KR100942528B1 - 액적 분석 시스템 - Google Patents

액적 분석 시스템 Download PDF

Info

Publication number
KR100942528B1
KR100942528B1 KR1020077026670A KR20077026670A KR100942528B1 KR 100942528 B1 KR100942528 B1 KR 100942528B1 KR 1020077026670 A KR1020077026670 A KR 1020077026670A KR 20077026670 A KR20077026670 A KR 20077026670A KR 100942528 B1 KR100942528 B1 KR 100942528B1
Authority
KR
South Korea
Prior art keywords
camera
printhead
analysis system
droplet
controller
Prior art date
Application number
KR1020077026670A
Other languages
English (en)
Other versions
KR20080031666A (ko
Inventor
데이비드 알버탈리
로버트 지. 쥬니어 보엠
올렉 엔. 그랏체프
제임스 에이. 미들톤
페리 웨스트
Original Assignee
가부시키가이샤 아루박
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 아루박 filed Critical 가부시키가이샤 아루박
Publication of KR20080031666A publication Critical patent/KR20080031666A/ko
Application granted granted Critical
Publication of KR100942528B1 publication Critical patent/KR100942528B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04581Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/36Blanking or long feeds; Feeding to a particular line, e.g. by rotation of platen or feed roller
    • B41J11/42Controlling printing material conveyance for accurate alignment of the printing material with the printhead; Print registering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J19/00Character- or line-spacing mechanisms
    • B41J19/18Character-spacing or back-spacing mechanisms; Carriage return or release devices therefor
    • B41J19/20Positive-feed character-spacing mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04561Control methods or devices therefor, e.g. driver circuits, control circuits detecting presence or properties of a drop in flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • B41J2/155Arrangement thereof for line printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/165Preventing or detecting of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
    • B41J2/16585Preventing or detecting of nozzle clogging, e.g. cleaning, capping or moistening for nozzles for paper-width or non-reciprocating print heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • B41J2/2135Alignment of dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/28Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for printing downwardly on flat surfaces, e.g. of books, drawings, boxes, envelopes, e.g. flat-bed ink-jet printers

Abstract

액적 분석/액적 체크 시스템은 실제 압전 마이크로증착 시스템의 동작을 에뮬레이팅하기 위해 분석하는 동안 복수의 프린트헤드로 하여금 정지해 있게 한다. 이 시스템은 개별적인 노즐 방출기의 정밀한 튜닝을 제공하고 액적 분석/액적 체크와 동시에 기판의 로딩과 정렬을 가능하게 한다. 액적 분석/액적 체크 시스템은, 스테이지의 이동을 지시하는 이동 제어기와, 기판 상에 증착될 유체 물질 액적을 선택적으로 방출하기 위해 프린트헤드를 제어하는 프린트헤드 제어기와, 이 프린트헤드에 대해 이동하기 위해 스테이지에 의해 지지되는 카메라를 포함한다. 이 카메라는 카메라의 노출을 개시하기 위해 이동 제어기로부터 신호를 수신하며 프린트헤드에 의해 방출된 유체 물질 액적의 이미지를 캡쳐한다. 발광 디바이스는 카메라의 노출 동안 액체 액적을 포함하는 영역에 광을 공급하기 위해 카메라로부터 신호를 수신하는 스트로브 제어기를 포함한다.
Figure R1020077026670
프린트헤드, 액적, 분석, 증착, 카메라, 이미지, 스트로브

