-케토글루타레이트(α-ketoglutarate)를 전달하여 두 분자의 Glu를 생성시킨다. Gln 및 Glu 모두 단백질, 핵산 및 클로로필(chlorophyll)을 위한 유기 N의 주요 소스(primary source)이다.
AspAT (EC 2.6.1.1)는 아스파르테이트(asparate)(이하, "Asp"라 함)의 아미노기의 α-케토글루타레이트로의 가역적 전달(reversible transfer)을 촉매하여 OAA 및 Glu를 형성시킨다. 식물에서, AspAT는 다음을 포함한, 여러 대사 역할을 하는 것으로 제안되었다: 뿌리에서 NH3 + 동화동안 C 골격의 라사이클링, 아스파라긴(asparagine)(이하, "Asn"라 함) 및 우레이드(ureide)와 같은 주요 질소 수송 분자(transport molecule)의 생합성을 위한 아미드 전구체(amide precursor)를 제공하는 것, 종자 필링(seed filling) 동안 Asn 질소를 동원(recruiting)하는 것 및 Asp 패밀리의 아미노산 생합성을 위한 전구체를 제공하는 C4 식물에서 세포내(intracellular) C 셔틀(shuttle)에 참여하는 것.
바이오매스 생산, 수율 또는 수확 인덱스(harvest index)에 있어서 식물의 성능(performance)은 다수의 내부 및 환경 인자에 의존한다. 모든 이러한 인자들 중에, 식물 C 및 N 수준은 식물 생산성을 지배하는 중요한 인자 중 하나이다. C 및 N 동화의 최근 밝혀진 세부사항은 조절 시스템(regulatory system)이 대사 및 환경적 신호(cue)에 대응하여 이러한 영양소의 흡수(uptake) 및 분배(distribution)를 조정한다는 것을 제시한다. 식물은 그들의 C 및 N 상태의 변화를 감지하고 이러한 정보를 유전자 발현의 변화가 야기되는 핵(nucleus)에 전달한다. 식물 성장 및 작물 수율은 대체로 동화된 C 및 N에 의해 영향을 받기 때문에, 효율적인 C 및 N 동화를 설계(engineer)하기 위하여 과거 많은 시도가 있었다. 그러나, 식물의 C, N, 바이오매스 및 수율의 상태의 유의한 향상을 보여주는 보고는 아직까지 없다.
표 1은 상이한 식물에서 C 및/또는 N 및 바이오매스를 향상시키기 위한 다양한 전략에 이용가능한 정보의 상태를 예시한다.
기능
채택된 형질전환 시스템 결과 참조
NAD 키나제2 (NADK2)

엽록체의 NAD로부터 NADP의 합성을 촉매한다
식물 대사에 대한 NADP 수준 변경의 효과를 조사하기 위하여 아라비돕시스 NADK2 과발현자(overexpressor) 및 nadk2 돌연변이를 연구하였다. NADK2 과발현자는 캘빈 회로 중간체 및 Glu 및 Gln과 같은 아미노산의 증가를 특징으로 한다. 그러나, C 및 N 대사에 영향을 미치는 NADK2의 역할에 관한 명확한 증거는 없다. Takahashi, H., Takahara, K., Hashida, S., Hirabayashi, T., Fujimori, T.,
Yamada, M.K., Yamaya, T., Yanagisawa, S. 및 Uchimiy, H.
2009. Plant Physiol. 151: 100-113.
Dof 1

Dof1은 PEPCase를 포함한, 유기산(organic acid) 대사와 관련된 다중 유전자 발현(multiple gene expression)을 위한 전사 활성인자(transcription activator)이다.
옥수수 Dof1 cDNA가 35SC4PPDK로 지정된 35S 프로모터의 유도체(derivative) 하에서 아라비돕시스 식물에서 과발현되었다. 아라비돕시스에서의 Dof1 과발현은 낮은 N 조건 하에서 향상된 성장과 함께, 식물 C 및 N 함량의 협동적(co-operative) 변형을 가져왔다. 그러나, 식물 바이오매스 또는 수율에 대한 CN 변화의 효과는 논의되지 않았다. Yanagisawa, S., Akiyama, A., Kisaka, H., Uchimiya, H. 및 Miwa, T. 2004. Proc. Natl. Acad. Sci. USA. 101: 7833-7838
GS

GS는 NH3의 (Glu)와의 ATP-의존 축합을 촉매하여 (Gln)을 생성시킨다.
i.) 대두(soybean) 세포질 GS 유전자 (GS15)가 벌노랑이(Lotus corniculatus L.) 식물에서의 과발현을 지시(direct)하기 위하여 구성적 CaMV 35S 프로모터에 융합되었다. 세포질 GS 의 과발현은 식물 발달을 가속화시켰고, NH4 + 풍부 배지에서 성장시 조기 노화(senescence) 및 이른 개화(premature flowering)를 가져왔다. 증진된 NH4 + 동화에 대한 C 골격 및 에너지의 제한이 예상되었다. Vincent, R., Fraisier, V., Chaillou, S., Limami, M. A., Deleens, E., Phillipson, B., Douat, C., Boutin, J.-P. 및 Hirel, B. 1997. Planta. 201: 424-433. 
ii.) 완두콩 세포질 GS 유전자가 담배 식물에서 과발현되었다.
N, 빛 및 광호흡과 관련된 세포질 광호흡 GS의 과발현은 광호흡 암모늄(photorespiratory ammonium)의 동화를 위한 엽록체 GS로의 대안적인 루트를 시사했다. Oliveira, I.., Brears, T., Knight, T., Clark, A. 및 Coruzzi, G. 2002, Plant Physiol. 129:1170-1180
iii.) 대장균 GS 유전자(glnA )와 함께 전장(full-length) cDNA 코딩 쌀 세포질 GS 유전자(OsGS1;1 및 OsGS1;2)가 구성적 CaMV 35S 프로모터 하에서 쌀 식물에서 과발현되었다. GS-과발현된 식물에서 증가된 대사 수준이 얻어져서,잎에서 더 높은 총 GS 활성 및 수용성 단백질 농도 및 전체 식물에서 더 높은 총 아미노산 및 총 N 함량을 보였다. 그러나, 야생형 식물과 비교하여, GS-과발현된 식물의 종자에서 곡물 수득률(yield production) 및 총 아미노산 모두의 감소가 관찰되었다. Cai, H., Zhou, Y., Xiao, J., Li, X., Zhang, Q. 및 Lian, X. 2009, Plant Cell Rep. 28: 527-537 
iv) alfa alfa 세포질 GS 를 코딩하는 cDNA가 담배 식물에서 과발현되었다. 형질전환 식물은 높은 N 하에서의 식물과 유사한 속도로 광합성을 유지하여, N 결핍(starvation) 하에서 더 잘 성장하였으나, 대조군 식물의 광합성은 40-50% 억제되었다. 이러한 결과는 더 나은 농경(agronomic) 특성을 갖는 식물을 개발하기 위한 CN 대사의 협동적 변형에 대한 요구를 또한 반영한다. Fuentes, S., Allen, D., Ortiz-Lopez, A. 및 Hernandez, G. 2001. J. Exp. Bot. 52:1071-1081.
PEPCase

PEPCase는 OAA 및 Pi를 생산하기 위하여 HCO3 - Mg2 + 존재하에서 PEP의 β-카르복실화를 촉매한다.



i) 쌀 식물의 형질전환을 위해 C4-특이적PEPCase를 코딩하는 온전한(intact) 옥수수 유전자를 사용하였다. 형질전환 식물은 광합성의 감소된 O2 억제와 PEPCase의 더 높은 활성을 보였다. 광합성의 감소된 O2 억제는 주로 증진된 옥수수 PEPCase를 통한 대기 CO2 의 부분적 직접 고정의 증가라기 보다는 Pi 의 감소때문인 것으로 밝혀졌다. 그러나, PEPCase 과발현의 결과로서 바이오매스 축적(accumulation) 또는 수율에 관한 보고는 없었다. Agarie, S., Miura, A., Sumikura, R.,
Tsukamoto, S., Nose, A., Arima, S., Matsuoka, M. 및 Tokutomi, M.M. 2002. Plant Sci. 162: 257-265.
ii) 옥수수 PEPCase 대조군 옥수수 PEPCase 및 담배 클로로필 a/b 결합 단백질(binding protein) 유전자 프로모터 하에 담배 식물에 도입되었다. 담배 클로로필 a/b 결합 단백질 유전자 프로모터를 사용하여, 더 높은 수준의 올바른 크기의 옥수수 PEPCase 전사물(transcript)이 얻어졌다. 잎에서 PEPCase 활성의 두 배 증가와 함께, 형질전환 식물은 유의하게 증가된 수준의 적정 산도(titratable acidity) 및 말산(malic acid)을 가졌다. 그러나, 이러한 생화학적 차이는 광합성 속도 또는 CO2 보상점(compensation point)에 있어, 유의한 생리학적 변화를 발생시키지 않았다. Hudspeth, R.L.,Grula, J.W.,Dai, Z., Edwards, G.E. 및 Ku, M.S.B. 1992. Plant Physiol. 98: 458-464
AspAT

