KR101423817B1 - 조명 광학 시스템, 노광 장치 및 디바이스 제조 방법 - Google Patents

조명 광학 시스템, 노광 장치 및 디바이스 제조 방법 Download PDF

Info

Publication number
KR101423817B1
KR101423817B1 KR1020110145460A KR20110145460A KR101423817B1 KR 101423817 B1 KR101423817 B1 KR 101423817B1 KR 1020110145460 A KR1020110145460 A KR 1020110145460A KR 20110145460 A KR20110145460 A KR 20110145460A KR 101423817 B1 KR101423817 B1 KR 101423817B1
Authority
KR
South Korea
Prior art keywords
light
light beams
reflection type
divider
illumination
Prior art date
Application number
KR1020110145460A
Other languages
English (en)
Other versions
KR20120079011A (ko
Inventor
도시히꼬 쯔지
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20120079011A publication Critical patent/KR20120079011A/ko
Application granted granted Critical
Publication of KR101423817B1 publication Critical patent/KR101423817B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/701Off-axis setting using an aperture
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70108Off-axis setting using a light-guiding element, e.g. diffractive optical elements [DOEs] or light guides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Microscoopes, Condenser (AREA)
  • Lenses (AREA)

Abstract

본 발명의, 광원으로부터의 광으로 조명 표면을 조명하는 조명 광학 시스템은, 상기 광원으로부터의 광을 분할하여 복수의 광속을 생성하는 분할기와, 상기 분할기에 의해 생성된 상기 복수의 광속의 광 강도 분포를 균일화하는 제1 반사형 인티그레이터와, 상기 제1 반사형 인티그레이터로부터의 광속을 집광하는 집광기와, 상기 집광기로부터의 광속을 수신하여 상기 조명 표면을 조명하는 제2 반사형 인티그레이터와, 상기 제2 반사형 인티그레이터와 상기 조명 표면 사이에 배치되는 개구 조리개를 포함하고, 상기 분할기는, 상기 광원으로부터 상기 분할기에 제공되는 광의 단면 형상과는 상이한 단면 형상을 각각 갖는 광속들이 상기 개구 조리개가 배치된 면에 입사하도록, 상기 복수의 광속을 생성한다.

