KR100922371B1 - 초전도 박막 및 그 제조방법 - Google Patents

초전도 박막 및 그 제조방법 Download PDF

Info

Publication number
KR100922371B1
KR100922371B1 KR1020080000614A KR20080000614A KR100922371B1 KR 100922371 B1 KR100922371 B1 KR 100922371B1 KR 1020080000614 A KR1020080000614 A KR 1020080000614A KR 20080000614 A KR20080000614 A KR 20080000614A KR 100922371 B1 KR100922371 B1 KR 100922371B1
Authority
KR
South Korea
Prior art keywords
metal
thin film
solution
superconducting thin
precursor solution
Prior art date
Application number
KR1020080000614A
Other languages
English (en)
Other versions
KR20090074910A (ko
Inventor
유재무
김영국
정국채
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020080000614A priority Critical patent/KR100922371B1/ko
Priority to PCT/KR2008/000371 priority patent/WO2009084763A1/en
Publication of KR20090074910A publication Critical patent/KR20090074910A/ko
Application granted granted Critical
Publication of KR100922371B1 publication Critical patent/KR100922371B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/127Preformed particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

자기장 하에서 임계전류밀도값이 높은 초전도 박막 및 그 제조방법이 제공된다. 상기 초전도 박막의 제조방법은 화학적인 방법으로 나노점이 균일하게 분산된 용액을 합성하는 공정, 상기 합성된 나노점이 분산된 용액을 초전도체의 유기금속증착법(metal-organic deposition)의 예비 전구용액과 혼합하여, 나노점이 분산된 유기금속증착법 전구용액을 제조하는 공정, 그리고 상기 유기금속증착법 전구용액을 기판 위에 코팅하고, 열처리하여 초전도 박막을 형성하는 공정을 포함한다.
나노점, 분산, 유기금속증착법, 전구용액