AspAT
는 (Asp)의 아미노기의 a-케토글루타레이트로의 가역적 전달을 촉매하여 OAA 및 Glu를 형성시킨다.
i) 기장(Panicum miliaceum L.) 미토콘드리아 및 세포질 AspAT 유전자(각각 mAspAT 및 cAspAT)가 CaMV 35S 프로모터 하에서 담배 식물에서 발현되었다. mAspAT- 또는 cAspAT- 형질전환된 식물은 비형질전환 식물보다 잎에서 각각 약 3배 또는 3.5배 높은 AspAT 활성을 가졌다. 형질전환된 식물들 모두의 잎은 증가된 수준의 PEPCase를 가졌고, cAspAT에 의해 형질전환된 식물도 또한 잎에서 증가된 수준의 mAspAT를 가졌다. 이러한 결과는 C 및 N 대사 간 상호작용을 더 시사한다.
Sentoku, N., Taniguchi , M., Sugiyama, T.,
Ishimaru, K., Ohsugi, R., Takaiwa, F. 및 Toki, S. 2000.
Plant Cell Rep. 19:598 - 603.
ii) 쌀로부터의 세 개의 AspAT 유전자(OsAAT3) 및 대장균으로부터의 하나의 AspAT 유전자(EcAAT)가 쌀 식물의 CaMV 35S 프로모터 하에서 과발현되었다. 대조군 식물과 비교하여, 형질전환체(transformant)는 유의하게 증가된 잎 AspAT 활성 및 더 많은 종자 아미노산 및 단백질 함량을 보였다. 그러나, 바이오매스 또는 수율에 대한 CN 수준의 영향은 논의되지 않았다. Zhou. Y., Cai ,H., Xiao, J.
Li, X., Zhang, Q. 및 Lian, X. 2009.
Theor Appl Genet. 118:1381-1390
PEPCase의 더 높은 활성은 CO2 포획(capturing)을 가능하게 하고, 탄소 백본(backbone)을 AspAT 및 GS의 공동 활성(joint activity)을 통해 질소의 유기적 형태(organic form)로의 경로(routing)를 위해 이용가능하게 할 것이다. 결과적으로 본 발명자는 본 발명의 목적이 본 발명을 성립시키는 AspAT, GS 및 PEPCase를 코딩하는 유전자 발현의 수반하는 증가(concomitant increase)에 의하여 달성될 수 있다는 것을 발견하였다.
본 발명에 관한 당해 기술 지식의 상태 및 식물의 탄소 및/또는 질소 수준을 증진시키기 위해 이전에 행해진 시도가 하기에 제시된다. Hudspeth, R.L., Grula, J.W., Dai, Z., Edwards, G.E. 및 Ku, M.S.B.에 의한, "Expression of miaze phosphoenolpyruvate carboxylase in transgenic tobacoo"(1992, Plant Physiology, 98: 458-464)라는 제목의 논문이 참조될 수 있고, 여기서 옥수수의 PEPCase는 담배 식물에서 담배 (Nicotiana plumbaginifolia) 클로로필 a/b 결합 단백질 유전자 프로모터 하에서 발현되었다. 상승한 수준의 적정 산도 및 말산을 갖는, 비형질전환체와 비교하여, 형질전환된 잎에서 두 배까지 더 높은 활성의 PEPCase가 관찰되었다. 그러나, 이러한 생화학적 차이는 광합성 속도 또는 CO2 보상점와 관련하여 어떠한 유의한 생리학적 변화를 발생시키지 않았다.
Lebouteiller, B., Dupont, A.G., Pierre, J.N., Bleton , J., Tchapla, A., Maucourt, M. 및 Moing, A., Rolin, D., 및 Vidal, J.에 의한, "Physiological impacts of modulating phosphoenolpyruvate carboxylase levels in leaves and seeds of Arabidopsis thaliana"(2007, Plant Science, 172:256-272,)라는 제목의 논문이 참조될 수 있고, 여기서 수수의 PEPCase는 아라비돕시스 식물에서 CaMV 35S 프로모터 하에서 발현되었다. 1차(primary) 형질전환체의 잎은 PEPCase 활성에서 10 배까지 증가, 종자의 건조 중량 및 총 단백질 함량에서 30%까지 증가를 보였다. 그러나, 형질전환체(1차 및 후대(progeny))는 식물 당 종자 생산에서 향상된 성장 표현형 또는 변형을 보이지 않았다.
Chen, L.M., Li, K.Z. Miwa, T. 및 Izui, K.에 의한 "Overexpression of a cyanobacterial phosphoenol pyruvate carboxylase with diminished sensitivity to feedback inhibition in Arabidopsis changes amino acid metabolism"(2004, Planta, 219: 440-419.)라는 제목의 또 다른 논문이 참조될 수 있고, 여기서 피드백 억제에 대한 감소된 민감성을 갖는 시아노박테리아계 시네코코커스 볼캐너스(cyanobacterial Synechococcus vulcanus) 포스포에놀피루브산 카르복실라제(SvPEPCase)가 아라비돕시스 식물에서 CaMV 35S 프로모터의 제어 하에서 과발현되었다. T1 형질전환체의 3분의 1은 탈색된(bleached) 잎으로서 심한 표현형을 보였고, 토양에서 성장할 때 불임(infertile)이었다. 그러나, 피드백 억제제, L-말레이트에 정상적으로 민감한, C4 광합성을 위한 옥수수 PEPCase (ZmPEPC)로 형질전환된 아라비돕시스에서는 그러한 표현형이 관찰되지 않았다. SvPEPC 형질전환된 T2 식물의 성장 억제는 주로 방향족(aromatic) 아미노산 및 페닐프로파노이드(phenylpropanoid)의 합성을 위한 시키메이트(shikimate) 경로에 대한 전구체 중 하나인, 포스포에놀피루베이트(PEP)의 감소된 이용성(availability) 때문인 것으로 추정되었다.
Fukayama, H., H., Hatch, M.D., Tamai, T., Tsuchida, H., Sudoh, S., Furbank, R.T. 및 Miyao, M.에 의한, "Activity regulation and physiological impacts of maize C (4)-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants"(2003, Photosynthesis Research, 77: 227-239)라는 제목의 다른 논문이 참조될 수 있고, 여기서 온전한 옥수수 PEPCase 유전자가 쌀 식물의 잎에서 과발현되었다. 형질전환 쌀 잎의 도입된 PEPCase는 내생적(endogenous) 쌀 PEPCase와 유사한 방식으로 단백질 인산화(phosphorylation)를 통해 활성 조절을 겪지만, 옥수수 잎에서 발생하는 것과 반대로, 빛(light)에서 하향조절(downregulated)되고, 어둠(dark)에서 상향조절(upregulated)되었다. 비형질전환 쌀과 비교하여, PEP의 수준은 약간 낮았고, 생성물(OAA)은 형질전환 쌀에서 약간 높아, 옥수수 PEPCase가 탈인산화(dephosphorylated)된 채로 유지되고, 빛에서 활성이 더 낮음에도 불구하고 기능하고 있었다는 것을 의미한다. 14CO2 표지 실험은 옥수수 PEPCase가 형질전환 쌀의 광합성 CO2 고정에 유의하게 기여하지 않음을 보여주었다. 오히려, CO2 동화 비율(assimilation rate)을 다소 낮추었다. 이러한 효과는 빛에서의 호흡의 자극 때문이고, 이는 더 낮은 O2 농도에서보다 현저하다. 이는 PEPCase의 과잉 생산이 광합성에 유의하게 직접적으로 영향을 미치지는 않지만, 빛에서의 호흡을 자극함에 의하여 간접적으로 광합성을 저해(suppress)하는 것으로 결론이 내려졌다.
Vincent, R., Fraisier, V., Chaillou, S., Limami, M.A., Deleens, E., Phillipson, B., Douat, C., Boutin, J.P. 및 Hirel, B.에 의한, "Overexpression of a soybean gene encoding cytosolic glutamine synthetase in shoots of transgenic Lotus corniculatus L. plants triggers changes in ammonium assimilation and plant development"(1997, Planta. 201:424-433)라는 제목의 또 다른 논문이 참조될 수 있고, 여기서 대두 세포질 GS 유전자 GS15는 CaMV 35S 프로모터와 융합하여 벌 노랑이(lotus corniculatus L.) 식물에서 구성적 발현을 이루었다. 상이한 N 체제(regime) 하에서 형질전환 식물을 성장시킬 때, 동일 조건 하에서 성장된 야생형과 비교하여, 12 mM NH4 +로 배양된 형질전환 식물의 가용성 탄수화물의 감소가 수반된, 유리 아미노산 및 암모늄의 증가가 관찰되었다. 표지 실험은 뿌리에서의 암모늄 흡수 및 신초(shoot)로의 아미노산의 후속 이동(translocation) 모두가 GS를 과발현하는 식물에서 더 낮다는 것을 밝혔다. 그러나, 형질전환된 식물에서의 초기 꽃의 발달(floral development)은 식물이 암모늄-풍부 배지에서 성장할 때, 조기 노화 및 이른 개화에서의 GS의 역할을 시사하였다. 증진된 NH4 + 동화를 위한 C 골격 및 에너지의 제한이 예상되었다.
Fuentes, S.I., Allen, D.J., Ortiz-Lopez, A. and Hernandez, G.에 의한, "Overexpression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen conditions"(2001, Journal of Experimental Botany, 52:1071-1081)라는 제목의 또 다른 논문이 참조될 수 있고, 여기서 구성적 CaMV 35S 프로모터에 의해 구동된 alfa alfa GS가 담배 식물로 도입되었다. 형질전환 식물에서의 잎 GS 활성은 비형질전환 식물의 6배까지 증가하였다. N 결핍하에서, GS 형질전환 식물은 높은 N 하에서의 식물과 구별될 수 없는 속도로 광합성을 유지하여 더 잘 성장하였으나, 대조군 식물에서의 광합성은 N 고갈(deprivation)에 의해 40-50% 억제되었다. 그러나, 최적의 N 시비(fertilization) 조건하에서, 광합성 또는 성장에 대한 GS 과발현의 효과는 없는 것으로 관찰되었다.
Oliveira, I.., Brears, T., Knight, T., Clark, A. 및 Coruzzi, G.에 의한, "Overexpression of cytosolic glutamine synthetase. Relation to nitrogen, light, and photorespiration"(2002, Plant Physiology, 129: 1170-1180)라는 제목의 또 다른 논문이 참조될 수 있고, 여기서 완두콩 세포질 GS의 과발현이 질소, 빛 및 광호흡(photorespiration)과 관련하여 연구되었다. 잎에서 이소적으로(ectopically) 세포질 GS1을 과발현하는 담배 식물은 생체 중량(fresh weight), 건조 중량 및 잎 가용성 단백질의 증가에 의해 명백하게, N-제한 및 N-비제한 조건 하에서 빛-의존성 향상된 성장 표현형을 보인다. 세포질 GS1 형질전환 식물은 또한 CO2 광호흡 버스트(burst)의 증가 및 광호흡 중간체 수준의 증가를 보여, 광호흡의 변화를 시사한다. 그러나, 식물 생산성에 관한 GS 과발현에 의한 광호흡의 자극의 효과는 논의되지 않았다.
Cai, H., Zhou, Y., Xiao, J., Li, X., Zhang, Q. 및 Lian, X.에 의한, "Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress response in rice"(2009, Plant Cell Reports. 28: 527-537)라는 제목의 또 다른 논문이 참조될 수 있고, 여기서 대장균 GS 유전자 (glnA )와 함께, 전장 cDNA 코딩 쌀(Oryza sativa) 세포질 GS 유전자 (OsGS1;1 및 OsGS1;2)가 구성적 CaMV 35S 프로모터 하에서 쌀 식물에서 과발현되었다. GS-과발현된 식물에서 증가된 대사 수준이 얻어졌고, 이는 잎에서의 더 높은 총 GS 활성 및 가용성 단백질 농도와 전체 식물에서의 더 높은 총 아미노산 및 총 N 함량을 나타내었다. 그러나, 야생형 식물과 비교하여 GS-과발현된 식물의 종자에서, 곡물 수득률 및 총 아미노산 모두의 감소가 관찰되었다.
Sentoku, N., Taniguchi, M., Sugiyama, T., Ishimaru, K., Ohsugi, R., Takaiwa, F. 및 Toki, S.에 의한, "Analysis of the transgenic tobacco plants expressing Panicum miliaceum aspartate aminotransferase genes" (2000, Plant Cell Reports, 19: 598-603)라는 제목의 또 다른 논문이 참조될 수 있고, 여기서, CaMV 35S 프로모터의 조절 하에서 Panicum 미토콘드리아 및 세포질 AspAT (각각 mAspAT 및 cAspAT)의 과발현의 효과가 형질전환 담배 식물에 대하여 평가되었다. mAspAT- 또는 cAspAT-형질전환된 식물은 비형질전환 식물보다, 잎에서 각각 약 3배 또는 3.5배 더 높은 AspAT 활성을 가졌다. 흥미롭게도, 형질전환된 식물들 모두의 잎은 증가된 수준의 PEPCase를 가졌고, cAspAT에 의해 형질전환된 식물도 잎에서 증가된 수준의 mAspAT를 가졌다. 이러한 결과는 형질전환 담배에서 Panicum cAspAT의 증가된 발현이 그것의 내생적 mAspAT 및 PEPCase의 발현을 증진시키고, Panicum mAspAT의 증가된 발현이 그것의 내생적 PEPCase의 발현을 증진시킨다는 것을 시사한다. 그러나, 식물 성장 및 생산성에 대한 AspAT 과발현의 효과에 대한 설명은 없다.
Zhou, Y., Cai, H., Xiao, J., Li, X., Zhang, Q. 및 Lian, X.에 의한, "Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds"(2009, Theoretical and Applied Genetics, 118:1381-1390)라는 제목의 또 다른 논문이 참조될 수 있고, 여기서, 각각 엽록체, 세포질 및 미토콘드리아 AspAT 동위효소(isoenzyme)를 코딩하는 쌀로부터의 세 개의 AspAT 유전자(OsAAT1-3) 및 대장균으로부터의 하나의 AspAT 유전자(EcAAT)가 CaMV 35S 프로모터의 조절 하에서 쌀 식물에서 과발현되었다. OsAAT 1, OsAAT2, 및 EcAAT 형질전환체는 유의하게 증가된 잎 AspAT 활성 및 더 많은 종자 아미노산 및 단백질 함량을 보였다. 그러나, OsAAT3 과발현된 식물에서 잎 AspAT 활성, 종자 아미노산 함량 또는 단백질 함량의 유의한 변화가 발견되지 않았다.
Murooka, Y., Mori, Y. 및 Hayashi, M.에 의한, "Variation of the amino acid content of Arabidopsis seeds by expressing soyabean aspartate aminotransferase gene" (2009, Journal of Bioscience and Bioengineering, 94: 225-230)라는 제목의 또 다른 논문이 참조될 수 있고, 여기서 대두로부터의 엽록체 AspAT를 코딩하는 AspAT5 아라비돕시스 식물에서 그것의 과발현을 달성하기 위하여 CaMV 35S 프로모터에 연결되었다. 형질전환체에서의 AspAT5의 발현은 T3 종자에서 각각 유리 글리신, 알라닌, 아스파라긴 및 Glu 함량의 3배, 4배, 23배 및 50배 증가를 야기하였다. 그러나, 발린, 티로신, 이소루신, 루신 및 페닐알라닌 함량의 수배 감소 또한 관찰되었다. 또한, 식물 성장 및 생산성에 관한 AspAt의 과발현의 효과는 보고되지 않았다.
Yanagisawa, S., Akiyama, A., Kawaka, H., Uchimiya, H. 및 Miwa, T.에 의한, "Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions"(2004, Proceedings of the National Academy of Sceinces (USA), 101:7833-7838)라는 제목의 또 다른 논문이 참조될 수 있고, 여기서 옥수수로부터의 Dof1 전사 인자의 과발현은 형질전환 아라비돕시스 식물에서의 N 동화를 향상시킨다. Dof1 발현 식물은 C 골격 생성을 위한 효소를 코딩하는 유전자의 상향 조절, 아미노산 함량의 뚜렷한 증가 및 글루코스 수준의 감소를 보였다. 그 결과는 그들의 긴밀한 연결(intimate link)에 기반한 C 및 N 대사의 협동적 변형을 시사한다. 원소 분석(elementary analysis)은 순 N 동화의 촉진(promotion)을 나타내는, N 함량이 Dof1 형질전환 식물에서 증가(
Figure 112013104878062-pct00001
30%)하였음을 보여주었다. 그러나, 식물 바이오매스 또는 수율에 대한 C N 변형의 효과는 논의되지 않았다.
Takahashi, H., Takahara, K., Hashida, S., Hirabayashi, T., Fujimori, T., Kawai-Yamada, M., Yamaya, T., Yanagisawa, S. 및 Hirofumi Uchimiya, H.에 의한, "Pleiotropic Modulation of carbon and nitrogen metabolism in Arabidopsis plants overexpressing the NAD kinase2 gene"(2009, Plant Physiology. 151:100-113)라는 제목의 또 다른 논문이 참조될 수 있고, 여기서 NADK2 돌연변이와 함께 NAD 키나제2(NADK2)의 과발현을 갖는 형질전환 아라비돕시 식물이 식물 대사에 대한 NADP 수준 변형의 효과를 조사하기 위하여 재배되었다. 대사 프로파일링(metabolite profiling)은 NADP(H) 농도가 NADK2 과발현자 및 NADK2 돌연변이에서의 NADK 활성에 비례하였음을 보여주었다. 캘빈 회로와 관련된 여러 대사산물(metabolite)은 또한 과발현자에서 더 높았고, 전체적 루비스코 활성(Rubisco activity)의 증가가 수반되었다. 또한, NADK2 과발현에 기인한 증진된 NADP(H) 생산은 N 동화를 증가시켰다. Gln 및 Glu 농도 및 기타 아미노산은 과발현자에서 더 높았다. 그러나, C 및 N 대사에 영향을 미치는 NADK2의 역할에 관한 명확한 증거는 없다.
식물의 C 및 N 상태의 향상은 생산성을 향상시키기 위한 주요 관심사이다. 그러나, C 및 N 수준의 증진 및 식물의 바이오매스 및 수율의 후속적 향상을 보여주는 보고는 아직까지는 없다.
또한, 세 개의 유전자, 즉 AspAT, GSPEPCase를 동시 과발현시켜 C 및 N, 바이오매스 및 수율의 증진된 상태를 가져오려는 시도는 없었다.
본 발명의 주목적은 전술된 바와 같이, 지금까지의 공지된 선행기술의 단점을 없애는 식물의 탄소, 질소, 바이오매스 및 수율을 증진시키기 위한 발현 구조체를 제공하는 것이다.
본 발명의 다른 목적은 AspAT (서열번호 1), GS (서열번호 2) 및 PEPcase (서열번호 3)의 동시 과발현을 위한 발현 구조체로서, PEPCase는 효율적으로 CO2를 포획하고, 효소를 코딩하는 나머지 두 개의 유전자(AspAT 및 GS)는 N 동화에서 역할을 하여, PEPCase 매개 반응에 의해 제공되는 탄소 백본을 사용하여, 식물의 향상된 바이오매스 및 수율과 함께, C 및 N 상태의 증진을 가져오는 발현 구조체를 제공하는 것이다.
본 발명의 또 다른 목적은 유전자 AspAT, GSPEPCase의 동시 과발현을 보이는 형질전환 식물을 재배하는 것이다.
본 발명의 또 다른 목적은 형질전환 식물에서 AspAT, GSPEPCase 유전자의 발현을 평가하는 것이다.
본 발명의 또 다른 목적은 야생 식물과 비교하여 C 및 N의 상태, 바이오매스 및 수율에 대해 형질전환 식물을 평가하는 것이다.
따라서, 본 발명은 야생형 또는 비형질전환(untransformed) 식물과 비교하여 식물의 탄소, 질소, 바이오매스 및 수율을 증진시키기에 유용한, 하나 이상의 제어 서열 및 전사 종결인자 서열과 연결된, 서열번호 1, 서열번호 2 및 서열번호 3에 의해 표현되는 뉴클레오티드 서열을 포함하는 유전자 AspAT, GS 및 PEPCase의 동시발현을 위한 서열번호 7에 의해 표현되는 발현 구조체(expressioin construct)로서, 서열번호 1은 AspAT 유전자를 표현하고, 서열번호 2는 GS 유전자를 표현하며, 서열번호 3은 PEPCase 유전자를 표현하는 것인 발현 구조체를 제공한다.
본 발명의 일 구현예에서, 제어 서열은 바람직하게는 서열번호 4에 의해 표현된다.
본 발명의 다른 구현예에서, 전사 종결인자 서열은 서열번호 5에 의해 표현된다.
일 구현예에서, 본 발명은 대두로부터의 세포질 AspAT 유전자, 담배로부터의 세포질 GS 유전자 및 옥수수로부터의 세포질 PEPCase 유전자로부터 제조된 발현 구조체를 제공한다.
본 발명의 다른 구현예에서, 서열번호 7을 갖는 폴리뉴클레오티드는 식물에서 과발현된다.
본 발명의 또 다른 구현예에서, 사용되는 제어 서열은 CaMV 35S 프로모터, 루비스코(rubisco) 프로모터, 유비퀴틴(ubiquitin) 프로모터, 액틴(actin) 프로모터로 구성된 군으로부터 선택된 구성적 프로모터이다.
본 발명의 또 다른 구현예에서, 사용된 종결인자(terminator)는 바람직하게는 Nos 종결인자 및 CaMV 3'UTR로 구성된 군으로부터 선택된다.
본 발명의 또 다른 구현예에서, 하기 단계를 포함하는, 발현 구조체를 제조하는 방법이 제공된다:
i) 서열번호 10 및 서열번호 11에 의해 표현되는 프라이머를 사용하여 서열번호 1에 의해 표현되는 유전자, 서열번호 8 및 서열번호 9에 의해 표현되는 프라이머를 사용하여 서열번호 2에 의해 표현되는 유전자, 및 서열번호 12 및 서열번호 13에 의해 표현되는 프라이머를 사용하여 서열번호 3에 의해 표현되는 유전자를 코딩하는 cDNA 서열을 증폭하는 단계;
ii) 단계 (i)에서 얻어진 서열번호 1, 2 및 3의 증폭된 생성물을 독립적으로 pGEM-T 이지 벡터(easy vector)로 클로닝하는 단계;
iii) 단계 (ii)에서 얻어진 양성 클론으로부터의 플라스미드 및 pCAMBIA 1302를 절단(digest)하는 단계 및 절단된 유전자 생성물과 pCAMBIA1302를 라이게이션하고, 대장균 DH5α 세포로 형질전환하는 단계;
iv) 단계 (iii)에서 얻어진 양성 클론으로부터의 플라스미드를 시퀀싱하여, AspAT::pCAMBIA1302; GS::pCAMBIA1302 및 PEPCase::pCAMBIA1302의 인프레임 클로닝(inframe cloning)을 확인하는 단계;
v) 서열번호 10과 서열번호 16; 서열번호 14과 서열번호 15 및 서열번호 17 과 서열번호 18에 의해 표현되는 프라이머를 사용하여, 단계 (iv)에서 얻어진 생성물을 증폭하는 단계;
vi) 증폭된 GS 코딩 서열에 대해, GS+pCAMBIA1302를 형성하도록 클로닝, 절단, 라이게이션 및 시퀀싱을 다시 독립적으로 수행하고, GS+pCAMBIA1302는 더 절단하고, 증폭된 AspAT 코딩 서열의 양성 클론의 플라스미드와 라이게이션시켜 AspAT+GS+pCAMBIA1302 발현 카세트를 형성하는 단계;
vii) 유전자 AspA, GS 및 PEPCase가 독립적인 CaMV 35S 프로모터 및 Nos 전사 종결인자에 의해 조절되도록, 증폭된 PEPCase 코딩 서열의 양성 클론의 절단된 플라스미드를 단계 (vi)에서 얻어진 AspAT + GS + 발현 카세트로 미리 클로닝된 목적 pCAMBIA1302와 라이게이션하여, 서열번호 7에 의해 표현되는 단일 식물 발현 구조체 AspAT + GS + PEPCase를 형성하는 단계.
본 발명의 또 다른 구현예에서, 하기 단계를 포함하는, 발현 구조체를 사용하여 식물의 탄소, 질소, 바이오매스 및 수율을 증진하는 방법이 제공된다:
a) 아그로박테리움 투메파시엔스 균주(Agrobacterium tumefacians strain)를 청구항 1에 따른 발현 구조체로 형질전환시키는 단계;
b) 외식편(explant)을 단계 (a)에서 얻어진 재조합 아그로박테리움 투메파시엔스 균주로 형질전환시키는 단계;
c) 야생형 식물과 비교하여, 증진된 수준의 식물의 탄소, 질소, 바이오매스 및 수율을 갖는, 원하는 형질전환된 식물을 얻기 위하여 상기 단계 (b)의 형질전환된 외식편을 선택하는 단계.
본 발명의 또 다른 구현예에서, 형질전환된 식물이 야생형과 비교하여, PEPCase 활성에서 약 45-50%, GS 활성에서 55% 이상, AspAT 활성에서 55-60% 의 증가를 보여, 식물의 탄소 및 질소 수준의 증가를 가져오는 것인 방법이 제공된다.
본 발명의 다른 구현예에서, 제공된 아그로박테리움(Agrobacterium ) 균주는 ATCC 번호를 갖는 아그로박테리움 투메파시엔스 GV3101(Agrobacterium tumefaciens)(GV3101 (pMP90RK) (C58 유도체) ATCC?번호: 33970 참조: Hayashi H, Czaja I, Lubenow H, Schell J ,Walden R. 1992로 이루어진 군으로부터 선택된다.
본 발명의 또 다른 구현예에서, 형질전환된 식물은 곡류 작물(grain crop), 두류(pulses), 채소 작물(vegetable crop), 유지 작물(oilseed crop) 및 관상식물(ornamentals)로 구성된 군으로부터 선택된다.
또 다른 구현예에서, 형질전환된 식물은 아라비돕시스(arabidopsis), 토마토, 감자, 담배(tobacco), 옥수수(maize), 밀, 쌀, 면화(cotton), 겨자(mustard), 나무 콩(pigeon pea), 동부콩(cowpea), 완두콩(pea), 사탕수수(sugarcane), 대두(soyabean) 및 수수(sorghum)로 구성된 군으로부터 선택된다.
또 다른 구현예에서, 야생형과 비교하여 형질전환된 식물은 증가된 종자 수율 및/또는 꼬투리 수율으로 표시되는, 증가된 수율 및/또는 바이오매스를 보인다.
또 다른 구현예에서, 형질전환된 식물은 야생형 또는 비형질전환 식물과 비교하여, 증가된 신초 생체 중량, 신초 건조 중량, 뿌리 생체 및 건조 중량을 특징으로 하는 증진된 성장 특성을 보인다.
본 발명의 또 다른 구현예에서, 형질전환된 식물은 야생 식물과 비교하여 증진된 수준의 탄소, 질소, 바이오매스 및 수율을 보인다.
본 발명의 또 다른 구현예에서, 형질전환 식물에서 과발현된 효소의 발현 및 기능성(functionality)이 평가된다.
본 발명의 또 다른 구현예에서, 사용된 선택가능한 마커(marker)는 이중(duplicated) CaMV 35S 프로모터에 의해 조절되고, CaMV 3'UTR (polyA 신호)에 의해 종결되는 하이그로마이신 저항성(hygromycin resistance)을 위한 서열번호 6에 의해 표현되는 hpt 유전자(hygromycin phosphotransferase) 이다.
본 발명의 다른 구현예에서, 생화학적 분석 및 RT-PCR은 형질전환 식물에서 도입된 유전자의 발현 및 과발현된 효소의 기능성을 평가하기 위해 수행되었다.
본 발명의 추가 구현예에서, 형질전환 식물은 상이한 성장 및 수율 파라미터에 대해 조사되고, 동일 조건에서 경작된 야생 식물(wild plant)과 비교되었다.
도 1은 실시예 1 내지 4에서 논의된, AspAT, GS PEPCase의 동시 과발현을 위한 식물 형질전환 벡터 pCAMBIA1302의 T-DNA 영역 (a) 및 각 식물 소스로부터의 AspAT, GS PEPCase에 대한 코딩 서열의 증폭 (b)의 개략도(schematic view)를 나타낸다.
도 2는 WT, LI 및 L2의 DNA 분석 (a) 및 RNA 분석 (b)을 나타내고, WT = 야생(wild); L1 및 L2 = AspAT , GS PEPCase를 동시 과발현하는 두 개의 상이한 형질전환 계통(transgenic line)이다.
도 3은 파종 60일차에, WT 및 AspAT+GS+PEPCase 형질전환 식물의 신초 생체 중량(FW) (a), 신초 건조 중량 (DW) (b), 뿌리 생체 중량 (c) 및 뿌리 건조 중량 (d)을 나타낸다. 데이터는 각 막대(bar)에 표시된 표준 편차(standard deviation)를 갖는 5개의 별개의 생물학적 복제물의 평균(mean)이다.
도 4는 파종 42일차에 WT, LI 및 L2의 AspAT 활성 (a), GS 활성 (b) PEPCase 활성 (d)을 나타낸다. 데이터는 각 막대에 표시된 표준 편차를 갖는 3개의 별개의 생물학적 복제물의 평균이다.
도 5는 파종 65일차에 WT, LI 및 L2 계통의 상이한 식물 부분으로부터의 N (a) 및 C (b) 함량의 분석을 나타낸다. 데이터는 각 막대에 표시된 표준 편차를 갖는 3개의 별개의 생물학적 복제물의 평균이다.
도 6은 파종 75일차에 대표적인 WT 및 AspAT+GS+PEPCase 형질전환 식물을 나타낸다.
도 7은 파종 75일차에 WT, LI 및 L2의 꼬투리 갯수(pod number) (a) 및 종자 수율 (b)을 나타낸다. 데이터는 각 막대에 표시된 표준 편차를 갖는 5개의 별개의 생물학적 복제물의 평균이다.
본 발명은 식물의 C 및 N 대사의 유전 공학에 관한 것이다. 특히, 본 발명은 증가된 C 및 N 수준을 가져서, 이에 의해 더 나은 성장 및 바이오매스 생산 및 증진된 수율을 촉진하는 식물을 개발(engineer)하기 위해, C 및 N 동화 또는 이용(utilization) 및/또는 그들의 발현에 관련된 효소에서 수반하는 변형(concomitant alteration)을 위한 AspAT, GSPEPCase의 동시 과발현을 위한 발현 구조체에 관한 것이다.
용어 "벡터(vector)"는 외부 소스로부터의 유전자가 필요할 때 라이게이션되고 분리될 수 있는 것인 핵산으로 구성된 구조체를 지칭한다. 이 구조체는 일반적으로 플라스미드(즉, 염색체 외 자기 복제 핵산(extra chromosomal self replicating nucleic acid))이고, 예를 들어 대장균의 박테리아 세포에서 증식(propagate)된다. 본 발명에서 벡터는 하나의 소스로부터 다른 소스로 유전자를 전달하기 위하여 사용되었다.
용어 "유전자(gene)"는 폴리펩티드 사슬을 생성할 수 있는 핵산의 서열을 지칭한다.
용어 "유전자 발현(gene expression)"은 DNA(즉, 디옥시리보 핵산의 서열)에 의해 전사된(즉, DNA에 의한 RNA의 합성 과정) 목적 RNA(RNA of choice)(즉, 리보 핵산의 서열)의 수준/양을 지칭한다. 유전자가 대조군과 비교하여 더 많은 양으로 전사되었을 때, 유전자의 "과발현(over-expression)"으로 지칭되었다.
용어 "선택가능한 마커(selectable marker)"는 다른 독성 항생제(toxic antibiotics)의 존재 하에서 세포가 생존하게 하는 유전자를 지칭한다.
용어 "형질전환 식물(transgenic plant)"은 도입된 유전자의 그것의 게놈(genome)의 안정한 통합(integration)을 갖는 유전적으로 형질전환된 식물을 지칭한다. 용어 "프로모터(promoter)"는 전사에 관련된 DAN 서열에서 일반적으로 상류(upstream)(5')에 위치한, 효소 RNA 폴리머라제(polymerase)는 전사 과정을 위해 결합하는, 특정 DNA 서열을 지칭한다. "구성적 프로모터(constitutive promoter)"는 모든 조직에서, 유기체의 주변 환경 및 발달 단계에 관계없이 모든 기간 동안 유전자의 발현을 지시(direct)한다.
용어 "발현 카세트(expression cassette)"는 (a) 구성적 프로모터; (b) 구성적 프로모터의 3'에 코딩된 세 개의 유전자 모두, (c) 코딩 서열의 3'에 위치한 폴리아데닐레이션(polyadenylation) 신호로 구성되고, 또한 유전자 정보를 연속적인 세대(successive generation)에 전달할 수 있는, 벡터를 지칭한다.
"야생형(wild-type)" 식물은 비형질전환 식물이다.
용어 "T0"는 형질전환 식물이 대응하는 저항 유전자를 함유하는, 선택제 항생제(selection agent antibiotic)의 존재 하에, 성장시 확인되고 선택될 수 있는 유전적으로 형질전환된 식물의 제1 세트를 지칭한다. 용어 "T1"은 이미 형질전환된 것으로 선택된, T0 세대 식물의 꽃의 자가 수정(self-fertilization) 후에 얻어진 식물의 세대를 지칭한다. "T2"식물은 T1 식물 등으로부터 발생한다.
본 발명은 하기 실시예에 의하여 보다 자세히 예시될 것이다.
실시예
하기 실시예는 본 발명의 예시로서 주어진 것이고, 따라서 본 발명의 범위를 제한하는 것으로 해석되지 않아야 한다.
본 발명에서 사용된 프라이머의 서열이 하기에 나열된다:
Figure 112013104878062-pct00002
Figure 112013104878062-pct00003
Figure 112013104878062-pct00004
Figure 112013104878062-pct00005
Figure 112013104878062-pct00006
Figure 112013104878062-pct00007
Figure 112013104878062-pct00008
Figure 112013104878062-pct00009
Figure 112013104878062-pct00010
Figure 112013104878062-pct00011
Figure 112013104878062-pct00012