Description

조명 광학 시스템, 노광 장치 및 디바이스 제조 방법{ILLUMINATION OPTICAL SYSTEM, EXPOSURE APPARATUS, AND METHOD OF MANUFACTURING DEVICE}
본 발명은 조명 광학 시스템, 노광 장치 및 디바이스 제조 방법에 관한 것이다.
노광 장치의 해상도를 향상시키기 위해서, 환형 조명과 4중극(quadrupole) 조명 등의 변형 조명법 또는 RET[해상도 향상 기술(Resolution Enhancement Technology)]가 보통 이용된다.
특히, EUV[극자외선(Extreme Ultraviolet)] 조명 광학 시스템에서는, 미러의 개수의 증가에 의해 기판에 도달하는 광의 강도가 저하되므로, 변형 조명을 위한 미러 유닛을 제공하는 대신에, 개구 조리개가 광을 추출하는데 이용된다. 그 때문에, 개구 조리개에 의해 차광되는 광속의 양이 증가되고, 결과적으로 조명의 효율이 낮아지게 된다. 예를 들어, 일본 특허 공개 평11-312638호 공보의 도 18은, 광원으로부터의 EUV 광속이 미러(15)에 의해 평행 광속으로 균일화되지 않고 플라이 아이(fly-eye) 미러(20a, 20b)에 입사하는 실시예를 기재하고 있다. 본 실시예에서는, 원하는 변형 조명에 대응하는 개구 조리개(50a 내지 50f)를 플라이 아이 미러(20b)의 전방에 삽입하여 광속을 부분적으로 차광함으로써, 변형 조명을 구현하고 있다. 이러한 구성에서는, 광원으로부터의 광속의 각도 분포의 불균일성이 환형의 강도 분포에 직접적으로 반영되어, 유효 광원 분포의 균일성이 저하됨으로써, 해상도 성능에 악영향을 끼친다.
본 발명은, 조명 광학 시스템에 있어서, 광원으로부터의 광의 각도 분포의 불균일성을 해소하면서, 균일한 광 강도 분포를 형성하는 유리한 기술을 제공한다.
본 발명의 제1 양태는, 광원으로부터의 광으로 조명 표면을 조명하는 조명 광학 시스템을 제공하며, 상기 조명 광학 시스템은, 상기 광원으로부터의 광을 분할하여 복수의 광속을 생성하는 분할기와; 상기 분할기에 의해 생성된 상기 복수의 광속의 광 강도 분포를 균일화하는 제1 반사형 인티그레이터와; 상기 제1 반사형 인티그레이터로부터의 광속을 집광하는 집광기와; 상기 집광기로부터의 광속을 수신하여 상기 조명 표면을 조명하는 제2 반사형 인티그레이터와; 상기 제2 반사형 인티그레이터와 상기 조명 표면 사이에 배치되는 개구 조리개를 포함하고, 상기 분할기는, 상기 광원으로부터 상기 분할기에 제공되는 광의 단면 형상과는 상이한 단면 형상을 각각 갖는 광속들이 상기 개구 조리개가 배치된 면에 입사하도록, 상기 복수의 광속을 생성한다.
본 발명의 제2 양태는, 기판을 노광하는 노광 장치를 제공하며, 상기 노광 장치는, 원판을 조명하도록 구성된, 본 발명의 제1 양태로서 기재된 조명 광학 시스템과; 상기 원판의 패턴을 상기 기판 상에 투영하는 투영 광학 시스템을 포함한다.
본 발명의 제3 양태는, 디바이스 제조 방법을 제공하며, 상기 디바이스 제조 방법은, 본 발명의 제2 양태로서 기재된 노광 장치를 이용하여 기판을 노광하는 단계와; 상기 기판을 현상하는 단계를 포함한다.
본 발명의 추가적인 특징은 첨부된 도면을 참조하여 하기의 예시적인 실시예의 상세한 설명으로부터 명백해질 것이다.
도 1은 본 발명의 실시예에 따른 노광 장치 및 조명 광학 시스템을 설명하기 위한 도면.
도 2a 내지 도 2d는 광속이 2개의 광속으로 분할된 예를 도시하는 도면.
도 3a 내지 도 3d는 광속이 4개의 광속으로 분할된 예를 도시하는 도면.
도 4a 및 도 4b는 광속이 8개의 광속으로 분할된 예를 도시하는 도면.
도 5a 및 도 5b는 α를 변경하는 방법을 도시하는 도면.
도 6a 및 도 6b는 α를 변경하는 다른 방법을 도시하는 도면.
도 7은 제2 반사형 인티그레이터, 보조 미러 및 개구 조리개를 도시하는 도면.
도 8은 제1 반사형 인티그레이터를 도시하는 사시도.
도 1을 참조하여, 본 발명의 실시예에 따른 노광 장치(EX) 및 조명 광학 시스템(IL)을 하기에 설명한다. 본 발명의 실시예에 따른 노광 장치(EX)는, 광원(LS)과, 조명 광학 시스템(IL)과, 투영 광학 시스템(PO)과, 원판 구동 기구(26)와, 기판 구동 기구(29)를 포함한다. 광원(LS)은 진공 챔버(8) 내에 수용되어 있다. 조명 광학 시스템(IL), 투영 광학 시스템(PO), 원판 구동 기구(26) 및 기판 구동 기구(29)는 노광 장치(EX)의 본체를 구성하며, 진공 챔버(30) 내에 수용되어 있다. 노광 장치(EX)는, 예를 들어 노광 광으로서 EUV(Extreme Ultraviolet) 광을 사용하는 EUV 노광 장치로서 구성될 수 있지만, 다른 광(예를 들어, 레이저광)을 사용하는 노광 장치로서 구성될 수도 있다. 그러나, 이하에서는, 노광 장치(EX)가 EUV 노광 장치로서 구성되어 있는 구체예가 제공된다.
광원(LS)은, 펄스 전력원에 의해 구동되는 CO2 레이저 등의 고출력 펄스 레이저에 의해 방출되는 광으로 진공 챔버(8) 내의 플라즈마 매질을 조사함으로써, 플라즈마 매질로부터 고에너지 밀도의 플라즈마(2)를 발생시킨다. 플라즈마 매질로서는, 예를 들어 Sn 액적(liquid droplet)이 사용될 수 있다. 플라즈마(2)로부터의 열복사에 의해 13.5㎚ 근방의 파장을 갖는 EUV 광이 생성된다. 이러한 레이저광을 이용한 플라즈마 생성 방식의 광원은 레이저 생성 플라즈마(laser-produced plasma) EUV 광원으로 불린다.
다른 광원(LS)으로서의 광원은, 전류 공급원으로서 제공되는 펄스 전력원에 의해 여기된 펄스 전류를 방전 헤더(discharge header)에 인가하여 방전시켜, 방전에 의해 생성된 에너지를 이용하여 전극 사이의 플라즈마 매질로부터 고에너지 밀도의 플라즈마(2)를 발생시킨다. 이러한 광원은, 방전 생성 플라즈마 EUV 광원으로 불린다. 방전 생성 플라즈마 EUV 광원으로는, Z 핀치(pinch), 플라즈마 포커스 및 모세관 방전 등의 각종 방전 여기 방식이 적용 가능하다. 방전 생성 플라즈마 EUV 광원에서의 플라즈마 매질의 예로서는, Xe 가스가 있다. 플라즈마 매질의 다른 예는 Sn 증기를 포함한다. 후자의 경우에서는, 13.5㎚ 근방의 파장을 갖는 광학 출력이 증가될 수 있다.