Description

초전도 박막 및 그 제조방법{SUPERCONDUCTING TAPES AND METHOD OF MANUFACTURING THE SAME}
본 발명은 자기장하에서 높은 임계전류밀도값을 가지는 초전도 박막 및 그 제조방법에 관한 것으로서, 보다 상세하게는 미세한 자속고정점의 응집발생을 최소화할 수 있는 초전도 박막 및 그 제조방법에 관한 것이다.
REBa2Cu3O7 -x(RE=Y,Sm,Er,Yb,...)계로 대표되는 산화물 초전도 선재는 전류수송 특성이 우수하고 고자장 하에서의 임계전류 특성이 우수하다. 따라서, 향후 전력케이블, 산업용 모터, 발전기 등에 적용되면 대용량 전력기기의 소형화, 고효율화, 대용량화를 가능해질 것으로 예상된다. 산화물 초전도 선재는 이러한 각종 응용분야에 적용하기 위해서는 경제성 있는 공정법으로 자기장 하에서 임계전류값이 높은 초전도 선재를 제조할 수 있어야 한다.
현재 레이저 증착법, 유기금속 기상증착법(MO-CVD), 열증착법(thermal evaporation), 전자빔증착법(e-beam evaporration) 등의 다양한 방법을 적용하여 산화물 초전도층을 제조하고자하는 연구가 활발히 진행되고 있다. 그러나, 이러한 방법들은 고진고 증착방법으로 고가의 고진공 장치가 필요하며, 유지비가 많이 드는 등 경제성에 있어서 단점이 있다. 한편, 저렴한 비용으로 임계전류 특성이 우수한 초전도 선재를 제조할 수 있는 방법으로 유기금속증착법(MOD)을 들 수 있다. 유기금속증착법은 희토류 금속(Rare earth metal), 알칼리 토금속(alkaline earth metal), 전이금속(transition metal)의 금속염으로 이루어진 전구용액을 적용하여 용액 도포, 열처리 등의 공정을 거쳐 최종적으로 초전도층을 형성시키는 방법이다. 유기금속 증착법은 비진공 공정이며, 원료 비용이 저렴하여 타 공정에 비하여 경제성이 우수하고 높은 임계전류값을 가지는 초전도 선재의 제조가 가능한 방법이다.
자기장 하에서 임계전류 특성이 우수한 초전도 선재를 제조하기 위해서 초전도체 내에 여러 형태의 자속 고정점(flux pinning center)을 도입하는 노력이 활발히 진행되고 있다. 전술한 바와 같이 현재 개발되어 있는 초전도 선재는 자기장하에서의 임계전류밀도 저하가 심하다는 단점을 가지고 있다. 이러한 문제점을 해결하기 위해서는 자속고정점으로 작용할 수 있는 고밀도의 결함을 도입하는 것이 필요하다. 자연적으로 형성되는 결정 결함들은 그 밀도나 자속 고정 특성이 충분하지 못하여 초전도 선재의 기기 응용을 위해 요구되는 도체 조건을 만족시킬 수 없다. 초전도 선재 내에 형성되는 자속 고정점의 경우, 그 크기가 1~3nm 정도이고 1011/㎠ 이상의 밀도로 균일하게 분포하였을 때, 자속고정특성이 극대화되어 최대 28MA/㎠의 임계 전류밀도값이 가능할 것으로 이론적으로 예상되고 있다.
따라서, 인위적인 방법으로 미세한 자속고정점을 형성시키기 위해 광범위한 연구개발이 이루어져 왔으나, 그들 중 대부분은 실용적이지 못하거나, 산업화를 위한 장선화가 어렵다는 문제점을 가지고 있다.
초전도체 내에 자속 고정점을 도입하여 높은 임계전류갑을 가지는 초전도 선재를 제조하기 위해서는 매우 미세한 나노 크기 입자들이 균일하게 분산된 미세구조를 형성시킬 수 있어야 한다. 경제성이 우수한 유기금속증착법(metal-organic deposition,MOD) 공정으로 이러한 미세조직을 얻기 위해 지금까지 주로 사용된 방법은 MOD 전구용액 내에 희토류 원소를 첨가하여 균일한 용액을 제조하고 이를 코팅, 열처리하는 방식이다. 이 경우 제조되는 초전도체 내에 10~100nm 크기의 희토류 산화물 입자가 형성된다. 그러나, 형성되는 희토류 산화물 입자의 크기가 수십 nm이상으로 크고, 크기제어가 거의 불가능하여 자장하에서 임계전류 특성의 극대화를 위한 미세조직 제어가 어렵다.
한편, 일반적으로 나노입자가 분산된 용액을 제조하기 위해서는 나노분말을 전구용액에 직접 혼합하는 방법이 사용되고 있는데, 현재 입수할 수 있는 일반적인 나노분말은 내부에 다량의 응집체(agglomerate)를 포함하고 있으며, 용액 내에서 나노분말의 균일한 분산을 위해서는 용액 내에 분산제 등 각종 첨가제가 들어가야 할 뿐만 아니라, 첨가제를 사용하는 경우에 있어서도 응집된 형태로 분산되는 경우가 많다. 따라서, 자속고정점 도입을 위해 초전도 MOD 전구용액 내에 나노분말을 직접 혼합하는 경우, 다량의 응집체가 발생하고, 균일한 분산이 거의 불가능하다는 문제점이 있다.