실시예 1
AspAT 유전자의 증폭 및 클로닝
대두 세포질 AspAT 유전자를 코딩하는 뉴클레오티드 서열(서열번호 1)을 뉴클레오티드 서열의 NCBI 데이타베이스로부터 얻었다(GenBank Accession No. AF034210.1; (http://www.ncbi.nlm.nih.gov/nuccore/AF034210.1). 대두 식물로부터의 RNA를 iRIS Plant RNA 키트 (Ghawana 등, US Patent no 0344NF2004/IN)를 사용하여 분리하였다. 제조사의 설명서에 따라, 2 U DNase I (amplification grade, Invitrogen, USA)으로 처리(digest)한 후에, 1 ㎍ 올리고(dT)12 -18 및 400 U의 역전사 효소 Superscript II (Invitrogen)의 존재 하에서, 총 RNA 정제물(total RNA preparations)(2 ㎍)을 사용하여 cDNA를 합성하였다. 그 다음에 AspAT의 전체 코딩 영역을 프라이머 AspAT Bgl II F (서열번호 10) 및 AspAT Pml I R (서열번호 11)을 사용하여 대두 cDNA로부터 증폭하여, 제한 부위(restriction site) BglII (AGATCT) 및 PmlI (CACGTG)를 AspAT에 대한 코딩 서열에서 통합시켰다. Qiagen High Fidelity Taq 폴리머라제 효소를 하기 조건을 사용하여, PCR에 사용하였다: 94℃에서 3분간 초기 변성(initial denaturating), 94℃에서 30초간 변성, 59℃에서 30초간 어닐링(annealing), 72℃에서 1분 20초간 연장(extension)의 사이클 30회, 72℃에서 7분간 최종 연장. 증폭 생성물을 pGEM-T easy vector (Promega, USA)로 클로닝하였다. 양성 클론(positive clone)으로부터의 플라스미드 및 pCAMBIA 1302 플라스미드를 BglII 및 PmlI로 절단시키고, 아가로스 겔(agarose gel) 전기영동으로부터 분리된, 절단된 생성물을 라이게이션하고, Takara Bio Company, Japan (Cat. No. 9057)으로부터 얻은 대장균 DH5α 세포로 형질전환시켰다. 양성 콜로니(colony)로부터의 플라스미드를 시퀀싱하여, pCAMBIA1302의 CaMV 35S 프로모터 (서열번호 4) 및 Nos 종결인자 (서열번호 5) 사이에 위치한 AspAT 코딩 서열의 인프레임 클로닝(inframe cloning)을 확인하고, 결과 벡터를 AspAT::pCAMBIA1302로 지정하였다.
실시예 2
GS 유전자의 증폭 및 클로닝
담배 세포질 GS 유전자를 코딩하는 뉴클레오티드 서열(서열번호 2)을 뉴클레오티드 서열의 NCBI 데이타베이스(GenBank Accession No. X95932.1; (http://www.ncbi.nlm.nih.gov/nuccore/X95932.1))로부터 얻었다. 담배 식물로부터의 RNA를 iRIS Plant RNA 키트(Ghawana 등, US Patent no 0344NF2004/IN)를 사용하여 단리하였다. 제조자의 설명서에 따라 2 U DNase I (amplification grade, Invitrogen, USA)로 처리한 후에, 1 ㎍ 올리고(dT)12 -18 및 400 U의 역전사 효소 Superscript II (Invitrogen)의 존재하에서 총 RNA 정제물(2 ㎍)을 사용하여 cDNA를 합성하였다.
GS의 전체 코딩 영역을 제한 부위 NcoI (CCATGG)를 갖는 프라이머 GS Nco I F(서열번호 8) 및 BstEII (GGTGACC)에 대한 제한 부위를 갖는 GS Bst EII R(서열번호 9)를 사용하여 담배 cDNA로부터 증폭하였다. 15번 위치에서 'G'에 의한 'A' 뉴클레오티드의 대체에 의해 BglII 위치를 제거하기 위하여 GS Nco I F 프라이머를 변형하였다.
Qiagen High Fidelity Taq 폴리머라제 효소를 하기 조건을 사용하여 PCR에 사용하였다: 94℃에서 3분간 초기 변성, 94℃에서 30초간 변성, 59℃에서 30초간 어닐링, 72℃에서 1분 10초간 연장의 사이클 30회, 72℃에서 7분간 최종 연장. 증폭 생성물을 pGEM-T easy vector (Promega, USA)로 클로닝하였다. 양성 콜로니로부터의 플라스미드 및 바이나리 벡터(binary vector) pCAMBIA 1302를 NcoI 및 BstEII로 절단시키고, 아가로스 겔 전기영동으로부터 분리된, 절단된 생성물을 GS가 pCAMBIA 벡터의 CaMV 35S 프로모터의 하류에 위치하도록 라이게이션하였다. 라이게이션 생성물을 대장균 DH5α세포로 형질전환시키고, 형질전환체를 시퀀싱하여 GS 코딩 서열의 인프레임 클로닝을 확인하고, 결과 벡터를 GS::pCAMBIA1302로 지정하였다.
실시예 3
옥수수 PEPCase 의 증폭 및 클로닝
옥수수 PEPCase 유전자를 코딩하는 뉴클레오티드 서열(서열번호 3)을 뉴클레오티드 서열의 NCBI 데이터베이스(NCBI Reference Sequence: NM_001111948.1; ( http://www.ncbi.nlm.nih.gov/nuccore/NM_001111948.1))로부터 얻었다. 옥수수 식물로부터의 RNA를 iRIS Plant RNA 키트 (Ghawana 등, US Patent no 0344NF2004/IN)를 사용하여 분리하였다. cDNA를 제조자의 설명서에 따라, 2 U DNase I (amplification grade, Invitrogen, USA)로 처리한 후에, 1 ㎍ 올리고(dT)12 -18 및 400 U의 역전사 효소 Superscript II (Invitrogen)의 존재하에서, 총 RNA 정제물(2 ㎍)을 사용하여 합성하였다.
PEPCase의 전체 코딩 영역을 BglII에 대한 제한 부위(AGATCT)를 갖는 프라이머 PEPCase Bgl II F(서열번호 12) 및 SpeI에 대한 제한 부위(ACTAGT)를 갖는 PEPCase Spe I R(서열번호 13)을 사용하여 옥수수 cDNA로부터 증폭하였다. Q-용액(GC-풍부 주형의 증폭을 가능하게 함)으로 보충된 Qiagen High Fidelity Taq 폴리머라제 효소를 하기 조건을 사용하여 PCR을 위해 사용하였다: 94℃에서 3분간 초기 변성, 94℃에서 30초간 변성, 58℃에서 30초간 어닐링, 72℃에서 3분간 연장의 사이클 32회, 72℃에서 7분간 최종 연장. 증폭 생성물을 pGEM-T easy vector (Promega, USA)로 클로닝하였다. 양성 클론으로부터의 플라스미드 및 pCAMBIA 1302 플라스미드를 BglII 및 SpeI로 절단시키고, 아가로스 겔 전기영동으로부터 분리된, 절단된 생성물을 라이게이션하고, 대장균 DH5α 세포로 형질전환시켰다. 형질전환체를 시퀀싱하여 PEPCase 코딩 서열의 인프레임 클로닝을 확인하고, 결과 벡터를 PEPCase::pCAMBIA 1302로 지정하였다.
실시예 4
단일 pCAMBIA 1302 벡터에서 AspAT , GS PEPCase 위한 발현 카세트의 조립 (호주 " Centre for Application of Molecular Biology to International Agriculture"로부터의 후한 기증)
단일 식물 형질전환 벡터 pCAMBIA 1302로 AspAT, GSPEPCase 각각에 대한 발현 카세트의 증폭 및 통합을 위한 단계적 방법이 하기에 기술된다:
CaMV35S 프로모터, 하류 클로닝된 GS 및 노팔린 신타제(nopaline synthase)(이하, "Nos"라 함) 종결인자를 포함하는 GS 발현 카세트를 프라이머 35S Spe I F( 서열번호 14) 및 NosT Asc I , BbvC I , Pml IR (서열번호 15)를 사용하여, GS:: pCAMBIA 1302 벡터로부터 증폭하였다(실시예 2). pCAMBIA 1302 벡터의 SpeI 및 PmlI 사이트로의 GS 발현 카세트의 서브 클로닝을 가능하게 하고 벡터 백본의 3' 말단에 추가 제한 부위(AscI, BbvCI)를 형성하도록, 상기 프라이머를 정방향 프라이머(forward primer)에 SpeI (ACTAGT) 및 역방향 프라이머(reverse primer)에 AscI (GGCGCGCC ), BbvCI (CCTCAGC) 및 PmlI (CACGTG )를 포함하도록 설계하였다. Qiagen High Fidelity Taq 폴리머라제 효소를 하기 조건을 사용하여 PCR을 위하여 사용하였다: 94℃에서 3분간 초기 변성, 94℃에서 30초간 변성, 59℃에서 30초간 어닐링, 72℃에서 2분간 연장의 사이클 30회, 72℃에서 7분간 최종 연장. 증폭 생성물을 pGEM-T easy vector (Promega, USA)로 클로닝하였다. 양성 클론으로부터의 플라스미드를 SpeI 및 PmlI로 절단시키고 나서, 절단된 생성물을 아가로스 겔 전기영동으로부터 분리하고, pCAMBIA 1302 벡터의 SpeI 및 PmlI 사이트로 라이게이션하였다. 라이게이션 생성물을 대장균 DH5α 세포로 형질전환하고, 형질전환체를 플라스미드의 시퀀싱에 의하여 검증하였다.
3'Nos 종결인자 서열과 함께 AspAT 코딩 서열을 각각 BglII (AGATCT) 및 SpeI (ACTAGT)에 대한 제한 부위를 갖는 프라이머 AspAT Bgl II F (서열번호 10) 및 NosT Spe I (서열번호 16)를 사용하여 AspAT:: pCAMBIA 1302 벡터 (실시예 1)로부터 증폭하였다.
Qiagen High Fidelity Taq 폴리머라제 효소를 하기 조건을 사용하여 PCR에 사용하였다: 94℃에서 3분간 초기 변성, 94℃에서 30초간 변성, 59℃에서 30초간 어닐링, 72℃에서 2분간 연장의 사이클 30회, 72℃에서 7분간 최종 연장. 증폭 생성물을 pGEM-T easy vector (Promega, USA)로 클로닝하였다. 양성 클론으로부터의 플라스미드를 BglII 및 SpeI에 의한 절단 후, 목적 pCAMBIA 1302의 CaMV 35S 프로모터(이미 GS 발현 카세트로 클로닝됨)의 하류에 클로닝하였다. 그 다음에 라이게이션 생성물을 대장균 DH5α세포로 형질전환하고, 형질전환체를 시퀀싱하여 AspAT 코딩 서열의 인프레임 클로닝을 확인하였다.
하류에 클로닝된, PEPCase::pCAMBIA 1302 벡터(실시예 3)로부터의 PEPCase 유전자와 함께 CaMV 35S 프로모터를 AscI에 대한 제한 부위(GGCGCGCC )를 갖는 35S Asc I F (서열번호 17) 및 BbVCI에 대한 제한 부위(CCTCAGC)를 갖는 PEPCase BbVC I R (서열번호 18)로 증폭하였다.
Qiagen High Fidelity Taq 폴리머라제 효소를 하기 조건을 사용한 PCR에 사용하였다: 94℃에서 3분간 초기 변성, 94℃에서 30초간 변성, 60℃에서 30초간 어닐링, 72℃에서 4분간 연장의 사이클 30회, 72℃에서 7분간 최종 연장. 증폭 생성물을 pGEM-T easy vector (Promega, USA)로 클로닝하였다. 양성 클론으로부터의 플라스미드를 AscI (GGCGCGCC )BbVCI (CCTCAGC)로 절단시키고, 아가로스 겔 전기영동으로부터 분리된 절단된 생성물을 GS 및 AspAT 발현 카세트로 이전에 클로닝된 목적 pCAMBIA 1302의 Nos 종결인자 서열의 상류에 라이게이션하였다. 라이게이션 생성물을 대장균 DH5α세포로 형질전환하고, 형질전환체를 시퀀싱하여 PEPCase 코딩 서열의 인프레임 클로닝을 확인하였다. 결과 식물 발현 벡터를 AspAT, GSPEPcase의 동시 과발현을 위한 AspAT + GS + PEPCase로 지정하였다. 하이그로마이신 저항성 유전자 (서열번호6)를 형질전환 식물을 스크린하기 위한 선택가능한 마커로서 포함시켰다.
형질전환 식물이 서열번호 29, 30, 및 31에 의해 표현되는 단백질의 더 많은 양을 생성하도록, 식물 형질전환을 위한 서열번호 7에 의해 표현되는, 발현 구조체의 개략도(schematic diagram)가 도 1에 도시된다.
실시예 5
유전자 AspAT , GS PEPCase 를 동시 과발현하는 형질전환 아라비돕시스 식물의 재배
식물 발현 벡터의 생성( AspAT + GS + PEPCase )
요약하면, 식물 발현 벡터를 하기와 같이 작제(construct)하였다: 대두 AspAT 유전자 (서열번호 1), 담배 세포질 GS 유전자 (서열번호 2) 및 옥수수 PEPCase 유전자 (서열번호 3)를 코딩하는 cDNA 서열을 먼저 독립적으로 pCAMBIA 1302 벡터로 클로닝하였다. 그 다음에 AspAT, GSPEPCase에 대한 발현 카세트를 위한 구성 요소를 증폭하고, 유전자 AspAT, GSPEPCase가 독립적인 CaMV 35S 프로모터 및 Nos 전사 종결인자에 의해 조절되도록 목적 pCAMBIA1302으로 조립하였다.
아그로박테리움 매개 식물 형질전환:
AspAT + GS + PEPCase를 표준 트리페어런탈 메이팅 방법(standard triparental mating method)을 사용하여, ATCC 번호를 갖는 아그로박테리움 투메파 시엔스 균주 GV3101(GV3101 (pMP90RK) (C58 유도체) ATCC?번호: 33970, 참조: Hayashi H, Czaja I, Lubenow H, Schell J , Walden R. 1992)로 전달하였다.
요약하면, 재조합 구조체 AspAT + GS + PEPCase를 포함(harbor)하는 대장균 DH5α세포 및 헬퍼(helper) 플라스미드 pRK2013를 갖는 대장균 DH5α세포 37℃에서 밤새 배양하였다. 아그로박테리움 균주 GV3101을 28℃에서 48시간 동안 증식시켰다. 그 다음에 세 개의 배양물 모두를 펠렛화(pelleted) 하고, 세척하고, 혼합하고, 이어서 항생제 카나마이신(kanamycin) (50㎍/ml) 및 리팜피신(rifampcin) (50㎍/ml)으로 보충된 YEM (Yeast Extract Mannitol) 플레이트에 플레이팅하였다. 재조합 구조체 AspAT + GS + PEPCase를 갖는 아그로박테리움의 형질전환을 보장하기 위하여, 항생제 저항성 콜로니를 콜로니 PCR에 의하여 확인하였다.
콜럼비아 생태형( Columbia ecotype )의 아라비돕시스 종자는 Dr . Christine   H   Foyer , IACR-Rothamsted, Harpenden , UK 에 의한 자비로운 선물이었다.
아라비돕시스 식물을 진공 침투(vacuum infiltration) 방법을 사용하여, AspAT + GS + PEPCase를 포함하는 아그로박테리아(Agrobacteria)로 형질전환시켰다. 요약하면, 액체 5-ml 배양물을 단일 형질전환된 아그로박테리움 콜로니로부터 수득하고, 후기 지수기(late logarithmic phase)까지 28℃에서 50㎍/ml의 카나마이신, 50㎍/ml의 리팜피신으로 보충된 YEM 배지에서 성장시켰다. 그 후, 1 ml의 박테리아 현탁액(bacterial suspension)을 동일 항생제로 보충된 100 ml의 YEB 배양 배지로 희석하였다. 배양물을 이들의 광학 밀도(optical density)가 600 nm에서 1.2-1.8에 도달할 때까지 밤새 성장시켰다. 박테리아를 실온에서 2000g에서 20분간 스핀다운(spin)시키고, 2%의 수크로스, 0.05%의 MES (Sigma,) 및 0.01%의 Silwet L-77(Lehle Seeds, United States)를 포함하는 하프 스트렝스 MS(half strength MS)(Murashige and Skoog) 배지를 포함하는 침투용 용액에 현탁하였다. 아라비돕시 인플로레슨스(inflorescence)를 박테리아 현탁액에서 담그고, 진공 하에서 10분간 침투시켰다. 그 다음에 식물을 성장 챔버로 옮기고, 조절된 장일(long day) 조건(22-23℃에서 16-h 빛 및 20℃에서 8-h 어둠) 하에서 종자 세트(seed set)를 위해 대해 성장시켰다.
1차 형질전환체 T 0 형질전환 아라비돕시스 식물의 선택: 형질전환된 식물로부터의 종자를 70% (v/v) 에탄올에서의 2분간 담금(immersion)에 이어서 10% (v/v) 소듐 하이포클로라이트(sodium hypochlorite) 용액에서의 담금에 의하여 표면 멸균하였다. 그 후 종자를 멸균 증류수로 4회 세척하고, 20㎍ ml-1 의 농도에서 하이그로마이신(hygromycin) B로 보충된 MS 배지(Sigma # H3274)를 함유한 1% 아가(agar)에 접종했다. 그 후, 종자를 4℃에서 어둠에서 2일 동안 계층화시켰다(stratify). 계층화 후에, 플레이트를 발아를 위해 16 h 빛 및 8 h 어둠 사이클을 갖는 성장 챔버로 옮겼다. 14일 후에, 하이그로마이신 내성 모종(seedling)을 잠재적인 일차 형질전환체(T0)로 선택하고, 질석(vermiculite), 펄라이트(perlite) 및 코코피트(cocopeat) 혼합(1:1:1)을 함유한 포트(pot)로 옮기고, 성장 및 종자 세트를 위하여, 빛, 온도 및 습도의 조절된 조건 하에서 성숙까지 성장시켰다.
T1 T 2 세대 AspAT + GS + PEPCase 형질전환 식물 재배: T0 형질전환 식물로부터 수확된 종자를 MS + 하이그로마이신 B (20㎍ ml-1의 농도) 플레이트에서 발아시키고, 3:1의 분리비(segregation ratio)(하이그로마이신 B에 대한 이들의 민감도에 의해 기록됨)를 보이는 형질전환 계통을 선택하여, 형질전환 식물의 T1 세대를 재배하였다. 동형접합(homozygous) 형질전환 식물을 T2 세대에서 얻고, 야생 대조군 식물과 비교하여, 상이한 생리학적 및 생화학적 파라미터에 대해 평가하였다.
실시예 6
AspAT + GS + PEPCase 로 형질전환된 아라비돕시스 탈리아나 식물로부터의 게놈 DNA 의 분석
식물 게놈으로의 형질전이 유전자(transgene)의 도입을 확인하기 위하여 AspAT + GS + PEPCase로 형질전환된 두 개의 독립적인 형질전환 계통으로부터의 라비돕시스 식물을 선택하였다. 게놈 DNA를 DNeasy Plant 미니 키트(QIAGEN Co.)를 사용하여 단리하였다. 하이그로마이신 포스포트랜스퍼라제(hpt) 유전자(서열번호 6) (pCAMBIA 1302 벡터로부터의 식물 선택 마커)에 어닐링하는 프라이머 hpt F (서열번호 19) 및 hpt R (서열번호 20)을 사용하고, 주형으로서 분리된 DNA를 사용하여 PCR을 수행하였다.
PCR 사이클 조건은 94℃에서 3분간 초기 변성, 94℃에서 30초간 변성, 58℃에서 30초간 어닐링, 72℃에서 1분간 연장의 사이클 28회, 72℃에서 7분간 최종연장으로 정의되었다.
결과는 도 2A에 도시되고, 여기서, WT는 야생형을 나타내고, L1 및 L2는 두 개의 상이한 형질전환 계통을 나타낸다. hpt 유전자의 증폭은 형질전환체에서만 관찰되어, pAT+GS+PEPCase의 아라비돕시스 식물로의 도입을 확인하였다.
실시예 7
역전사 효소 - 폴리머라제 연쇄 반응( RT - PCR )에 의한 AspAT + GS + PEPCase 형질전환체의 평가
AspAT, GSPEPCase의 발현을 확인하기 위해 형질전환체의 RNA 분석을 행하였다. 총 RNA를 iRIS Plant RNA 키트 (Ghawana 등, US Patent no 0344NF2004/IN)를 사용하여, 형질전환 식물의 잎 및 뿌리로부터 단리하였다. 제조사의 설명서에 따라 2 U DNase I (amplification grade, Invitrogen, USA)로 처리한 후에, 1 ㎍의 올리고(dT)12-18 및 400 U의 역전사 효소 Superscript II (Invitrogen)의 존재 하에서 총 RNA 정제물(2 ㎍)을 사용하여 cDNA를 합성하였다. 형질전이 유전자의 발현을 PEPCase Exp F (서열번호 21), PEPCase Exp R (서열번호 22), GS Exp F (서열번호 23), GS Exp R (서열번호 24), AspAT Exp F (서열번호 25) 및 AspAT ExpR (서열번호 26)로 지정된, AspAT, GS PEPCase에 대한 유전자 특이적 프라이머를 사용하여 평가하였다. RT-PCR에 대한 양성 대조군으로서, 26S rRNA를 프라이머 26S F (서열번호 27) 및 26S R (서열번호 28)을 사용하여 증폭하였다.
분석 결과는 도 2B에 도시되고, 여기에서 WT는 야생형을 나타내고, L1 및 L2는 두 개의 형질전환 계통을 나타낸다. RT-PCR 생성물의 증폭은 형질전환체에서만 관찰되어, 도입된 유전자의 발현을 확인했다.
실시예 8
야생형 및 AspAT + GS + PEPCase 형질전환 아라비돕시스 식물로부터의 효소 분석( enzymatic assay )
AspAT + GS + PEPCase 형질전환 및 야생형 식물에 대해 하기와 같이 효소 분석을 수행하였다:
PEPCase 활성 측정: 동결된 잎 샘플(200 mg)을 50 mM의 Tris-Cl 버퍼 (pH 7.5), 1.0 mM의 MgCl2, 5.0 mM의 DTT, 1.0 mM의 PMSF, 2% (w/v)의 PVPP, 10% (v/v)의 글리세롤 및 0.1% (v/v)의 Triton X-100을 함유한 1ml의 추출 버퍼에서 막자사발과 막자(mortar and pestle)를 이용하여 갈았다. 추출물을 4℃ 10분간 12,000 g로 원심분리하고, 상층액(supernatant)을 효소 활성의 결정을 위하여 사용하였다. PEPCase를 과량의(excess) MDH 및 젖산 탈수소효소(lactate dehydrogenase) (Ashton 등 1990)의 존재 하에서 340 nm에서 분광광도측정으로(spectrophotometrically) 분석하였다. 반응 혼합물은 50 mM의 Tris-Cl (pH 8.0), 5 mM의 MgCl2, 5 mM의 DTT, 1 mM의 NaHCO3, 5 mM의 글루코스-6-포스페이트, 0.2 mM의 NADH, 2 유닛의 MDH, 0.1 유닛의 젖산 탈수소효소 및 조 추출물(crude extract)을 함유하였다. 반응을 5 mM의 PEP의 첨가에 의하여 개시하였다.
