KR100771100B1 - 고순도의 메톡시폴리에틸렌글리콜에틸말레이미드의제조방법 - Google Patents

고순도의 메톡시폴리에틸렌글리콜에틸말레이미드의제조방법 Download PDF

Info

Publication number
KR100771100B1
KR100771100B1 KR1020070071653A KR20070071653A KR100771100B1 KR 100771100 B1 KR100771100 B1 KR 100771100B1 KR 1020070071653 A KR1020070071653 A KR 1020070071653A KR 20070071653 A KR20070071653 A KR 20070071653A KR 100771100 B1 KR100771100 B1 KR 100771100B1
Authority
KR
South Korea
Prior art keywords
mpeg
polyethylene glycol
methoxy polyethylene
glycol ethyl
reaction
Prior art date
Application number
KR1020070071653A
Other languages
English (en)
Inventor
박병욱
김성년
김수찬
권정오
Original Assignee
아이디비켐(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아이디비켐(주) filed Critical 아이디비켐(주)
Priority to KR1020070071653A priority Critical patent/KR100771100B1/ko
Application granted granted Critical
Publication of KR100771100B1 publication Critical patent/KR100771100B1/ko
Priority to CN2008800249604A priority patent/CN101754995B/zh
Priority to US12/669,722 priority patent/US20100311986A1/en
Priority to JP2010516910A priority patent/JP2010533764A/ja
Priority to PCT/KR2008/001506 priority patent/WO2009011486A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33303Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group
    • C08G65/33306Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing amino group acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/30Post-polymerisation treatment, e.g. recovery, purification, drying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33331Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing imide group
    • C08G65/33337Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing imide group cyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/46Post-polymerisation treatment, e.g. recovery, purification, drying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/50Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing nitrogen, e.g. polyetheramines or Jeffamines(r)

Abstract

본 발명은 고순도의 메톡시폴리에틸렌글리콜에틸말레이미드(Methoxy Polyethylene Glycol Ethylmaleimide, 이하 mPEG-ethylmaleimide) 및 그들의 유도체를 제조하는 방법에 관한 것이다.
Figure 112007051961340-pat00001
mPEG-ethylmaleimide, 고순도