Description

액적 분석 시스템{DROP ANALYSIS SYSTEM}
관련 출원에 대한 상호 참조
본 출원은 2005년 4월 25일에 출원된 U.S. 가출원 번호 60/674,584, 60/674,585, 60/674,588, 60/674,589, 60/674,590, 60/674,591, 및 60/674,592의 이익을 청구한다. 위 출원들의 개시 내용은 본 명세서에 참조로 포함된다.
본 발명의 개시내용은 액적(液滴) 분석 시스템(drop analysis system)에 관한 것이며 보다 구체적으로 압전 마이크로 증착 장치와 함께 사용하기 위한 개선된 액적 분석 시스템에 관한 것이다.
이 절에서 언급하는 것은 단지 본 발명의 개시내용과 관련된 배경 정보를 제공하는 것이며 종래 기술을 구성하는 것이 아닐 수 있다.
전기 프린팅 시스템은 일반적으로 기판과 같은 작업물 상에 유체 물질을 선택적으로 증착하는 일련의 프린트헤드를 포함한다. 이 프린트헤드 및/또는 기판은 미리결정된 형상을 가지는 기판의 표면 위에 유체 물질 패턴을 형성하도록 서로에 대해 이동될 수 있다. 하나의 이러한 시스템은 압전 마이크로증착(PMD : piezoelectric microdeposition) 시스템의 프린트헤드와 연관된 압전 소자에 전기 전류를 선택적으로 인가함으로써 기판의 표면 상에 유체 물질을 증착하는 압전 마 이크로증착 시스템(PMD)이다.
종래의 PMD 시스템은 각 프린트헤드로부터 증착된 액체 물질이 미리결정된 형상 및/또는 볼륨을 포함하는 것을 보장하기 위해 PMD 시스템의 각 프린트헤드와 연관된 액적 분석 시스템을 포함할 수 있다. 각 프린트헤드에 의해 증착된 유체 물질의 형상과 볼륨을 제어하는 것은 기판의 표면 상에 형성된 유체 물질의 패턴을 제어한다.
종래의 액적 분석 시스템은 PMD 시스템의 프린트헤드와 액적 분석 시스템의 연관된 장착 하드웨어 사이에 충분한 간극을 제공하기 위해 유체 물질의 액적 위치로부터 일반적으로 약 30 내지 120mm에 위치된 직경이 큰 렌즈와 조명 장치를 포함한다. 그러므로, 종래의 액적 분석 시스템은 PMD 시스템에 대해 적절히 배열되는 것이 성가시고 곤란하였다.
일반적으로, 액적 분석 시스템은, 액적이 PMD 시스템의 프린트헤드로부터 방출될 때 액적을 조명하도록 협동하는, 발광 디바이스(LED)와 확산기 스크린을 사용한다. LED로부터의 광과 프린트헤드로부터의 액적 사이의 상호작용은 카메라에 의해 캡쳐될 수 있는 액적의 윤곽을 조명한다. 종래의 시스템은 일반적으로 카메라가 높은 콘트라스트의 이미지를 캡쳐할 수 있도록 액적을 충분히 조명하기 위해 LED로부터 긴 광 펄스(즉, 2 내지 5 USEC)를 요구한다. 이 액적이 각 프린트헤드로부터 고속(최대 초당 8미터)으로 방출되기 때문에, LED의 긴 광 펄스는 액적의 "흐려짐(blur)"을 야기할 수 있다. 예를 들어 2 USEC 펄스는 카메라에 의해 캡쳐된 액적의 이미지를 16미크론(액적 자체의 사이즈의 거의 50퍼센트)만큼 흐려지게 할 수 있다. 이러한 흐려짐은 액적의 실제 영역과 직경을 매우 불명확하게 하며 그리고 단일 액적 판독값을 거의 5퍼센트만큼 변하게 할 수 있다. 종래의 시스템은 액적 부피를 측정할 때 1퍼센트 정밀도를 달성할 수 있으나, 많은 이미지 샘플을 취함으로써 그러한 정밀한 판독값을 달성할 수 있을 뿐이며 이에 의해 액적 분석 시스템의 복잡성과 코스트를 증가시킨다.
액적 분석/액적 체크 시스템은 실제 압전 마이크로 증착 시스템의 동작을 에뮬레이팅하기 위해 분석하는 동안 복수의 프린트헤드가 정지해있게 한다. 이 시스템은 개별 노즐 방출기의 정밀한 튜닝을 제공하며 액적 분석/액적 체크와 동시에 기판의 로딩과 정렬을 가능하게 한다. 액적 분석/액적 체크 시스템은 스테이지의 이동을 지시하는 이동 제어기와, 기판 위에 증착될 유체 물질 액적을 선택적으로 방출하도록 프린트헤드를 제어하는 프린트헤드 제어기와, 이 프린트헤드에 대해 이동하기 위해 스테이지에 의해 지지되는 카메라를 포함한다. 이 카메라는 카메라의 노출을 개시하기 위해 이동 제어기로부터 신호를 수신하며 프린트헤드에 의해 방출되는 유체 물질 액적의 이미지를 캡쳐한다. 발광 디바이스는 카메라의 노출 동안 액체 액적을 포함하는 영역으로 광을 공급하기 위해 카메라로부터 신호를 수신하는 스트로브 제어기를 포함한다.
다른 응용가능한 영역은 본 명세서에 제공된 상세한 설명으로부터 명백해질 것이다. 본 상세한 설명과 특정 실시예는 오로지 예시를 위한 것일 뿐이며 본 발명의 개시 내용의 범위를 제한하는 것으로 의도된 것이 아니라는 것을 이해하여야 할 것이다.
본 명세서에 기술된 도면은 오로지 예시를 위한 것일 뿐이며 어쨌거나 본 발명의 범위를 제한하는 것으로 의도된 것이 아니다.
도 1은 본 발명의 액적 분석 시스템을 포함하는 PMD 시스템의 사시도.
도 2는 프린트헤드 유지보수 스테이션에 대해 액적 분석 스테이지와 광학 모듈의 사시도.
도 3은 도 1의 PMD 시스템에 병합된 도 1의 액적 분석 시스템의 개략도.
도 4는 이미지 캡쳐 동안 PMD 시스템에 의해 방출된 액적을 조명하기 위해 도 1의 액적 분석 시스템에 의해 사용된 폴딩(folded)된 광학 경로의 사시도.
도 5는 도 1의 PMD 시스템의 방출된 유체 물질 액적과 헤드 어레이에 대해 액적 분석 시스템의 개략도.
이하 상세한 설명은 단순지 예시를 위한 것일 뿐이며 본 발명의 개시 내용, 응용분야 또는 용도를 제한하고자 의도된 것이 아니다. 도면 전체를 통해 대응하는 참조 부호는 동일하거나 대응하는 부분이나 특징을 나타내는 것임을 이해하여야 할 것이다.
도면을 참조하면, 압전 마이크로 증착(PMD) 시스템(10)이 제공되며 이 PMD 시스템(10)은 액적 체크 분석 및 액적 분석을 수행할 수 있는 액적 이미징 시스템(12)을 포함한다. 액적 이미징 시스템(12)은 적어도 하나의 프린트헤드(17)로부 터 방출된 유체 물질 이미지를 캡쳐하기 위해 PMD 시스템(10)의 일련의 프린트헤드(17)에 대해 X/Y/Z 스테이지에 의해 지지되는 액적 관찰 이미징 모듈(drop view imaging module)(14)을 포함한다.