AspAT 활성 측정: AspAT에 대한 추출 버퍼를 200 mM의 Tris-Cl 버퍼 (pH 7.5), 2.0 mM의 EDTA 및 20%의 글리세롤로 구성하였다.
효소를 Ireland 및 Joy (1990)에 의해 기술된 것과 본질적으로 동일한 MDH-커플 반응(MDH-coupled reaction)에서 분석하였다. 간단히, 반응 혼합물은 10 mM의 2-옥소글루타레이트, 2 mM의 아스파르테이트(aspartate), 0.2 mM의 NADH, 및 50 mM의 HEPES 버퍼 (pH 8.0)를 함유하였다. 반응은 2-옥소글루타레이트(2-oxoglutarate)의 첨가에 의하여 개시되었다. 분석 대조군은 반응 혼합물로부터 2-옥소글루타레이트를 제외하여 준비(run)하였다.
GS 활성 측정: GS (글루타민 신세타제)를 50 mM의 Tris-Cl 버퍼 (pH 7.8), 1 mM의 EDTA, 10 mM의 MgSO4, 5 mM의 소듐 글루타메이트, 10% (v/v)의 글리세롤 및 불용성(insoluble) PVPP (2% w/v)를 함유한 분쇄 매질(grinding medium)에서 추출하였다. 효소 분석을 Lea 등 (1990)에 의해 이미 기술된 바와 같이 수행하고, 그 활성을 γ-글루타밀히드록사메이트(γ-glutamylhydroxamate)를 이용하여 작성된 표준 곡선으로부터 계산하였다.
분석 결과는 도 6A 내지 6C에 도시되고, 야생 식물과 비교하여, 두 개의 독립적인 AspAT + GS + PEPCase 형질전환 식물에서 PEPCase 활성의 약 45-50%, GS 활성의 55%, 및 AspAT 활성의 55 내지 60% 증가가 관찰되었다.
실시예 9
야생형 및 AspAT + GS + PEPCase 형질전환 아라비돕시스 식물에서 C 및 N 분석
AspAT + GS + PEPCase로 형질전환된 아라비돕시스 탈리아나 식물 및 야생 대조군 식물의 종자를 20g/l 수크로스로 보충된 하프 스트렝스 MS 플레이트에서 발아시켰다. 14일령 모종을 1:1:1 비율의 질석, 펄라이트 및 코코피트를 함유한 포트로 옮기고, 아라비돕시스 성장 챔버에서 유지되는 22℃에서 16 시간의 광기 및 20℃에서 8 시간의 암기를 포함하는 장일(long-day) 조건 하에서 성장시켰다. 로제트 잎(rosette leaf), 줄기, 줄기 잎(cauline leaf) 및 녹색 꼬투리(green pod)를 포함하는 상이한 식물 부분을 65일령 식물로부터 수확하고, 80℃에서 48시간 동안 건조하였다. 설퍼닐 아미드를 표준으로 사용하여 Elementar CHNS 분석기로 C 및 N 원소의 정량 측정(quantitative determination)을 수행하였다. 결과를 도 5에 도시한다. 원소 분석(elementary analysis)은 AspAT + GS + PEPCase 형질전환 식물 잎의 총 C 및 N 함량은 야생 식물과 비교하여 AspAT, GS 및 PEPCase의 동시 과발현에 의하여 유의하게 증가하였음을 보여주었다.
실시예 10
야생 및 AspAT + GS + PEPCase 형질전환 식물의 성장 및 수율의 조사
야생형 식물 및 AspAT + GS + PEPCase 형질전환 식물을 상이한 성장 특징에 대하여 분석하였다. 신초(shoot), 뿌리 생체 중량 및 건조 중량을 60일령 식물에 대해 기록하였다. 평가된 상이한 파라미터에 대해, AspAT + GS + PEPCase 식물은 증진된 성장 특징을 보였다. 특히, 형질전환 식물은 더 큰 면적을 갖는 로제트 당 더 많은 수의 잎을 갖는다. 형질전환 식물은 신초 생체 중량의 약 70% 증가, 신초 건조 중량의 60% 증가를 보이는 반면, 뿌리 생체 및 건조 중량에서는 각각 약 40% 및 30%의 증가가 관찰되었다(도 3에 도시됨).
72일령 AspAT + GS + PEPCase 형질전환 식물로부터의 꼬투리의 총 개수를 계산하고 비형질전환 야생형 식물과 비교하였다(도 7a에 도시됨). 또한, 총 종자 수율(식물 당 총 종자 중량)을 형질전환 및 대조군 식물에 대하여 측정하였다. 양 파라미터에 대해, AspAT + GS + PEPCase 형질전환 아라비돕시스 식물은 도 7b에 도시된 바와 같이, 야생 식물과 비교하여, 수율의 증가를 보였다.
[본 발명의 장점]
1. 식량 안전보장(food security)을 위한 단계인, 식물의 탄소 및 질소 상태를 증진하려는 노력이 있었다.
2. 본 발명은 PEPCase의 과발현이 AspAT GS의 과발현을 통해 동화된 질소를 포획하기 위한 탄소 골격을 제공하는, 혁신적인 접근법을 제공한다.
3. 탄소 및 질소 포획에 대한 식물의 향상된 능력은 또한 식물 종자 및 식물 바이오매스 생성의 관점 모두에서 향상된 식물 생산성에 반영되었다.
SEQUENCE LISTING <110> CSIR, IN <120> AN EXPRESSION CONSTRUCT AND PROCESS FOR ENHANCING THE CARBON, NITROGEN, BIOMASS AND YIELD OF PLANTS <130> 1143DEL2011 <160> 31 <170> PatentIn version 3.5 <210> 1 <211> 1260 <212> DNA <213> Glycine max <400> 1 atggcttctc acgacagcat ctccgcttct ccaacctccg cttctgattc cgtcttcaat 60 cacctcgttc gtgctcccga agatcctatc ctcggggtaa ctgtcgctta taacaaagat 120 ccaagtccag ttaagctcaa cttgggagtt ggtgcttacc gaactgagga aggaaaacct 180 cttgttttga atgtagtgag gcgagttgaa cagcaactca taaatgacgt gtcacgcaac 240 aaggaatata ttccgatcgt tgggcttgct gattttaata aattgagtgc taagcttatt 300 tttggggctg acagccctgc tattcaagac aacagggtta ccactgttca atgcttgtct 360 ggaactggtt ctttaagagt tgggggtgaa tttttggcta aacactatca ccaacggact 420 atatacttgc caacaccaac ttggggcaat cacccgaagg ttttcaactt agcaggcttg 480 tctgtcaaaa cataccgcta ctatgctcca gcaacacgag gacttgactt tcaaggactt 540 ctggaagacc ttggttctgc tccatctgga tctattgttt tgctacatgc atgcgcacat 600 aaccccactg gtgtggatcc aacccttgag caatgggagc agattaggca gctaataaga 660 tcaaaagctt tgttaccttt ctttgacagt gcttatcagg gttttgctag tggaagtcta 720 gatgcagatg cccaacctgt tcgtttgttt gttgctgatg gaggcgaatt gctggtagca 780 caaagctatg caaagaatct gggtctttat ggggaacgtg ttggcgcctt aagcattgtc 840 tgcaagtcag ctgatgttgc aagcagggtt gagagccagc tgaagctagt gattaggccc 900 atgtactcaa gtcctcccat tcatggtgca tccattgtgg ctgccattct caaggaccgg 960 aatttgttca atgactggac tattgagttg aaggcaatgg ctgatcgcat catcagtatg 1020 cgccaagaac ttttcgatgc tttatgttcc agaggcacac ctggcgattg gagtcacatt 1080 atcaaacaga ttggaatgtt tactttcact ggattgaatg cggaacaagt ttccttcatg 1140 actaaagagt tccatatata catgacatct gatgggagga ttagcatggc tggtctgagt 1200 tccaaaactg tcccacttct ggcggatgcg atacatgcag ctgtaacccg agttgtctaa 1260 <210> 2 <211> 1071 <212> DNA <213> Nicotiana tabacum <400> 2 atggctcatc tttcagatct cgttaatctc aatctctctg actccactca gaaaattatt 60 gctgaataca tatggattgg tggatcagga atggacgtca ggagcaaagc cagaacactt 120 tctggacctg ttgatgatcc ttcaaagctt cccaaatgga attatgatgg ttctagcaca 180 ggacaagctc ctggagaaga cagtgaagag atcctatatc ctcaagcaat tttcaaggat 240 ccattcagaa ggggcaacaa tatcttggtc atttgtgatt gttacacccc agctggtgaa 300 cccattccaa caaacaaaag gcacagtgct gccaagattt tcagccaccc tgatgttgtt 360 gttgaggaac cctggtatgg tcttgagcaa gaatacacct tgttgcaaaa agatatcaat 420 tggcctcttg gatggcctct tggtggtttt cctggaccac agggaccata ctattgcgga 480 attggagctg gaaaggtctt tggacgcgat atcgttgact ctcattataa ggcatgtctc 540 tatgctggga ttaacatcag tggtatcaat ggagaagtga tgcccggaca gtgggaattt 600 caagttggac cttcagttgg catttcagca gctgatgaat tgtgggcagc tcgttacatt 660 cttgagagga ttactgagat tgctggagtt gtggtctcat ttgaccccaa acctattccg 720 ggtgactgga atggtgctgg agctcacaca aactacagca caaagtctat gaggaatgaa 780 ggaggctatg aagtcattaa gaaggcaatt gagaaccttg gactgaggca caaggagcat 840 attgcagcat atggtgaagg caacgagcgt cgtctcactg gaagacacga aacagctgac 900 atcaacacat tcaaatgggg agttgcgaac cgtggtgcat ctattcgtgt gggaagagac 960 acggagagag aagggaaggg atacttcgag gataggaggc ctgcttcgaa tatggatcca 1020 ttcgtcgtga cttccatgat tgctgagacc actatcctat ccgagccttg a 1071 <210> 3 <211> 2793 <212> DNA <213> Zea mays <400> 3 ctcgtcgacc gcttcctcaa catcctccag gacctccacg ggcccagcct tcgcgaattt 60 gtccaggagt gctacgaggt ctcagccgac tacgagggca aaggagacac gacgaagctg 120 ggcgagctcg gcgccaagct cacggggctg gcccccgccg acgccatcct cgtggcgagc 180 tccatcctgc acatgctcaa cctcgccaac ctggccgagg aggtgcagat cgcgcaccgc 240 cgccgcaaca gcaagctcaa gaaaggtggg ttcgccgacg agggctccgc caccaccgag 300 tccgacatcg aggagacgct caagcgcctc gtgtccgagg tcggcaagtc ccccgaggag 360 gtgttcgagg cgctcaagaa ccagaccgtc gacctcgtct tcaccgcgca tcctacgcag 420 tccgcccgcc gctcgctcct gcaaaaaaat gccaggatcc gaaattgtct gacccagctg 480 aatgccaagg acatcactga cgacgacaag caggagctcg atgaggctct gcagagagag 540 atccaagcag ccttcagaac cgatgaaatc aggagggcac aacccacccc gcaggccgaa 600 atgcgctatg ggatgagcta catccatgag actgtatgga agggtgtgcc taagttcttg 660 cgccgtgtgg atacagccct gaagaatatc ggcatcaatg agcgccttcc ctacaatgtt 720 tctctcattc ggttctcttc ttggatgggt ggtgaccgcg atggaaatcc aagagttacc 780 ccggaggtga caagagatgt atgcttgctg gccagaatga tggctgcaaa cttgtacatc 840 gatcagattg aagagctgat gtttgagctc tctatgtggc gctgcaacga tgagcttcgt 900 gttcgtgccg aagagctcca cagttcgtct ggttccaaag ttaccaagta ttacatagaa 960 ttctggaagc aaattcctcc aaacgagccc taccgggtga tactaggcca tgtaagggac 1020 aagctgtaca acacacgcga gcgtgctcgc catctgctgg cttctggagt ttctgaaatt 1080 tcagcggaat cgtcatttac cagtatcgaa gagttccttg agccacttga gctgtgctac 1140 aaatcactgt gtgactgcgg cgacaaggcc atcgcggacg ggagcctcct ggacctcctg 1200 cgccaggtgt tcacgttcgg gctctccctg gtgaagctgg acatccggca ggagtcggag 1260 cggcacaccg acgtgatcga cgccatcacc acgcacctcg gcatcgggtc gtaccgcgag 1320 tggcccgagg acaagaggca ggagtggctg ctgtcggagc tgcgaggcaa gcgcccgctg 1380 ctgcccccgg accttcccca gaccgacgag atcgccgacg tcatcggcgc gttccacgtc 1440 ctcgcggagc tcccgcccga cagcttcggc ccctacatca tctccatggc gacggccccc 1500 tcggacgtgc tcgccgtgga gctcctgcag cgcgagtgcg gcgtgcgcca gccgctgccc 1560 gtggtgccgc tgttcgagag gctggccgac ctgcagtcgg cgcccgcgtc cgtggagcgc 1620 ctcttctcgg tggactggta catggaccgg atcaagggca agcagcaggt catggtcggc 1680 tactccgact ccggcaagga cgccggccgc ctgtccgcgg cgtggcagct gtacagggcg 1740 caggaggaga tggcgcaggt ggccaagcgc tacggcgtca agctcacctt gttccacggc 1800 cgcggaggca ccgtgggcag gggtggcggg cccacgcacc ttgccatcct gtcccagccg 1860 ccggacacca tcaacgggtc catccgtgtg acggtgcagg gcgaggtcat cgagttctgc 1920 ttcggggagg agcacctgtg cttccagact ctgcagcgct tcacggccgc cacgctggag 1980 cacggcatgc acccgccggt ctctcccaag cccgagtggc gcaagctcat ggacgagatg 2040 gcggtcgtgg ccacggagga gtaccgctcc gtcgtcgtca aggaggcgcg cttcgtcgag 2100 tacttcagat cggctacacc ggagaccgag tacgggagga tgaacatcgg cagccggcca 2160 gccaagagga ggcccggcgg cggcatcacg accctgcgcg ccatcccctg gatcttctcg 2220 tggacccaga ccaggttcca cctccccgtg tggctgggag tcggcgccgc attcaagttc 2280 gccatcgaca aggacgtcag gaacttccag gtcctcaaag agatgtacaa cgagtggcca 2340 ttcttcaggg tcaccctgga cctgctggag atggttttcg ccaagggaga ccccggcatt 2400 gccggcttgt atgacgagct gcttgtggcg gaagaactca agccctttgg gaagcagctc 2460 agggacaaat acgtggagac acagcagctt ctcctccaga tcgctgggca caaggatatt 2520 cttgaaggcg atccattcct gaagcagggg ctggtgctgc gcaaccccta catcaccacc 2580 ctgaacgtgt tccaggccta cacgctgaag cggataaggg accccaactt caaggtgacg 2640 ccccagccgc cgctgtccaa ggagttcgcc gacgagaaca agcccgccgg actggtcaag 2700 ctgaacccgg cgagcgagta cccgcccggc ctggaagaca cgctcatcct caccatgaag 2760 ggcatcgccg ccggcatgca gaacactggc tag 2793 <210> 4 <211> 538 <212> DNA <213> CaMV 35S promoter sequence <400> 4 catggagtca aagattcaaa tagaggacct aacagaactc gccgtaaaga ctggcgaaca 60 gttcatacag agtctcttac gactcaatga caagaagaaa atcttcgtca acatggtgga 120 gcacgacaca cttgtctact ccaaaaatat caaagataca gtctcagaag accaaagggc 180 aattgagact tttcaacaaa gggtaatatc cggaaacctc ctcggattcc attgcccagc 240 tatctgtcac tttattgtga agatagtgga aaaggaaggt ggctcctaca aatgccatca 300 ttgcgataaa ggaaaggcca tcgttgaaga tgcctctgcc gacagtggtc ccaaagatgg 360 acccccaccc acgaggagca tcgtggaaaa agaagacgtt ccaaccacgt cttcaaagca 420 agtggattga tgtgatatct ccactgacgt aagggatgac gcacaatccc actatccttc 480 gcaagaccct tcctctatat aaggaagttc atttcatttg gagagaacac gggggact 538 <210> 5 <211> 240 <212> DNA <213> nos (nopaline synthase) 3'UTR (polyAsignal)sequence <400> 5 cgttcaaaca tttggcaata aagtttctta agattgaatc ctgttgccgg tcttgcgatg 60 attatcatat aatttctgtt gaattacgtt aagcatgtaa taattaacat gtaatgcatg 120 acgttattta tgagatgggt ttttatgatt agagtcccgc aattatacat ttaatacgcg 180 atagaaaaca aaatatagcg cgcaaactag gataaattat cgcgcgcggt gtcatctatg 240 <210> 6 <211> 1026 <212> DNA <213> hygromycin phosphotransferase <400> 6 ctatttcttt gccctcggac gagtgctggg gcgtcggttt ccactatcgg cgagtacttc 60 tacacagcca tcggtccaga cggccgcgct tctgcgggcg atttgtgtac gcccgacagt 120 cccggctccg gatcggacga ttgcgtcgca tcgaccctgc gcccaagctg catcatcgaa 180 attgccgtca accaagctct gatagagttg gtcaagacca atgcggagca tatacgcccg 240 gagtcgtggc gatcctgcaa gctccggatg cctccgctcg aagtagcgcg tctgctgctc 300 catacaagcc aaccacggcc tccagaagaa gatgttggcg acctcgtatt gggaatcccc 360 gaacatcgcc tcgctccagt caatgaccgc tgttatgcgg ccattgtccg tcaggacatt 420 gttggagccg aaatccgcgt gcacgaggtg ccggacttcg gggcagtcct