Description

고순도의 메톡시폴리에틸렌글리콜에틸말레이미드의 제조방법{A New Preparing Method of Methoxypolyethyleneglycol Ethylmaleimide}
본 발명은 고순도의 메톡시폴리에틸렌글리콜에틸말레이미드(Methoxy Polyethylene Glycol Ethylmaleimide, 이하 mPEG-에틸말레이미드(mPEG-ethylmaleimide)) 및 그들의 유도체를 제조하는 방법에 관한 것이다.
PEG는 천연고분자, 합성고분자와 더불어 물분자와 수소 결합을 효과적으로 하는 대표적인 친수성 고분자로 알려져 있다.
또한 많은 유기 용매에 녹는 성질이 있으며, 인체독성이 거의 없는 물질이다. PEG는 물에서 완전히 신장된 형태의 구조를 가지므로 다른 의약품(단백질, 펩타이드, 효소, 유전자 등)과 콘쥬게이션(conjugation)을 시킴으로써 입체장애를 이용하여 의약분자의 독성을 감소시키고, 면역시스템으로부터 보호할 수 있다. 따라서 인체 혈장 내 반감기를 늘이는 방법으로 여러 종류의 의약품에 응용될 수 있다.
또한 약효는 우수하나 독성이 높고, 용해도가 떨어져 인체에 적용하기에 까 다로운 의약품과 결합시켜 PEG-드럭(PEG-Drug)의 용해도를 증가시키고 독성을 감소시켜 그 효능을 향상시킬 수 있다.
PEG를 다른 의약품에 도입하기 위해서는 PEG사슬의 말단에 다양한 관능기를 부가하여 의약품과 결합하는 방법이 주로 사용되고 있다.
mPEG-에틸말레이미드(mPEG-ethylmaleimide) 또한 다양한 의약품과 결합하여 의약품의 용해도와 효능을 증가시키는데 사용되는 물질이다.
종래에 mPEG-에틸말레이미드(mPEG-ethylmaleimide)는 크게 두 가지 방법에 의해서 얻을 수 있었다. mPEG-에틸말레아믹산(mPEG-ethylmaleamic acid)에서 분리 정제 후 염소화(chlorination)나 에스테르화(esterification) 한 후, 고리화 시키는 방법(화학식 1)과 mPEG-아민(mPEG-amine)에서 MCM(Methoxy Carbonyl Maleimide)을 사용하여 고리화시켜 제조하는 방법(화학식 2)이 일반적이다.
첫번째 방법으로 제조된 mPEG-에틸말레이미드(mPEG-ethylmaleimide)는 순도 측정 시 두번째 방법에 비하여 상당히 저하되며, 반응 중 PEG 사슬의 분해가 일어날 수 있기 때문에 최종제품의 분자량 분포도가 증가되는 현상이 발생될 수 있으며, 두번째 방법으로 mPEG-말레이미드(mPEG-maleimide) 제조 시 현재까지의 방법으로는 정확한 반응 종결점을 예측할 수 없으며, 결정화시 디에틸에테르(Diethyl ether)의 사용으로 상업화공정에 적용할 경우에 인체독성과 폭발의 위험성을 내재하고 있다고 할 수 있다. 또한 최종제품에 제거하기 어려운 부산물(mPEG-amide-imide, mPEG maleamic acid)이 다량 함유될 수 있기 때문에 약물 전달 시스템으로 사용되기에는 어렵다고 할 수 있다.
[화학식 1]
Figure 112007051961340-pat00002
[화학식 2]
Figure 112007051961340-pat00003
US6,602,498(Shearwater corporation)에서는 위에서 언급된 두가지 방법에 대하여 설명하고 있으나, 반응의 종결시점에 대한 자세한 반응조건(교반기속도에 의한 반응전환율의 영향 및 분석법)과 경제적으로 상업화에 적용가능한 결정화 방법 및 최종제품에서 함유가능한 부산물의 종류에 대하여 자세히 언급하지 못하고 있다.
US6,875,841(NOF corporation) 에서는 메톡시폴리에틸렌글리콜(Methoxy polyethyleneglycol, 이하 mPEG)에서 시안화(Cyanation), 아민화(Amination) 반응을 진행하여 mPEG-프로필아민(mPEG-propylamine)을 제조한 다음, 무수말레인산(Maleic anhydride)과 반응하여 mPEG-프로필말레아믹산(mPEG-propylmaleamic acid)을 제조하였다. 제조한 mPEG-프로필말레아믹산(mPEG-propylmaleamic acid)을 무수아세트산/아세트산(acetic anhydride/acetic acid) 조건에서 고리화 반응(ring formation)을 진행하여 mPEG-프로필말레이미드(mPEG-propylmaleimide)를 제조하였다. 제조된 mPEG-프로필말레이미드(mPEG-propylmaleimide)는 구조적으로 PEG 백본(backbone)과 말레이미드(maleimide)사이에 3개의 탄소(carbon)를 포함하고 있기 때문에 mPEG-에틸말레이미드(mPEG-ethylmaleimide)와 구조적으로 차이가 있고, mPEG로부터 4단계(cyanation -> amination -> maleamic acid제조 -> maleimide ring도입)로 제조되어 반응단계가 복잡하고 제조되는 공정 중 고압, 고온(>4MPa, >130℃)조건이 포함되어있기 때문에, PEG 사슬의 분해가 일어나 최종제품의 순도가 다른 방법에 비하여 저하된다.