자속고정점을 형성시키기 위해 사용되던 기존의 방법들은 나노점의 크기제어 가 불가능하고 균일 분산이 어려워 내부에 자속 고정점 역할을 수행하기에 부적합한 수백 nm 크기의 응집체가 발생하는 경우가 많아 이러한 문제점에 대한 개선이 절실하다. 따라서, 나노점의 크기를 제어할 수 있고, 응집 발생 없이 자속 고정점을 균일하게 분산시킬 수 있는 방법으로 MOD 전구용액을 제조할 수 있다면, 자속고정점의 크기 및 분포를 제어하여 초전도 선재의 자장하 임계전류 밀도를 극대화시킬 수 있고, 경제성 있는 초전도 선재 제조 공정이 가능해져 초전도 선재의 개발 및 응용에 있어 상당한 파급효과를 일으킬 것으로 기대된다.
본 발명의 목적은 응집 발생 없이 자속 고정점이 균일하게 분산된 초전도 박막 및 그 제조방법을 제공하는 것이다.
초전도 박막의 제조방법은 화학적인 방법으로 나노점이 균일하게 분산된 용액을 합성하는 공정, 상기 합성된 나노점이 분산된 용액을 초전도체의 유기금속증착법(metal-organic deposition)의 예비 전구용액과 혼합하여, 나노점이 분산된 유기금속증착법 전구용액을 제조하는 공정, 그리고 상기 유기금속증착법 전구용액을 기판 위에 코팅하고, 열처리하여 초전도 박막을 형성하는 공정을 포함한다.
상기 나노점이 균일하게 분산된 용액을 합성하는 공정은 금속 전구체를 용매에 용해시킨 후, 첨가제를 적용하여 반응성을 제어하고, 수분을 첨가하여 가수분해 및 축합반응을 유도하는 공정을 포함한다.
상기 금속 전구체는 금속 알콕사이드, 금속 수산화물, 금속 질산염, 또는 금속 유기산염 중 어느 하나일 수 있다.
상기 용매는 알코올, 에스테르계 액체, 케톤류 및 이들의 혼합물 중 어느 하나일 수 있다.
상기 첨가제는 디케톤(diketone)류, 디알코올(dialcohol)류, 카르복시산(carboxylic)류, 또는 아민(amine)류 중 어느 하나일 수 있다.
상기 초전도체의 유기금속증착법의 예비 전구용액은 금속 삼불화 아세트산염, 금속 카르복시산염, 또는 금속 베타 디케톤네이트(beta diketonate)로 이루어진 금속염 중 어느 하나를 전구체로 하여 제조될 수 있다.
상기 금속염을 구성하는 금속은 희토류 원소, 알칼리 토금속 원소, 또는 전이금속 원소 중 어느 하나일 수 있다.
본 발명의 실시예에 따르면, 화학적인 방법으로 응집없이 균일 분산된 나노점 분산 MOD 전구용액을 제조하고, 이를 통해 내부에 나노점이 균일하게 분산된 초전도 박막을 제조할 수 있다. MOD 전구용액 내에 화학적인 방법으로 합성된 나노점 분산 용액을 혼합하여 간단히 응집없이 균일 분산된 나노점 분산 MOD 전구용액을 제조하고, 이를 유기금속증착 공정에 적용하여 수nm 크기의 나노점이 내부에 균일하게 분포하고 있는 초전도 박막을 제조할 수 있다는 장점이 있다. 따라서, 유기금속 증착 공정에 의해 제조되는 초전도 선재의 자장하 임계전류 특성 향상에 매우 유리하다. 특히, 저렴한 화학적 공정으로 초전도 선재 내에 효과적인 자속 고정점을 형성시키는 방안을 제시함으로써, 기존에 개발된 방법에 비하여 자장하 임계전류 특성이 우수한 초전도 선재를 제조할 수 있어 경제성 및 산업화측면에서 상당한 비교 우위를 가진다. 이에 따라, 향후 고특성 산화물 초전도 선재의 실용화에 크게 기여할 것으로 보인다. 뿐만 아니라, 나노점이 균일 분산된 용액을 화학적으로 직접 합성하고 이를 타 전구용액과 혼합하여 기능성 박막을 제조하는 본 발명은 양자점 태양전지, 열전 소자 등 다양한 분야에 응용이 가능하여 에너지 변환 기술 분야에 있어 막대한 파급효과를 일으킬 것으로 기대된다.
이하에서는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있도록 본 발명의 실시예를 첨부된 도면을 참조하여 설명하기로 한다. 그러나, 본 발명은 여기서 설명되어지는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 기술적 사상이 충분히 전달될 수 있도록 제공되는 것이다.
도 1은 본 발명의 실시예에 따른 초전도 선재의 제조방법을 나타내는 공정 순서도이다. 도 2는 본 발명의 실시예에 따른 초전도 선재의 제조방법을 나타내는 모식도이다.
도 1 및 2를 참조하면, 금속 전구체 용액에 첨가제를 적용하여 반응성을 제어하고, 수분을 첨가하여 가수분해 및 축합반응을 유도함으로써 나노점 분산 용액이 합성된다. 그리고 나서, 나노점 분산 용액에 초전도체 MOD 전구용액을 혼합하여 나노점 분산 MOD 전구용액이 제조된다. 이후 기판에 코팅하고, 하소(calcination) 및 열처리 공정을 거쳐 초전도 박막이 제조된다.
나노점 분산 MOD 전구용액을 기판 위에 코팅 및 열처리하여 최종적으로 초전도 박막을 형성시키는 공정으로 구성된다. 나노점이 분산된 용액을 합성하기 위해서는 금속 알콕사이드, 금속 수산화물, 금속 질산염, 금속 유기산염 등 수분 첨가를 통해 다음과 같은 가수분해 반응을 일으킬 수 있는 금속 전구체를 적합한 용매에 용해시킨다.
