KR100922113B1 - 고순도의 벤질옥시폴리에틸렌글리콜 및 그의 유도체의제조방법 - Google Patents

고순도의 벤질옥시폴리에틸렌글리콜 및 그의 유도체의제조방법 Download PDF

Info

Publication number
KR100922113B1
KR100922113B1 KR1020070141143A KR20070141143A KR100922113B1 KR 100922113 B1 KR100922113 B1 KR 100922113B1 KR 1020070141143 A KR1020070141143 A KR 1020070141143A KR 20070141143 A KR20070141143 A KR 20070141143A KR 100922113 B1 KR100922113 B1 KR 100922113B1
Authority
KR
South Korea
Prior art keywords
phthalate
purity
polyethylene glycol
peg
methylene chloride
Prior art date
Application number
KR1020070141143A
Other languages
English (en)
Other versions
KR20090072889A (ko
Inventor
박병욱
김성년
임부규
황익구
Original Assignee
아이디비켐(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아이디비켐(주) filed Critical 아이디비켐(주)
Priority to KR1020070141143A priority Critical patent/KR100922113B1/ko
Priority to PCT/KR2008/007501 priority patent/WO2009084833A2/en
Publication of KR20090072889A publication Critical patent/KR20090072889A/ko
Application granted granted Critical
Publication of KR100922113B1 publication Critical patent/KR100922113B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/30Post-polymerisation treatment, e.g. recovery, purification, drying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3322Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3324Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof cyclic
    • C08G65/3326Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof cyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3328Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 고순도의 벤질옥시폴리에틸렌글리콜 및 그의 유도체를 제조하는 방법에 관한 것이다. 보다 상세하게는, 통상의 순도가 낮은 상업화된 벤질옥시폴리에틸렌글리콜을 반응시켜 고순도의 중간체인 벤질옥시폴리에틸렌글리콜-프탈레이트를 분리하고, 이를 이용하여 분자량 범위가 350 ~ 100,000이고, 분자량분포(Polydispersity,PD)가 1.05이하인 99% 이상의 고순도의 벤질옥시폴리에틸렌글리콜을 제조하는 것을 특징으로 한다.
벤질옥시폴리에틸렌글리콜, Benzyl-PEG, 고순도