US 6,828,401(SunBio Inc.)에서는 mPEG-에틸말레아믹산(mPEG-ethylmaleamic acid)을 제조한 후, 디이소프로필에틸아민/펜타플루오로페닐트리플루오로아세세이트/DMF(Diisopropylethylamine/Pentafluorophenyl trifluoroacetate/DMF) 조건에서 mPEG-에틸말레이미드(mPEG-ethylmaleimide)를 제조하지만, 고가의 반응물을 사용하여 상업적으로 제약이 따르고, 또한 불순물이 많이 생성되는 단점이 있다.
상기의 문제점을 해결하고자, 본 발명은 mPEG-에틸말레이미드(mPEG-ethylmaleimide)를 높은 수율로 제조하는 방법을 제공한다.
본 발명의 또 다른 과제로는 중간체나 또는 불순물의 생성을 최대한 낮출 수 있는 신규의 제조방법을 제공하는 것이다.
본 발명의 또 다른 과제로는 mPEG-에틸말레이미드(mPEG-ethylmaleimide)가 반응 진행 중 가수분해되어 mPEG-에틸말레아믹산(mPEG-ethylmaleamic acid)으로 변화하는 양을 최소화하는 공정을 개발하여 고순도의 mPEG-에틸말레이미드(mPEG-ethylmaleimide)가 생성되는 제조방법을 제공하는 것이다.
본 발명의 또 다른 과제로는 반응중간체 화합물이 목적물 내에 10몰% 이하이고 또한 목적물의 가수분해에 의해서 생성되는 부산물인 mPEG-에틸말레아믹산(mPEG-ethylmaleamic acid)이 10몰% 이하로 존재하는 mPEG-에틸말레이미드(mPEG-ethylmaleimide)의 생산방법을 제공하는 것이다.
또한 본 발명은 반응 매질 내에서 생성된 mPEG-에틸말레이미드(mPEG-ethylmaleimide)의 효과적인 추출 및 결정화방법을 제공한다.
본 발명은 고순도의 메톡시폴리에틸렌글리콜에틸말레이미드(Methoxypolyethyleneglycol Ethylmaleimide, 이하 mPEG-에틸말레이미드(mPEG- ethylmaleimide))를 제조 시 mPEG-에틸아민(mPEG-ethylamine)을 N-메톡시카보닐말레이미드와 반응하여 제조하는 공정에서, 중간체로서 mPEG-아미드-이미드(mPEG-amide-imide)와 부산물로서 mPEG-에틸말레아믹산(mPEG-ethylmaleamic acid)의 함량을 최소화하기 위하여, 반응 과정에서 NMR 을 이용하여 반응 종결점을 찾는 것을 특징으로 하는 것으로 중간체인 mPEG-아미드-이미드(mPEG-amide-imide)의 함량과 부산물로서 mPEG-에틸말레아믹산(mPEG-ethylmaleamic acid)의 함량을 최소화하는 mPEG-에틸말레이미드의 제조방법을 제공한다.
또한 본 발명은 mPEG-에틸말레이미드가 생성 후 부반응으로 가수 분해되어 생성되는 mPEG-에틸말레아믹산의 함량을 최소화 하는 신규한 mPEG-에틸말레이미드의 제조방법을 제공하는 것을 특징으로 한다.
본 발명의 또 다른 특징은 수용액상에서 메톡시폴리에틸렌글리콜에틸아민과 N-메톡시카보닐말레이미드를 반응시키는 것을 특징으로 한다.
본 발명의 또 다른 특징으로는 NMR을 이용하여 반응 종결시점을 결정한 후, 생성된 mPEG-에틸말레이미드를 상분리에 의해 추출하는 것과 상업적으로 이용가능한 용매를 사용하여 결정화하는 것을 특징으로 하는 mPEG-에틸말레이미드의 신규한 제조방법을 제공하는 것이다.
또한 본 발명은 상분리시 상분리 정도를 확인하기 위하여 PAA(폴리아크릴산)을 이용하여 추출정도를 결정하는 신규한 mPEG-에틸말레이미드의 제조방법을 제공하는 것이다.
즉, 기존의 mPEG-에틸말레이미드의 제조방법에서는 부산물이 다량 발생하여 효과적으로 고순도로 제조할 수 없는 단점이 있었다. 이는 중간체인 mPEG-아미드-이미드(mPEG-amide-imide)가 완전히 생성물로 전환하기 전에 수용액내에서 가수분해에 의해 생성물인 mPEG-에틸말레이미드가 mPEG-에틸말레아믹산으로 전환되어 부산물이 생성되는 양이 급격히 증가하기 때문에, 고순도의 mPEG-에틸말레이미드를 제조하기 위하여는 중간체의 생성물로의 전환율을 높이고, 동시에 생성물이 가수분해에 의해 mPEG-에틸말레아믹산으로 전환되는 것을 최소화 시킬 수 있어야 하며, 이러한 반응 종결점을 선정하는 방법이 고순도의 mPEG-에틸말레이미드를 제조하는 데에 매우 중요한 것임을 알게 되어 본 발명을 완성하게 되었다.
발명의 하기 반응메카니즘은 다음과 같이 진행되는 것으로 생각되어 지는 것으로 고순도의 상업화된 mPEG-OCH2CH2NH2를 N-메톡시카보닐말레이미드와 0 내지 10℃, 좋게는 0 내지 5℃의 저온에서 반응시키고, 메틸렌클로라이드 등의 할로겐화 하이드로카본, 탄화수소용제, 좋게는 메틸렌클로라이드를 이용하여 추출함으로써, 고순도의 mPEG-에틸말레이미드를 제조한다. 이 때, 중간체의 생성을 최소화하고 또한 부반응물을 최소화하기 위하여 반응 중에 NMR을 이용하여 전환율을 측정한다. 반응 초기에 생성되는 중간체(mPEG-amide-imide)는 2종류((d, 6.37ppm), (d, 6.18ppm))의 특성 피크를 가지고 있다. 반응시간이 지속되면서 고순도의 mPEG-에틸말레이미드의 특성 피크(s, 6.71ppm)의 면적(area)이 증가되며, 중간체 특성 피크가 대부분 사라지는 시점부터 급격하게 가수분해되며, 생성되는 부산물(mPEG-ethylmaleamic acid)의 특성피크 ((d, 6.31ppm), (d, 6.48ppm))의 면적(area)이 증가하기 시작하므로, 중간체의 특성피크와 부산물의 특성피크의 면적(area)이 고순도의 mPEG-에틸말레이미드의 특성 피크(s, 6.71ppm)의 면적(area)에 대하여 각각의 면적(area)비가 10몰% 이하에서 반응을 완료하도록 한다.