플라즈마(2)에 의해 방출된 EUV 광(5)은, 타원 미러 등의 집광 미러(4)에 의해, 진공 챔버(8, 30) 사이의 경계면에 제공된 핀홀(pinhole) 개구(7)에 집광된다. 집광 미러(4)와 개구(7) 사이에, 플라즈마 및 그 주변으로부터 전방으로 직접적으로 비산하는 비산 입자[잔해(debris)]를 제거하는 필터(6a)가 배치될 수 있을 뿐만 아니라, 필요에 따라서, 이들 광학 소자 사이에, EUV 노광에 불필요한 파장 성분을 제거하는 필터(6b)가 배치될 수 있다. 광원(LS)의 진공 챔버(8)와, 노광 장치(EX)의 본체의 진공 챔버(30)는 커넥터(9)에 의해 서로 접속되어 있으며, 필요에 따라 차동 배기된다.
집광 미러(4)는, EUV 광을 효율적으로 반사하기 위해서 반사 다층막을 기재(base material) 상에 형성함으로써 형성될 수 있다는 점에 유의한다. 집광 미러(4)는 고온의 플라즈마(2)로부터 방사된 에너지를 흡수하므로, 기판(28)의 노광 동안에 고온으로 가열된다. 따라서, 집광 미러(4)의 기재는 높은 열전도성을 갖는 금속 등의 재료로 형성되고, 수냉 기구 등의 냉각 기구에 의해 냉각된다. 마찬가지로, (후술되는) 조명 광학 시스템(IL) 및 투영 광학 시스템(PO)을 구성하는 미러는 EUV 광을 효율적으로 반사하기 위해 반사 방지막을 구비하며, 이들의 기재는 높은 열전도성을 갖는 금속 등의 재료로 형성되고, 냉각 기구에 의해 냉각된다.
조명 광학 시스템(IL)은 개구(7)를 통과한 EUV 광으로 조명 표면 또는 원판[반사형 원판(25)]을 조명한다. 이하, 조명 광학 시스템(IL)에 대해서 예시적으로 설명한다. 개구(7)를 통해 광원(LS)으로부터 제공되는 EUV 광(5)은 분할기(DIV)에 입사한다. 분할기(DIV)는 광원(LS)으로부터의 EUV 광(5)을 분할하여 복수의 광속을 생성한다. 분할기(DIV)는 상이한 기능을 갖는 복수의 광학 부재(101, 102, 103)[광학 부재(103)에 대해서는 도 4 참조]를 포함하고, 복수의 광학 부재(101, 102, 103)로부터 선택되는 하나의 광학 부재는 광원(LS)으로부터의 EUV 광의 광로 내로 삽입된다는 점에 유의한다. 도 1에 도시된 예에서는, 광학 부재(101)가 광로에 삽입되어 있다. 조명 광학 시스템(IL)은 광학 부재(101, 102, 103)를 서로 교환하기 위한 조작 기구를 포함할 수 있다. 광학 부재(101, 102, 103) 중에서, 광로에 삽입된 광학 부재(101)는 구동 기구(11)에 제공된 유지 기구에 의해 유지되고, 구동 기구(11)에 의해 구동된다. 구동 기구(11)는, 분할기(DIV)에 의해 생성되는 복수의 광속의 진행 방향을 변경하도록, 보다 구체적으로는, (후술되는) 개구 조리개(22)가 배치된 면에 형성되는 광 강도 분포를 변경하도록, 분할기(DIV)[광학 부재(101, 102, 103)]를 구동시킨다.
분할기(DIV)에 의해 생성된 복수의 광속은, 임의적인 구성 요소로서 제공되는 컨버터(12)에 의해 평행 광속으로 변환될 수 있다. 컨버터(12)는, 도 2a 내지 도 4b에 도시된 바와 같이, 분할기(DIV)에 의해 생성된 복수의 광속을 각각 평행 광속으로 변환하는 복수의 오목 미러(12a 내지 12h)를 포함할 수 있다. 분할기(DIV)에 의해 생성되어 컨버터(12)에 의해 평행 광속으로 변환된 복수의 광속은 제1 반사형 인티그레이터(13)에 입사한다. 제1 반사형 인티그레이터(13)는 입사된 복수의 광속의 광 강도 분포를 균일화한다. 제1 반사형 인티그레이터(13)는, 분할기(DIV)에 의해 생성되어 컨버터(12)에 의해 평행 광속으로 변환된 복수의 광속의 각각의 광 강도 분포를 균일화하는 복수의 반사형 인티그레이터(13a 내지 13h)를 포함할 수 있다. 도 1은 반사형 인티그레이터(13a 내지 13h) 중에서 반사형 인티그레이터(13a, 13e)만을 도시하고 있다는 점에 유의한다. 복수의 반사형 인티그레이터(13a 내지 13h)는 복수의 오목 미러(12a 내지 12h)에 각각 대응하도록 배치될 수 있다.
집광기(14)는 제1 반사형 인티그레이터(13)로부터의 광을 집광한다. 집광기(14)는, 예를 들어 복수의 반사형 인티그레이터(13a 내지 13h)에 각각 대응하는 복수의 집광 미러(오목 미러)(14a 내지 14h)를 포함하고, 각각의 집광 미러는 복수의 반사형 인티그레이터(13a 내지 13h) 중에서 대응하는 반사형 인티그레이터로부터의 광을 집광한다. 도 1은 집광 미러(14a 내지 14h) 중에서 집광 미러(14a, 14e)만을 도시하고 있다는 점에 유의한다. 조명 광학 시스템(IL)은, 개구 조리개(22)가 배치된 면에 형성되는 광 강도 분포를 변경하도록 집광기(14)를 구동시키는 구동 기구(15)를 포함할 수 있다. 구동 기구(15)는 복수의 집광 미러(14a 내지 14h)를 각각 구동시키는 복수의 액추에이터(15a 내지 15h)를 포함할 수 있다. 도 1은 액추에이터(15a 내지 15h) 중에서 액추에이터(15a, 15e)만을 도시하고 있다는 점에 유의한다.