Description

고순도의 벤질옥시폴리에틸렌글리콜 및 그의 유도체의 제조방법{A New Preparing Method of Benzyloxypolyethyleneglycol and its derivatives}
본 발명은 고순도의 벤질옥시폴리에틸렌글리콜(Benzyloxy Polyethylene Glycol,이하, Benzyl PEG) 및 그의 유도체를 제조하는 방법에 관한 것이다.
폴리에틸렌글리콜(polyethylene glycol, 이하 PEG)는 천연고분자, 합성고분자와 더불어 물분자와 수소 결합을 효과적으로 하는 대표적인 친수성 고분자로 알려져 있다.
또한 많은 유기 용매에 녹는 성질이 있으며, 인체독성이 거의 없는 물질이다. PEG는 물에서 완전히 신장된 형태의 구조를 가지므로 다른 의약품(단백질, 펩타이드, 효소, 유전자 등)과 콘쥬게이션(conjugation)을 시킴으로써 입체장애를 이용하여 의약분자의 독성을 감소시키고, 면역시스템으로부터 보호할 수 있다. 따라서 인체 혈장 내 반감기를 늘이는 방법으로 여러 종류의 의약품에 응용 될 수 있다.
또한 약효는 우수하나 독성이 높고, 용해도가 떨어져 인체에 적용하기에 까 다로운 의약품과 결합시켜 PEG-Drug의 용해도를 증가시키고 독성을 감소시켜 그 효능을 향상시킬 수 있다.
종래의 벤질옥시폴리에틸렌글리콜(Benzyloxy Polyethylene Glycol, 이하 Benzyl PEG라 함)은 고전적이며, 일반적인 방법인 에틸렌옥사이드를 Na, K 등의 알칼리 금속 촉매 하에서 벤질알콜과 반응하여 얻었다. 그러나 이 방법으로 합성된 제품은 99%이상의 순도로 제조되기는 어려운데, 이는 Benzyl PEG가 고분자화 할수록 반응속도가 크게 저하되며, 반응시간이 증가하여 반응 중 사용되는 에틸렌 옥사이드의 분해에 의하여 디올(diol)의 함량이 증가하기 때문이다.
종래 기술에는 Benzyl PEG를 고순도로 제조하는 방법에 대하여 거의 공지된 바가 없으며, 이와 유사한 고순도의 메톡시폴리에틸렌글리콜(methoxypolyethylene glycol, 이하 mPEG)는 다음과 같이 제조되어지고 있다. 미국공고특허공보 US 6,455,639 B1에는 mPEG의 순도를 99% 이상으로 합성하였다고 발표하였다. 상기 특허의 반응은 고분자 중합 전에 반응기 및 사용 메탄올에 포함된 수분을 최소화하고, 반응진행 중 야기될 수 있는 부반응을 최소화하는 것이 고순도의 mPEG를 얻을 수 있는 방법이라고 기재되어 있다. 그러나 수분을 제거하기 위해 다량의 유기용매(Toluene등)을 사용하여야 하며, 반응 중 부반응으로 부산물인 PEG의 양이 증가하거나, PEG의 중합분포도(PDI)값이 증가되었을 때, 재처리가 불가능하다는 단점이 있다.
다른 방법으로는, mPEG를 중합 후 함유된 PEG를 분리정제하는 방법으로 “Journal of Chromatography, 641(1993) 71~79, Barbara Selisko, Rudolf Ehwald"에 서 겔투과크로마토그라피(GPC)을 사용하여 고순도의 mPEG를 분리 정제하였다고 발표하였다. 이는 mPEG와 PEG의 분자량 분포가 현저히 차이가 날 때 가능한 방법이며, 동일한 분자량 분포를 가질 때 분리가 불가능한 방법으로 상업화되기는 어렵다 할 수 있다.
또한, 미국공개특허공보 US 5,298,410 에는 mPFG-숙시네이트를 합성한 후, 메틸렌클로라이드 용매 하에서 Dowex50*8-100H 레진(resin)을 이용하여 분리정제된 고순도의 mPEG를 사용하였다고 보고하였다. 분리 시 사용된 mPEG-숙시네이트는 mPEG과 결합된 숙신산이 분리 정제 과정에서 가수분해되는 경향이 있어서 분리 도중 mPEG-숙시네이트가 분해되는 현상이 발생할 수 있으며, 분리시 사용되는 유기용매를 과량으로 사용해야하므로 상업화시 어려움이 있다.