NMR 분석은 저온(-10 ~ 5℃)에서 반응기의 교반을 중지한 상태에서 진행하며, 놀랍게도 교반을 중지한 상태에서는 반응이 거의 진행되지 않으므로, 분석시간동안은 별도의 교반없이 분석작업을 진행하는 것이 좋다.
본 발명은 폴리에틸렌글리콜 유닛의 분자량 범위가 350 ~ 100,000이고, 분자량분포가 1.05이하이며, NMR상으로 말단기의 활성이 80% 이상, 좋게는 80~99.99%의 고순도의 mPEG-에틸말레이미드를 제조하는 것을 특징으로 한다.
Figure 112007057800719-pat00006
또한 본 발명에서는 제조과정 중에 사람에 의해 오염되거나 또는 공기 중에서 오염되는 다양한 미생물에 의한 오염이 있을 수 있는데, 이는 본 발명의 생성물인 mPEG-에틸말레이미드를 다른 의약품(단백질, 펩타이드, 효소, 유전자 등)과 콘쥬게이션(conjugation)시켜 이용하는 경우, 엔도톡신이 함유되어 있는 경우 독성을 야기시킬 수 있으므로, mPEG-에틸말레이미드의 제조공정에서 이를 배제시키는 공정이 필요하게 된다. 따라서, 본 발명에서는 차콜(charcoal)을 이용하여 엔도톡신을 제거하는 공정을 도입하여 안전한 제품을 생산한다.
이하에서는 본 발명의 제조단계에 대하여 구체적으로 설명한다.
1) 상온에서 질소치환된 반응기에 NaHCO3 와 D/W(디이온화수)를 투입한 후, 반응기 내부 온도를 0~10℃, 좋게는 0~5℃로 조절 한 후, 원료물질로 분자량이 100~100000의 mPEG-OCH2CH2NH2를 투입 후 용해시킨다.
2) 이어서, 반응기에 N-메톡시카보닐말레이미드(N-Methoxy carbonyl maleimide)를 mPEG-OCH2CH2NH2 1당량에 대하여 0.9~10당량비로, 좋게는 1:5당량비로 투입 후, 반응기 교반 속도를 조절하며 0.5~1시간 교반한다. 반응진행 속도를 증가시키기 위해 0~3℃로 냉각된 D/W 50~55kg를 추가로 투입한다. 1시간 간격으로 NMR로 반응 전환율을 확인 하면서 반응을 진행한다. 이때 반응시간이 길어지는 경우에는 생성된 mPEG-에틸말레이미드가 가수분해되어 mPEG-에틸말레아믹산으로 전환되므로 반응 시간의 조절이 매우 중요하며, 또한 놀랍게도 본 발명자는 반응과정에서 반응기내의 반응물들을 교반을 하는 경우와 교반하지 않는 경우에 매우 급격한 반응속도의 차이를 관찰하게 되었으며, 교반하지 않는 경우에는 실질적으로 반응이 거의 진행되지 않는 다는 사실을 알게 되어 반응 중 교반을 중지하여 반응물을 샘플링하여 1H-NMR을 이용하여 분석시간동안 별도의 반응이 진행되는 것 없이 분석하여 종말점을 조절할 수 있었다.
mPEG-amide-imide(500MHz 1H-NMR) : (d, 6.37ppm), (d, 6.18ppm)
mPEG-ethylmaleimide : (s, 6.71ppm)
mPEG-ethylmaleamic acid : (d, 6.31ppm), (d, 6.48ppm)
함량 계산법은 아래와 같다.
mPEG-ethylmaleimide (500MHz 1H-NMR) : 3.29ppm의 메톡시기의 특성피크의 면적(area)을 3의 기준값으로 하여 6.18, 6.32, 6.71ppm의 특성피크의 면적(area)을 구한다.
Figure 112007061147954-pat00007
3) 종말점이 결정된 후, 펜탄, 헥산, 헵탄, 옥탄, 염화메틸렌, 클로로포름 등의 탄화수소나 할로겐화탄화수소에서 선택되는 유기용매를 투입하여 수용액층에서 유기 용액층으로 생성물을 추출한다. 이때, 수용층에서 mPEG 계 반응물, 중간체, 생성물 및 부산물이 유기용매층으로 추출되는지는 폴리아크릴산수용액을 수용액층에 투입하여 에멀젼화가 일어나는지를 확인함으로써 추가 유기용매 또는 메탄올을 투입하여 상분리를 촉진시키는 수단을 채택하기도 한다. 이때 상분리를 촉진하여 추출효율을 증가시키는 추가용매로는 메탄올이 가장 효율적이므로 이를 사용하는 것이 좋다. 본 발명에 사용하는 폴리아크릴산 수용액은 그 단독으로 사용하는 것 보다 1000~30000cP의 중합체 수용액에 염산을 일부 추가한 후 투입하는 것이 더욱 추출여부를 정확히 알 수 있어서 좋다. 예를 들면 폴리아크릴산(Wako, 25%수용액, 8,000 - 12,000 cP(30℃)) 5ml + conc. HCl 10ml + H2O 105 ml를 혼합하여 30분간 흔들어 사용하는 것 등이 있다.
4) 이어서, 분리된 유기용액층에 다시 물을 동일한 양으로 추가하여 수세하고 필요할 시에는 상기 3)단계를 반복하여 실시할 수 있다.
5) PAA 테스트를 실시하여 더 이상 수층에서 PEG가 검출 되지 않으면 층 분 리를 실시하고, MC층에 MgSO4 6kg을 투입하여 탈수시킨 후 여과하여 생성물의 용액을 회수한다.
6) 이어서, 상기 유기용매층을 농축한 후, -5 ~ 0℃로 미리 냉각 한 후 IPA/헵탄을 약 1:2의 부피비로 투입하여 결정화한다. 결정화 용매로는 MTBE, IPA, 헵탄을 단독 또는 두가지 이상의 혼합액으로도 사용할 수 있다.