M2 + + H2O => M(OH2)2+ ---(식 1-1)
M2 + + H2O => M(OH)(z-1)+ + H+ ---(식 1-2)
M2 + + H2O => MO(z-2)+ + 2H+ ---(식 1-3)
여기서, M2 + 은 금속 이온이다.
상기 용액의 합성을 위한 용매로는 메탄올, 에탄올 등 알코올 계통, 에틸 아세테이트, 에틸 부틸레이트 등 에스테르계 액체, 아세톤, 프로탄 등 케톤류 및 그들의 혼합물이 주로 사용될 수 있으며, 가급적 수분함량이 낮은 것을 사용하는 것이 유리하다. 또한, 금속전구체의 반응성을 제어하기 위해 적절한 첨가제가 적용되기도 한다. 이때, 적용되는 첨가제는 2,4-pentanedione 등 diketone류, ethylene glycol 등 dialcohol 류, acetic acid, propionic acid 등 carboxylic acid류, triethanolamine 등 amine 류 등이 적용될 수 있다.
적절한 용매에 금속 전구체를 용해시킨 후 첨가제를 적용하여 안정화 시킨 용액에 적정량의 수분을 첨가하여 식(1-1~1-3)과 같은 가수 분해 반응 및 축합 반응(condensation reaction)을 일으킨다. 발생할 수 있는 축합반응은 일례로 다음 식 2와 같다.
M-OR + M-OR --> M-O-M + ROR ------(식 2)
여기서, M은 금속 이온을 의미하고, R은 알킬 그룹을 의미한다.
첨가되는 수분의 양은 금속 이온 농도에 대비하여 몰비로 1~20배 내의 양이며, 더욱 적합한 양은 4~15배 이내이다.
상기 공정으로 형성된 용액은 상온 또는 100℃ 이하의 온도에서 2시간에서 24시간의 범위 내에 유지되며, 최종적으로 수 nm~ 수십 nm의 크기 분포를 갖는 나노점 분산용액을 합성할 수 있다.
합성된 나노점 분산 용액은 초전도체의 MOD 전구용액과 쉽게 혼합되어 나노점 분산 MOD 전구체 용액이 된다. 이때, 사용하는 MOD 전구용액은 희토류 원소(Y,Sm,Ho, Dy 등), 바륨, 구리 등의 금속 삼불화아세트산염으로 이루어진 일반적인 MOD-TFA 전구용액, 금속 카르복시산염과 금속 삼불화아세트산염으로 이루어진 MOD 전구용액, 금속 beta-diketonate 용액 등 초전도 박막 제조를 위해 사용되는 다양한 MOD 전구용액이 적용 가능하다.
제조된 나노점 분산 MOD 전구용액은 침지코팅(dip coating), 슬롯다이코팅(slot die coating), 스핀 코팅(spin coating), 그래비어 코팅(gravure coating) 등 다양한 방법으로 적용하여 코팅할 수 있다. 배향성이 우수한 단결정, 완충층이 형성된 금속기판 등의 표면에 상기 방식으로 전구용액을 도포한 후, 하소 열처리되어 유동성이 없는 산불화물막으로 변화한다. 하소 공정 후 얻어진 전구박막은 수분을 함유한 Ar/O2 또는 N2/O2 혼합기체 중에서 가열하여 최종적으로 초전도 박막을 얻을 수 있다.
본 발명의 일 실시예을 설명한다. 다음과 같은 조성으로 나노점 분산용액을 제조한다.
전구체: 지르코늄 프로폭사이드(zirconium propoxide)
안정용액 형성을 위한 첨가제: 2,4-pentanedione
용매: 메탄올
수분 첨가량: [H2O]/[Zr]=12
초전도체의 MOD 전구용액: 금속 아세트산염 및 금속 삼불화아세트산염으로 구성된 REBCO MOD 전구용액
제조된 나노점 분산 용액을 동적 광산란법(Dynamic light scattering)으로 입도분석한 결과는 도 3과 같이 평균 입경 16nm의 나노입자가 분산되었으며, 평균 입경 400nm 가량의 응집체 역시 30% 정도 포함되어 있다. 상기 용액을 초전도체의 MOD 전구용액과 혼합하여 제조된 나노점 분산 MOD 전구용액을 단결정 기판 위에 코팅 후 열처리하여 YBCO 초전도 박막을 제조한다. TEM 분석 결과 제조된 YBCO 박막의 내부에는 도 4의 투과 전자 현미경 사진과 같이, 10~20nm 크기의 ZrO2 나노점이 균일하게 분포되어 있었으며, 임계전류밀도(critical current density, Jc) 변화를 Bean의 critical state model에 기초하여 VSM(vibrating sample magnetometer)로 분석한 결과 자장하 임계전류 밀도가 향상되었다(도 5 참조).
도 1은 본 발명의 실시예에 따른 초전도 선재의 제조방법을 나타내는 공정 순서도이다.
도 2는 본 발명의 실시예에 따른 초전도 선재의 제조방법을 나타내는 모식도이다.
도 3은 화학적으로 합성된 나노점 분산 용액의 입도분석 결과를 나타내는 도면이다.
도 4는 투과전자 현미경에 의한 나노점 분산 초전도 박막의 미세구조를 나타내는 도면이다.
도 5는 나노점 분산에 의한 자장하에서 임계전류밀도가 향상되는 것을 나타내는 도면이다.