구동 기구(15)로부터의 광은 평면 미러(16)를 통해 제2 반사형 인티그레이터(20)에 입사한다. 평면 미러(16)는 임의적인 구성 요소로서 제공된다는 점에 유의한다. 제2 반사형 인티그레이터(20)는, 도 7에 도시된 바와 같이, 복수의 원통 미러를 포함할 수 있다. 거의 평행한 EUV 광이 복수의 원통 미러를 포함하는 제2 반사형 인티그레이터(20)에 입사하면, 제2 반사형 인티그레이터(20)의 표면 근방에 복수의 선형의 2차 광원이 형성된다. 복수의 선형의 2차 광원에 의해 방출되는 EUV 광의 각도 분포는 원통면 형상을 갖는다. 제2 반사형 인티그레이터(20)에 입사한 EUV 광은 제2 반사형 인티그레이터(20)의 복수의 원통 미러에 의해 분할되어 발산하고, 개구 조리개(22)를 통과한다. 이 때, 제2 반사형 인티그레이터(20)의 복수의 원통 미러로부터의 EUV 광속의 특정 요소는, 보조 미러(21a, 21b)에 의해 반사되어 개구 조리개(22)에 입사할 수 있다.
개구 조리개(22)를 통과한 EUV 광은, 반사 다층막이 형성된 구면 또는 비구면의 볼록 미러(231) 및 오목 미러(232)에 의해 형성되는 원호 변환 광학 시스템에 의해 원호 형상으로 성형된다. 원호 형상으로 성형된 EUV 광은, 슬릿판(251)에 형성된 원호 슬릿을 포함하는 영역에 균일한 조도 분포를 갖는 원호 조명 영역을 형성한다. 이러한 원호 조명 영역에서, 제2 반사형 인티그레이터(20)의 복수의 원통 미러로부터의 광속이 서로 중첩됨으로써, 높은 효율을 얻으면서 조도의 균일성을 향상시킬 수 있다. 즉, 높은 효율로 균일한 원호 조명이 행해진다. 원판 구동 기구(26)에 의해 유지된 반사형 원판(25)은, 슬릿판(251)에 형성된 원호 슬릿을 통과하고 원호 형상 단면을 갖는 EUV 광으로 조명된다.
개구 조리개(22)로서, 후술되는 바와 같이, 터릿(turret) 등의 개구 조리개 전환 기구(도시되지 않음)에 의해 서로 전환될 수 있도록, 각종 개구 조리개가 준비될 수 있다. 보조 미러(21a, 21b)는, 복수의 원통 미러가 배열되는 제2 반사형 인티그레이터(20)의 배열면에 대해 수직으로 배치된 한쌍의 대향하는 평면 미러일 수 있다. 개구 조리개(22)는 제2 반사형 인티그레이터(20)의 배열면에 대해 수직으로 배치된 판 부재일 수 있다. 오목 미러(232)와 슬릿판(251) 사이에는, 볼록 미러(231) 및 오목 미러(232)에 의해 형성되는 원호 변환 광학 시스템의 화상측의 광속으로서 제공되는 조명 광속(241)을 반사형 원판(25)을 향해 절곡시키는 평면 미러(24)가 배치될 수 있다. 평면 미러(24)의 미러면의 위치 및 각도를 구동 기구(도시되지 않음)에 의해 미세 조정함으로써, 반사형 원판(25)에 대한 조명 광속(241)의 입사각을 조정할 수 있다. 조명 광속(241)을 평면 미러(24)에 의해 절곡시킴으로써, 조명 광속(241)에 의해 형성되는 원호 조명 영역의 원호의 방향이 반전된다. 원호 조명 영역의 원호의 중심은 투영 광학 시스템(PO)의 광축(AX1)과 일치한다. 원호 변환 광학 시스템의 화상측 주 광선과 투영 광학 시스템(PO)의 물체측 주 광선은 반사형 원판(25)을 이들의 반사면으로서 갖도록 서로 일치한다. 평면 미러(24)는 원호 변환 광학 시스템의 배치의 자유도를 향상시키는 데 유용하다.
도 1에 도시된 조명 광학 시스템(IL)에서는, 분할기(DIV)로부터 제2 반사형 인티그레이터(20)까지의 광학 소자 모두가 전반사 미러로 형성될 수 있다. EUV 광이 이용될 때, 저입사각의 경우에는 다층 미러를 이용할 필요가 있지만, 고입사각의 경우에는 단층막에 의해 형성되는 전반사 미러를 이용할 수 있다. 전반사 미러는 다층 미러보다 높은 반사율을 가지므로, 고입사각을 나타내는 미러 또는 인티그레이터를 이용하여 보다 효율적인 조명 광학 시스템이 형성될 수 있다.
원호 형상 단면을 갖는 EUV 광으로 조명된 반사형 원판(25)의 회로 패턴은, 투영 광학 시스템(PO)에 의해, 기판 구동 기구(29)에 의해 유지된 기판(28) 상에 투영됨으로써, 기판(28)을 노광한다. 기판 구동 기구(29)는 기판(28)을 유지하는 기판 척을 장착한 기판 스테이지(stage) 및 기판 스테이지를 구동시키는 기구를 포함하고, 기판(28)을 6축(X축, Y축, Z축 및 이들 축을 중심으로 하는 회전 방향을 따르는 축)을 중심으로 구동시킬 수 있다. 기판 스테이지의 위치는 레이저 간섭계 등의 길이 측정 디바이스에 의해 측정될 수 있다. 투영 광학 시스템(PO)의 투영 배율을 M이라고 하면, 예를 들어 반사형 원판(25)이 화살표 A로 나타낸 방향으로 속도 v로 주사되고, 기판(28)이 화살표 B로 나타낸 방향으로 속도 v/M로 동기 주사되면서, 기판(28) 상의 샷 영역이 주사 노광된다.
투영 광학 시스템(PO)은 복수의 다층 반사 미러에 의해 형성되고, 광축(AX1)에서 벗어나 있는 가느다란 원호 형상 영역이 양호한 결상 성능을 갖도록 설계되어 있다. 투영 광학 시스템(PO)은 반사형 원판(25)의 패턴을 기판(28) 상에 축소 투영하도록 구성되고, 화상측(기판측) 텔레센트릭 시스템으로서 제공된다. 투영 광학 시스템(PO)의 물체측(반사형 원판측)은 반사형 원판(25)에 입사하는 조명 광속(241)과의 물리적 간섭을 회피하기 위해 통상적으로 비텔레센트릭 구성을 가지며, 물체측 주 광선은 반사형 원판(25)의 법선 방향에 대해 약 6°만큼 경사져 있다.
이하에, 도 2a 내지 도 4b를 참조하여 분할기(DIV)에 의한 광속의 분할 방법을 예시적으로 설명한다. 도 2a는, 광원(LS)의 측면으로부터 보았을 때의 광학 부재(101)[분할기(DIV)] 및 오목 미러(12a 내지 12h)[컨버터(12)]를 개략적으로 도시한다. 분할기(DIV)로서 제공되는 광학 부재(101)는, 광원(LS)으로부터의 광을 2개의 광속으로 분할하기 위해서 웨지 형상으로 배치된 2개의 반사면을 갖는다. 2개의 반사면은 전반사 미러로서 제공된다. 컨버터(12)는 8개의 오목 미러(12a 내지 12h)를 포함한다. 8개의 오목 미러(12a 내지 12h)는 광축에 수직하는 단면에 있어서 8각형을 형성하도록 유지 기구(111)에 의해 유지되어 있다. 유지 기구(111)는 분할된 광속을 차광하지 않도록 배치되어 있다. 웨지 형상으로 배치된 2개의 반사면을 갖는 광학 부재(101)에 의해 광원(LS)으로부터의 광이 2개의 광속으로 분할되는 경우에, 분할에 의해 생성된 2개의 광속은 8개의 오목 미러(12a 내지 12h) 중에서 2개의 오목 미러에 입사한다.