7) 얻어진 용매함유 고체(wet cake)에 MC를 투입하여 완전히 용해시킨 다음, 활성탄(Charcoal)을 투입하여 교반함으로써 엔도톡신(Endotoxin)의 함량(규격 : 2EU/g, 시험법 : USP 24 <85> Bacterial Endotoxins Test)을 최소화한다. 목적화합물은 MC용매에 용해성이 우수하며, 엔도톡신(Endotoxin)은 활성탄에 흡착되어 대부분의 목적화합물의 회수가 가능하다. 이어서 미세입자의 규조토(Celite)가 충진된 여과기를 사용하여 차콜(charcoal)을 제거한 다음 상기 6)의 단계를 반복하여 결정화하고, 여과한 후 건조하여 최종생성물을 얻게 된다.
앞서 살핀 바와 같이 본 발명에 따른 제조방법은 80%이상의 순도를 가지는 수율로, 즉 중간체의 함량 및 부산물의 함량을 각각 10% 이하로 유지하면서 고순도의 mPEG-에틸렌말레이미드를 제조할 수 있다.
이하에서는, 실시예를 들어 본 발명을 보다 구체적으로 설명하는 바, 본 발명이 하기의 실시예에 의하여 한정되는 것은 아니다. 또한 %는 별도의 언급을 하지 않는 경우에는 몰%를 의미한다.
[실시예 1]
먼저 상온에서 질소로 치환된 300L 반응기에 NaHCO3 5.13kg, D/W 56kg를 투입 후, 반응기 내부 온도를 0 ~ 1℃로 냉각 후, 분자량 5000의 mPEG-NH2 6kg을 투입 후 용해하고, 이어서 N-메톡시카보닐말레이미드 0.94kg을 투입 후, 50 rpm에서 1시간 교반하고, 이어서 D/W 52kg를 추가로 투입한 후 1시간 간격으로 NMR로 반응 전환율을 확인하면서 반응을 진행한다.
Figure 112007051961340-pat00005
4.5hr 후 반응 완료 후, 염화메틸렌 55L를 투입하여, 충분히 교반하여 추출하고, 수용성 층에 생성물이 모두 추출되었는지를 PAA(Polyacrylic acid(Wako, 25%, 8,000 - 12,000 cP(30℃)) 5ml + conc. HCl 10ml + H2O 105ml를 혼합하여 30분간 흔들어 제조한다.)용액을 수층 50ml에 0.5ml를 투입하여 수층의 mPEG-Mal(5K)의 잔류 여부를 확인한 결과 어떠한 현탁도 발생하지 않아 모든 생성물이 염화메틸렌의 유기 상으로 추출된 것을 확인하였다. 이어서, 분리된 MC층을 D/W 55L로 수세하고, 이어서 물 층의 에멀젼화 현탁 현상이 관찰되어, 분산제로 메탄올 12L 을 추가로 투입하여 완전히 층 분리를 유도하였다. 이어서, PAA 테스트를 실시하여 더 이상 물층에 PEG유도체가 검출 되지 않음을 확인하고 층분리를 하고 MC층에 MgSO4 6kg을 투입하여 교반한 후, 여과한다. 유기층의 전체 부피가 10L가 되도록 감압 농축한 다음, -5 ~ 0℃로 미리 냉각한, IPA/헵탄(IPA/Heptane)=21kg/41kg 용액에 적가 후, 교반하여 결정화하였다. 여과하여 얻어진 용매를 포함한 결정성백색입자(wet cake)에 50L의 MC를 다시 투입하여 완전히 용해시킨 다음, 차콜(Charcoal) 1kg을 투입하여 30min 교반하여 엔도톡신(Endotoxin)의 함량을 최소화한다. 규조토(Celite)를 사용하여 차콜을 제거한 다음 전체 부피를 10리터가 되게 감압농축한 후 IPA/헵탄(IPA/Heptane)=21kg/41kg 용액에 적가 후, 교반하여 결정화하고 여과 및 건조하여 최종 생성물을 수득하였다. 그 결과 수율은 95몰% 이고, 1H-NMR[(500 MHz, CDCl3) : -CH=CH- 6.71 ppm, PEG backbone 3.45~3.8 ppm, -OCH3 3.29 ppm]로 생성물을 확인하였으며, 하기의 특성을 가지는 생성물을 얻을 수 있었다.
엔도톡신(Endotoxin)(규격 : < 2.0EU/g) : 0.25, mPEG 에틸렌말레이미드(by 1H-NMR) : 87.19%, mPEG-amide-imide(by NMR) : 7.36%, mPEG-maleamic acid(by NMR) : 5.45%.
[실시예 2]
교반속도를 50rpm 대신에 80rpm으로 하고 반응시간을 2시간으로 한 것을 제외하고는 동일하게 실시하였고 그 결과는 다음과 같다.
수율(93몰%), Endotoxin(규격 : < 2.0EU/g) : 0.5
mPEG 에틸렌말레이미드(by 1H-NMR)(86.7%), mPEG amide-imide(by NMR)( 6.3%), mPEG maleamic acid(by NMR)(7.0%)
[실시예 3]
교반속도를 50rpm 대신에 100rpm으로 하고 반응시간을 4.5시간으로 한 것을 제외하고는 실시예 1과 동일하게 실시하였다. 그 결과 수율(92몰%),
엔도톡신(Endotoxin)(규격 : < 2.0EU/g) : 0.5
mPEG에틸렌말레이미드(by 1H-NMR)(82.2%), mPEG amide-imide(by NMR)( 4.1%), mPEG maleamic acid(by NMR)(13.7%)
[실시예 4]
교반속도를 50rpm 대신에 150rpm으로 하고 반응시간을 6.5시간으로 한 것을 제외하고는 실시예 1과 동일하게 실시하였고 그 결과는 다음과 같다.
수율(94몰%), 엔도톡신(Endotoxin)(규격 : < 2.0EU/g) : 0.25
mPEG에틸렌말레이미드(by 1H-NMR)(78.3%), mPEG amide-imide(by NMR)(N.D), mPEG maleamic acid(by NMR)(21.2%)