위의 문제를 해결하고자 대한민국 특허출원 제2006-112267호와 제2005-0078619호에서는 mPEG-프탈레이트와 mPEG-아세트산을 이용하여 고순도의 mPEG를 제조하는 방법을 예시하였다. 그러나 위에서 예시된 방법에서는 폴리에틸렌글리콜의 말단에 방향족고리(aromatic ring)를 포함한 구조의 물질의 경우에는 알킬기를 포함한 구조의 물질과 다른 물리적 특성으로 인해 종래의 제조방법을 사용하는 경우 고순도로 정제된 물질을 얻기 어려운 문제점이 있다. 따라서 폴리에틸렌글리콜의 말단에 방향족고리(aromatic ring)를 포함한 구조의 물질에 대한 새로운 분리, 정제방법이 요구되는 실정이다.
폴리에틸렌글리콜 말단에 방향족 고리(aromatic ring)를 포함한 물질의 물성은 mPEG에 비하여 상대적으로 유기용매에 잘 용해되는 성질을 가지고 있으며, 수용액상에서 분리, 정제 시 말단의 프탈레이트기가 가수분해되어 최종제품에서 부산물인 디올(diol)의 함량이 증가하여 99%이상의 고순도의 제품을 얻기가 어렵다. 또한 결정화시 상업적으로 사용하기 어려운 에테르, MTBE(methyl-tert-butyl ether)에서는 결정화가 잘 이루어지는 편이나 IPA(isopropyl alcohol), 헵탄, 헥산 등의 단일 용매에서는 결정입자가 미세하여 필터 시 문제가 발생될 소지가 있다. 상기의 문제점을 해결하고자 안출된 본 발명은 수용액 상태에서 유기적인 성질이 강한 벤질옥시폴리에틸렌글리콜을 고순도로 얻는 방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기의 제조방법으로 제조되어 99% 이상의 순도를 갖는 벤질옥시폴리에틸렌글리콜(Benzyl PEG)을 제공하는 것을 또 다른 목적으로 한다.
또한, 본 발명은 상기 고순도의 벤질옥시폴리에틸렌글리콜(Benzyl PEG)을 제조하기 위한 중간 화합물로서 고순도의 벤질옥시폴리에틸렌글리콜프탈레이트(Benzyl PEG-프탈레이트)의 제조방법을 제공하는 것을 또 다른 목적으로 한다.
본 발명은 고순도의 벤질옥시폴리에틸렌글리콜(Benzyloxypolyethyleneglycol, 이하 Benzyl PEG라 함)은 불순물을 함유하는 통 상의 Benzyl PEG를 반응 및 정제시킴으로써, 고순도의 Benzyl PEG 및 그들의 유도체를 제조하는 방법을 제공한다.
즉, 통상의 순도가 낮은 상업화된 Benzyl PEG를 반응시켜 고순도의 중간체인 하기 화학식 2의 Benzyl PEG-프탈레이트를 분리 및 정제하고, 제조된 Benzyl PEG-프탈레이트를 정제하여 하기 화학식 1의 고순도 Benzyl PEG를 제조하는 것을 특징으로 한다.
[화학식 1]
Figure 112007094832164-pat00001
[화학식 2]
Figure 112007094832164-pat00002
[상기 화학식에서 n은 3 ~ 2500의 정수이다.]
본 발명에서 사용되는 통상의 상업화된 Benzyl PEG는 순도가 98% 이하, 70 내지 98%인 것이라면 어떠한 순도의 것도 사용 가능하며, 수평균분자량 범위가 350 ~ 100,000이고, 분자량 분포(Polydispersity,PD)가 1.05<PD<1.5인 것을 사용할 수 있다. 상기 통상의 상업화된 Benzyl PEG를 본 발명의 제조방법에 의해 정제, 반응시키는 경우 99% 이상, 보다 구체적으로는 99 내지 99.999%의 순도를 가지며 수평균분자량 범위가 350 ~ 100,000이고, 분자량분포(PD)가 1.05이하, 즉, 1.01 ~ 1.05이며, 99% 이상의 고순도의 Benzyl PEG 및 그들의 유도체를 제조할 수 있는 특징이 있다.
이하 본 발명을 보다 구체적으로 설명한다. 본 발명에서 사용되는 용어는 당업자가 기술 분야에서 사용되는 것으로, 공지된 기술에 대하여는 구체적으로 기재하지 않는다.