본 명세서에서 후술되는 바와 같이, PMD 시스템(10)은 사용자 정의 컴퓨터로 실행가능한 명령에 따라 기판(25)과 같은 작업물 상에 유체 물질을 증착한다. 본 명세서에서 "프로그램 모듈" 또는 "모듈"이라고도 언급되는 "컴퓨터로 실행가능한 명령"이라는 용어는 일반적으로 PMD 프로세스를 구현하기 위해 컴퓨터로 수치 제어를 실행하는 것과 같은 특정 작업이나 이로 한정되지 않는 다른 작업을 수행하거나 특정 추상 데이터 유형을 구현하는 루틴, 프로그램, 객체, 콤포넌트, 데이터 구조 등을 포함한다. 프로그램 모듈은, RAM, ROM, EEPROM, CD-ROM 또는 다른 광디스크 저장매체, 자기 디스크 저장 매체, 또는 다른 자기 저장 디바이스, 또는 명령이나 데이터 구조를 저장할 수 있고 범용 컴퓨터나 특정 목적의 컴퓨터에 의해 액세스될 수 있는 임의의 다른 매체와 같은 임의의 컴퓨터 판독가능한 물질 상에 저장될 수 있다.
본 명세서에서 정의된 "유체 제조 물질" 및 "유체 물질"이라는 용어는 낮은 점성 형태를 취할 수 있고 예를 들어 마이크로구조를 형성하기 위해 기판(25) 상에 PMD 시스템(10)의 프린트헤드(17)로부터 증착되는데 적합한 임의의 물질을 포함하는 것으로 넓게 해석된다. 유체 제조 물질은 중합체 발광 다이오드 디스플레이 디바이스(PLED 및 폴리 LED)를 형성하는데 사용될 수 있는 발광 중합체(LEP)를 포함할 수 있으나 이로 한정되지 않는다. 유체 제조 물질은, 플라스틱, 금속, 왁스, 접 합물(solders), 접합물 페이스트, 바이오메디컬 제품, 산(acids), 포토레지스터, 용매, 접착제 및 에폭시를 또한 포함할 수 있다. "유체 제조 물질"이라는 용어는 본 명세서에서 "유체 물질"과 교환가능하게 언급된다.
본 명세서에 정의된 "증착(deposition)"이라는 용어는 기판 상에 유체 물질의 개별적인 액적(droplets)을 증착하는 프로세스를 언급한다. "액적(droplets)", "방출(discharge)", "패턴(pattern)" 및 "증착(deposit)"이라는 용어는 본 명세서에서 예를 들어 PMD 시스템(10)의 프린트헤드(17)로부터 유체 물질을 증착하는 특정한 언급과 교환가능하게 사용된다. "액적(droplet)" 및 "액적(drop)"이라는 용어도 또한 교환가능하게 사용된다.
본 명세서에 정의된 "기판(substrate)"이라는 용어는 압전 마이크로 증착 프로세스와 같은 제조 프로세스 동안 유체 물질을 수용하는데 적합한 표면을 구비하는 임의의 작업물이나 물질을 포함하는 것으로 넓게 해석된다. 기판은, 유리 판, 피펫, 실리콘 웨이퍼, 세라믹 타일, 강성 및 플렉시블한 플라스틱 및 금속 시트 및 롤(roll)을 포함하지만 이로 한정되지 않는다. 특정 실시예에서, 증착된 유체 물질은 3차원 마이크로 구조를 형성할 때와 같은 제조 프로세스 동안 유체 물질을 수용하는데 적합한 표면을 구비하는 기판을 형성할 수 있다.
본 명세서에서 정의된 "마이크로 구조(microstructure)"라는 용어는 일반적으로 기판(25)에 맞는 사이즈로 고정밀도로 형성된 기판을 언급한다. 상이한 기판의 사이즈는 변할 수 있기 때문에, "마이크로구조"라는 용어는 임의의 특정 사이즈로 한정되는 것으로 해석되어서는 아니되며 "구조"라는 용어와 교환가능하게 사용 될 수 있다. 마이크로구조는 유체 물질의 단일 액적, 액적의 임의의 결합, 또는 2차원 층, 3차원 아키텍처 및 임의의 다른 원하는 구조와 같은 기판(25) 위에 액적(들)을 증착함으로써 형성된 임의의 기판을 포함할 수 있다.
도 3을 참조하면, 액적 관찰 이미징 모듈(14)은, 카메라(16)와, 이미징 렌즈(18)와, 미러(22,22a)와, 프리즘(24)을 포함한다. 액적 관찰 이미징 모듈(14)은, 발광 디바이스(LED)(28)를 구비하는 조명 시스템(19)과, LED 스트로브 제어기(strobe controller)(26)와, 적어도 하나의 집광 렌즈(30)를 더 포함한다.
미러(22,22a)와 프리즘(24)은 일반적으로 LED(28)와 렌즈(18) 사이에 광학적 경로(32)(잠망경의 것과 유사한 형태의 점 및 대시 라인으로 나타나 있음)를 폴딩(fold)하도록 협력한다. 미러(22,22a)와 프리즘(24)은 LED(28)로부터 광이 렌즈(18)와 카메라(16)에 의해 수신되기 전에 이 광이 관찰 필드(field-of-view)(21)를 통과하도록 광학적 경로(32)를 폴딩한다. 구체적으로, 프리즘(24)은 광학적 경로(32)를 렌즈(18)와 카메라(16)로 더 지향하도록 협력하는 미러(22,22a)와 함께 "잠망경"으로 기능한다. 프리즘(24)은 X/Y/Z 스테이지(15) 상에 프리즘(24)의 패키징을 더 용이하게 하기 위해 감소된 상부부분(50)을 포함할 수 있다.
관찰 필드(21)는 PMD 시스템(10)의 프린트헤드(17)에 대해 위치되어 PMD 시스템(10)의 프린트헤드(17)로부터 방출되는 액체 물질이 이 관찰 필드(21)를 통과하며 이에 따라 LED(28)에 의해 조명되도록 한다. 관찰 필드(21)는 제 1 방향으로 대략 0.6mm 내지 1.5mm 사이이며 제 2 방향으로 대략 0.6mm 내지 1.5mm 사이이다. 예를 들어, 관찰 필드(21)는 X 방향으로 대략 0.9mm 연장하며 Y 방향으로 대략 1.1mm 연장할 수 있다. X 방향은 일반적으로 Y 방향에 수직할 수 있다.
한 쌍의 미러(22,22a)와 단일 프리즘(24)이 배치되어 있지만, 광학적 경로(32)가 적절히 굴곡되어 LED(28)로부터의 광이 카메라(16)와 렌즈(18)에 도달하기 전에 이 광이 관찰 필드(21)를 통과할 수 있는 한, 미러(22,22a) 중 적어도 하나는 프리즘으로 대체될 수 있고, 프리즘(24)은 미러로 대체될 수 있다. 미러와 프리즘의 특정 구성은 2개의 미러와 하나의 프리즘으로 한정되지 않으며 LED(28)로부터 광을 관찰 필드(21)를 거쳐 최종적으로 카메라(16)와 렌즈(18)로 적절히 지향하게 하는 임의의 조합이면 가능하다.
카메라(16)는 초당 60개의 프레임으로 대략 640×480의 해상도로 그리고 초당 240개의 프레임으로 대략 640×100의 감소된 해상도로 동작할 수 있는 상업적으로 이용가능한 솔리드-스테이트 카메라(solid-state camera)일 수 있다. 카메라(16)의 이미지 센서(미도시)는, CCD, CMOS 또는 CID와 같은 임의의 적절한 기술을 병합할 수 있다. 카메라(16)는 호환가능한 프레임 그래버(frame grabber)로부터 직접 또는 이 그래버를 통해 이미지 획득을 개시하도록 외부 트리거 신호를 수용할 수 있다. 카메라(16) 또는 그 프레임 그래버는, 또한 필요한 경우 카메라(16)가 그 이미지 센서를 노출하고 있을 때, LED(28)를 트리거하도록 트리거 신호를 LED 스트로브 제어기(26)에 제공할 수 있다. 바람직한 카메라의 일례는 에일리드 비전(Allied Vision)사에서 제조한 모델 번호 F033B이며, 이 카메라는 IEEE 1394 인터페이스를 포함하며 이에 따라 프레임 그래버를 위한 요구를 제거한다. 카메라(16)는 대부분의 CMOS 이미지 센서에 비해 더 높은 감도와 더 낮은 고정 패턴의 잡음을 가지는 CCD 센서를 더 포함한다.