Claims (11)

1) 메톡시폴리에틸렌글리콜에틸아민과 N-메톡시카보닐말레이미드를 염기 존재 하에 수용액 상에서 반응시키는 단계;
2) 상기 반응 중에 생성물의 종말점을 NMR 측정방법에 의해 결정하는 단계;
3) 반응 종료 후 유기용매로 상 분리에 의해 생성물을 추출하는 단계;
4) 추출된 유기용액 상을 농축한 후 재결정에 의해 메톡시폴리에틸렌글리콜에틸말레이미드를 수득하는 단계;
를 포함하는 메톡시폴리에틸렌글리콜에틸말레이미드의 제조방법.
제 1항에 있어서,
상기 반응온도는 0 내지 10℃에서 반응시키는 것을 특징으로 하는 메톡시폴리에틸렌글리콜에틸말레이미드의 제조방법.
제 1항에 있어서,
상기 재결정은 이소프로판올과 헵탄의 혼합용매를 사용하는 것을 특징으로 하는 메톡시폴리에틸렌글리콜에틸말레이미드의 제조방법.
제 1항에 있어서,
상기 메톡시폴리에틸렌글리콜말레이미드는 순도가 80% 이상인 것을 특징으로 하는 메톡시폴리에틸렌글리콜에틸말레이미드의 제조방법.
제 4항에 있어서,
상기 순도는 NMR 방법에 의해 중간체인 mPEG-아미드-이미드(mPEG-amide-imide)의 특성피크의 면적(area)과 가수분해의 산물인 mPEG-에틸말레아믹산(mPEG-ethylmaleamic acid)의 특성피크의 면적(area)이 메톡시폴리에틸렌글리콜에틸말레이미드의 특성피크의 면적(area)에 대하여 각각 10몰% 이하에서 반응 종말점을 결정하는 방법에 의해 얻어지는 것을 특징으로 하는 메톡시폴리에틸렌글리콜에틸말레이미드의 제조방법.
제 1항에 있어서,
상기 재결정화한 생성물을 차콜(charcoal)을 투입하여 엔도톡신을 제거하는 단계를 더 추가하는 것을 특징으로 하는 메톡시폴리에틸렌글리콜에틸말레이미드의 제조방법.
제 6항에 있어서,
상기 차콜을 투입하기 전에 재결정화한 생성물을 염화메틸렌에 용해하는 단계를 가지는 것을 특징으로 하는 메톡시폴리에틸렌글리콜에틸말레이미드의 제조방법.
제 1항에 있어서,
상기 상분리에 의한 추출 시 PAA테스트 단계를 두어 추가 추출여부를 결정하는 단계를 더 추가하는 것을 특징으로 하는 메톡시폴리에틸렌글리콜에틸말레이미드의 제조방법.
제 8항에 있어서,
상기 PAA테스트에서 추가 추출이 필요할 경우 에탄올을 투입하여 상분리를 촉진하는 것을 특징으로 하는 메톡시폴리에틸렌글리콜에틸말레이미드의 제조방법.
제 1항 내지 제 9항에서 선택되는 어느 한 항에 있어서,
상기 NMR 측정방법은 중간체인 mPEG-아미드-이미드(mPEG-amide-imide)의 특성피크의 면적(area)과 가수분해의 산물인 mPEG-에틸말레아믹산(mPEG-ethylmaleamic acid)의 특성피크의 면적(area)이 메톡시폴리에틸렌글리콜에틸말레이미드의 특성피크의 면적(area)에 대하여 각각 10몰% 이하에서 반응 종말점을 결정하는 방법인 것을 특징으로 하는 메톡시폴리에틸렌글리콜에틸말레이미드의 제조방법.
제 10항에 있어서,
상기 메톡시폴리에틸렌글리콜에틸말레이미드는 분자량이 350~100000인 것을 특징으로 하는 메톡시폴리에틸렌글리콜에틸말레이미드의 제조방법.
KR1020070071653A 2007-07-18 2007-07-18 고순도의 메톡시폴리에틸렌글리콜에틸말레이미드의제조방법 KR100771100B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020070071653A KR100771100B1 (ko) 2007-07-18 2007-07-18 고순도의 메톡시폴리에틸렌글리콜에틸말레이미드의제조방법
CN2008800249604A CN101754995B (zh) 2007-07-18 2008-03-18 甲氧基聚乙二醇乙基马来酰亚胺的新型制备方法
US12/669,722 US20100311986A1 (en) 2007-07-18 2008-03-18 Preparing method of methoxypolyethyleneglycol ethylmaleimide
JP2010516910A JP2010533764A (ja) 2007-07-18 2008-03-18 高純度のメトキシポリエチレングリコールエチルマレイミドの製造方法
PCT/KR2008/001506 WO2009011486A1 (en) 2007-07-18 2008-03-18 A new preparing method of methoxypolyethyleneglycol ethylmaleimide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070071653A KR100771100B1 (ko) 2007-07-18 2007-07-18 고순도의 메톡시폴리에틸렌글리콜에틸말레이미드의제조방법