본 발명에 따른 고순도의 Benzyl PEG를 제조하는 방법은 중간체로 Benzyl PEG-프탈레이트를 제조한 후 정제하는 방법으로 구체적으로는 순도가 낮은 Benzyl PEG로부터 고순도의 Benzyl PEG-프탈레이트를 제조하는 단계(ⅰ)와, 고순도의 Benzyl PEG-프탈레이트로부터 고순도의 Benzyl PEG를 제조하는 단계(ⅱ)로 이루어진다. 상기 (ⅰ)단계는 순도가 낮은 Benzyl PEG을 무수프탈산과 반응시켜 Benzyl PEG-프탈레이트를 제조한 후 상기 Benzyl PEG-프탈레이트를 컬럼크로마토그래피로 정제하여 99%이상의 고순도로 얻는 단계이고, 상기 (ⅱ)단계는 (ⅰ)단계에서 얻는 고순도의 Benzyl PEG-프탈레이트를 염기 존재 하에 가수분해 반응시켜 고순도의 Benzyl PEG를 제조하는 단계이다.
이하 각 단계에 대하여 보다 구체적으로 설명한다.
(ⅰ) 고순도의 Benzyl PEG-프탈레이트 제조
고순도의 Benzyl PEG-프탈레이트를 제조하는 단계는 구체적으로 하기의 단계를 포함하여 이루어진다.
1) 벤질옥시폴리에틸렌글리콜을 산성용액에 용해하고 메틸렌클로라이드로 추 출하여 고분자화 반응 중 사용된 알칼리 금속류의 촉매를 제거하는 단계;
2) 벤질옥시폴리에틸렌글리콜을 톨루엔에 투입한 후 톨루엔을 일부 상압증류하여 제거시키는 단계;
3) 상온으로 냉각시킨 후 알콜의 존재 하에 금속알콕사이드를 투입하는 단계;
4) 상기 반응 용액에 무수프탈산을 투입하여 반응시키는 단계;
5) 상기 반응물을 중화한 후 메틸렌클로라이드로 추출하는 단계;
6) 상기 메틸렌클로라이드층에 용매를 투입하여 결정화 하는 단계;
7) 상기 결정화된 물질을 수용액상을 제조하여 컬럼크로마토그래피로 정제하는 단계.
본 Benzyl PEG-프탈레이트 제조방법에 사용되는 Benzyl PEG는 통상의 상업화된 순도가 98% 이하, 70 내지 98%인 것이라면 어떠한 순도의 것도 사용 가능하며, 통상의 상업화된 Benzyl PEG는 분자량 범위가 350 ~ 100,000이고, 분자량 분포가 1.05 < PD <1.5 이다.
나트륨(Na), 칼륨(K) 등의 알칼리 금속은 Benzyl PEG 제조시 고분자화 반응 중 사용된 금속 촉매로서 상기 알칼리 금속 촉매를 제거하기 위하여 pH 1 내지 2의 산성 용액에 순도 98%미만의 Benzyl PEG 를 용해한 후 메틸렌클로라이드로 추출하여 알칼리 금속류 촉매를 제거한다. 상기 1)단계를 거치기 전에 알칼리 금속류의 함량은 통상적으로 0.1 내지 1중량%인데 상기 1)단계를 거친 후 ICP-MS(Induced coupled plasma-Mass Spectrometer) 또는 AA(Atomic Absorption) 분석 시 알칼리 금속류 촉매가 100ppm이하로 검출되었다.
상기 알칼리 금속류 촉매를 제거하는 단계를 거치지 않은 경우에는 99% 이상 고순도의 Benzyl PEG 프탈레이트를 제조할 수 없게 된다. 이는 알칼리 금속류 촉매 가 존재하는 경우 (ⅰ) 단계 Benzyl PEG-프탈레이트 제조 시 반응이 완결되지 않음으로 인하여 디올(diol)의 함량이 증가하기 때문이다.
상기 2) 단계에서는 Benzyl PEG을 톨루엔에 투입한 후 톨루엔을 일부 상압 증류하여 수분을 제거한다. 반응 전 Benzyl PEG는 공기 중의 수분을 흡습하는 성질이 있기 때문에 수분을 제거하지 않으면 투입한 금속알콕사이드와 반응하여 반응전환율이 낮아지게 된다. 따라서 상기 방법으로 수분을 제거하지 않는 경우 후속 단계인 3), 4)단계의 반응이 제대로 진행되지 않으며 수율이 낮아지는 문제점이 있다.
5)단계에서 반응물을 중화한 후 메틸렌클로라이드로 Benzyl PEG 프탈레이트를 추출하고, 6)단계에서는 Benzyl PEG 프탈레이트가 용해된 메틸렌클로라이드 층에 결정화 용매를 투입하여 Benzyl PEG 프탈레이트를 결정화 한다. 상기 6)단계 이전에 Benzyl PEG 프탈레이트를 추출한 메틸렌클로라이드 층을 수세하는 단계를 더 포함하는 것이 더욱 바람직하다.