렌즈(18)는 종래의 렌즈일 수 있으며 카메라(16)의 특정 구성과 관찰 필드(21)에 기초하여 선택된다. 관찰 필드(21)와 선택된 특정 카메라에 더하여, 렌즈(18)는 또한 해상도(resolution)와 필드 심도(depth-of-field)의 요구를 맞추기 위해 개구수(numerical aperture){F-수(F-number)}에 기초하여 선택되어야 한다. 예를 들어, 렌즈(18)는 탈레스 옵템사(Thales-Optem)에서 제조한 모델 번호 B50 및 FTM 350과 같은 이미징 렌즈와 무한 수정된 대물 렌즈를 포함하는 어셈블리일 수 있다. 무한 수정된 렌즈 시스템을 사용함으로써, 대물 렌즈{즉 집광 렌즈(30)} 및 이미징 렌즈{즉 렌즈(18)}는 수차(aberration)를 상당히 증가시키지 않고 미리결정된 거리만큼 분리될 수 있다. 렌즈(18)로부터 집광 렌즈(30)를 분리시키는 것은 LED(28)로부터 광이 관찰 필드(21)를 통해 최종적으로 렌즈(18)와 카메라(16)로 지향될 수 있도록 미러(22,22a)와 프리즘(24) 사이에 협력을 통해 달성된다.
렌즈(18)로부터 집광 렌즈(30)를 이격시킴으로써, 관찰 이미징 모듈(14)은 콤팩트한 디자인을 유지할 수 있다. 미러(22,22a)와 프리즘(24)의 사용 없이, LED(28)는 일반적으로 렌즈(18)(도 3)에 인접하게 위치될 수 없으나, 관찰 필드(21)를 통해 전송된 LED(28)로부터의 광이 렌즈(18)에 의해 수신될 수 있도록 렌즈(18)와 일렬로 위치될 수 있다. LED(28)와 렌즈(18)가 일반적으로 관찰 필드(21)와 동일한 평면 내에 위치되도록 렌즈(18)와 일렬로 LED(28)를 배치하는 것은 액적 관찰 이미징 모듈(14)의 전체 사이즈를 증가시킬 수 있으며 이에 따라 PMD 시스템(10)에 액적 이미징 시스템(12)을 장착하는 복잡성을 증가시킬 수 있다.
관찰 필드(21)의 사이즈 및 위치는 액적 관찰 이미징 모듈(14)이 사용되는 특정 응용 분야에 기초한다. 예를 들어, 관찰 필드(21)의 사이즈는 수평으로 적어도 0.8mm 및 수직으로 약 1.1mm가 되도록 디자인될 수 있다. 그러한 구성에서, 카메라(16)는 수직으로 프린트헤드(17)로부터 방출되는 유체 물질 액적을 스캔하도록 배향된다. 그러한 구성에서, 관찰 필드(21)에서 공간 해상도는 대략 1.74pml 픽셀이다.
렌즈 개구수(numerical aperture){즉 F-스탑(stop)}는 공간 해상도와 호환가능한 광학적 해상도와, 응용분야의 요구와 호환가능한 필드 심도(depth-of-field)를 산출하도록 선택된다. 이 필드 심도는 액체 물질 액적이 관찰 필드(21)를 통과할 때 프린트헤드(17)에 의해 방출될 때의 액체 물질 액적의 수직 경로로부터 가능한 변차(deviation)를 나타낸다. 예를 들어, 이 필드 심도는 108미크론의 범위를 가지는 +/-54미크론일 수 있다. 바람직하게는, 이 필드 심도는 대략 20미크론과 80미크론 사이이다.
전술된 관찰 필드(21)와 필드 심도 범위를 통해, 렌즈(18)는 0.11의 개구수(즉, F-스탑)를 포함할 수 있다. 렌즈(18)를 0.11의 개구수를 가지도록 구성하는 것은 455nm의 조명 파장, 2.51미크론의 회절 제한된 광학 해상도 및 148미크론의 기하학적 필드심도 범위를 산출한다. 원하는 해상도와 원하는 필드심도 범위 모두를 제공하는 개구수는 없기 때문에, 개구수를 선택하면 광학적 해상도와 원하는 필드심도 범위 사이에는 트레이드오프(trade-off)가 되는 경향이 있다.
조명 시스템(19)의 LED(28)는 고전력 발광 디바이스이며 확산기(23) 뒤에 배 치될 수 있다. LED(28)는 루마일드 코포레이션사(Lumiled Corporation)로부터 구입가능한 루마일드 룩세온 III(Lumiled Luxeon III)일 수 있다. 바람직하게는, LED(28)는 더 짧은 파장의 사용이 더 높은 회절 제한된 해상도를 양산하기 위해 선호될 때 455am의 주 파장(dominant wavelength)을 가진다. 확산기(23)는 레플렉사이트 인코포레이티드사(Reflexite, Inc)에서 제조한 물질로 만들어진 3.8도의 확산각을 가지는 이중 확산기(replicated diffuser)일 수 있다. 이 확산기(23)는 최소의 광학 손실로 LED(28)로부터의 광을 균일하게 한다. 이 확산기(23)는 조명 원추 사이즈(size of a cone of illumination)를 제한하는 개구부(미도시)를 포함하며 이 개구부는 관찰 필드(21)가 너무 채워지는 양을 제한한다.
PMD 시스템(10)의 프린트헤드(17)로부터 액적의 조명은 일반적으로 집광기 백라이팅을 통해 수행된다. 전방 광은 바람직하지 않은데 이는 실질적으로 구형상 액적을 조명하는데 요구되는 각도 범위가 문제로 되기 때문이다. 조명 시스템(19)이 백라이팅을 사용하기 때문에, 코흘러 백라이팅(Kohler backlighting)과 크리티컬 백라이팅(critical backlighting)이 액적 관찰 이미징 모듈(14)과 PMD 시스템(10)과 함께 사용하기 위해 허용가능한 형태이다. 크리티컬 백라이팅이 보다 단순한 시스템을 제공하는 반면, 코흘러 백라이팅은 클리티컬 백라이팅에 비해 더 선호될 수 있는데, 이는 코흘러 백라이팅이 더 우수한 조명 균일성과 더 우수한 광학 효율을 제공하기 때문이다.
집광 렌즈(30)는 관찰 필드(21) 상에 확산기(23)를 이미징하도록 전통적인 집광기 구성을 가지는 한 쌍의 프레즈넬 렌즈(Fresnel lens)를 포함할 수 있다. 조 명의 균일성을 강화하기 위해 프레즈넬 렌즈와 함께 보충적인 유리 렌즈(미도시)가 사용될 수 있다. 보충적인 유리 렌즈가 프레즈넬 렌즈에 더하여 사용될 수 있으나, 이러한 구성은 액적 관찰 이미징 모듈(14)과 PMD 시스템(10)의 구성에 따라 요구되지 않을 수 있다.