도 2a에 도시된 예에서는, 2개의 광속이 오목 미러(12a, 12e)에 입사한다. 그 후에, 오목 미러(12a, 12e)에 의해 반사된 2개의 광속은, 제1 반사형 인티그레이터(13)를 구성하는 복수의 반사형 인티그레이터(13a 내지 13h) 중에서 오목 미러(12a, 12e)에 대응하는 반사형 인티그레이터(13a, 13e)에 입사한다. 반사형 인티그레이터(13a, 13e)에 입사한 2개의 광속의 광 강도 분포는 반사형 인티그레이터(13a, 13e)에 의해 각각 균일화된다. 반사형 인티그레이터(13a, 13e)로부터의 광속은, 집광기(14)를 구성하는 복수의 집광 미러(14a 내지 14h) 중에서 반사형 인티그레이터(13a, 13e)에 대응하는 집광 미러(14a, 14e)에 의해 집광된다. 집광 미러(14a, 14e)로부터의 광속은 평면 미러(16)를 통해 제2 반사형 인티그레이터(20)에 입사한다. 제2 반사형 인티그레이터(20)는 볼록 미러(231), 오목 미러(232) 및 평면 미러(24)를 통해 반사형 원판(25)을 조명한다.
집광 미러(14a, 14e)로부터 나온 제2 반사형 인티그레이터(20)로부터의 광속은, 도 2b에 도시된 바와 같이, 개구 조리개(22)가 배치된 면에 Y 다이폴(dipole) 조명에 대응하는 광 강도 분포를 형성한다. 즉, 개구 조리개(22)가 배치된 면에는, 광원(LS)으로부터 분할기(DIV)에 제공되는 광의 단면 형상(통상적으로는, 원형 또는 링형의 단면 형상)과는 상이한 단면 형상을 갖는 광 강도 분포가 형성된다. 이는, 분할기(DIV)를 이용하여 광원(LS)으로부터 제공되는 광을 분할함으로써 행해진다.
도 2c는 구동 기구(11)에 의해 도 2a에 도시된 상태로부터 90° 회전되었을 때의 광학 부재(101)를 개략적으로 도시한다. 이 경우에, 광학 부재(101)에 의해 생성된 2개의 광속은 8개의 오목 미러(12a 내지 12h) 중에서 2개의 오목 미러(12c, 12g)에 입사한다. 오목 미러(12c, 12g)에 의해 반사된 2개의 광속은, 제1 반사형 인티그레이터(13)를 구성하는 복수의 반사형 인티그레이터(13a 내지 13h) 중에서 오목 미러(12c, 12g)에 대응하는 반사형 인티그레이터(13c, 13g)에 입사한다. 반사형 인티그레이터(13c, 13g)에 입사한 2개의 광속의 광 강도 분포는 반사형 인티그레이터(13c, 13g)에 의해 균일화된다. 반사형 인티그레이터(13c, 13g)로부터의 광속은, 집광기(14)를 구성하는 복수의 집광 미러(14a 내지 14h) 중에서 반사형 인티그레이터(13c, 13g)에 대응하는 집광 미러(14c, 14g)에 의해 집광된다. 집광 미러(14c, 14g)로부터의 광속은 평면 미러(16)를 통해 제2 반사형 인티그레이터(20)에 입사한다. 상술된 방식으로, 집광 미러(14c, 14g)로부터 나온 제2 반사형 인티그레이터(20)로부터의 광속은, 도 2d에 도시된 바와 같이, 개구 조리개(22)가 배치된 면에 X 다이폴 조명에 대응하는 광 강도 분포를 형성한다.
도 3a는, 광원(LS)의 측면으로부터 보았을 때의 광학 부재(102)[분할기(DIV)] 및 오목 미러(12a 내지 12h)[컨버터(12)]를 개략적으로 도시한다. 분할기(DIV)로서 제공되는 광학 부재(102)는, 광원(LS)으로부터의 광을 4개의 광속으로 분할하기 위해서 4각뿔 형상으로 배치된 4개의 반사면을 갖는다. 4개의 반사면은 전반사 미러로서 제공된다. 광학 부재(102)에 의해 생성된 4개의 광속은, 도 3b에 도시된 바와 같이, 개구 조리개(22)가 배치된 면에 4중극 조명에 대응하는 광 강도 분포를 형성한다. 즉, 개구 조리개(22)가 배치된 면에는, 광원(LS)으로부터 분할기(DIV)에 제공되는 광의 단면 형상(통상적으로는, 원형 또는 링형의 단면 형상)과는 상이한 단면 형상을 갖는 광 강도 분포가 형성된다. 이는, 분할기(DIV)를 이용하여 광원(LS)으로부터 제공되는 광을 분할함으로써 행해진다. 도 3c는 구동 기구(11)에 의해 도 3a에 도시된 상태로부터 45° 회전되었을 때의 광학 부재(102)를 개략적으로 도시한다. 이 경우에, 도 3d에 도시된 바와 같이, 광 강도 분포는 개구 조리개(22)가 배치된 면에 형성된다.
도 4a는, 광원(LS)의 측면으로부터 보았을 때의 광학 부재(103)[분할기(DIV)] 및 오목 미러(12a 내지 12h)[컨버터(12)]를 개략적으로 도시한다. 분할기(DIV)로서 제공되는 광학 부재(103)는, 광원(LS)으로부터의 광을 8개의 광속으로 분할하기 위해서 8각뿔 형상으로 배치된 8개의 반사면을 갖는다. 8개의 반사면은 전반사 미러로서 제공된다. 이 경우에, 컨버터(12)의 8개의 오목 미러(12a 내지 12h), 제1 반사형 인티그레이터(13)의 8개의 반사형 인티그레이터(13a 내지 13h), 집광기(14)의 8개의 집광 미러(14a 내지 14h)가 사용된다. 광학 부재(103)에 의해 생성된 8개의 광속은, 도 4b에 도시된 바와 같이, 개구 조리개(22)가 배치된 면에 환형 조명에 대응하는 광 강도 분포를 형성한다. 본 실시예에서는, 분할기(DIV)가 광원(LS)으로부터의 광을 최대 8개의 광속으로 분할하는 예가 제공되어 있지만, 분할기(DIV)가 광원(LS)으로부터의 광을 분할하는 광속의 최대 개수는 8개보다 크거나 작을 수 있다.
도 8은, 제1 반사형 인티그레이터(13)를 구성하는 각각의 반사형 인티그레이터(13a 내지 13h)의 구성의 예를 개략적으로 도시하는 사시도이다. 각각의 반사형 인티그레이터(13a 내지 13h)는 복수의 오목 미러의 배열을 갖는다. 각각의 반사형 인티그레이터(13a 내지 13h)는 전반사 미러로서 제공되며, 예를 들어 포물면 또는 도넛 형상을 가질 수 있다.