Claims (8)

  1. 화학적인 방법으로 나노점이 균일하게 분산된 용액을 합성하는 공정;
    상기 합성된 나노점이 분산된 용액을 초전도체의 유기금속증착법(metal-organic deposition)의 예비 전구용액과 혼합하여, 나노점이 분산된 유기금속증착법 전구용액을 제조하는 공정; 그리고
    상기 유기금속증착법 전구용액을 기판 위에 코팅하고, 열처리하여 초전도 박막을 형성하는 공정을 포함하는 초전도 박막의 제조방법.
  2. 청구항 1에 있어서,
    상기 나노점이 균일하게 분산된 용액을 합성하는 공정은 금속 전구체를 용매에 용해시킨 후, 첨가제를 적용하여 반응성을 제어하고, 수분을 첨가하여 가수분해 및 축합반응을 유도하는 공정을 포함하는 초전도 박막의 제조방법.
  3. 청구항 2에 있어서,
    상기 금속 전구체는 금속 알콕사이드, 금속 수산화물, 금속 질산염, 또는 금속 유기산염 중 어느 하나인 것을 특징으로 하는 초전도 박막의 제조방법.
  4. 청구항 2에 있어서,
    상기 용매는 알코올, 에스테르계 액체, 케톤류 및 이들의 혼합물 중 어느 하 나인 것을 특징으로 하는 초전도 박막의 제조방법.
  5. 청구항 2에 있어서,
    상기 첨가제는 디케톤(diketone)류, 디알코올(dialcohol)류, 카르복시산(carboxylic)류, 또는 아민(amine)류 중 어느 하나인 것을 특징으로 하는 초전도 박막의 제조방법.
  6. 청구항 1에 있어서,
    상기 초전도체의 유기금속증착법의 예비 전구용액은 금속 삼불화 아세트산염, 금속 카르복시산염, 또는 금속 베타 디케톤네이트(beta diketonate)로 이루어진 금속염 중 어느 하나를 전구체로 하여 제조되는 것을 특징으로 하는 초전도 박막의 제조방법.
  7. 청구항 6에 있어서,
    상기 금속염을 구성하는 금속은 희토류 원소, 알칼리 토금속 원소, 또는 전이금속 원소 중 어느 하나인 것을 특징으로 하는 초전도 박막의 제조방법.
  8. 청구항 1의 방법으로 제조된 초전도 박막.
KR1020080000614A 2008-01-03 2008-01-03 초전도 박막 및 그 제조방법 KR100922371B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020080000614A KR100922371B1 (ko) 2008-01-03 2008-01-03 초전도 박막 및 그 제조방법
PCT/KR2008/000371 WO2009084763A1 (en) 2008-01-03 2008-01-21 Superconducting tapes and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080000614A KR100922371B1 (ko) 2008-01-03 2008-01-03 초전도 박막 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20090074910A KR20090074910A (ko) 2009-07-08
KR100922371B1 true KR100922371B1 (ko) 2009-10-19