LED 스트로브 제어기(26)는 파형 신호를 LED(28)에 공급함으로써 LED(28)를 제어한다. LED 스트로브 제어기(26)는 카메라(16)로부터 트리거 신호(trigger signal)를 수신하며 진폭과 지속시간이 조정가능한 전류 파형(즉, 신호 또는 펄스)을 LED(28)에 공급한다. 예를 들어, LED 스트로브 제어기(26)는 특정 진폭과 지속시간에서 LED(28)에 파형을 제공함으로써 펄스폭 변조를 사용하여 LED(28)를 제어할 수 있다. 진폭과 지속시간의 조정은, 트림폿(trimpot)이나 디지트 스위치(digit switch) 등으로 수동으로 설정될 수 있으며 또는 예를 들어 직렬 통신 포트(도 3)를 통해 원격으로 프로그래밍될 수 있다. 바람직하게는, LED 스트로브 제어기(26)는 (즉, 트림폿이나 디지트 스위치를 통해) 수동으로 설정될 수 있으며 (즉, 직렬 통신 포트를 통해) 원격으로 프로그래밍될 수 있다.
카메라(16)의 노출은 LED(28)에 공급되는 파형의 진폭과 지속시간에 기초하여 제어될 수 있다. 바람직하게는 LED(28)에 공급되는 파형의 지속시간은 허용가능한 노출을 여전히 양산하는 최저 지속시간으로 가능하게 감소된다. 예를 들어, 대략 15Amps의 진폭을 가지는 하나의 마이크로초의 파형 지속시간이 사용될 수 있다. 프린트헤드(17)를 빠져나가는 액적은 최대 초당 8m로 이동하기 때문에, 액적은 하나의 마이크로초 파형 동안 8m 또는 4.6픽셀을 이동한다. 더 짧은 펄스가 요구된다 면, 더 높은 진폭의 LED 광 파형이나 상당히 더 낮은 노이즈 성능을 갖는 카메라가 요구된다.
이전에 기술된 바와 같이, 액적 관찰 이미징 모듈(14)은 X,Y 및 Z 방향으로 X/Y/Z 스테이지(15)를 추진하기 위해 모터와 인코더(미도시)를 포함하는 모터로 구동되는 X/Y/Z 스테이지(15) 상에 장착된다. 이 모터는 액적 관찰 이미징 모듈(14)이 원하는 Z 위치로 이동된 후에 모터에 공급되는 전류에 의해 액적 관찰 이미징 모듈(14)은 X 및 Y 방향 중 어느 하나 또는 양 방향으로 이동하도록 전자석 모터나 압전 모터일 수 있다. 원하는 Z 위치는 기판(25) 위에 프린팅이 일어날 때 유효 접촉 거리를 나타내는 프린트헤드(17)와 연관된 노즐 방출기로부터 원하는 검사 포인트나 거리를 나타낸다.
인코더는 바람직하게는 0.1미크론이나 이보다 더 미세한 해상도를 갖는 광학 인코더이다. 모터와 광학 인코더가 개시되지만, 좌표 방식으로 X, Y 및 Z 방향으로 스테이지를 추진하는데 적합한 임의의 이동 시스템과 프린트헤드(17)로부터 유체 물질의 방출과 카메라(16)에 의해 캡쳐된 이미지를 제어할 수 있는 임의의 인코더가 모터 및/또는 광학 인코더 대신에 사용될 수 있다.
액적 관찰 이미징 모듈의 동작 동안, 액적 체크 절차가 PMD 시스템(10)의 각 프린트헤드(17)의 올바른 동작을 검증하기 위해 개시될 수 있다. 액적 체크 절차에서, 액적 관찰 이미징 모듈(14)을 운반하는 X/Y/Z 스테이지의 이동은 프린트헤드(17)와 PMD 시스템(10)이 동작하는 동안 모니터링 되도록 본질적으로 연속적이다.
X/Y/Z 스테이지(15) 상에 위치된 인코더는 이동 제어기(34)를 통해 방출된 액적의 이미지를 획득하기 위해 카메라(16)의 트리거링 뿐만 아니라 PMD 시스템의 각 프린트헤드(17)로부터 유체 물질의 액적의 방출을 제어한다. 이동 제어기(34)는 바람직하게는 델타 타우(Delta Tau) UMAC 이동 제어기이다.
이동 제어기(34)는 카메라(16)의 노출을 개시하기 위해 카메라(16)에 신호를 송신한다. 카메라(16)가 운동 제어기(34)로부터 트리거 신호를 수신하면, 카메라(16)는 광 펄스를 개시하기 위해 LED 스트로브 제어기(26)에 트리거 신호를 송신한다. 카메라(16)가 LED 스트로브 제어기(26)를 트리거 하게 함으로써, 카메라(16)에 의해 원하는 이미지가 캡쳐될 수 있도록 LED(28)로부터 적절한 광량이 각 프린트헤드(17)로부터의 유체 물질 액적의 방출과 적절히 타이밍에 맞게 방출된다.
카메라(16)가 유체 물질 액적의 이미지를 캡쳐하면, 카메라(16)는 이미지 처리 컴퓨터(36)에 이미지 데이터를 전송한다. 이미지 처리 컴퓨터(36)는 카메라(16)로부터 이미지 데이터를 수신하며 프린트헤드(17)의 올바른 동작을 검증한다. 올바른 동작은 이미지 처리 컴퓨터(36)에 대해 사용자 정의된 허용가능한 동작 윈도우에 액적 이미지의 중심(centroid) 위치를 비교함으로써 결정된다. 특정 응용분야에 필요한 액적 방출의 정확도에 따라, 동작 윈도우는 시스템의 더 높은 신뢰성을 허용하도록 증가될 수 있다. 동작 윈도우는 PMD 시스템(10)의 요청될 수 있는 각 특정 프린트 작업을 위해 저장되며 추가적인 사용자 상호작용 없이 자동적으로 조정된다.
액적 체크 절차를 수행하는 것에 더하여, 액적 관찰 이미징 모듈(14)은 또한 프린트헤드(17)에 의해 방출된 유체 물질 액적의 여러 가지 크기(metrics)를 측정하는 액적 분석을 수행할 수 있다. 예를 들어, 액적 분석 절차 동안, 프린트헤드(17)에 의해 방출된 유체 물질 액적은, 방출 사이즈, 영역, 직경, 볼륨, 속도 및 관찰 필드(21)에서 액적 궤적의 방향성에 대해 측정될 수 있다.
액적 분석 동안, 액적 관찰 이미징 모듈(14)은 특정 프린트헤드(17)의 단일 노즐로부터 다수의 액적 이미지를 획득한다. X/Y/Z 스테이지(15)는 X, Y 및 Z 방향으로 이동하는 것을 통해 모니터링된 프린트헤드(17)에 대해 액적 관찰 이미징 모듈(14)을 위치시킬 수 있다. X 및 Y 방향으로 액적 관찰 이미징 모듈(14)을 이동시키는 것은 카메라(16)와 렌즈(18)를 특정 프린트헤드(17)의 관찰 필드(21)에 대해 적절히 위치될 수 있게 한다. 구체적으로, 프린트헤드(17)에 대해 그리고 연관된 프린트헤드 전자장치에 대해 액적 관찰 이미징 모듈(14)을 이동시킴으로써, 광학 경로(32)는 카메라(16)로 하여금 프린트헤드(17)에 의해 방출된 유체 물질 액적의 이미지를 캡쳐하도록 광학적 경로(32)가 관찰 필드(21)를 횡단하도록 위치될 수 있다.
Z 방향으로 이동하는 것은 본질적으로 프린트헤드(17)의 노즐에 있는 방출 포인트로부터 이 방출 포인트로부터 적어도 3mm까지 액적을 관찰하는 것을 허용한다. 정밀 영역, 직경 및 볼륨의 측정을 얻기 위해 우수한 이미지 환상(circularity)을 갖는 안정적인 액적을 형성하는 것이 본질적이다. 그러한 정밀한 측정은 일반적으로 노즐 방출기로부터 1mm보다 더 큰 거리에 이미지 캡쳐에 의해 달성되며 이에 따라 이 거리는 이상적인 검사 포인트에 있는 조작자(operator) 에 의하여 설정되거나 또는 데이터의 일치성과 품질에 기초하여 위치를 자동적으로 선택하기 위해 이미지 처리 컴퓨터(36)에 의해 설정되어야 한다.