cggcccaaag 480 catcagctca tcgagagcct gcgcgacgga cgcactgacg gtgtcgtcca tcacagtttg 540 ccagtgatac acatggggat cagcaatcgc gcatatgaaa tcacgccatg tagtgtattg 600 accgattcct tgcggtccga atgggccgaa cccgctcgtc tggctaagat cggccgcagc 660 gatcgcatcc atagcctccg cgaccggttg tagaacagcg ggcagttcgg tttcaggcag 720 gtcttgcaac gtgacaccct gtgcacggcg ggagatgcaa taggtcaggc tctcgctaaa 780 ctccccaatg tcaagcactt ccggaatcgg gagcgcggcc gatgcaaagt gccgataaac 840 ataacgatct ttgtagaaac catcggcgca gctatttacc cgcaggacat atccacgccc 900 tcctacatcg aagctgaaag cacgagattc ttcgccctcc gagagctgca tcaggtcgga 960 gacgctgtcg aacttttcga tcagaaactt ctcgacagac gtcgcggtga gttcaggctt 1020 tttcat 1026 <210> 7 <211> 7955 <212> DNA <213> Artificial Sequence <220> <223> Expression cassettes for AspAT, GS and PEPCase coding sequences, cloned under control of CamV 35S promoter and Nos terminator in pCAMBIA 1302 <400> 7 catggagtca aagattcaaa tagaggacct aacagaactc gccgtaaaga ctggcgaaca 60 gttcatacag agtctcttac gactcaatga caagaagaaa atcttcgtca acatggtgga 120 gcacgacaca cttgtctact ccaaaaatat caaagataca gtctcagaag accaaagggc 180 aattgagact tttcaacaaa gggtaatatc cggaaacctc ctcggattcc attgcccagc 240 tatctgtcac tttattgtga agatagtgga aaaggaaggt ggctcctaca aatgccatca 300 ttgcgataaa ggaaaggcca tcgttgaaga tgcctctgcc gacagtggtc ccaaagatgg 360 acccccaccc acgaggagca tcgtggaaaa agaagacgtt ccaaccacgt cttcaaagca 420 agtggattga tgtgatatct ccactgacgt aagggatgac gcacaatccc actatccttc 480 gcaagaccct tcctctatat aaggaagttc atttcatttg gagagaacac gggggactct 540 tgaccatggt agatcttatg gcttctcacg acagcatctc cgcttctcca acctccgctt 600 ctgattccgt cttcaatcac ctcgttcgtg ctcccgaaga tcctatcctc ggggtaactg 660 tcgcttataa caaagatcca agtccagtta agctcaactt gggagttggt gcttaccgaa 720 ctgaggaagg aaaacctctt gttttgaatg tagtgaggcg agttgaacag caactcataa 780 atgacgtgtc acgcaacaag gaatatattc cgatcgttgg gcttgctgat tttaataaat 840 tgagtgctaa gcttattttt ggggctgaca gccctgctat tcaagacaac agggttacca 900 ctgttcaatg cttgtctgga actggttctt taagagttgg gggtgaattt ttggctaaac 960 actatcacca acggactata tacttgccaa caccaacttg gggcaatcac ccgaaggttt 1020 tcaacttagc aggcttgtct gtcaaaacat accgctacta tgctccagca acacgaggac 1080 ttgactttca aggacttctg gaagaccttg gttctgctcc atctggatct attgttttgc 1140 tacatgcatg cgcacataac cccactggtg tggatccaac ccttgagcaa tgggagcaga 1200 ttaggcagct aataagatca aaagctttgt tacctttctt tgacagtgct tatcagggtt 1260 ttgctagtgg aagtctagat gcagatgccc aacctgttcg tttgtttgtt gctgatggag 1320 gcgaattgct ggtagcacaa agctatgcaa agaatctggg tctttatggg gaacgtgttg 1380 gcgccttaag cattgtctgc aagtcagctg atgttgcaag cagggttgag agccagctga 1440 agctagtgat taggcccatg tactcaagtc ctcccattca tggtgcatcc attgtggctg 1500 ccattctcaa ggaccggaat ttgttcaatg actggactat tgagttgaag gcaatggctg 1560 atcgcatcat cagtatgcgc caagaacttt tcgatgcttt atgttccaga ggcacacctg 1620 gcgattggag tcacattatc aaacagattg gaatgtttac tttcactgga ttgaatgcgg 1680 aacaagtttc cttcatgact aaagagttcc atatatacat gacatctgat gggaggatta 1740 gcatggctgg tctgagttcc aaaactgtcc cacttctggc ggatgcgata catgcagctg 1800 taacccgagt tgtctaacac gtgtgaattg gtgaccagct cgaatttccc cgatcgttca 1860 aacatttggc aataaagttt cttaagattg aatcctgttg ccggtcttgc gatgattatc 1920 atataatttc tgttgaatta cgttaagcat gtaataatta acatgtaatg catgacgtta 1980 tttatgagat gggtttttat gattagagtc ccgcaattat acatttaata cgcgatagaa 2040 aacaaaatat agcgcgcaaa ctaggataaa ttatcgcgcg cggtgtcatc tatgttacta 2100 gatcgggaat taaactagta atggcgaatg ctagagcagc ttgagcttgg atcagattgt 2160 cgtttcccgc cttcagttta gcttcatgga gtcaaagatt caaatagagg acctaacaga 2220 actcgccgta aagactggcg aacagttcat acagagtctc ttacgactca atgacaagaa 2280 gaaaatcttc gtcaacatgg tggagcacga cacacttgtc tactccaaaa atatcaaaga 2340 tacagtctca gaagaccaaa gggcaattga gacttttcaa caaagggtaa tatccggaaa 2400 cctcctcgga ttccattgcc cagctatctg tcactttatt gtgaagatag tggaaaagga 2460 aggtggctcc tacaaatgcc atcattgcga taaaggaaag gccatcgttg aagatgcctc 2520 tgccgacagt ggtcccaaag atggaccccc acccacgagg agcatcgtgg aaaaagaaga 2580 cgttccaacc acgtcttcaa agcaagtgga ttgatgtgat atctccactg acgtaaggga 2640 tgacgcacaa tcccactatc cttcgcaaga cccttcctct atataaggaa gttcatttca 2700 tttggagaga acacggggga ctcttgacca tggctcatct ttcagatctc gttaatctca 2760 atctctctga ctccactcag aaaattattg ctgaatacat atggattggt ggatcaggaa 2820 tggacgtcag gagcaaagcc agaacacttt ctggacctgt tgatgatcct tcaaagcttc 2880 ccaaatggaa ttatgatggt tctagcacag gacaagctcc tggagaagac agtgaagaga 2940 tcctatatcc tcaagcaatt ttcaaggatc cattcagaag gggcaacaat atcttggtca 3000 tttgtgattg ttacacccca gctggtgaac ccattccaac aaacaaaagg cacagtgctg 3060 ccaagatttt cagccaccct gatgttgttg ttgaggaacc ctggtatggt cttgagcaag 3120 aatacacctt gttgcaaaaa gatatcaatt ggcctcttgg atggcctctt ggtggttttc 3180 ctggaccaca gggaccatac tattgcggaa ttggagctgg aaaggtcttt ggacgcgata 3240 tcgttgactc tcattataag gcatgtctct atgctgggat taacatcagt ggtatcaatg 3300 gagaagtgat gcccggacag tgggaatttc aagttggacc ttcagttggc atttcagcag 3360 ctgatgaatt gtgggcagct cgttacattc ttgagaggat tactgagatt gctggagttg 3420 tggtctcatt tgaccccaaa cctattccgg gtgactggaa tggtgctgga gctcacacaa 3480 actacagcac aaagtctatg aggaatgaag gaggctatga agtcattaag aaggcaattg 3540 agaaccttgg actgaggcac aaggagcata ttgcagcata tggtgaaggc aacgagcgtc 3600 gtctcactgg aagacacgaa acagctgaca tcaacacatt caaatgggga gttgcgaacc 3660 gtggtgcatc tattcgtgtg ggaagagaca cggagagaga agggaaggga tacttcgagg 3720 ataggaggcc tgcttcgaat atggatccat tcgtcgtgac ttccatgatt gctgagacca 3780 ctatcctatc cgagccttga ggtcaccagc tcgaatttcc ccgatcgttc aaacatttgg 3840 caataaagtt tcttaagatt gaatcctgtt gccggtcttg cgatgattat catataattt 3900 ctgttgaatt acgttaagca tgtaataatt aacatgtaat gcatgacgtt atttatgaga 3960 tgggttttta tgattagagt cccgcaatta tacatttaat acgcgataga aaacaaaata 4020 tagcgcgcaa actaggataa attatcgcgc gcggtgtcat ctatgttact agatcgggaa 4080 ttaaactatc agtgtttgac aggatatatt ggcgggcgcg ccaatggcga atgctagagc 4140 agcttgagct tggatcagat tgtcgtttcc cgccttcagt ttagcttcat ggagtcaaag 4200 attcaaatag aggacctaac agaactcgcc gtaaagactg gcgaacagtt catacagagt 4260 ctcttacgac tcaatgacaa gaagaaaatc ttcgtcaaca tggtggagca cgacacactt 4320 gtctactcca aaaatatcaa agatacagtc tcagaagacc aaagggcaat tgagactttt 4380 caacaaaggg taatatccgg aaacctcctc ggattccatt gcccagctat ctgtcacttt 4440 attgtgaaga tagtggaaaa ggaaggtggc tcctacaaat gccatcattg cgataaagga 4500 aaggccatcg ttgaagatgc ctctgccgac agtggtccca aagatggacc cccacccacg 4560 aggagcatcg tggaaaaaga agacgttcca accacgtctt caaagcaagt ggattgatgt 4620 gatatctcca ctgacgtaag ggatgacgca caatcccact atccttcgca agacccttcc 4680 tctatataag gaagttcatt tcatttggag agaacacggg ggactcttga ccatggtaga 4740 tcttatggcg tcgaccaagg ctcccggccc cggcgagaag caccactcca tcgacgcgca 4800 gctccgtcag ctggtcccag gcaaggtctc cgaggacgac aagctcatcg agtacgatgc 4860 gctgctcgtc gaccgcttcc tcaacatcct ccaggacctc cacgggccca gccttcgcga 4920 atttgtccag gagtgctacg aggtctcagc cgactacgag ggcaaaggag acacgacgaa 4980 gctgggcgag ctcggcgcca agctcacggg gctggccccc gccgacgcca tcctcgtggc 5040 gagctccatc ctgcacatgc tcaacctcgc caacctggcc gaggaggtgc agatcgcgca 5100 ccgccgccgc aacagcaagc tcaagaaagg tgggttcgcc gacgagggct ccgccaccac 5160 cgagtccgac atcgaggaga cgctcaagcg cctcgtgtcc gaggtcggca agtcccccga 5220 ggaggtgttc gaggcgctca agaaccagac cgtcgacctc gtcttcaccg cgcatcctac 5280 gcagtccgcc cgccgctcgc tcctgcaaaa aaatgccagg atccgaaatt gtctgaccca 5340 gctgaatgcc aaggacatca ctgacgacga caagcaggag ctcgatgagg ctctgcagag 5400 agagatccaa gcagccttca gaaccgatga aatcaggagg gcacaaccca ccccgcaggc 5460 cgaaatgcgc tatgggatga gctacatcca tgagactgta tggaagggtg tgcctaagtt 5520 cttgcgccgt gtggatacag ccctgaagaa tatcggcatc aatgagcgcc ttccctacaa 5580 tgtttctctc attcggttct cttcttggat gggtggtgac cgcgatggaa atccaagagt 5640 taccccggag gtgacaagag atgtatgctt gctggccaga atgatggctg caaacttgta 5700 catcgatcag attgaagagc tgatgtttga gctctctatg tggcgctgca acgatgagct 5760 tcgtgttcgt gccgaagagc tccacagttc gtctggttcc aaagttacca agtattacat 5820 agaattctgg aagcaaattc ctccaaacga gccctaccgg gtgatactag gccatgtaag 5880 ggacaagctg tacaacacac gcgagcgtgc tcgccatctg ctggcttctg gagtttctga 5940 aatttcagcg gaatcgtcat ttaccagtat cgaagagttc cttgagccac ttgagctgtg 6000 ctacaaatca ctgtgtgact gcggcgacaa ggccatcgcg gacgggagcc tcctggacct 6060 cctgcgccag gtgttcacgt tcgggctctc cctggtgaag ctggacatcc ggcaggagtc 6120 ggagcggcac accgacgtga tcgacgccat caccacgcac ctcggcatcg ggtcgtaccg 6180 cgagtggccc gaggacaaga ggcaggagtg gctgctgtcg gagctgcgag gcaagcgccc 6240 gctgctgccc ccggaccttc cccagaccga cgagatcgcc gacgtcatcg gcgcgttcca 6300 cgtcctcgcg gagctcccgc ccgacagctt cggcccctac atcatctcca tggcgacggc 6360 cccctcggac gtgctcgccg tggagctcct gcagcgcgag tgcggcgtgc gccagccgct 6420 gcccgtggtg ccgctgttcg agaggctggc cgacctgcag tcggcgcccg cgtccgtgga 6480 gcgcctcttc tcggtggact ggtacatgga ccggatcaag ggcaagcagc aggtcatggt 6540 cggctactcc gactccggca aggacgccgg ccgcctgtcc gcggcgtggc agctgtacag 6600 ggcgcaggag gagatggcgc aggtggccaa gcgctacggc gtcaagctca ccttgttcca 6660 cggccgcgga ggcaccgtgg gcaggggtgg cgggcccacg caccttgcca tcctgtccca 6720 gccgccggac accatcaacg ggtccatccg tgtgacggtg cagggcgagg tcatcgagtt 6780 ctgcttcggg gaggagcacc tgtgcttcca gactctgcag cgcttcacgg ccgccacgct 6840 ggagcacggc atgcacccgc cggtctctcc caagcccgag tggcgcaagc tcatggacga 6900 gatggcggtc gtggccacgg aggagtaccg ctccgtcgtc gtcaaggagg cgcgcttcgt 6960 cgagtacttc agatcggcta caccggagac cgagtacggg aggatgaaca tcggcagccg 7020 gccagccaag aggaggcccg gcggcggcat cacgaccctg cgcgccatcc cctggatctt 7080 ctcgtggacc cagaccaggt tccacctccc cgtgtggctg ggagtcggcg ccgcattcaa 7140 gttcgccatc gacaaggacg tcaggaactt ccaggtcctc aaagagatgt acaacgagtg 7200 gccattcttc agggtcaccc tggacctgct ggagatggtt ttcgccaagg gagaccccgg 7260 cattgccggc ttgtatgacg agctgcttgt ggcggaagaa ctcaagccct ttgggaagca 7320 gctcagggac aaatacgtgg agacacagca gcttctcctc cagatcgctg ggcacaagga 7380 tattcttgaa ggcgatccat tcctgaagca ggggctggtg ctgcgcaacc cctacatcac 7440 caccctgaac gtgttccagg cctacacgct gaagcggata agggacccca acttcaaggt 7500 gacgccccag ccgccgctgt ccaaggagtt cgccgacgag aacaagcccg ccggactggt 7560 caagctgaac ccggcgagcg agtacccgcc cggcctggaa gacacgctca tcctcaccat 7620 gaagggcatc gccgccggca tgcagaacac tggctaggct gaggacacgt gtgaattggt 7680 gaccagctcg aatttccccg atcgttcaaa catttggcaa taaagtttct taagattgaa 7740 tcctgttgcc ggtcttgcga tgattatcat ataatttctg ttgaattacg ttaagcatgt 7800 aataattaac atgtaatgca tgacgttatt tatgagatgg gtttttatga ttagagtccc 7860 gcaattatac atttaatacg cgatagaaaa caaaatatag cgcgcaaact aggataaatt 7920 atcgcgcgcg gtgtcatcta tgttactaga tcggg 7955 <210> 8 <211> 28 <212> DNA <213> Artficial Sequence <220> <223> Forward primer- GSNcoI F <400> 8 tgccatggct catctttcgg atctcgtt 28 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer- GSBstEII R <400> 9 gggtgacctc aaggctcgga taggatagtg 30 <210> 10 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Forward primer- AspAT BglII F <400> 10 catagatctt atggcttctc acgacagcat ct 32 <210> 11 