상기 결정화 용매로는 에틸에테르, 메틸-t-부틸에테르, 헵탄, 헥산, 이소프로필알콜, 아크릴로니트릴에서 선택되는 어느 하나 이상을 사용할 수 있다. 상기 결정화 용매 중 에테르, MTBE(methyl-tert-butyl ether)에서는 결정화가 잘 이루어지는 편이나 상업적으로 사용하기 어렵고, IPA(isopropyl alcohol), 헵탄, 헥산, 아크릴로니트릴 등의 단일 용매에서는 결정입자가 미세하여 필터 시 문제가 발생될 소지가 있으므로 바람직하게는 이소프로필알콜 및 헵탄의 혼합용매를 사용하는 경우에 상업적으로 사용하기 용이할 뿐만아니라 결정입자의 크기가 크고 결정화가 잘 이루어져서 높은 수율로 Benzyl PEG 프탈레이트를 수득할 수 있는 장점이 있다.
상기 7)단계는 6)단계에서 제조된 Benzyl PEG-프탈레이트를 수용액 상으로 제조하여 컬럼크로마토그라피로 정제함으로써 순도를 높이는 단계로서 본 발명에서 상기 컬럼크로마토그라피의 고정상은 pH=8~11의 보레이트 완충액(borate buffer)이나 암모늄 완충액(ammonium buffer)으로 활성화된 음이온교환수지를 사용하는 것이 바람직하며, 예를 들어 Q-세파로즈FF(amersham biosciences사), QAE-Toyopearl(TOSHO사)등이 있으며, 유동상은 0.1 ~ 50 mM NH4HCO3 용액을 사용한다. 상기의 컬럼크로마토그래피를 하는 경우 순도 99% 이상, 보다 구체적으로는 99 내지 99.999%의 Benzyl PEG-프탈레이트를 제조할 수 있으며, 분자량 분포도도 감소하여 1.05 이하, 1.01 ~ 1.05 의 범위를 가지게 된다.
(ⅱ) 고순도의 Benzyl PEG 제조
(ⅱ)단계는 (ⅰ)단계에서 제조된 고순도의 Benzyl PEG-프탈레이트로부터 고순도 Benzyl PEG를 제조하는 단계로서 보다 구체적으로는 하기의 단계를 포함한다.
a) 상기 벤질옥시폴리에틸렌글리콜 프탈레이트를 염기의 존재 하에 탈에스테르화하는 단계;
b) 상기 반응물을 메틸렌클로라이드로 추출하는 단계;
c) 상기 메틸렌클로라이드층에 용매를 투입하여 결정화하는 단계.
상기 Benzyl PEG-프탈레이트는 (ⅰ)단계에서 제조된 것으로서 99% 이상의 순도를 갖는다. 상기 b)단계 및 c)단계 사이에 메틸렌클로라이드 층을 수세하는 단계를 더 포함할 수 있으며, 상기 결정화 용매는 에틸에테르, 메틸-t-부틸에테르, 헵탄, 헥산, 이소프로필알콜, 아크릴로니트릴에서 선택되는 어느 하나 또는 그 혼합물을 사용할 수 있으나, 이소프로필알콜 및 헵탄의 혼합용매를 사용하는 경우에 상업적으로 사용하기 용이할 뿐만 아니라 결정입자의 크기가 크고 결정화가 잘 이루어져서 높은 수율로 Benzyl PEG를 수득할 수 있는 장점이 있다.
상기 제조방법을 통해서 제조된 벤질옥시폴리에틸렌글리콜(Benzyl PEG)는 99% 이상의 고순도와 1.05이하의 분자량분포를 가진다.
본 발명에 따른 제조방법으로 제조된 벤질옥시폴리에틸렌글리콜 프탈레이트는 99%이상의 고순도를 가지며, 본 발명에 따른 제조방법으로 제조된 벤질옥시폴리에틸렌글리콜은 앞서 살핀 바와 같이, 수용액 상태에서 안정하고 물을 사용하여 99%이상의 고순도를 얻을 수 있는 효과가 있다.
이하, 실시예를 들어 본 발명을 보다 구체적으로 설명하는 바, 본 발명이 하 기의 실시예에 의하여 한정되는 것은 아니다.
[실시예 1]
1) Benzyl PEG(30K)프탈레이트 제조(1단계)
Benzyl PEG(수평균분자량:30K, 순도:85%, 분자량분포도(PD):1.089) 40kg을 증류수 400L에 용해한 후 conc. HCl을 투입하여 pH를 1.5로 조절한 다음, 메틸렌클로라이드(MC) 100L*3회 추출을 진행하여 고분자화 반응에서 사용된 알칼리 금속 촉매를 제거한 다음, 메틸렌클로라이드를 완전 농축하여 알칼리금속 촉매가 제거된 Benzyl PEG를 제조한다. 상기 알칼리금속 촉매가 제거된 Benzyl PEG 40kg에 톨루엔 450L을 투입 후, 상압 증류하여 톨루엔 130L를 제거한다. 40℃까지 냉각 후, 포타슘t-부톡사이드(potassium tert-butoxide) 1.12kg(5eq), t-부탄올 10.5kg 및 톨루엔 10kg을 혼합하여 제조된 혼합용액을 투입한다. 1시간 교반 후 무수프탈산 3kg(10eq)을 투입한 후, 3시간 반응을 진행한다. 