Publications (1)

Publication Number Publication Date
KR100771100B1 true KR100771100B1 (ko) 2007-10-29

Family

ID=38816163

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070071653A KR100771100B1 (ko) 2007-07-18 2007-07-18 고순도의 메톡시폴리에틸렌글리콜에틸말레이미드의제조방법

Country Status (5)

Country Link
US (1) US20100311986A1 (ko)
JP (1) JP2010533764A (ko)
KR (1) KR100771100B1 (ko)
CN (1) CN101754995B (ko)
WO (1) WO2009011486A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101001734B1 (ko) 2008-06-05 2010-12-15 아이디비켐(주) 고순도의 메톡시폴리에틸렌글리콜에틸말레이마이드의분석방법
CN109678383A (zh) * 2019-01-19 2019-04-26 浙江吉盛化学建材有限公司 一种大分子单酯减水剂制备工艺
CN112575381A (zh) * 2020-12-02 2021-03-30 南雄中科院孵化器运营有限公司 一种金字塔螺旋晶体及其制备方法与应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2989078B1 (de) * 2013-04-24 2017-12-27 Covestro Deutschland AG Verfahren zur herstellung von di- und polyaminen der diphenylmethanreihe
CN107793563B (zh) * 2017-10-27 2019-09-20 湖南华腾制药有限公司 一种聚乙二醇氨基酸马来酰亚胺衍生物及其制备方法
CN107722259B (zh) * 2017-11-02 2019-12-17 湖南华腾医药有限公司 一种聚乙二醇马来酰亚胺化托普利衍生物及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911197B2 (en) 2000-02-22 2005-06-28 Nektar Therapeutics Al, Corporation N-maleimidyl polymer derivatives
KR100512483B1 (ko) 2003-05-07 2005-09-05 선바이오(주) 신규한 폴리에틸렌글리콜-말레이미드 유도체의 합성방법
US20070049688A1 (en) 2005-07-19 2007-03-01 Antoni Kozlowski Method for preparing polymer maleimides