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer- AspAT PmlI R <400> 11 gccacgtgtt agacaactcg ggttacagct g 31 <210> 12 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Forward primer- PEPCase BglII F <400> 12 atagatctta tggcgtcgac caaggctccg 30 <210> 13 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer- PEPCase SpeI R <400> 13 agactagtgc cagtgttctg catgccggcg g 31 <210> 14 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Forward primer- 35S SpeI F <400> 14 ggactagtaa tggcgaatgc tagagcagct tgag 34 <210> 15 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer- NosT AscI, BbvCI,PmlI R <400> 15 gccacgtgtc ctcagctggc gcgcccgcca atatatcctg tcaaacactg atagt 55 <210> 16 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer- NosT SpeI R <400> 16 ggactagttt aattcccgat ctagtaacat agatg 35 <210> 17 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Forward primer- 35S AscI F <400> 17 atctggcgcg ccaatggcga atgctagagc agcttgag 38 <210> 18 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer- PEPCase BbvCI R <400> 18 gtgcctcagc ctagccagtg ttctgcatgc cgg 33 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer- hpt F <400> 19 gagggcgaag aatctcgtgc 20 <210> 20 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer- hpt R <400> 20 gatgttggcg acctcgtatt gg 22 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer- PEPCase Exp F <400> 21 acgtcaggaa cttccaggtc 20 <210> 22 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer- PEPCase Exp R <400> 22 cttgttctcg tcggcgaac 19 <210> 23 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Forward primer- GS Exp F <400> 23 actttctgga cctgttgat 19 <210> 24 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer- GS Exp R <400> 24 ggcagcactg tgcctt 16 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Forward primer- AspAT Exp F <400> 25 atggcttctc acgacagcat c 21 <210> 26 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer- AspAT Exp R <400> 26 ttgcgtgaca cgtcatttat gagt 24 <210> 27 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Forward primer- 26S F <400> 27 cacaatgata ggaagagccg ac 22 <210> 28 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer- 26S R <400> 28 caagggaacg ggcttggcag aatc 24 <210> 29 <211> 419 <212> PRT <213> Glycine max <400> 29 Met Ala Ser His Asp Ser Ile Ser Ala Ser Pro Thr Ser Ala Ser Asp 1 5 10 15 Ser Val Phe Asn His Leu Val Arg Ala Pro Glu Asp Pro Ile Leu Gly 20 25 30 Val Thr Val Ala Tyr Asn Lys Asp Pro Ser Pro Val Lys Leu Asn Leu 35 40 45 Gly Val Gly Ala Tyr Arg Thr Glu Glu Gly Lys Pro Leu Val Leu Asn 50 55 60 Val Val Arg Arg Val Glu Gln Gln Leu Ile Asn Asp Val Ser Arg Asn 65 70 75 80 Lys Glu Tyr Ile Pro Ile Val Gly Leu Ala Asp Phe Asn Lys Leu Ser 85 90 95 Ala Lys Leu Ile Phe Gly Ala Asp Ser Pro Ala Ile Gln Asp Asn Arg 100 105 110 Val Thr Thr Val Gln Cys Leu Ser Gly Thr Gly Ser Leu Arg Val Gly 115 120 125 Gly Glu Phe Leu Ala Lys His Tyr His Gln Arg Thr Ile Tyr Leu Pro 130 135 140 Thr Pro Thr Trp Gly Asn His Pro Lys Val Phe Asn Leu Ala Gly Leu 145 150 155 160 Ser Val Lys Thr Tyr Arg Tyr Tyr Ala Pro Ala Thr Arg Gly Leu Asp 165 170 175 Phe Gln Gly Leu Leu Glu Asp Leu Gly Ser Ala Pro Ser Gly Ser Ile 180 185 190 Val Leu Leu His Ala Cys Ala His Asn Pro Thr Gly Val Asp Pro Thr 195 200 205 Leu Glu Gln Trp Glu Gln Ile Arg Gln Leu Ile Arg Ser Lys Ala Leu 210 215 220 Leu Pro Phe Phe Asp Ser Ala Tyr Gln Gly Phe Ala Ser Gly Ser Leu 225 230 235 240 Asp Ala Asp Ala Gln Pro Val Arg Leu Phe Val Ala Asp Gly Gly Glu 245 250 255 Leu Leu Val Ala Gln Ser Tyr Ala Lys Asn Leu Gly Leu Tyr Gly Glu 260 265 270 Arg Val Gly Ala Leu Ser Ile Val Cys Lys Ser Ala Asp Val Ala Ser 275 280 285 Arg Val Glu Ser Gln Leu Lys Leu Val Ile Arg Pro Met Tyr Ser Ser 290 295 300 Pro Pro Ile His Gly Ala Ser Ile Val Ala Ala Ile Leu Lys Asp Arg 305 310 315 320 Asn Leu Phe Asn Asp Trp Thr Ile Glu Leu Lys Ala Met Ala Asp Arg 325 330 335 Ile Ile Ser Met Arg Gln Glu Leu Phe Asp Ala Leu Cys Ser Arg Gly 340 345 350 Thr Pro Gly Asp Trp Ser His Ile Ile Lys Gln Ile Gly Met Phe Thr 355 360 365 Phe Thr Gly Leu Asn Ala Glu Gln Val Ser Phe Met Thr Lys Glu Phe 370 375 380 His Ile Tyr Met Thr Ser Asp Gly Arg Ile Ser Met Ala Gly Leu Ser 385 390 395 400 Ser Lys Thr Val Pro Leu Leu Ala Asp Ala Ile His Ala Ala Val Thr 405 410 415 Arg Val Val <210> 30 <211> 356 <212> PRT <213> Nicotiana tabaccum <400> 30 Met Ala His Leu Ser Asp Leu Val Asn Leu Asn Leu Ser Asp Ser Thr 1 5 10 15 Gln Lys Ile Ile Ala Glu Tyr Ile Trp Ile Gly Gly Ser Gly Met Asp 20 25 30 Val Arg Ser Lys Ala Arg Thr Leu Ser Gly Pro Val Asp Asp Pro Ser 35 40 45 Lys Leu Pro Lys Trp Asn Tyr Asp Gly Ser Ser Thr Gly Gln Ala Pro 50 55 60 Gly Glu Asp Ser Glu Glu Ile Leu Tyr Pro Gln Ala Ile Phe Lys Asp 65 70 75 80 Pro Phe Arg Arg Gly Asn Asn Ile Leu Val Ile Cys Asp Cys Tyr Thr 85 90 95 Pro Ala Gly Glu Pro Ile Pro Thr Asn Lys Arg His Ser Ala Ala Lys 100 105 110 Ile Phe Ser His Pro Asp Val Val Val Glu Glu Pro Trp Tyr Gly Leu 115 120 125 Glu Gln Glu Tyr Thr Leu Leu Gln Lys Asp Ile Asn Trp Pro Leu Gly 130 135 140 Trp Pro Leu Gly Gly Phe Pro Gly Pro Gln Gly Pro Tyr Tyr Cys Gly 145 150 155 160 Ile Gly Ala Gly Lys Val Phe Gly Arg Asp Ile Val Asp Ser His Tyr 165 170 175 Lys Ala Cys Leu Tyr Ala Gly Ile Asn Ile Ser Gly Ile Asn Gly Glu 180 185 190 Val Met Pro Gly Gln Trp Glu Phe Gln Val Gly Pro Ser Val Gly Ile 195 200 205 Ser Ala Ala Asp Glu Leu Trp Ala Ala Arg Tyr Ile Leu Glu Arg Ile 210 215 220 Thr Glu Ile Ala Gly Val Val Val Ser Phe Asp Pro Lys Pro Ile Pro 225 230 235 240 Gly Asp Trp Asn Gly Ala Gly Ala His Thr Asn Tyr Ser Thr Lys Ser 245 250 255 Met Arg Asn Glu Gly Gly Tyr Glu Val Ile Lys Lys Ala Ile Glu Asn 260 265 270 Leu Gly Leu Arg His Lys Glu His Ile Ala Ala Tyr Gly Glu Gly Asn 275 280 285 Glu Arg Arg Leu Thr Gly Arg His Glu Thr Ala Asp Ile Asn Thr Phe 290 295 300 Lys Trp Gly Val Ala Asn Arg Gly Ala Ser Ile Arg Val Gly Arg Asp 305 310 315 320 Thr Glu Arg Glu Gly Lys Gly Tyr Phe Glu Asp Arg Arg Pro Ala Ser 325 330 335 Asn Met Asp Pro Phe Val Val Thr Ser Met Ile Ala Glu Thr Thr Ile 340 345 350 Leu Ser Glu Pro 355 <210> 31 <211> 970 <212> PRT <213> Zea mays <400> 31 Met Ala Ser Thr Lys Ala Pro Gly Pro Gly Glu Lys His His Ser Ile 1 5 10 15 Asp Ala Gln Leu Arg Gln Leu Val Pro Gly Lys Val Ser Glu Asp Asp 20 25 30 Lys Leu Ile Glu Tyr Asp Ala Leu Leu Val Asp Arg Phe Leu Asn Ile 35 40 45 Leu Gln Asp Leu His Gly Pro Ser Leu Arg Glu Phe Val Gln Glu Cys 50 55 60 Tyr Glu Val Ser Ala Asp Tyr Glu Gly Lys Gly Asp Thr Thr Lys Leu 65 70 75 80 Gly Glu Leu Gly Ala Lys Leu Thr Gly Leu Ala Pro Ala Asp Ala Ile 85 90 95 Leu Val Ala Ser Ser Ile Leu His Met Leu Asn Leu Ala Asn Leu Ala 100 105 110 Glu Glu Val Gln Ile Ala His Arg Arg Arg Asn Ser Lys Leu Lys Lys 115 120 125 Gly Gly Phe Ala Asp Glu Gly Ser Ala Thr Thr Glu Ser Asp Ile Glu 130 135 140 Glu Thr Leu Lys Arg Leu Val Ser Glu Val Gly Lys Ser Pro Glu Glu 145 150 155 160 Val Phe Glu Ala Leu Lys Asn Gln Thr Val Asp Leu Val Phe Thr Ala 165 170 175 His Pro Thr Gln Ser Ala Arg Arg Ser Leu Leu Gln Lys Asn Ala Arg 180 185 190 Ile Arg Asn Cys Leu Thr Gln Leu Asn Ala Lys Asp Ile Thr Asp Asp 195 200 205 Asp Lys Gln Glu Leu Asp Glu Ala Leu Gln Arg Glu Ile Gln Ala Ala 210 215 220 Phe Arg Thr Asp Glu Ile Arg Arg Ala Gln Pro Thr Pro Gln Ala Glu 225 230 235 240 Met Arg Tyr Gly Met Ser Tyr Ile His Glu Thr Val Trp Lys Gly Val 245 250 255 Pro Lys Phe Leu Arg Arg Val Asp Thr Ala Leu Lys Asn Ile Gly Ile 260 265 270 Asn Glu Arg Leu Pro Tyr Asn Val Ser Leu Ile Arg Phe Ser Ser Trp 275 280 285 Met Gly Gly Asp Arg Asp Gly Asn Pro Arg Val Thr Pro Glu Val Thr 290 295 300 Arg Asp Val Cys Leu Leu Ala Arg Met Met Ala Ala Asn Leu Tyr Ile 305 310 315 320 Asp Gln Ile Glu Glu Leu Met Phe Glu Leu Ser Met Trp Arg Cys Asn 325 330 335 Asp Glu Leu Arg Val Arg Ala Glu Glu Leu His Ser Ser Ser Gly Ser 340 345 350 Lys Val Thr Lys Tyr Tyr Ile Glu Phe Trp Lys Gln Ile Pro Pro Asn 355 360 365 Glu Pro Tyr Arg Val Ile Leu Gly His Val Arg Asp Lys Leu Tyr Asn 370 375 380 Thr Arg Glu Arg Ala Arg His Leu Leu Ala Ser Gly Val Ser Glu Ile 385 390 395 400 Ser Ala Glu Ser Ser Phe Thr Ser Ile Glu Glu Phe Leu Glu Pro Leu 405 410 415 Glu Leu Cys Tyr Lys Ser Leu Cys Asp Cys Gly Asp Lys Ala Ile Ala 420 425 430 Asp Gly Ser Leu Leu Asp Leu Leu Arg Gln Val Phe Thr Phe Gly Leu 435 440 445 Ser Leu Val Lys Leu Asp Ile Arg Gln Glu Ser Glu Arg His Thr Asp 450 455 460 Val Ile Asp Ala Ile Thr Thr His Leu Gly Ile Gly Ser Tyr Arg Glu 465 470 475 480 Trp Pro Glu Asp Lys Arg Gln Glu Trp Leu Leu Ser Glu Leu Arg Gly 485 490 495 Lys Arg Pro Leu Leu Pro Pro Asp Leu Pro Gln Thr Asp Glu Ile Ala 500 505 510 Asp Val Ile Gly Ala Phe His Val Leu Ala Glu Leu Pro Pro Asp Ser 515 520 525 Phe Gly Pro Tyr Ile Ile Ser Met Ala Thr Ala Pro Ser Asp Val Leu 530 535 540 Ala Val Glu Leu Leu Gln Arg Glu Cys Gly Val Arg Gln Pro Leu Pro 545 550 555 560 Val Val Pro Leu Phe Glu Arg Leu Ala Asp Leu Gln Ser Ala Pro Ala 565 570 575 Ser Val Glu Arg Leu Phe Ser Val Asp Trp Tyr Met Asp Arg Ile Lys 580 585 590 Gly Lys Gln Gln Val Met Val Gly Tyr Ser Asp Ser Gly Lys Asp Ala 595 600 605 Gly Arg Leu Ser Ala Ala Trp Gln Leu Tyr Arg Ala Gln Glu Glu Met 610 615 620 Ala Gln Val Ala Lys Arg Tyr Gly Val Lys Leu Thr Leu Phe His Gly 625 630 635 640 Arg Gly Gly Thr Val Gly Arg Gly Gly Gly Pro Thr His Leu Ala Ile 645 650 655 Leu Ser Gln Pro Pro Asp Thr Ile Asn Gly Ser Ile Arg Val Thr Val 660 665 670 Gln Gly Glu Val Ile Glu Phe Cys Phe Gly Glu Glu His Leu Cys Phe 675 680 685 Gln Thr Leu Gln Arg Phe Thr Ala Ala Thr Leu Glu His Gly Met His 690 695 700 Pro Pro Val Ser Pro Lys Pro Glu Trp Arg Lys Leu Met Asp Glu Met 705 710 715 720 Ala Val Val Ala Thr Glu Glu Tyr Arg Ser Val Val Val Lys Glu Ala 725 730 735 Arg Phe Val Glu Tyr Phe Arg Ser Ala Thr Pro Glu Thr Glu Tyr Gly 740 745 750 Arg Met Asn Ile Gly Ser Arg Pro Ala Lys Arg Arg Pro Gly Gly Gly 755 760 765 Ile Thr Thr Leu Arg Ala Ile Pro Trp Ile Phe Ser Trp Thr Gln Thr 770 775 780 Arg Phe His Leu Pro Val Trp Leu Gly Val Gly Ala Ala Phe Lys Phe 785 790 795 800 Ala Ile Asp Lys Asp Val Arg Asn Phe Gln Val Leu Lys Glu Met Tyr 805 810 815 Asn Glu Trp Pro Phe Phe Arg Val Thr Leu Asp Leu Leu Glu Met Val 820 825 830 Phe Ala Lys Gly Asp Pro Gly Ile Ala Gly Leu Tyr Asp Glu Leu Leu 835 840 845 Val Ala Glu Glu Leu Lys Pro Phe Gly Lys Gln Leu Arg Asp Lys Tyr 850 855 860 Val Glu Thr Gln Gln Leu Leu Leu Gln Ile Ala Gly His Lys Asp Ile 865 870 875 880 Leu Glu Gly Asp Pro Phe Leu Lys Gln Gly Leu Val Leu Arg Asn Pro 885 890 895 Tyr Ile Thr Thr Leu Asn Val Phe Gln Ala Tyr Thr Leu Lys Arg Ile 900 905 910 Arg Asp Pro Asn Phe Lys Val Thr Pro Gln Pro Pro Leu Ser Lys Glu 915 920 925 Phe Ala Asp Glu Asn Lys Pro Ala Gly Leu Val Lys Leu Asn Pro Ala 930 935 940 Ser Glu Tyr Pro Pro Gly Leu Glu Asp Thr Leu Ile Leu Thr Met Lys 945 950 955 960 Gly Ile Ala Ala Gly Met Gln Asn Thr Gly 965 970