Z 방향으로 이동하는 것은 노즐에 있는 방출 포인트로부터 기판(25)의 작업면으로 평균 액적 속도를 특징적으로 부여하는 것을 허용한다. 이 속도 정보를 발사 데이터(firing data)에 포함시키는 것은 기판(25)에 대해 증착 프로세스가 시작할 때 각 노즐에 대한 속도 에러를 보상할 수 있게 한다. 이러한 분석에 의해 액적 관찰 이미징 모듈(14)은 거의 0.1%의 정밀도까지 지연 변화의 시간만큼 분할된 액적 위치의 차이에 기초하여 유체 물질 액적의 액적 속도를 검출할 수 있게 된다.
광학장치/카메라(16)를 선택하면, 관찰 필드(field-of-view), 필드 심도(depth-of-field), 프레임 캡쳐율(frame capture rate), 및 공간 해상도(spatial resolution) 사이에는 트레이드오프가 있다. 이 시스템은 액적 체크 분석 및 액적 분석을 위한 목표를 달성하기 위해 CCD 어레이 상에 픽셀당 대략 2.2 미크론의 최적 공간 해상도에 기초한다. 이 시스템이 여러 가지 고유한 액적 볼륨{즉, 2 내지 80피코리터(picoliters) 범위}을 갖는 상이한 제조사로부터의 여러 가지 프린트헤드와 함께 동작하도록 디자인되었기 때문에, 이 시스템은 1%의 측정 정밀도를 달성하도록 액적 사이즈 또는 볼륨의 함수로서 액적당 복수의 샘플을 획득할 수 있다. 예를 들어, 10피코리터의 액적 사이즈에서, 11개의 샘플이 그 결과를 평균내고 1%의 측정 목표를 달성하는데 필요할 것인 반면 15피코리터에서는 단지 5개의 샘플만이 요구된다. 30피코리터 또는 그 이상의 볼륨에서는 단 하나의 샘플만이 요구된다.
전술된 바와 같이, 광학 경로(32)는 미러(22,22a)와 프리즘(24)에 의하여 카메라(16)의 렌즈(18)와 LED(28) 사이에 일반적으로 굴곡된다. LED(28)와 카메라(16) 사이에 광학적 경로(32)를 굴곡시킴으로써, 카메라(16)와 렌즈(18)와 LED(28)는 액적 이미징 모듈(14)의 전체 사이즈를 감소시키도록 비교적 서로 인접해 위치될 수 있다. 액적 이미징 모듈(14)의 전체 사이즈를 감소시키면 프린트헤드(17)에 대해 액적 관찰 이미징 모듈(14)의 이동이 보다 크게 신축성 있게 허용하며 또한 액적 관찰 이미징 모듈(14)이 프린트헤드(17)에 인접하게 이동하도록 허용된다.
액적 분석 절차의 동작 동안에, LED 스트로브 제어기(26)는 프린트헤드(17)로부터 유체 물질 액적의 방출을 트리거하도록 프린트헤드(17)와 연관된 프린트헤드 전자장치에 신호를 발송한다. LED 스트로브 제어기(26)에 의해 송신된 신호의 주파수는 프린팅 동안 유체 물질의 액적 주파수와 거의 같다. 예를 들어, 이 액적 주파수는 대략 10KHz일 수 있다.
유체 물질의 각 액적의 필수적인 이미지가 획득되는 것을 보장하기 위해, LED 스트로브 제어기(26)와 연관된 스트로브 제어기 보드(미도시)는 액적 트리거 신호로부터 연관된 지연 시간과 함께 요구되는 이미지의 리스트를 포함한다. 예를 들어, 유체 물질 액적의 이미지가 프린트헤드(17)로부터 방출 직후 요구되는 경우, LED(28)로부터 조명과 이미지 획득 트리거에 대해 액적의 트리거로부터의 지연은 액적의 이미지가 프린트헤드(17)로부터 방출 직후 획득되는 것을 보장하기 위해 상대적으로 작을 것이다. 이와 반대로, 요구되는 이미지가 기판(25)에 도달하기 바로 전에 액적의 전체 형상이 요구되는 것이라면, 프린트헤드(17)로부터 유체 물질 액적을 방출하는 트리거 신호와, 이미지 획득과 조명을 개시하는 트리거 신호 사이의 지연은 카메라(16)가 이미지를 획득하기 이전에 프린트헤드(17)에 의해 액적이 완전히 방출되도록 다소 커야만 할 것이다.
유체 물질의 액적을 방출하기 전에 스트로브 제어기가 프린트헤드(17)에 트리거 신호를 발송하기 전에, 카메라(16)로부터 신호는 LED 스트로브 제어기(26)에 의해 먼저 수신되어야 하며, 이로 LED 스트로브 제어기(26)에 카메라(16)가 사용 중이지 않고 이미지를 획득할 준비가 되어 있음을 통보한다. 카메라(16)가 이미지를 획득하거나 이미지를 이미지 처리 컴퓨터(36)에 송신하는 작업으로 사용 중이지 않을 때, LED 스트로브 제어기(26)는 프린트헤드(17)에 의해 방출된 유체 물질 액적의 이미지를 획득하도록 카메라(26)를 트리거할 수 있으며 카메라(16)의 노출과 프린트헤드(17)로부터 유체 물질 방출을 동기화할 수 있다.
전술된 바와 같이, LED 스트로브 제어기(26)는 카메라(16)가 사용 중이지 않다는 것을 나타내면 프린트헤드(17)로부터 유체 물질 액적의 방출을 지시하며 또 프린트헤드(17)로부터 유체 액적의 방출 후 미리결정된 시간에 카메라(16)가 유체 물질 액적의 이미지를 캡쳐하도록 지시한다. 미리 결정된 시간은 원하는 이미지에 기초한다(즉, 예를 들어, 방출 직후 또는 유체 물질 액적이 기판에 도달하기 직전). 미리 결정된 지연의 차이는 액적 분석 모듈(14)이 프린트헤드(17)로부터 방출 후 여러 가지 위치에 있는 유체 물질 액적의 이미지를 캡쳐할 수 있게 한다.
LED 스트로브 제어기(26)는 스트로브 제어기 보드 내 리스트에 저장된 각 필 수적인 이미지가 획득될 때까지 프린트헤드(17)로부터 유체 물질 액적의 이미지의 획득을 개시한다. 각 필수적인 이미지가 LED 스트로브 제어기(26)에 의해 획득되면, 이 이미지는 분석을 위해 이미지 처리 컴퓨터(36)에 전송된다.
액적 분석은 프린트헤드(17)에 의해 방출되는 유체 물질 액적의 전체 사이즈, 형상 및 속도의 깊이 측정(in depth measure)을 취하기 때문에, 액적 분석 절차는 일반적으로 액적 체크 절차보다 덜 빈번히 수행된다. 그러나, 액적 분석 절차는, 프린트헤드(17)가 미리결정된 사이즈, 형상 및 속도를 충족하는 유체 물질 액적을 제공하고 있다는 것을 보장하기 위해 프린트헤드(17)가 동작될 때마다 수행될 수 있다. 액적 분석을 수행하는 간격은 마지막 분석 이후 프린트된 기판(25)의 수 또는 시간의 함수로서 조작자에 의해 선택될 수 있다.
전술된 바와 같이, 본 발명은 프린트 장치에 이용가능하다.