다음으로, 상술된 각종 조명 모드에 있어서, 코히어런스 인자(coherence factor)(σ)를 원하는 값으로 설정하는 방법을 도 5a 내지 도 6b를 참조하여 설명한다. 코히어런스 인자(σ)는 투영 광학 시스템의 물체측 NA와 조명 광속의 NA 사이의 비율이다. 일반적으로, 낮은 σ에서는 높은 콘트라스트를 갖는 화상이 얻어지는 한편, 높은 σ에서는 마스크 패턴에 충실한 화상이 얻어진다. 도 5a는, 도 2a를 참조하여 설명한 다이폴 조명에 있어서 σ의 값을 크게 하는 방법을 개략적으로 도시한다. 도 5a를 참조하면, 반사형 인티그레이터(13a, 13e)로부터의 광속은 집광기(14)의 집광 미러(14a, 14e)에 각각 입사한다. 구동 기구(15)의 액추에이터(15a, 15e)는 집광 미러(14a, 14e) 사이의 간격이 넓어지는 방향으로 집광 미러(14a, 14e)를 각각 구동시킨다. 이로써, 도 5b에 도시된 바와 같이, 개구 조리개(22)가 배치된 면에서의 2개의 극(다이폴) 사이의 간격(502)을 넓게 할 수 있다. 이는 σ의 값이 커지는 것을 의미한다. 4중극 조명 및 환형 조명에 있어서도, 동일한 방식으로 σ의 값을 크게 할 수 있다.
도 6a는, 도 2a를 참조하여 설명한 다이폴 조명에 있어서 σ의 값을 작게 하는 방법을 개략적으로 도시한다. 도 6a를 참조하면, 반사형 인티그레이터(13a, 13e)로부터의 광속은 집광기(14)의 집광 미러(14a, 14e)에 각각 입사한다. 구동 기구(15)의 액추에이터(15a, 15e)는 집광 미러(14a, 14e) 사이의 간격이 좁아지는 방향으로 집광 미러(14a, 14e)를 각각 구동시킨다. 이로써, 도 6b에 도시된 바와 같이, 개구 조리개(22)가 배치된 면에서의 2개의 극(다이폴) 사이의 간격(602)을 좁게 할 수 있다. 이는 σ의 값이 작아지는 것을 의미한다. 4중극 조명 및 환형 조명에 있어서도, 동일한 방식으로 σ의 값을 작게 할 수 있다.
상술된 바와 같이, 본 실시예에 따르면, 기판에 형성될 패턴에 따라 최적의 조명 모드 및 σ 값을 기판 표면에서의 조도를 저하시키지 않고 설정하는 것이 가능하게 된다.
상술된 실시예에서는, 제2 반사형 인티그레이터(20)로서 복수의 원통 미러를 포함하는 인티그레이터를 채용한 예를 설명했지만, 저입사각을 나타내는 플라이 아이 미러 2매를 서로 대향시킨 구성이 채용될 수 있다. 그러나, 효율을 향상시키기 위해서는, 제2 반사형 인티그레이터(20)로서 단일의 전반사 인티그레이터를 사용하는 것이 보다 유리하다.
다음으로, 도 7을 참조하여, 제2 반사형 인티그레이터(20), 2매의 보조 미러(21) 및 개구 조리개(22)의 배치를 예시적으로 설명한다. 도 7을 참조하면, 참조부호 801은 제2 반사형 인티그레이터(20)에 입사하는 EUV 광의 중심 주 광선의 방향을 나타낸다. 이러한 중심 주 광선은 제2 반사형 인티그레이터(20)의 중심 부근을 거의 y-z 단면 내에서 통과한다. 위치(802)는, 볼록 미러(231) 및 오목 미러(232)에 의해 형성되는 원호 변환 광학 시스템의 동공면의 거의 중심에 있다. 도 7은 원점으로서 위치(802)를 갖는 x-y-z 좌표계를 기재하고 있다. z축은 상기 원호 변환 광학 시스템의 공통 축(AX2)과 거의 일치한다.
보조 미러(21a, 21b)는, 제2 반사형 인티그레이터(20)의 구성 요소로서 제공되는 각각의 원통 미러의 모선 방향(generating line)을 따르고 또한 복수의 원통 미러가 배열되는 제2 반사형 인티그레이터(20)의 배열면에 대해 수직이 되도록 배치되어 있다. 도 7에 도시된 예에서는, 2매의 보조 미러(21a, 21b)가 개구 조리개(22)의 개구부를 이들 사이에 끼우도록 대향되어 있다. 2매의 보조 미러(21a, 21b) 사이의 간격을 조정하는 구동 기구가 제공될 수 있다. 개구 조리개(22)를 구성하는 판 부재의 표면은, 복수의 원통 미러가 배열되는 제2 반사형 인티그레이터(20)의 배열면에 대해 거의 수직으로 사출측(exit side)에 배치된다.
유효 광원 분포를 미세하게 조정하기 위해, 복수의 원통 미러가 배열되는 제2 반사형 인티그레이터(20)의 배열면에 정확히 수직인 면에 대해 적은 각도(약 1° 내지 2°)만큼 개구 조리개(22)가 경사져 배치될 수 있다. 이러한 방식으로, 개구 조리개(22)가 배열면에 정확히 수직인 면에 대해 약간의 기울기를 갖는 경우에도, 이러한 구성은 개구 조리개(22)가 배열면에 대해 수직인 구성의 범주 내에 있을 수 있다. 예를 들어 유효 광원 분포 및 텔레센트리시티(telecentricity)의 조정을 가능하게 하기 위해, 복수의 원통 미러가 배열되는 제2 반사형 인티그레이터(20)의 배열면에 대한 개구 조리개(22)의 각도를 조정하는 구동 기구가 제공될 수 있다.
보조 미러(21a, 21b)를 배치함으로써, 제2 반사형 인티그레이터(20)에 의해 반사된 광의 특정 성분이 개구 조리개(22)를 통과하도록 안내되고 조명을 위해 사용될 수 있다. 이는, 효율적으로 원호 영역을 조명하는데 유리하다. 일본 특허 공개 제2009-032938호 공보는 조명 시스템의 효율을 향상시키기 위해 보조 미러를 제공하는 방법을 상세하게 설명하고 있다.
본 발명의 바람직한 실시예에 따른 디바이스 제조 방법은, 반도체 디바이스 또는 액정 디바이스 등의 디바이스의 제조에 적합하다. 상기 방법은, 감광제가 코팅된 기판을 상술된 노광 장치(EX)를 이용해서 노광하는 단계와, 상기 노광된 기판을 현상하는 단계를 포함할 수 있다. 또한, 상기 방법은, 이후의 공지된 단계(예를 들어, 산화, 성막, 증착, 도핑, 평탄화, 에칭, 레지스트 박리, 다이싱, 본딩, 패키징)를 포함할 수 있다.
본 발명은 예시적인 실시예를 참조하여 설명되었지만, 본 발명은 개시된 예시적인 실시예에 제한되지 않는다는 것이 이해될 것이다. 이하의 청구범위의 범주는 모든 변경, 등가 구조 및 기능을 포함하도록 광의의 해석을 따라야 한다.