Claims (11)

  1. 야생형 또는 비형질전환(untransformed) 식물과 비교하여 식물의 탄소 함량, 질소 함량, 신초 생체 중량 또는 신초 건조 중량 또는 뿌리 생체 중량 또는 뿌리 건조 중량, 또는 총 꼬투리 개수를 증진시키기에 유용한, 하나 이상의 제어 서열 및 전사 종결인자 서열과 연결된, 서열번호 1, 서열번호 2 및 서열번호 3에 의해 표현되는 뉴클레오티드 서열을 포함하는 유전자 AspAT, GS 및 PEPCase의 동시발현을 위한 서열번호 7에 의해 표현되는 발현 구조체(expressioin construct)로서, 서열번호 1은 AspAT 유전자를 표현하고, 서열번호 2는 GS 유전자를 표현하며, 서열번호 3은 PEPCase 유전자를 표현하는 것인 발현 구조체.
  2. 청구항 1에 있어서, 상기 제어 서열은 서열번호 4에 의해 표현되고, 상기 전사 종결인자 서열은 서열번호 5에 의해 표현되는 것인 발현 구조체.
  3. 청구항 1에 있어서, 상기 제어 서열은 CaMV 35S 프로모터, 루비스코 프로모터, 유비퀴틴 프로모터, 액틴 프로모터로 구성된 군으로부터 선택된 구성적 프로모터인 것인 발현 구조체.
  4. 청구항 1에 있어서, 사용된 상기 종결인자는 Nos 종결인자 및 CaMV 3'UTR로 구성된 군으로부터 선택되는 것인 발현 구조체.
  5. 청구항 1에 있어서, 서열번호 7을 갖는 폴리뉴클레오티드는 식물에서 과발현되는 것인 발현 구조체.
  6. 하기 단계를 포함하는, 청구항 1에 따른 발현 구조체를 제조하는 방법:
    i) 서열번호 10 및 서열번호 11에 의해 표현되는 프라이머를 사용하여 서열번호 1에 의해 표현되는 유전자, 서열번호 8 및 서열번호 9에 의해 표현되는 프라이머를 사용하여 서열번호 2에 의해 표현되는 유전자 및 서열번호 12 및 서열번호 13에 의해 표현되는 프라이머를 사용하여 서열번호 3에 의해 표현되는 유전자를 코딩하는 cDNA 서열을 증폭하는 단계;
    ii) 상기 단계 i)에서 얻어진 서열번호 1, 2 및 3의 증폭된 생성물을 독립적으로 pGEM-T 이지 벡터(easy vector)로 클로닝하는 단계;
    iii) AspAT, GS 및 PEPCase 각각에 대한 발현 카세트를 수득하기 위해 상기 단계 ii)에서 얻어진 양성 클론으로부터의 플라스미드 및 pCAMBIA 1302를 각각 절단(digest)하고, 절단된 생성물을 라이게이션하고, 대장균 DH5α 세포로 형질전환하는 단계;
    iv) 상기 단계 iii)에서 얻어진 양성 클론으로부터의 플라스미드를 시퀀싱하여, AspAT::pCAMBIA1302; GS::pCAMBIA1302 및 PEPCase::pCAMBIA1302의 인프레임 클로닝(inframe cloning)을 확인하는 단계;
    v) 서열번호 10과 서열번호 16; 서열번호 14와 서열번호 15 및 서열번호 17 과 서열번호 18에 의해 표현되는 프라이머를 사용하여 상기 단계 iv)에서 얻어진 생성물을 증폭하는 단계;
    vi) 증폭된 GS 코딩 서열에 대해, GS+pCAMBIA1302를 형성하도록 클로닝, 절단, 라이게이션 및 시퀀싱을 다시 독립적으로 수행하고, GS+pCAMBIA1302는 더 절단하고, 증폭된 AspAT 코딩 서열의 양성 클론의 플라스미드와 라이게이션시켜 AspAT+GS+pCAMBIA1302 발현 카세트를 형성하는 단계;
    vii) 유전자 AspAT, GS 및 PEPCase가 독립적인 CaMV 35S 프로모터 및 Nos 전사 종결인자에 의해 조절되도록, 증폭된 PEPCase 코딩 서열의 양성 클론의 절단된(digested) 플라스미드를 단계 vi)에서 얻어진 AspAT+GS+pCAMBIA1302 발현 카세트의 절단된 플라스미드와 라이게이션하여, 서열번호 7에 의해 표현되는 단일 식물 발현 구조체 AspAT + GS + PEPCase를 형성하는 단계.
  7. 하기 단계를 포함하는, 청구항 1에 따른 발현 구조체를 이용하여 식물의 탄소 함량, 질소 함량, 신초 생체 중량 또는 신초 건조 중량 또는 뿌리 생체 중량 또는 뿌리 건조 중량, 또는 총 꼬투리 개수를 증진하는 방법:
    a) 아그로박테리움 투메파시엔스 균주를 청구항 1에 따른 발현 구조체로 형질전환하는 단계;
    b) 외식편(explant)을 상기 단계 (a)에서 얻어진 재조합 아그로박테리움 투메파시엔스 균주로 형질전환하는 단계;
    c) 야생형 식물과 비교하여, 증진된 수준의 식물의 탄소 함량, 질소 함량, 신초 생체 중량 또는 신초 건조 중량 또는 뿌리 생체 중량 또는 뿌리 건조 중량, 또는 총 꼬투리 개수를 갖는, 원하는 형질전환된 식물을 얻기 위하여 상기 단계 (b)의 형질전환된 외식편을 선택하는 단계.
  8. 청구항 7에 있어서, 상기 형질전환된 식물은 아라비돕시스, 토마토, 감자, 담배, 옥수수, 밀, 쌀, 면화, 겨자, 나무 콩, 동부콩, 완두콩, 사탕수수, 대두 및 수수로 구성된 군으로부터 선택되는 것인 방법.
  9. 청구항 7에 있어서, 상기 형질전환된 식물은 야생형과 비교하여 PEPCase 활성의 45-50%, GS 활성의 55% 이상 및 AspAT 활성의 55-60%의 증가를 보여, 식물의 탄소 함량 및 질소 함량의 증가를 가져오는 것인 방법.
  10. 삭제
  11. 청구항 7에 있어서, 상기 형질전환된 식물은 야생형 또는 비형질전환 식물과 비교하여, 증가된 신초 생체 중량(fresch weight), 신초 건조 중량, 뿌리 생체 중량 및 건조 중량을 특징으로 하는 증진된 성장 특성을 보이는 것인 방법.
KR1020137030563A 2011-04-19 2012-04-19 식물의 탄소,질소,바이오매스 및 수율을 증진시키기 위한 발현 구조체 및 방법 KR101590521B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN1143DE2011 2011-04-19
IN1143/DEL/2011 2011-04-19
PCT/IB2012/051965 WO2012143877A2 (en) 2011-04-19 2012-04-19 An expression construct and process for enhancing the carbon, nitrogen, biomass and yield of plants