내부 온도를 20℃ 이하로 냉각하고, pH 3인 염산 수용액 270kg을 투입 후 30분간 교반한 후 층분리를 실시한다. 메틸렌클로라이드 180kg씩 2회 투입하여 추출 후, 1회 수세한다. MgSO4 12kg을 투입하고, 10~20분 교반 후 필터링한다. 메틸렌클로라이드를 180L로 농축한 후, 이소프로필알콜 1.26m3 및 헵탄 0.54m3의 혼합용매로 결정화한다. 그 결과 수율 95%(38kg), 전환율 >99%(HPLC, PD=1.089) 이었다.
1H-NMR(200MHz,CDCl3, ppm): 11.0(s,-CO2H), 7.1~8.3(m,aromatic), 4.6(s,Ar-CH2-), 4.17(s,-CH2-CO-), 3.25 ~ 4.0(m, PEG backbone)
2) 순수 Benzyl PEG(30K)프탈레이트 정제(2단계)
1단계에서 제조된 Benzyl PEG(30K)프탈레이트 38kg을 증류수에 용해하여 2wt%의 Benzyl PEG(30K)프탈레이트 수용액을 제조한 후 pH=9의 암모늄 버퍼(ammonium buffer)로 활성화된 음이온교환수지(Q Sepharose FF) 200L가 충진된 분리 컬럼에 상기 2중량% Benzyl PEG(30K)프탈레이트 수용액(4.7 m3)을 9회로 나누어 정량펌프를 이용하여 흘려준다. 증류수로 충분히 세척한 다음, 0.2mM NH4HCO3로 5 C.V(colume volume) 세척하여 고순도의 Benzyl PEG(30K)프탈레이트 수용액 10 m3을 얻는다. 진한염산으로 산성화(pH=2~2.5)시킨 다음 메틸렌클로라이드 3 m3으로 추출하고 MgSO4로 처리한 후 이소프로필알콜 및 헵탄(7:3 부피비로 혼합)의 혼합용매 3 m3으로 결정화 하여 고순도의 Benzyl PEG(30K)프탈레이트를 얻었다. 그 결과 수율은 70%(26.6kg), 순도는 99.9%(HPLC), 분자량분포값(PD)은 1.045 이었다.
1H-NMR(200MHz,CDCl3, ppm): 11.0(s,-CO2H), 7.1~8.3(m,aromatic), 4.6(s,Ar-CH2-), 4.17(s,-CH2-CO-), 3.25 ~ 4.0(m, PEG backbone)
3) 순수 Benzyl PEG(30K) 제조(3단계)
2단계에서 정제된 Benzyl PEG(30K)프탈레이트 26.6kg에 4% NaOH 100L를 투입 후, 1시간 환류하였다. 상온으로 냉각 후, 메틸렌클로라이드 50L로 2회 추출 후, MgSO4처리한다. 추출된 메틸렌클로라이드층에 이소프로필알콜 550L 및 헵탄 150L 을 투입하여 결정화한다. 그 결과 수율은 95%(25.3kg), 순도는 >99%(HPLC)이었으며, 분자량분포도 값(PD)은 1.045, 디올(diol) 함량은 0.56% 이었다.
1H-NMR(200MHz, CDCl3, ppm): 7.1~7.3(m,aromatic), 4.6(s,Ar-CH2-), 3.25~4.0(m,PEG backbone)
[비교예 1]
실시예 1의 Benzyl PEG(30K)프탈레이트 제조(1단계)에서 알칼리금속 촉매를 제거하는 단계를 거치지 않는 것을 제외하고는 실시예 1과 동일하게 진행하여 Benzyl PEG를 정제하였다. 그 결과 수율은 95%, 순도는 96%이었으며, 분자량분포도 값은 1.045, 디올(diol) 함량은 3.93%이었다.
1H-NMR(200MHz, CDCl3, ppm): 7.1~7.3(m,aromatic), 4.6(s,Ar-CH2-), 3.25~4.0(m,PEG backbone)
상기 실시예 및 비교예의 결과로부터 본 발명에 따른 고순도 Benzyl PEG 제조방법은 디올 함량이 현저히 감소함으로써 99% 이상의 순도를 얻을 수 있으며, 동시에 정제 과정에서 분자량 분포도도 감소하는 효과를 가지는 것을 알 수 있다.