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724824B2 (ja) * 1988-09-29 1995-03-22 東京有機化学工業株式会社 純水製造におけるエンドトキシンの除去法
GB9604921D0 (en) * 1996-03-08 1996-05-08 Nat Blood Authority Purification method
KR20010066122A (ko) * 1999-12-31 2001-07-11 박종섭 반도체 소자의 폴리사이드 듀얼 게이트 형성 방법
CN1235943C (zh) * 2001-01-25 2006-01-11 旭化成株式会社 功能化聚苯醚树脂
JP4123856B2 (ja) * 2001-07-31 2008-07-23 日油株式会社 生体関連物質の修飾剤およびポリオキシアルキレン誘導体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911197B2 (en) 2000-02-22 2005-06-28 Nektar Therapeutics Al, Corporation N-maleimidyl polymer derivatives
KR100512483B1 (ko) 2003-05-07 2005-09-05 선바이오(주) 신규한 폴리에틸렌글리콜-말레이미드 유도체의 합성방법
US20070049688A1 (en) 2005-07-19 2007-03-01 Antoni Kozlowski Method for preparing polymer maleimides

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101001734B1 (ko) 2008-06-05 2010-12-15 아이디비켐(주) 고순도의 메톡시폴리에틸렌글리콜에틸말레이마이드의분석방법
CN109678383A (zh) * 2019-01-19 2019-04-26 浙江吉盛化学建材有限公司 一种大分子单酯减水剂制备工艺
CN112575381A (zh) * 2020-12-02 2021-03-30 南雄中科院孵化器运营有限公司 一种金字塔螺旋晶体及其制备方法与应用
CN112575381B (zh) * 2020-12-02 2021-10-19 南雄中科院孵化器运营有限公司 一种金字塔螺旋晶体及其制备方法与应用

Also Published As

Publication number Publication date
CN101754995A (zh) 2010-06-23
WO2009011486A1 (en) 2009-01-22
JP2010533764A (ja) 2010-10-28
CN101754995B (zh) 2012-06-27
US20100311986A1 (en) 2010-12-09

Similar Documents

Publication Publication Date Title
KR100771100B1 (ko) 고순도의 메톡시폴리에틸렌글리콜에틸말레이미드의제조방법
US9458292B2 (en) Method for purifying polyethylene glycol having one amino group
TWI544012B (zh) Production method of block copolymer
JP5418360B2 (ja) ポリオキシアルキレン誘導体の製造方法
JP5371067B2 (ja) 高純度のポリエチレングリコールアルデヒド誘導体の製造方法
CN112843242B (zh) 一种聚乙二醇偶联药物、其制备方法及应用
JP3508207B2 (ja) ポリオキシアルキレン誘導体の製造方法
CN102822235A (zh) 多官能聚氧化烯化合物、其生产方法及其中间体
CN101530619B (zh) 一种水溶性聚乙二醇化羟基喜树碱衍生物的制备方法
Sato et al. Precise synthesis of α, ω-chain-end functionalized poly (dimethylsiloxane) with azide groups based on metal-free ring-opening polymerization and a quantitative azidation reaction
KR102542987B1 (ko) 트리틸기 함유 단분산 폴리에틸렌 글리콜의 정제 방법
US8101729B2 (en) Pegylated amino acid derivatives and the process to synthesize the same
KR101001734B1 (ko) 고순도의 메톡시폴리에틸렌글리콜에틸말레이마이드의분석방법
KR20160067752A (ko) 말단에 아미노기를 갖는 폴리알킬렌글리콜 유도체의 제조 방법
US9803047B2 (en) Alternating ring-opening metathesis polymerization
CN113631631B (zh) 含末端羧基的聚乙二醇的制备方法以及活化聚乙二醇的制备方法
US20200325274A1 (en) Tertiary alkoxy polyethylene glycol and derivatives thereof
CN115353476B (zh) 一种马来酰亚胺-酰胺-低聚乙二醇-丙酸的合成方法
JP3770246B2 (ja) ポリオキシアルキレン誘導体の製造方法
KR100922113B1 (ko) 고순도의 벤질옥시폴리에틸렌글리콜 및 그의 유도체의제조방법
CN114716663A (zh) 制备聚乙二醇修饰的赖氨酸的方法
CN113831529A (zh) 单甲氧基聚乙二醇羧酸及其功能性衍生物的制备方法
JP2003268100A (ja) ポリオキシアルキレン誘導体の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121010

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131017

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141022

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151022

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161021

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171020

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181022

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20191021

Year of fee payment: 13