Claims (10)

  1. 광원으로부터의 광으로 조명 표면을 조명하는 조명 광학 시스템이며,
    상기 광원으로부터의 광을 분할하여 복수의 광속을 생성하는 분할기와,
    상기 분할기에 의해 생성된 상기 복수의 광속에 각각 대응하고 상기 복수의 광속의 광 강도 분포를 각각 균일화하도록 구성된 복수의 반사형 인티그레이터를 포함하는 제1 반사형 인티그레이터와,
    상기 제1 반사형 인티그레이터로부터의 광속들을 집광하는 집광기와,
    상기 집광기로부터의 광속들을 수신하여 상기 조명 표면을 조명하는 제2 반사형 인티그레이터와,
    상기 제2 반사형 인티그레이터와 상기 조명 표면 사이에 배치되는 개구 조리개를 포함하고,
    상기 분할기는, 상기 광원으로부터 상기 분할기에 제공되는 광의 단면 형상과는 상이한 단면 형상을 각각 갖는 광속들이 상기 개구 조리개가 배치된 면에 입사하도록, 상기 복수의 광속을 생성하는, 조명 광학 시스템.
  2. 제1항에 있어서,
    상기 집광기는 상기 복수의 반사형 인티그레이터에 대응하는 복수의 집광 미러를 포함하고, 각각의 집광 미러는 상기 복수의 반사형 인티그레이터 중 대응하는 반사형 인티그레이터로부터의 광을 집광하는, 조명 광학 시스템.
  3. 광원으로부터의 광으로 조명 표면을 조명하는 조명 광학 시스템이며,
    상기 광원으로부터의 광을 분할하여 복수의 광속을 생성하는 분할기와,
    상기 분할기에 의해 생성된 상기 복수의 광속의 광 강도 분포를 균일화하는 제1 반사형 인티그레이터와,
    상기 제1 반사형 인티그레이터로부터의 광속들을 집광하는 집광기와,
    상기 집광기로부터의 광속들을 수신하여 상기 조명 표면을 조명하는 제2 반사형 인티그레이터와,
    상기 제2 반사형 인티그레이터와 상기 조명 표면 사이에 배치되는 개구 조리개와,
    상기 개구 조리개가 배치된 면에 형성되는 광 강도 분포를 변경하도록 상기 집광기를 구동시키는 구동 기구를 포함하고,
    상기 분할기는, 상기 광원으로부터 상기 분할기에 제공되는 광의 단면 형상과는 상이한 단면 형상을 각각 갖는 광속들이 상기 개구 조리개가 배치된 면에 입사하도록, 상기 복수의 광속을 생성하는, 조명 광학 시스템.
  4. 광원으로부터의 광으로 조명 표면을 조명하는 조명 광학 시스템이며,
    상기 광원으로부터의 광을 분할하여 복수의 광속을 생성하는 분할기와,
    상기 분할기에 의해 생성된 상기 복수의 광속을 복수의 평행 광속으로 변환하는 컨버터와,
    상기 컨버터로부터의 상기 복수의 평행 광속의 광 강도 분포를 균일화하는 제1 반사형 인티그레이터와,
    상기 제1 반사형 인티그레이터로부터의 복수의 평행 광속을 집광하는 집광기와,
    상기 집광기로부터의 복수의 평행 광속을 수신하여 상기 조명 표면을 조명하는 제2 반사형 인티그레이터와,
    상기 제2 반사형 인티그레이터와 상기 조명 표면 사이에 배치되는 개구 조리개를 포함하고,
    상기 분할기는, 상기 광원으로부터 상기 분할기에 제공되는 광의 단면 형상과는 상이한 단면 형상을 각각 갖는 광속들이 상기 개구 조리개가 배치된 면에 입사하도록, 상기 복수의 광속을 생성하는, 조명 광학 시스템.
  5. 제4항에 있어서,
    상기 컨버터는 상기 분할기에 의해 생성된 상기 복수의 광속을 각각 평행 광속으로 변환하는 복수의 오목 미러를 포함하는, 조명 광학 시스템.
  6. 제1항에 있어서,
    상기 분할기에 의해 생성된 상기 복수의 광속의 진행 방향을 변경하도록 상기 분할기를 구동시키는 구동 기구를 더 포함하는, 조명 광학 시스템.
  7. 제1항에 있어서,
    상기 분할기는 상이한 기능을 갖는 복수의 광학 부재를 포함하고, 상기 복수의 광학 부재 각각은 상기 광원으로부터의 광을 분할하여 상기 복수의 광속을 생성하도록 구성되고, 상기 복수의 광학 부재로부터 선택되는 하나의 광학 부재는 상기 광원으로부터의 광의 광로 내로 삽입되는, 조명 광학 시스템.
  8. 기판을 노광하는 노광 장치이며,
    원판을 조명하도록 구성된, 제1항 내지 제7항 중 어느 한 항에 기재된 조명 광학 시스템과,
    상기 원판의 패턴을 상기 기판 상에 투영하는 투영 광학 시스템을 포함하는, 노광 장치.
  9. 제8항에 기재된 노광 장치를 이용하여 기판을 노광하는 단계와,
    상기 기판을 현상하는 단계를 포함하는, 디바이스 제조 방법.
  10. 삭제
KR1020110145460A 2011-01-01 2011-12-29 조명 광학 시스템, 노광 장치 및 디바이스 제조 방법 KR101423817B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011000002A JP5220136B2 (ja) 2011-01-01 2011-01-01 照明光学系、露光装置およびデバイス製造方法
JPJP-P-2011-000002 2011-01-01