Claims (8)

1) 벤질옥시폴리에틸렌글리콜을 산성용액에 용해하고 메틸렌클로라이드로 추출하여 고분자화 반응 중 사용된 알칼리 금속류의 촉매를 제거하는 단계;
2) 벤질옥시폴리에틸렌글리콜을 톨루엔에 투입한 후 톨루엔을 일부 상압증류하여 제거시키는 단계;
3) 상온으로 냉각시킨 후 알콜의 존재 하에 금속알콕사이드를 투입하는 단계;
4) 상기 반응 용액에 무수프탈산을 투입하여 반응시키는 단계;
5) 상기 반응물을 중화한 후 메틸렌클로라이드로 추출하는 단계;
6) 상기 메틸렌클로라이드층에 용매를 투입하여 결정화 하는 단계;
7) 상기 결정화된 물질을 수용액상을 제조하여 컬럼크로마토그래피로 정제하는 단계;
를 가지는 99% 이상의 순도를 갖는 벤질옥시폴리에틸렌글리콜 프탈레이트의 제조방법.
제 1항에 있어서,
상기 컬럼크로마토그라피의 고정상은 음이온교환수지이고, 유동상은 0.1 ~ 50 mM NH4.HCO3 용액인 것을 특징으로 하는 벤질옥시폴리에틸렌글리콜 프탈레이트의 제조방법.
제 2항에 있어서,
상기 결정화에 사용되는 용매는 에틸에테르, 메틸-t-부틸에테르, 헵탄, 헥산, 이소프로필알콜, 아크릴로니트릴에서 선택되는 어느 하나 이상인 것을 특징으로 하는 벤질옥시폴리에틸렌글리콜 프탈레이트의 제조방법.
제 3항에 있어서,
상기 결정화에 사용되는 용매는 이소프로필알콜 및 헵탄의 혼합 용매인 것을 특징으로 하는 벤질옥시폴리에틸렌글리콜 프탈레이트의 제조방법.
제 1항 내지 제4항 중 어느 한 항의 제조방법에 의해 제조되어 99% 이상의 순도를 갖는 하기 화학식 2의 벤질옥시폴리에틸렌글리콜 프탈레이트.
[화학식 2]
Figure 112007094832164-pat00003
(상기 화학식 2에서 n은 3 내지 2500의 정수이다.)
a) 제 5항에 따른 99% 이상의 순도를 갖는 벤질옥시폴리에틸렌글리콜 프탈레이트를 염기의 존재 하에 탈에스테르화하는 단계;
b) 상기 반응물을 메틸렌클로라이드로 추출하는 단계;
c) 상기 메틸렌클로라이드층에 용매를 투입하여 결정화하는 단계;
를 가지는 99% 이상의 고순도와 1.05이하의 분자량분포를 갖는 벤질옥시폴리에틸렌글리콜의 제조방법.
제 6항에 있어서,
상기 결정화에 사용되는 용매는 에틸에테르, 메틸-t-부틸에테르, 헵탄, 헥산, 이소프로필알콜, 아크릴로니트릴, 또는 이의 혼합물로부터에서 선택되는 것을 특징으로 하는 벤질옥시폴리에틸렌글리콜의 제조방법.
제 7항에 있어서,
상기 결정화에 사용되는 용매는 이소프로필알콜 및 헵탄의 혼합 용매인 것을 특징으로 하는 벤질옥시폴리에틸렌글리콜의 제조방법.
KR1020070141143A 2007-12-29 2007-12-29 고순도의 벤질옥시폴리에틸렌글리콜 및 그의 유도체의제조방법 KR100922113B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070141143A KR100922113B1 (ko) 2007-12-29 2007-12-29 고순도의 벤질옥시폴리에틸렌글리콜 및 그의 유도체의제조방법
PCT/KR2008/007501 WO2009084833A2 (en) 2007-12-29 2008-12-18 A new preparing method of benxyloxypolyethyleneglycol and its derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070141143A KR100922113B1 (ko) 2007-12-29 2007-12-29 고순도의 벤질옥시폴리에틸렌글리콜 및 그의 유도체의제조방법