Publications (2)

Publication Number Publication Date
KR20140019438A KR20140019438A (ko) 2014-02-14
KR101590521B1 true KR101590521B1 (ko) 2016-02-01

Family

ID=46146990

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137030563A KR101590521B1 (ko) 2011-04-19 2012-04-19 식물의 탄소,질소,바이오매스 및 수율을 증진시키기 위한 발현 구조체 및 방법

Country Status (8)

Country Link
US (1) US10808259B2 (ko)
EP (1) EP2699687B1 (ko)
JP (1) JP5856283B2 (ko)
KR (1) KR101590521B1 (ko)
CN (1) CN103597081B (ko)
AU (1) AU2012245969B2 (ko)
MX (1) MX346985B (ko)
WO (1) WO2012143877A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056130A1 (en) * 2013-10-14 2015-04-23 Basf Plant Science Company Gmbh Plants having increased biomass and / or sugar content and a method for making the same
CN110904148A (zh) * 2019-11-19 2020-03-24 湖北大学 一种合成紫杉二烯的植物表达载体、菌株dzggppsts和盾叶薯蓣及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006069610A2 (en) 2004-07-02 2006-07-06 Metanomics Gmbh Process for the production of fine chemicals
US20070118916A1 (en) 2005-10-14 2007-05-24 Metanomics Gmbh Process for the production of fine chemicals

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2694798C (en) * 1993-10-06 2013-06-11 New York University Transgenic plants that exhibit enhanced nitrogen assimilation
US6969782B2 (en) * 1993-10-06 2005-11-29 Ajinomoto Co., Inc. Method of producing transgenic plants having improved amino acid composition
US20060127889A1 (en) * 2000-07-25 2006-06-15 Dotson Stanton B Method for assessing transgene expression and copy number
JP2001299118A (ja) * 2001-03-19 2001-10-30 Natl Inst Of Agrobiological Resources C4植物の光合成酵素を発現するc3植物体
JP4189636B2 (ja) * 2002-02-19 2008-12-03 味の素株式会社 アミノ酸含量の増大した植物、窒素含量が増大した植物、窒素制限下での成育抑制が解除された植物、およびそれらの作製法
US20070271623A1 (en) * 2003-11-28 2007-11-22 University Of Copenhagen Plant Disease Resistance and Sar Regulator Protein
CA2644273A1 (en) 2006-04-05 2008-03-27 Metanomics Gmbh Process for the production of a fine chemical
EP2193202A2 (en) * 2007-09-21 2010-06-09 BASF Plant Science GmbH Plants with increased yield
US9062322B2 (en) * 2008-09-24 2015-06-23 Basf Plant Science Gmbh Plants having enhanced yield-related traits and a method for making the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006069610A2 (en) 2004-07-02 2006-07-06 Metanomics Gmbh Process for the production of fine chemicals
US20070118916A1 (en) 2005-10-14 2007-05-24 Metanomics Gmbh Process for the production of fine chemicals

Also Published As

Publication number Publication date
AU2012245969B2 (en) 2016-04-28
US10808259B2 (en) 2020-10-20
EP2699687A2 (en) 2014-02-26
WO2012143877A2 (en) 2012-10-26
JP2014512819A (ja) 2014-05-29
CN103597081A (zh) 2014-02-19
CN103597081B (zh) 2016-02-24
AU2012245969A1 (en) 2013-11-07
EP2699687B1 (en) 2015-08-19
MX2013012185A (es) 2014-03-27
JP5856283B2 (ja) 2016-02-09
WO2012143877A3 (en) 2013-01-31
WO2012143877A9 (en) 2012-12-13
MX346985B (es) 2017-04-07
US20140137297A1 (en) 2014-05-15
KR20140019438A (ko) 2014-02-14

Similar Documents

Publication Publication Date Title
Karthikeyan et al. Transgenic indica rice cv. ADT 43 expressing a Δ 1-pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia demonstrates salt tolerance
Ameziane et al. Expression of the bacterial gdhA gene encoding a NADPH glutamate dehydrogenase in tobacco affects plant growth and development
AU697331B2 (en) Transgenic plants that exhibit enhanced nitrogen assimilation
US9371538B2 (en) Method for increasing photosynthetic carbon fixation using glycolate dehydrogenase multi-subunit fusion protein
US20110268865A1 (en) Method for increasing photosynthetic carbon fixation in rice
US20060090219A1 (en) Methods for producing plants with improved growth under nitrogen-limited conditions
US8173865B2 (en) Plant having increased yield of seeds
EP1507864B1 (en) A method for production of plants with suppressed photorespiration and improved co2 fixation
EP2539456B1 (en) Increasing plant growth by modulating omega-amidase expression in plants
JP5273624B2 (ja) シネコシスティス(Synechocystis)から単離されたSyFBP/SBPase遺伝子を過発現させることによって植物の耐塩性を向上させる方法及びその方法によって製造された植物
KR101590521B1 (ko) 식물의 탄소,질소,바이오매스 및 수율을 증진시키기 위한 발현 구조체 및 방법
JP2001238556A (ja) アミノ酸組成が改良されたトランスジェニック植物の作出法
JP2005229823A (ja) 休眠期間の短縮した植物、およびその作出法
NZ716717B2 (en) An expression construct and process for enhancing the carbon, nitrogen, biomass and yield of plants
NZ716717A (en) An expression construct and process for enhancing the carbon, nitrogen, biomass and yield of plants
US9695436B2 (en) Plants having enhanced nitrogen use efficiency and methods of producing same
WO2004058975A1 (ja) 植物の環境ストレス耐性を高める方法
Yan et al. Improve Photosynthic Efficiency of Rice Via Over-Expressing a Ferredoxin-Like Protein Gene from Methanothermobacter Thermautotrophicus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190103

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200103

Year of fee payment: 5