Claims (38)

  1. 분석 시스템으로서,
    스테이지와;
    상기 스테이지의 이동을 지시하기 위한 이동 제어기와;
    프린트헤드와;
    상기 프린트헤드에 인접하게 배치된 반사 물질과;
    상기 이동 제어기와 통신하며 기판 상에 선택적으로 증착될 유체 물질 액적을 방출하기 위해 상기 프린트헤드를 제어하기 위한 프린트헤드 제어기와;
    상기 프린트헤드에 대해 이동하기 위해 상기 스테이지에 의해 지지되는 카메라로서, 상기 이동 제어기로부터 제 1 트리거 신호를 선택적으로 수신하여 상기 카메라의 노출을 개시하고 상기 프린트헤드에 의해 방출된 상기 유체 물질 액적의 이미지를 캡쳐하는 카메라와;
    스트로브 제어기(strobe controller)를 구비하는 발광 디바이스로서, 상기 노출 동안 상기 액적을 포함하는 영역에 상기 발광 디바이스로부터 광 펄스를 공급하기 위해 상기 카메라로부터 제 2 트리거 신호를 선택적으로 수신하는 스트로브 제어기를 구비하는 발광 디바이스;를 포함하는 것을 특징으로 하는 분석 시스템.
  2. 제 1 항에 있어서, 상기 카메라와 통신하는 컴퓨터를 더 포함하는 것을 특징으로 하는 분석 시스템.
  3. 제 2 항에 있어서, 상기 컴퓨터는 상기 카메라로부터 원격지에 위치되는 것을 특징으로 하는 분석 시스템.
  4. 제 2 항에 있어서, 상기 카메라는 상기 노출 후에 상기 컴퓨터에 이미지 데이터를 송신하는 것을 특징으로 하는 분석 시스템.
  5. 제 2 항에 있어서, 상기 컴퓨터는, 프로세서와, 상기 카메라로부터 수신된 데이터와 비교하기 위해 상기 프린트헤드의 미리결정된 동작 파라미터를 저장하는 메모리를 포함하는 것을 특징으로 하는 분석 시스템.
  6. 제 1 항에 있어서, 상기 프린트헤드 제어기는 상기 기판 상에 상기 유체 물질 액적을 적층하기 위해 상기 이동 제어기로부터의 지시를 선택적으로 수신하는 것을 특징으로 하는 분석 시스템.
  7. 제 1 항에 있어서, 상기 스트로브 제어기는 상기 프린트헤드 제어기와 상기 카메라와 통신하는 것을 특징으로 하는 것을 특징으로 하는 분석 시스템.
  8. 삭제
  9. 제 1 항에 있어서, 상기 반사 물질은 상기 카메라의 노출 동안 상기 발광 디바이스로부터 나오는 광을 상기 유체 물질 액적을 포함하는 영역을 거쳐 상기 카메라로 지향시키기 위해 상기 발광 디바이스와 상기 프린트헤드 사이에 광학적 경로를 폴딩(fold)하는 것을 특징으로 하는 분석 시스템.
  10. 제 1 항에 있어서, 상기 스테이지는 서로에 대해 수직한 X, Y 및 Z 방향으로 상기 프린트헤드에 대해 이동가능한 것을 특징으로 하는 분석 시스템.
  11. 제 10 항에 있어서, 상기 X,Y 및 Z 방향 중 적어도 하나는 방출 면을 포함하며 상기 카메라는 상기 방출 면에서 상기 유체 물질 액적의 속도 데이터를 획득하는 것을 특징으로 하는 분석 시스템.
  12. 제 1 항에 있어서, 상기 프린트헤드는 상기 발광 디바이스의 조명과 상기 카메라의 상기 노출 동안 정지해 있는 것을 특징으로 하는 분석 시스템.
  13. 제 1 항에 있어서, 상기 기판은 상기 발광 디바이스의 조명과 상기 카메라의 노출과 동시에 상기 분석 시스템으로 로딩될 수 있는 것을 특징으로 하는 분석 시스템.
  14. 제 1 항에 있어서, 상기 카메라는 상기 유체 물질 액적의 미리결정된 개수의 이미지를 캡쳐하며, 상기 미리결정된 개수의 이미지는 상기 유체 물질 액적의 볼륨에 기초하는 것을 특징으로 하는 분석 시스템.
  15. 분석 시스템으로서,
    프린트헤드 제어기와;
    상기 프린트헤드 제어기로부터의 지시에 응답하여 기판 상에 적층될 유체 물질 액적을 선택적으로 방출하는 프린트헤드와;
    상기 프린트헤드에 인접하게 배치된 반사 물질과;
    상기 프린트헤드와 상기 프린트헤드 제어기에 대해 이동가능한 스테이지와;
    상기 프린트헤드에 대해 상기 스테이지의 이동을 지시하는 이동 제어기와;
    상기 프린트헤드에 대해 이동하기 위해 상기 스테이지에 의해 지지되는 카메라와;
    상기 프린트헤드 제어기에 일련의 신호를 선택적으로 발송하여 상기 프린트헤드로부터 상기 유체 물질 액적의 방출을 트리거하게 하고 신호를 발광 디바이스에 제공하여 상기 카메라의 노출 동안 상기 유체 물질 액적을 포함하는 영역을 조명하게 하는 스트로브 제어기를 포함하는 것을 특징으로 하는 분석 시스템.
  16. 제 15 항에 있어서, 상기 프린트헤드에 공급되는 상기 신호의 주파수는 상기 프린트헤드의 액적 주파수와 실질적으로 동일한 것을 특징으로 하는 분석 시스템.
  17. 제 15 항에 있어서, 상기 스트로브 제어기는 상기 프린트헤드로부터 상기 유 체 물질 액적의 방출과 동기적으로 상기 카메라 노출을 트리거하는 것을 특징으로 하는 분석 시스템.
  18. 제 17 항에 있어서, 상기 스트로브 제어기는 원하는 이미지의 저장된 리스트를 포함하며 상기 프린트헤드로부터 상기 유체 물질 액적의 시간 지연 흐름 방출에 기초하여 상기 카메라 노출을 트리거하는 것을 특징으로 하는 분석 시스템.
  19. 삭제
  20. 제 15 항에 있어서, 상기 반사 물질은 상기 카메라의 노출 동안 상기 발광 디바이스로부터의 광을 상기 유체 물질 액적을 포함하는 영역을 거쳐 상기 카메라로 지향시키기 위해 상기 발광 디바이스와 상기 프린트헤드 사이에 광학적 경로를 폴딩(fold)하는 것을 특징으로 하는 분석 시스템.
  21. 제 15 항에 있어서, 상기 스테이지는 서로에 대해 수직한 X,Y 및 Z 방향으로 상기 프린트헤드에 대해 이동가능한 것을 특징으로 하는 분석 시스템.
  22. 제 21 항에 있어서, 상기 X, Y 및 Z 방향 중 적어도 하나는 방출 면을 포함하며 상기 카메라는 상기 방출 면에서 상기 유체 물질 액적의 속도 데이터를 획득 하는 것을 특징으로 하는 분석 시스템.
  23. 제 15 항에 있어서, 상기 프린트헤드는 상기 발광 디바이스의 조명과 상기 카메라의 상기 노출 동안 정지해 있는 것을 특징으로 하는 분석 시스템.
  24. 제 15 항에 있어서, 상기 기판은 상기 발광 디바이스의 조명과 상기 카메라의 상기 노출과 동시에 상기 분석 시스템으로 로딩될 수 있는 것을 특징으로 하는 분석 시스템.
  25. 제 15 항에 있어서, 상기 카메라는 상기 유체 물질 액적의 미리결정된 개수의 이미지를 캡쳐하며 상기 미리결정된 개수의 이미지는 상기 유체 물질 액적의 볼륨에 기초하는 것을 특징으로 하는 분석 시스템.
  26. 분석 시스템으로서,
    기판 위에 증착될 유체 물질 액적을 선택적으로 방출하는 프린트헤드와;
    상기 프린트헤드에 대해 스테이지의 이동을 지시하기 위해 이동 제어기를 구비하는 스테이지와;
    상기 프린트헤드에 대해 이동하기 위해 상기 스테이지에 의해 지지되는 카메라와;
    상기 카메라의 노출 동안 상기 유체 물질 액적을 포함하는 영역을 선택적으 로 조명하는 발광 디바이스와;
    상기 카메라의 노출 동안 상기 발광 디바이스로부터의 광을 상기 유체 물질 액적을 포함하는 영역을 구비하는 관찰 필드(field-of-view)를 거쳐 상기 카메라로 지향시키기 위해 상기 발광 디바이스와 상기 프린트헤드 사이에 광학적 경로를 폴딩(fold)하기 위해 상기 프린트헤드에 인접하게 배치된 반사 물질을 포함하는 것을 특징으로 하는 분석 시스템.
  27. 제 26 항에 있어서, 상기 반사 물질은 프리즘과 미러 중 적어도 하나인 것을 특징으로 하는 분석 시스템.
  28. 제 26 항에 있어서, 상기 카메라와 상기 유체 물질 액적 사이에 배치된 적어도 하나의 미러를 더 포함하는 것을 특징으로 하는 분석 시스템.
  29. 제 28 항에 있어서, 상기 적어도 하나의 미러는 상기 유체 물질 액적을 거쳐 수신된 상기 광을 상기 카메라 렌즈로 지향시키는 것을 특징으로 하는 분석 시스템.
  30. 제 26 항에 있어서, 상기 카메라와 상기 유체 물질 액적 사이에 배치된 적어도 하나의 렌즈를 더 포함하는 것을 특징으로 하는 분석 시스템.
  31. 제 26 항에 있어서, 상기 스테이지는 서로에 대해 수직한 X, Y 및 Z 방향으로 상기 프린트헤드에 대해 이동가능한 것을 특징으로 하는 분석 시스템.
  32. 제 31 항에 있어서, 상기 X, Y 및 Z 방향 중 적어도 하나는 방출 면을 포함하며 상기 카메라는 상기 방출 면에서 상기 유체 물질 액적의 속도 데이터를 획득하는 것을 특징으로 하는 분석 시스템.
  33. 제 26 항에 있어서, 상기 프린트헤드는 상기 발광 디바이스의 조명과 상기 카메라의 상기 노출 동안 정지해 있는 것을 특징으로 하는 분석 시스템.
  34. 제 26 항에 있어서, 상기 기판은 상기 발광 디바이스의 조명과 상기 카메라의 상기 노출과 동시에 상기 분석 시스템으로 로딩될 수 있는 것을 특징으로 하는 분석 시스템.
  35. 제 26 항에 있어서, 상기 관찰 필드는 제 1 또는 제 2 방향 중 하나의 방향으로 0.6mm 내지 1.5mm 사이인 것을 특징으로 하는 분석 시스템.
  36. 제 26 항에 있어서, 필드 심도(depth-of-field)는 20미크론 내지 80미크론 사이인 것을 특징으로 하는 분석 시스템.
  37. 제 26 항에 있어서, 상기 관찰 필드는 제 1 방향으로 0.6mm 내지 1.5mm 사이이며 제 2 방향으로 0.6mm 내지 1.5mm 사이이며 관찰 필드는 20미크론 내지 80미크론 사이인 것을 특징으로 하는 분석 시스템.
  38. 제 26 항에 있어서, 상기 카메라는 상기 유체 물질 액적의 미리결정된 개수의 이미지를 캡쳐하며 상기 미리결정된 개수의 이미지는 상기 유체 물질 액적의 볼륨에 기초하는 것을 특징으로 하는 분석 시스템.
KR1020077026670A 2005-04-25 2006-04-25 액적 분석 시스템 KR100942528B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US67458905P 2005-04-25 2005-04-25
US60/674,589 2005-04-25