Publications (2)

Publication Number Publication Date
KR20090072889A KR20090072889A (ko) 2009-07-02
KR100922113B1 true KR100922113B1 (ko) 2009-10-16

Family

ID=40824865

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070141143A KR100922113B1 (ko) 2007-12-29 2007-12-29 고순도의 벤질옥시폴리에틸렌글리콜 및 그의 유도체의제조방법

Country Status (2)

Country Link
KR (1) KR100922113B1 (ko)
WO (1) WO2009084833A2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8691235B2 (en) * 2009-04-03 2014-04-08 Poly-Med, Inc. Absorbable crystalline polyether-ester-urethane-based bioactive luminal liner compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358276B1 (ko) 1998-03-24 2002-10-25 닛폰 유시 가부시키가이샤 옥시란 유도체 및 이의 제조방법
KR100512483B1 (ko) 2003-05-07 2005-09-05 선바이오(주) 신규한 폴리에틸렌글리콜-말레이미드 유도체의 합성방법
KR20070058549A (ko) * 2004-09-01 2007-06-08 다우 글로벌 테크놀로지스 인크. 고순도의 고분자량 메톡시-폴리에틸렌글리콜 (mpeg)
KR100738287B1 (ko) 2006-11-14 2007-07-12 아이디비켐(주) 고순도의 메톡시폴리에틸렌글리콜 및 그들의 유도체의제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0497404A1 (en) * 1991-01-25 1992-08-05 Dsm N.V. Internal emulsifier system based on alkylene oxide units
US6239252B1 (en) * 2000-01-04 2001-05-29 Council Of Scientific And Industrial Research Single step process for the preparation of poly (oxyalkylene)-alpha, omega-dicarboxylic acid
KR100664969B1 (ko) * 2005-08-26 2007-01-04 아이디비켐(주) 고순도의 메톡시폴리에틸렌글리콜 및 그들의 유도체의제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358276B1 (ko) 1998-03-24 2002-10-25 닛폰 유시 가부시키가이샤 옥시란 유도체 및 이의 제조방법
KR100512483B1 (ko) 2003-05-07 2005-09-05 선바이오(주) 신규한 폴리에틸렌글리콜-말레이미드 유도체의 합성방법
KR20070058549A (ko) * 2004-09-01 2007-06-08 다우 글로벌 테크놀로지스 인크. 고순도의 고분자량 메톡시-폴리에틸렌글리콜 (mpeg)
KR100738287B1 (ko) 2006-11-14 2007-07-12 아이디비켐(주) 고순도의 메톡시폴리에틸렌글리콜 및 그들의 유도체의제조방법

Also Published As

Publication number Publication date
WO2009084833A2 (en) 2009-07-09
WO2009084833A3 (en) 2009-08-20
KR20090072889A (ko) 2009-07-02

Similar Documents

Publication Publication Date Title
EP1794210B1 (en) A new preparing method of methoxypolyethyleneglycol and its derivatives
JP6460366B2 (ja) アミノ基を一つ有するポリエチレングリコールの精製方法
KR101764477B1 (ko) 말단에 아미노기를 갖는 협분산 폴리알킬렌 글리콜 유도체의 제조 방법
JPH10212348A (ja) ポリエーテルポリオールの製造方法
JP5371067B2 (ja) 高純度のポリエチレングリコールアルデヒド誘導体の製造方法
KR100922113B1 (ko) 고순도의 벤질옥시폴리에틸렌글리콜 및 그의 유도체의제조방법
KR100771100B1 (ko) 고순도의 메톡시폴리에틸렌글리콜에틸말레이미드의제조방법
KR102542987B1 (ko) 트리틸기 함유 단분산 폴리에틸렌 글리콜의 정제 방법
KR100738287B1 (ko) 고순도의 메톡시폴리에틸렌글리콜 및 그들의 유도체의제조방법
JP3671496B2 (ja) ポリグリセリンの製造方法
CN1302288A (zh) S-n,n′-双[2-羟基-1-(羟甲基)乙基]-5-[(2-羟基-1-氧代丙基)氨基]-2,4,6-三碘-1,s-苯二甲酰胺的制方法
CN110903186A (zh) 一种利用负载型催化剂生产水杨酸苄酯的工艺
KR20160067752A (ko) 말단에 아미노기를 갖는 폴리알킬렌글리콜 유도체의 제조 방법
CN113631631B (zh) 含末端羧基的聚乙二醇的制备方法以及活化聚乙二醇的制备方法
JP3568226B2 (ja) アルキレンカーボネートの製造方法
JP3114304B2 (ja) グリシジルエーテル類の製造方法
CN112246279B (zh) 催化剂和乙二醇二甲醚的制备方法
JP3076726B2 (ja) ポリオキシアルキレンポリオールの製造方法
JPH0920823A (ja) ポリ(テトラメチレンエ−テル)グリコ−ルの製造法
CN116514863A (zh) 一种9-芴甲醇的羟基保护与脱保护方法
KR100645669B1 (ko) 고수율 및 고순도로tmhq-디에스테르를 제조하는 방법
WO2012094246A1 (en) Method for the synthesis of initiators for telechelic polyisobutylenes
MXPA98000721A (es) Procedimiento para la produccion de polieterpolioles
JP2001039996A (ja) トレハロース誘導体の製造方法
JPH0660121B2 (ja) グリセリンモノアリルエーテルの製法

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120925

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130926

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141006

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151008

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161007

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170928

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20181010

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20191008

Year of fee payment: 11