Publications (2)

Publication Number Publication Date
KR20120079011A KR20120079011A (ko) 2012-07-11
KR101423817B1 true KR101423817B1 (ko) 2014-07-25

Family

ID=45926883

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110145460A KR101423817B1 (ko) 2011-01-01 2011-12-29 조명 광학 시스템, 노광 장치 및 디바이스 제조 방법

Country Status (6)

Country Link
US (1) US8891062B2 (ko)
JP (1) JP5220136B2 (ko)
KR (1) KR101423817B1 (ko)
DE (1) DE102011090191B4 (ko)
NL (1) NL2008048C2 (ko)
TW (1) TWI449951B (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214708A (ja) * 2012-03-30 2013-10-17 Gigaphoton Inc レーザ装置、レーザシステムおよび極端紫外光生成装置
JP6494259B2 (ja) * 2014-11-21 2019-04-03 キヤノン株式会社 照明光学装置、およびデバイス製造方法
CN108496114A (zh) 2016-02-26 2018-09-04 极光先进雷射株式会社 射束传送系统、曝光装置和曝光装置的照明光学系统
EP3720553B1 (en) * 2017-12-04 2024-03-20 Ellex Medical PTY Ltd Photobiomodulation device for treating retinal disease
US11958246B2 (en) * 2020-03-03 2024-04-16 Sciperio, Inc Laser oven with transparent chamber and external laser source

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045774A (ja) 2001-07-27 2003-02-14 Canon Inc 照明装置、投影露光装置及びデバイス製造方法
WO2006082738A1 (ja) 2005-02-03 2006-08-10 Nikon Corporation オプティカルインテグレータ、照明光学装置、露光装置、および露光方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6967710B2 (en) 1990-11-15 2005-11-22 Nikon Corporation Projection exposure apparatus and method
JP4238390B2 (ja) * 1998-02-27 2009-03-18 株式会社ニコン 照明装置、該照明装置を備えた露光装置および該露光装置を用いて半導体デバイスを製造する方法
EP1014196A3 (en) 1998-12-17 2002-05-29 Nikon Corporation Method and system of illumination for a projection optical apparatus
JP3363882B2 (ja) * 2000-10-17 2003-01-08 株式会社日立製作所 露光装置
JP3605055B2 (ja) * 2001-07-31 2004-12-22 キヤノン株式会社 照明光学系、露光装置及びデバイス製造方法
TW594847B (en) 2001-07-27 2004-06-21 Canon Kk Illumination system, projection exposure apparatus and method for manufacturing a device provided with a pattern to be exposed
US6703625B1 (en) 2002-12-31 2004-03-09 Intel Corporation Methods and apparatus for off-axis lithographic illumination
JP2005268265A (ja) * 2004-03-16 2005-09-29 Nikon Corp コリメーター光学系及び照明光学装置
JP2005303084A (ja) * 2004-04-13 2005-10-27 Nikon Corp 露光装置、露光装置の製造方法、露光装置の調整方法及びマイクロデバイスの製造方法
WO2006021419A2 (en) 2004-08-23 2006-03-02 Carl Zeiss Smt Ag Illumination system of a microlithographic exposure apparatus
JP2006351586A (ja) * 2005-06-13 2006-12-28 Nikon Corp 照明装置、投影露光装置、及びマイクロデバイスの製造方法
JP4986754B2 (ja) 2007-07-27 2012-07-25 キヤノン株式会社 照明光学系及びそれを有する露光装置
JP5398185B2 (ja) 2008-07-09 2014-01-29 キヤノン株式会社 投影光学系、露光装置およびデバイス製造方法
JP5142892B2 (ja) 2008-09-03 2013-02-13 キヤノン株式会社 照明光学系及び露光装置
JP5525550B2 (ja) 2009-03-06 2014-06-18 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ用の照明光学系及び光学系
TWI502283B (zh) 2009-04-03 2015-10-01 尼康股份有限公司 曝光裝置、曝光方法及元件製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045774A (ja) 2001-07-27 2003-02-14 Canon Inc 照明装置、投影露光装置及びデバイス製造方法
WO2006082738A1 (ja) 2005-02-03 2006-08-10 Nikon Corporation オプティカルインテグレータ、照明光学装置、露光装置、および露光方法
KR20070100964A (ko) * 2005-02-03 2007-10-15 가부시키가이샤 니콘 광학 적분기, 조명 광학 장치, 노광 장치, 및 노광 방법

Also Published As

Publication number Publication date
DE102011090191A1 (de) 2012-07-05
KR20120079011A (ko) 2012-07-11
DE102011090191B4 (de) 2015-07-23
JP5220136B2 (ja) 2013-06-26
TW201229560A (en) 2012-07-16
US8891062B2 (en) 2014-11-18
TWI449951B (zh) 2014-08-21
JP2012142460A (ja) 2012-07-26
US20120170013A1 (en) 2012-07-05
NL2008048C2 (en) 2013-07-30
NL2008048A (en) 2012-07-03

Similar Documents

Publication Publication Date Title
US7501641B2 (en) Dual hemispherical collectors
JP6221159B2 (ja) コレクター
JP6238140B2 (ja) 投影露光装置のための照明光学ユニット
KR102605356B1 (ko) 조명 광학계, 노광 방법 및 디바이스 제조 방법
KR20110015660A (ko) 방사 시스템, 방사선 콜렉터, 방사 빔 컨디셔닝 시스템, 방사 시스템용 스펙트럼 퓨리티 필터, 및 스펙트럼 퓨리티 필터 형성 방법
KR101423817B1 (ko) 조명 광학 시스템, 노광 장치 및 디바이스 제조 방법
JP2003185798A (ja) 軟x線光源装置およびeuv露光装置ならびに照明方法
TW201017345A (en) Collector assembly, radiation source, lithographic apparatus, and device manufacturing method
JP2004343082A (ja) 凹面および凸面を含む集光器を備えたリトグラフ投影装置
JP4424748B2 (ja) リソグラフィ装置、デバイス製造方法および放射線システム
JP2002198309A (ja) 熱的な負荷の少ない照明系
KR102048129B1 (ko) 투영 노광 장치용 가용 출력 빔을 생성하기 위한 euv 광원
TWI270120B (en) Illumination optical system and exposure apparatus
TWI267127B (en) Illumination optical system and exposure apparatus
TWI247338B (en) Illumination optical system and exposure apparatus
JP2012074697A (ja) Euvコレクタ
TW201433826A (zh) 照明光學系統、曝光裝置、以及裝置之製造方法
JP2005340319A (ja) 光源装置、照明装置、露光装置、露光方法および調整方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180625

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190717

Year of fee payment: 6