Publications (2)

Publication Number Publication Date
KR20080031666A KR20080031666A (ko) 2008-04-10
KR100942528B1 true KR100942528B1 (ko) 2010-02-16

Family

ID=37570925

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077026670A KR100942528B1 (ko) 2005-04-25 2006-04-25 액적 분석 시스템

Country Status (6)

Country Link
US (1) US7901026B2 (ko)
EP (1) EP1875404B1 (ko)
JP (1) JP4905998B2 (ko)
KR (1) KR100942528B1 (ko)
CN (1) CN101622134B (ko)
WO (1) WO2006137971A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230100563A (ko) 2021-12-28 2023-07-05 주식회사 나래나노텍 액적 검사 장치 및 이를 구비한 잉크젯 인쇄 장치

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1875404B1 (en) * 2005-04-25 2013-06-12 Ulvac, Inc. Drop analysis system
JP2009030977A (ja) * 2007-07-24 2009-02-12 Microjet:Kk 液滴観察用のシステム
CN101952049B (zh) * 2008-02-22 2015-01-07 武藏工业株式会社 排出量修正方法以及涂布装置
JP2010264714A (ja) * 2009-05-18 2010-11-25 Konica Minolta Holdings Inc 液滴撮像装置及びインクジェット記録装置
JP5274389B2 (ja) 2009-06-18 2013-08-28 株式会社アルバック メンテナンス装置及び吐出装置
EP2714403B1 (en) 2011-05-27 2018-07-11 Hewlett-Packard Development Company, L.P. Drop detector
CN103917303A (zh) * 2011-11-07 2014-07-09 株式会社爱发科 喷墨式装置以及液滴测定方法
WO2013154530A1 (en) 2012-04-09 2013-10-17 Hewlett-Packard Development Company, L.P. Nozzle ejection trajectory detection
US11673155B2 (en) 2012-12-27 2023-06-13 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
CN107891668B (zh) 2012-12-27 2020-04-21 科迪华公司 用于打印油墨体积控制以在精确公差内沉积流体的装置和方法
US11141752B2 (en) 2012-12-27 2021-10-12 Kateeva, Inc. Techniques for arrayed printing of a permanent layer with improved speed and accuracy
KR102617723B1 (ko) * 2013-04-26 2023-12-22 카티바, 인크. 인쇄 잉크 액적 측정 및 정밀 공차 내로 유체를 증착하기 위한 제어 기법
JP2015066531A (ja) * 2013-09-30 2015-04-13 芝浦メカトロニクス株式会社 液滴吐出状態確認装置、液滴吐出状態確認方法及び前記装置を用いた液滴塗布装置。
CN107933089B (zh) 2013-12-12 2020-08-11 科迪华公司 制造电子设备的方法
JP6524407B2 (ja) * 2014-09-03 2019-06-05 パナソニックIpマネジメント株式会社 インクジェット観察装置及びインクジェット観察方法
TWI534013B (zh) * 2015-01-28 2016-05-21 All Ring Tech Co Ltd Method and apparatus for viewing droplets
CN106808798B (zh) * 2015-12-01 2018-07-27 天津斯沃姆科技发展有限公司 一种用于压电式打印喷头的墨滴喷射状态调整系统及方法
CN109703196B (zh) * 2018-03-13 2020-05-05 广东聚华印刷显示技术有限公司 打印头墨滴状况校正结果检测方法以及墨滴滴定分析系统
CN109435473B (zh) * 2018-09-11 2019-10-08 华中科技大学 一种适用于喷墨打印的飞行墨滴检测装置及方法
US11318738B2 (en) * 2018-12-21 2022-05-03 Kateeva, Inc. Drop characteristic measurement
CN109910437B (zh) * 2019-01-22 2020-10-13 深圳市华星光电半导体显示技术有限公司 一种喷涂装置及显示面板的制备方法
CN110576679B (zh) * 2019-08-16 2020-05-19 华中科技大学 一种用于飞行墨滴状态观测的装置
KR20220028298A (ko) 2020-08-28 2022-03-08 주식회사 나래나노텍 액적 검사 장치 및 이를 구비한 잉크젯 인쇄 장치
KR102513200B1 (ko) * 2021-02-01 2023-03-23 (주)에스티아이 액적 검사 장치
CN113212007B (zh) * 2021-04-15 2022-03-29 华南理工大学 一种应用于薄膜器件的控温打印系统及其优化方法
CN113680611A (zh) * 2021-08-19 2021-11-23 易视智瞳科技(深圳)有限公司 一种实时评估喷射阀参数的视觉系统及视觉方法
CN114714766A (zh) * 2022-04-01 2022-07-08 北京博示电子科技有限责任公司 检测装置及喷墨打印机

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7104634B2 (en) * 2001-05-03 2006-09-12 Jemtex Ink Jet Printing Ltd. Ink jet printers and methods

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217594A (en) * 1977-10-17 1980-08-12 International Business Machines Corporation Method and apparatus for determining the velocity of a liquid stream of droplets
JP3197679B2 (ja) * 1993-04-30 2001-08-13 富士写真フイルム株式会社 写真撮影システムおよび方法
DE19754459A1 (de) * 1997-12-08 1999-06-17 Max Planck Gesellschaft Vorrichtung und Verfahren zur Bildaufnahme an tropfenerzeugenden Dispensierköpfen
US6305777B1 (en) * 1998-08-04 2001-10-23 Sarnoff Corporation Apparatus and method for measurement of a liquid droplet
JP3813762B2 (ja) * 1999-05-18 2006-08-23 ローム株式会社 吐出インク検出装置
JP2001150696A (ja) * 1999-11-30 2001-06-05 Konica Corp インクジェット射出検査装置
JP2001322295A (ja) * 2000-05-17 2001-11-20 Konica Corp インクジェット射出検査装置
JP4865155B2 (ja) * 2001-07-17 2012-02-01 キヤノン株式会社 液滴量測定方法、液滴量測定装置及びそれを備えたインクジェットプリンタの製造システム
US7008482B2 (en) * 2001-09-28 2006-03-07 Brother Kogyo Kabushiki Kaisha Nozzle head, nozzle head holder, and droplet jet patterning device
JP2003227705A (ja) * 2002-02-05 2003-08-15 Canon Inc 飛翔液滴位置測定装置及び飛翔液滴位置測定方法
JP2004097996A (ja) * 2002-09-11 2004-04-02 Canon Inc 記録装置におけるアライメント機構
JP2004165036A (ja) * 2002-11-14 2004-06-10 Seiko Epson Corp 有機elデバイス製造装置における液滴吐出ヘッドの吐出検査装置および有機elデバイス製造装置、並びに有機elデバイス、有機elデバイスの製造方法および電子機器
US7055925B2 (en) * 2003-07-31 2006-06-06 Hewlett-Packard Development Company, L.P. Calibration and measurement techniques for printers
JP2005069737A (ja) * 2003-08-20 2005-03-17 Seiko Epson Corp 液滴着弾観測方法および液滴着弾観測装置
JP4485929B2 (ja) * 2003-12-19 2010-06-23 株式会社マイクロジェット 液滴の観測方法および観測装置
EP1875404B1 (en) * 2005-04-25 2013-06-12 Ulvac, Inc. Drop analysis system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7104634B2 (en) * 2001-05-03 2006-09-12 Jemtex Ink Jet Printing Ltd. Ink jet printers and methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230100563A (ko) 2021-12-28 2023-07-05 주식회사 나래나노텍 액적 검사 장치 및 이를 구비한 잉크젯 인쇄 장치

Also Published As

Publication number Publication date
EP1875404A2 (en) 2008-01-09
US20080151270A1 (en) 2008-06-26
JP4905998B2 (ja) 2012-03-28
US7901026B2 (en) 2011-03-08
CN101622134A (zh) 2010-01-06
JP2008540069A (ja) 2008-11-20
EP1875404A4 (en) 2011-03-30
KR20080031666A (ko) 2008-04-10
WO2006137971A3 (en) 2009-06-11
EP1875404B1 (en) 2013-06-12
WO2006137971A2 (en) 2006-12-28
CN101622134B (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
KR100942528B1 (ko) 액적 분석 시스템
JP5145259B2 (ja) マイクロデポジション装置
US20060071957A1 (en) Droplet visualization of inkjetting
KR101641115B1 (ko) 토출량 보정 방법 및 도포 장치
TWI324558B (en) Methods and systems for inkjet drop positioning
US9387562B2 (en) Device and method for assembling writing head unit
WO2020061544A1 (en) Techniques to improve mhd jetting performance
US20050016451A1 (en) Interchangeable microdesition head apparatus and method
CN218367027U (zh) 用于液滴测量的系统
JP4659345B2 (ja) 塗布装置および塗布方法
JP2009030977A (ja) 液滴観察用のシステム
JP3151015B2 (ja) レーザー孔開け装置
KR101013156B1 (ko) 전동줌렌즈와 회전미러를 이용한 고속 광학관측 시스템
JP2008200582A (ja) インク塗布方法及びインク塗布装置
WO2008150050A1 (en) High speed optical monitoring system using a rotatable mirror
KR101225121B1 (ko) 잉크젯 프린터 헤드 모니터링 장치
JP5268502B2 (ja) 溶液の塗布装置及び塗布方法
TW201006678A (en) Ink jetting method
JP2005069737A (ja) 液滴着弾観測方法および液滴着弾観測装置
JP2003057440A (ja) 偏光板、運動物体の計測方法、運動物体の計測装置及びインクジェット射出検査装置
JP2007107933A (ja) 液滴量測定方法、及び液滴量測定装置
KR20090055989A (ko) 회전미러를 이용한 고속 광학관측 시스템
JP2008030395A (ja) 液滴吐出装置

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130125

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140127

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150127

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160125

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170131

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180129

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190125

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20200129

Year of fee payment: 11