Family

ID=40824462

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080000614A KR100922371B1 (ko) 2008-01-03 2008-01-03 초전도 박막 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR100922371B1 (ko)
WO (1) WO2009084763A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174565A (ja) * 2011-02-23 2012-09-10 Sumitomo Electric Ind Ltd 酸化物超電導体形成用の原料溶液
JP5763251B2 (ja) * 2014-08-12 2015-08-12 株式会社東芝 酸化物超電導体の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080297A (ja) 2000-09-05 2002-03-19 Toshiba Corp 酸化物超電導体の製造方法、酸化物超電導体用原料、および酸化物超電導体用原料の製造方法
JP2004031550A (ja) 2002-06-25 2004-01-29 Takeshi Kawabata 高臨界電流特性を有する超電導線材
KR100815000B1 (ko) 2004-01-16 2008-03-18 아메리칸 수퍼컨덕터 코포레이션 나노도트 플럭스 피닝 센터가 있는 산화물 막
KR100820747B1 (ko) 2006-12-11 2008-04-11 한국기계연구원 점도 특성이 개선된 전구용액 제조방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622147B2 (ja) * 2001-06-19 2005-02-23 独立行政法人産業技術総合研究所 柱状ピン止め中心を有する超伝導薄膜及びその製造方法
JP4071569B2 (ja) * 2002-08-07 2008-04-02 株式会社フジクラ 安定化層の形成方法及びその装置
JP4212882B2 (ja) * 2002-12-20 2009-01-21 中部電力株式会社 酸化物超電導線材の製造方法
KR100775017B1 (ko) * 2006-02-23 2007-11-09 한국기계연구원 일괄 하소 및 열처리에 의한 초전도 선재 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080297A (ja) 2000-09-05 2002-03-19 Toshiba Corp 酸化物超電導体の製造方法、酸化物超電導体用原料、および酸化物超電導体用原料の製造方法
JP2004031550A (ja) 2002-06-25 2004-01-29 Takeshi Kawabata 高臨界電流特性を有する超電導線材
KR100815000B1 (ko) 2004-01-16 2008-03-18 아메리칸 수퍼컨덕터 코포레이션 나노도트 플럭스 피닝 센터가 있는 산화물 막
KR100820747B1 (ko) 2006-12-11 2008-04-11 한국기계연구원 점도 특성이 개선된 전구용액 제조방법

Also Published As

Publication number Publication date
KR20090074910A (ko) 2009-07-08
WO2009084763A1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
JP5057784B2 (ja) ナノドットフラックス・ピン止めセンターを有する酸化物膜
EP2104151B1 (en) Nanostructured superconducting material of type reba2cu3o7 (re=rare earth or yttrium) with a high density of vortex anchoring centres and preparation method thereof
Díez-Sierra et al. High critical current density and enhanced pinning in superconducting films of YBa2Cu3O7− δ nanocomposites with embedded BaZrO3, BaHfO3, BaTiO3, and SrZrO3 nanocrystals
CN100565953C (zh) 一种高分子辅助沉积高温超导涂层导体超导层的方法
CN103102162A (zh) 一种元素掺杂钇钆钡铜氧高温超导薄膜的制备方法
CN102931338B (zh) 一种具有多层复合结构的ybco超导膜及其制备方法
WO2006011684A1 (en) Oxide superconducting film and method of preparing the same
Rijckaert et al. Influence of Ba2+ consumption and intermediate dwelling during processing of YBa2Cu3O7 nanocomposite films
TWI538896B (zh) 氧化物超導電體之製造方法及氧化物超導電體
KR100922371B1 (ko) 초전도 박막 및 그 제조방법
Shi et al. Deposition of REBCO with different rare earth elements on CeO2 buffered technical substrates by fluorine-free metal organic decomposition route
KR100807640B1 (ko) 저온 열처리에 의해 이축배향성 완충층을 형성하는전구용액
CN102351571B (zh) 一种纳米银掺杂钇钡铜氧膜的制备方法
KR100820747B1 (ko) 점도 특성이 개선된 전구용액 제조방법
Yoshihara et al. BaMO 3 (M= Zr, Hf) Doped REBCO Tapes Fabricated by Fluorine-Free MOD
Li et al. Microstructures Property and Improved J c of Eu-Doped YBa 2 Cu 3.6 O 7− δ Thin Films by Trifluoroacetate Metal Organic Deposition Process
Rijckaert et al. Superconducting YBa 2 Cu 3 O 7− δ Nanocomposite Films Using Preformed ZrO 2 Nanocrystals via Chemical Solution Deposition
Izumi et al. Development of TFA-MOD process for coated conductors in Japan
Huang et al. Significantly Improving the Flux Pinning of YBa2Cu3O7‐δ Superconducting Coated Conductors via BaHfO3 Nanocrystal Addition Using Multistep Film Growth Method
Celik et al. Texturing influence of process parameters in sol–gel Tb2O3 buffer layers on Ni tapes for YBCO coated conductors
CN104788092B (zh) 一种紫外辅助热处理制备钇钡铜氧高温超导薄膜的方法
Sun et al. La 2 Zr 2 O 7 doping effects on MOD-SmBCO-coated conductors
CN103274682B (zh) 一种高温超导薄膜的制备方法
Ye et al. Enhanced flux pinning in YBCO+ YSZ composite films grown by TFA-MOD method
CN103280520B (zh) 一种ybco超导复合薄膜的制备方法

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120711

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130722

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee