CN112575381B - 一种金字塔螺旋晶体及其制备方法与应用 - Google Patents

一种金字塔螺旋晶体及其制备方法与应用 Download PDF

Info

Publication number
CN112575381B
CN112575381B CN202011390814.2A CN202011390814A CN112575381B CN 112575381 B CN112575381 B CN 112575381B CN 202011390814 A CN202011390814 A CN 202011390814A CN 112575381 B CN112575381 B CN 112575381B
Authority
CN
China
Prior art keywords
solution
crystal
dichloromethane
helical crystal
glass capillary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011390814.2A
Other languages
English (en)
Other versions
CN112575381A (zh
Inventor
胡继文
李志华
李诗
林树东
涂园园
黄振祝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guoke Guanghua Fine Chemical Incubator Nanxiong Co ltd
Guoke Guanghua Nanxiong New Materials Research Institute Co ltd
Shaoguan Institute Of New Materials
University of Chinese Academy of Sciences
Guangzhou Chemical Co Ltd of CAS
Original Assignee
Guangzhou Chemical Institute Shaoguan Technology Innovation And Breeding Center Chinese Academy Of Sciences
Guoke Guanghua Nanxiong New Materials Research Institute Co ltd
Nanxiong Cas Incubator Operation Co ltd
University of Chinese Academy of Sciences
Guangzhou Chemical Co Ltd of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Chemical Institute Shaoguan Technology Innovation And Breeding Center Chinese Academy Of Sciences, Guoke Guanghua Nanxiong New Materials Research Institute Co ltd, Nanxiong Cas Incubator Operation Co ltd, University of Chinese Academy of Sciences, Guangzhou Chemical Co Ltd of CAS filed Critical Guangzhou Chemical Institute Shaoguan Technology Innovation And Breeding Center Chinese Academy Of Sciences
Priority to CN202011390814.2A priority Critical patent/CN112575381B/zh
Publication of CN112575381A publication Critical patent/CN112575381A/zh
Application granted granted Critical
Publication of CN112575381B publication Critical patent/CN112575381B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • C30B29/58Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/093Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • C08J3/091Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
    • C08J3/097Sulfur containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/10Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Physics & Mathematics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种金字塔螺旋晶体及其制备方法与应用。该方法包括如下步骤:(1)将甲氧基聚乙二醇加入到二氯甲烷中,混合均匀得到甲氧基聚乙二醇的二氯甲烷溶液,然后向其滴加二甲基亚砜,当溶液变浑浊后停止滴加二甲基亚砜,反向滴加二氯甲烷至溶液澄清,待甲氧基聚乙二醇全部溶解后,将其放入冰箱中冷冻或冷藏,得到混合溶液;(2)将混合溶液加入到有机玻璃毛细管中,有机玻璃毛细管一端连接氮气,在氮气的作用下,将混合溶液喷射到干净的云母片或硅片上,真空干燥,得到单晶薄膜,即所述的金字塔螺旋晶体。本发明操作简单,具有形貌可控,对称性良好,生物相容性好,环境友好等特点,应用前景广阔。

Description

一种金字塔螺旋晶体及其制备方法与应用
技术领域
本发明涉及高分子晶体制备领域,特别涉及一种金字塔螺旋晶体及其制备方法与应用。
背景技术
随着对高分子材料研究和应用的快速发展,以及我国继续大力发展基础科学和纳米技术的背景下,国内对乙二醇、合成洗涤剂、环氧乙烷衍生表面活性剂等产品的需求量将会继续增加,特别是在新产品的开发与应用领域中,环氧乙烷市场仍有很大的潜力,将对环氧乙烷价格上行形成有效支撑。我国甲氧基聚乙二醇(MPEG)等环氧乙烷衍生专用化学品的市场空间极为广阔。
微流控(Microfluidics)是一种精确控制和操控微尺度流体的技术,空间特征尺度范围在1微米(10-6米)至1毫米(10-3米),利用对微尺度下流体的控制,现在已发展成一个包括了工程学,物理学,化学,微加工和生物工程的多交叉学科。具有微小的容量、微小的体积、低能量消耗、装置本身占用体积小等特点,在分子生物学分析、DNA分析、蛋白质学、芯片制作、微进样技术等领域显示了广阔的应用前景。
原子力显微镜(Atomic Force Microscope,简称AFM),是一种纳米级高分辨的扫描探针显微镜,优于光学衍射极限1000倍。可在纳米尺度上操作材料,是样品成像和测量不可或缺的工具。可以检测机械接触力、范德华力、毛吸力、化学键、取向力、静电力、磁力(见磁力显微镜)卡西米尔效应力、溶剂力等。AFM可以提供三维表面图像。同时,不需要对样品进行如镀铜或碳,这种对样品会造成不可逆转伤害的特殊处理。其次,原子力显微镜在常压下甚至在液体环境下都可以良好工作。可以用来研究生物宏观分子,甚至活的生物组织。原子力显微镜在观察薄膜表面形貌、液体生物样品、生物自组装过程、纳米力学检测等方面具有广泛的应用前景。
发明内容
本发明的首要目的在于克服现有技术的缺点与不足,提供一种金字塔螺旋晶体的制备方法。
本发明的另一目的在于提供所述方法制备得到的金字塔螺旋晶体。
本发明的另一目的在于提供所述金字塔螺旋晶体的应用。
本发明的目的通过下述技术方案实现:
一种金字塔螺旋晶体的制备方法,包括如下步骤:
(1)高分子聚合物单晶的制备
将甲氧基聚乙二醇加入到二氯甲烷中,在25~80℃的温度下混合均匀,得到甲氧基聚乙二醇的二氯甲烷溶液,然后向其滴加二甲基亚砜,当溶液变浑浊后停止滴加二甲基亚砜,反向滴加二氯甲烷至溶液澄清,待甲氧基聚乙二醇全部溶解后,将其放入-18~10℃的冰箱中冷冻或冷藏,得到混合溶液;
(2)微流控技术单晶薄膜的制备
将步骤(1)中得到的混合溶液加入到有机玻璃毛细管中,有机玻璃毛细管一端连接氮气,在0.1~0.5MPa、1~5L/min的氮气的作用下,将混合溶液喷射到干净的云母片或硅片上,然后真空干燥,得到单晶薄膜,即所述的金字塔螺旋晶体。
步骤(1)中所述的混合溶液中二氯甲烷与二甲基亚砜的体积比为1~10:1;优选为2~10:1。
步骤(1)中所述的甲氧基聚乙二醇的分子量为20 000Da。
步骤(1)中所述的甲氧基聚乙二醇的二氯甲烷溶液的浓度为质量百分比0.01~5%;优选为质量百分比5%。
步骤(1)中所述的冷冻或冷藏的温度优选为-18~4℃。
步骤(1)中所述的冷冻或冷藏的时间为12~48h;优选为12~24h。
步骤(2)中所述的有机玻璃毛细管为自制有机玻璃毛细管;优选为将外径4.6mm、内径3.8mm、长度200mm的玻璃管经酒精喷灯拉丝成口径10~30μm的玻璃毛细管。
步骤(2)中所述的氮气的压力为0.15~0.2MPa,流量为1~3L/min。
步骤(2)中所述的真空干燥的条件为:25~100℃真空干燥12~60h;优选为25~38℃真空干燥12~24h。
一种金字塔螺旋晶体,通过上述任一项所述的方法制备得到。
所述的金字塔螺旋晶体的厚度2~100nm,宽度0.2~100μm,长宽比0.01~200。
所述的金字塔螺旋晶体在3D打印、激光刻蚀、药物载体(药物传送)、建筑装饰、仿生传感器或仿生器官移植等领域中的应用。
本发明相对于现有技术具有如下的优点及效果:
(1)本发明采用甲氧基聚乙二醇、二氯甲烷、二甲基亚砜作为原料,利用二氯甲烷和二甲基亚砜的共混体系,结合微流控和原子力显微镜技术对高分子聚合物在微尺度上进行操纵,制得的高分子聚合物单晶,然后采用微流控技术使溶液在基底上雾化形成高分子聚合物晶体薄膜。本发明通过调节混合溶液溶度、混合溶液共混比、冷却温度、冷却时间、干燥温度、干燥时间等,最终得到高分子金字塔晶体。
(2)本发明中,以二氯甲烷和二甲基亚砜为共混溶液溶解甲氧基聚乙二醇,其中甲氧基聚乙二醇主要是靠二氯甲烷进行溶解,加入二甲基亚砜有利于降低溶液中甲氧基聚乙二醇所需要的的结晶温度。
(3)本发明操作简单,效果明显,具有形貌可控,对称性良好,生物相容性好,环境友好的特点。
(4)现有的如聚氧乙烯(48.5k,HS-PEO-OCH3)在乙酸戊酯中制备螺旋晶体(宋宇,聚氧乙烯单晶的纳米力学性质研究[D],2013,吉林大学.),其制备工艺复杂,升温速率难以控制,设备要求较高,溶剂易燃,低毒,伴有浓烈的香蕉气味,易使人晕眩,而本发明仅针对二氯甲烷和二甲基亚砜溶剂,以制备出样貌均一的金字塔晶体为目标,展现出良好的晶体形貌特征,该方法简单,易操作,二氯甲烷溶解性强,并且可利用二甲基亚砜低温条件下易结晶的特性,诱发甲氧基聚乙二醇等高分子结晶体的生长,具有广泛的适用性和优异的结晶性能。
附图说明
图1是本发明制备的金字塔结晶图;其中,A为甲氧基聚乙二醇金字塔晶体的二维高度图;B为三维高度图。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。下列实施例中未注明具体实验条件的试验方法,通常按照常规实验条件或按照制造厂所建议的实验条件。除非特别说明,本发明所用试剂和原材料均可通过市售获得。
本发明涉及一种金字塔螺旋晶体的制备方法,包括如下具体操作步骤:
(1)高分子聚合物单晶的制备:
在25~80℃的温度下配制质量浓度为0.01~5%甲氧基聚乙二醇(MW=20,000Da)的二氯甲烷溶液,向溶液中滴加二甲基亚砜,当溶液变浑浊(溶液本身为透明,当滴加至不透明时即浑浊)后停止滴加二甲基亚砜,反向滴加几滴二氯甲烷至溶液澄清,共混体积比(即体系中的二氯甲烷和二甲基亚砜的体积比)为1~10:1,待甲氧基聚乙二醇全部溶解后(以二氯甲烷和二甲基亚砜为共混溶液溶解甲氧基聚乙二醇),将其放入-18~10℃的冰箱中12~48h冷冻或冷藏,备用。
(2)微流控技术单晶薄膜的制备:
将上一步得到的溶液加入到自制有机玻璃毛细管(有机玻璃毛细管是由厂家定制,外径4.6*内径3.8*长度200mm,经过酒精喷灯拉丝成口径10~30μm的玻璃毛细管)中,自制有机玻璃毛细管一端连接氮气瓶,在0.1~0.5MPa条件下,控制流量在1~5L/min,将样品在氮气的作用下,喷射到干净的云母片或者硅片上,待喷满薄薄的一层(厚度在几十至数百纳米,以喷满表面基底为准)后,移至25~100℃真空干燥箱中,干燥时间12~60h,得到单晶薄膜。
(3)基于原子力显微镜成像聚合物高分子单晶的观测:
AFM采用MultiMode 8SPM型原子力显微镜,采用ScanAsyst TM mode模式观察。扫描速度0.996Hz,长宽比1.00,扫描角0°,样品/线256。
为了验证本发明制得的高分子金字塔晶体的效果,申请人对获得的微流控高分子金字塔晶体进行性能测定,测定结果整理后如下:
单晶的厚度2~100nm,宽度0.2~100μm,长宽比0.01~200(优选0.01~50),金字塔结晶图片如图1所示。
实施例1
(1)在60℃的温度下,将甲氧基聚乙二醇(MW=20,000Da)加入到二氯甲烷中,配制质量浓度为5%甲氧基聚乙二醇的二氯甲烷溶液,向溶液中滴加二甲基亚砜,当溶液变浑浊后停止滴加二甲基亚砜,反向滴加几滴二氯甲烷至溶液澄清,共混体积比为5:1,待甲氧基聚乙二醇全部溶解后,将其放入-18℃的冰箱中冷冻24h,备用;
(2)将上一步得到的溶液加入到自制有机玻璃毛细管中,自制有机玻璃毛细管一端连接氮气瓶,在0.2MPa条件下,控制流量在1L/min,将样品在氮气的作用下,喷射到干净的云母片或者硅片上,待喷满薄薄的一层(以喷满表面基底为准)后,移至25℃真空干燥箱中,干燥时间12h,得到单晶薄膜;
(3)AFM采用MultiMode 8SPM型原子力显微镜,采用ScanAsyst TM mode模式观察。扫描速度0.996Hz,长宽比1.00,扫描角0°,样品/线256。
因晶体生长具有外延性,一片晶体上生长的晶体也会有大小差异,本实施例获得的单晶的厚度2~50nm,宽度20~80μm,长宽比0.01~50。金字塔结晶图片如图1所示。
实施例2
(1)在70℃的温度下,将甲氧基聚乙二醇(MW=20,000Da)加入到二氯甲烷中,配制质量浓度为5%甲氧基聚乙二醇的二氯甲烷溶液,向溶液中滴加二甲基亚砜,当溶液变浑浊后停止滴加二甲基亚砜,反向滴加几滴二氯甲烷至溶液澄清,共混体积比为2:1,待甲氧基聚乙二醇全部溶解后,将其放入4℃的冰箱中冷藏24h,备用;
(2)将上一步得到的溶液加入到自制有机玻璃毛细管中,自制有机玻璃毛细管一端连接氮气瓶,在0.15MPa条件下,控制流量在2L/min,将样品在氮气的作用下,喷射到干净的云母片或者硅片上,待喷满薄薄的一层(以喷满表面基底为准)后,移至25℃真空干燥箱中,干燥时间24h,得到单晶薄膜;
(3)AFM采用MultiMode 8SPM型原子力显微镜,采用ScanAsyst TM mode模式观察。扫描速度0.996Hz,长宽比1.00,扫描角0°,样品/线256。
本实施例获得的单晶的厚度40~100nm,宽度0.2~40μm,长宽比1~50。金字塔结晶图片与图1相同。
实施例3
(1)在80℃的温度下,将甲氧基聚乙二醇(MW=20,000Da)加入到二氯甲烷中,配制质量浓度为5%甲氧基聚乙二醇的二氯甲烷溶液,向溶液中滴加二甲基亚砜,当溶液变浑浊后停止滴加二甲基亚砜,反向滴加几滴二氯甲烷至溶液澄清,共混体积比为10:1,待甲氧基聚乙二醇全部溶解后,将其放入4℃的冰箱中冷藏12h,备用;
(2)将上一步得到的溶液加入到自制有机玻璃毛细管中,自制有机玻璃毛细管一端连接氮气瓶,在0.15MPa条件下,控制流量在3L/min,将样品在氮气的作用下,喷射到干净的云母片或者硅片上,待喷满薄薄的一层(以喷满表面基底为准)后,移至38℃真空干燥箱中,干燥时间12h,得到单晶薄膜;
(3)AFM采用MultiMode 8SPM型原子力显微镜,采用ScanAsyst TM mode模式观察。扫描速度0.996Hz,长宽比1.00,扫描角0°,样品/线256。
本实施例获得的单晶的厚度2~30nm,宽度2~100μm,长宽比5~50。金字塔结晶图片与图1相同。
综上,本发明操作简单,效果明显,具有形貌可控,对称性良好,生物相容性好,环境友好的特点,具有很高的研究价值。另外,因其原料为甲氧基聚乙二醇,已能够大规模化、商业化使用。因此,本发明对甲氧基聚乙二醇的结晶性能的研究,扩展了对于基础科学的理论研究,对于高分子形貌调控具有理论借鉴意义,对于高分子材料和复合材料的研究和今后的商业化应用具有重大意义。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种金字塔螺旋晶体的制备方法,其特征在于,包括如下步骤:
(1)高分子聚合物单晶的制备
将甲氧基聚乙二醇加入到二氯甲烷中,在25~80℃的温度下混合均匀,得到甲氧基聚乙二醇的二氯甲烷溶液,然后向其滴加二甲基亚砜,当溶液变浑浊后停止滴加二甲基亚砜,反向滴加二氯甲烷至溶液澄清,待甲氧基聚乙二醇全部溶解后,将其放入-18~10℃的冰箱中冷冻或冷藏,得到混合溶液;
(2)微流控技术单晶薄膜的制备
将步骤(1)中得到的混合溶液加入到有机玻璃毛细管中,有机玻璃毛细管一端连接氮气,在0.1~0.5MPa、1~5L/min的氮气的作用下,将混合溶液喷射到干净的云母片或硅片上,然后真空干燥,得到单晶薄膜,即所述的金字塔螺旋晶体。
2.根据权利要求1所述的金字塔螺旋晶体的制备方法,其特征在于:
步骤(1)中所述的混合溶液中二氯甲烷与二甲基亚砜的体积比为1~10:1。
3.根据权利要求2所述的金字塔螺旋晶体的制备方法,其特征在于:
步骤(1)中所述的混合溶液中二氯甲烷与二甲基亚砜的体积比为2~10:1。
4.根据权利要求1所述的金字塔螺旋晶体的制备方法,其特征在于:
步骤(1)中所述的甲氧基聚乙二醇的二氯甲烷溶液的浓度为质量百分比0.01~5%。
5.根据权利要求4所述的金字塔螺旋晶体的制备方法,其特征在于:
步骤(1)中所述的甲氧基聚乙二醇的二氯甲烷溶液的浓度为质量百分比5%。
6.根据权利要求1所述的金字塔螺旋晶体的制备方法,其特征在于:
步骤(2)中所述的有机玻璃毛细管为自制有机玻璃毛细管,具体为:将外径4.6mm、内径3.8mm、长度200mm的玻璃管经酒精喷灯拉丝成口径10~30μm的玻璃毛细管。
7.根据权利要求1所述的金字塔螺旋晶体的制备方法,其特征在于:
步骤(1)中所述的甲氧基聚乙二醇的分子量为20 000Da;
步骤(1)中所述的冷冻或冷藏的温度为-18~4℃;
步骤(1)中所述的冷冻或冷藏的时间为12~48h;
步骤(2)中所述的氮气的压力为0.15~0.2MPa,流量为1~3L/min;
步骤(2)中所述的真空干燥的条件为:25~100℃真空干燥12~60h。
8.一种金字塔螺旋晶体,其特征在于:通过权利要求1~7任一项所述的方法制备得到。
9.根据权利要求8所述的金字塔螺旋晶体,其特征在于:
所述的金字塔螺旋晶体的厚度2~100nm,宽度0.2~100μm,长宽比0.01~200。
10.权利要求8所述的金字塔螺旋晶体在3D打印、激光刻蚀、药物载体、建筑装饰、仿生传感器或仿生器官移植领域中的应用。
CN202011390814.2A 2020-12-02 2020-12-02 一种金字塔螺旋晶体及其制备方法与应用 Active CN112575381B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011390814.2A CN112575381B (zh) 2020-12-02 2020-12-02 一种金字塔螺旋晶体及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011390814.2A CN112575381B (zh) 2020-12-02 2020-12-02 一种金字塔螺旋晶体及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN112575381A CN112575381A (zh) 2021-03-30
CN112575381B true CN112575381B (zh) 2021-10-19

Family

ID=75126790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011390814.2A Active CN112575381B (zh) 2020-12-02 2020-12-02 一种金字塔螺旋晶体及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN112575381B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114318546A (zh) * 2021-12-13 2022-04-12 国科广化精细化工孵化器(南雄)有限公司 一种利用微流控技术的有机晶体薄膜的外延生长方法及有机晶体薄膜与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100771100B1 (ko) * 2007-07-18 2007-10-29 아이디비켐(주) 고순도의 메톡시폴리에틸렌글리콜에틸말레이미드의제조방법
CN105664183A (zh) * 2016-01-29 2016-06-15 东华大学 一种负载Au纳米颗粒的γ-PGA水凝胶中的制备方法
WO2019209883A1 (en) * 2018-04-23 2019-10-31 Graybug Vision, Inc. Improved continuous microparticle manufacture
CN111875762A (zh) * 2020-06-28 2020-11-03 华南理工大学 一种二维聚合物刷及其晶体和制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100771100B1 (ko) * 2007-07-18 2007-10-29 아이디비켐(주) 고순도의 메톡시폴리에틸렌글리콜에틸말레이미드의제조방법
CN105664183A (zh) * 2016-01-29 2016-06-15 东华大学 一种负载Au纳米颗粒的γ-PGA水凝胶中的制备方法
WO2019209883A1 (en) * 2018-04-23 2019-10-31 Graybug Vision, Inc. Improved continuous microparticle manufacture
CN111875762A (zh) * 2020-06-28 2020-11-03 华南理工大学 一种二维聚合物刷及其晶体和制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Investigation on the Folding Mode of a Polymer Chain in a Spiral Crystal by Single Molecule Force Spectroscopy;Yu Song等;《Chinese Journal of Polymer Science》;20150725;第32卷(第9期);第1149-1157页 *
聚氧乙烯单晶的纳米力学性质研究;宋宇;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20130815;第B020-277页 *

Also Published As

Publication number Publication date
CN112575381A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
Zhang et al. Detection of novel gaseous states at the highly oriented pyrolytic graphite− water interface
Ryu et al. High stability of self‐assembled peptide nanowires against thermal, chemical, and proteolytic attacks
CN112575381B (zh) 一种金字塔螺旋晶体及其制备方法与应用
Jing et al. Fabrication of biocompatible super stable lubricant-immobilized slippery surfaces by grafting a polydimethylsiloxane brush: excellent boiling water resistance, hot liquid repellency and long-term slippery stability
Liu et al. Fast and controllable fabrication of suspended graphene nanopore devices
Pei et al. The fabrication of superhydrophobic copper films by a low-pressure-oxidation method
Sun et al. Directed self-assembly of dipeptide single crystal in a capillary
Wang et al. Floating assembly of diatom Coscinodiscus sp. microshells
Wang et al. Langmuir–Blodgett self-assembly of ultrathin graphene quantum dot films with modulated optical properties
CN109765407A (zh) 一种基于一维纳米材料的大长径比探针制备方法
Wu et al. In situ AFM observation of BSA adsorption on HOPG with nanobubble
Dong et al. Self-assembly of Fmoc-amino acids in capillary confined space forming a parallel ordered fiber network for application in vascularization
Zhou et al. Controlled cell patterning on bioactive surfaces with special wettability
JP2012063319A (ja) 高温状態における高分子材料の原子間力顕微鏡観察方法
Wang et al. Controllable domain morphology in coated poly (lactic acid) films for high-efficiency and high-precision transportation of water droplet arrays
SG172854A1 (en) Large area, homogeneous array fabrication including controlled tip loading vapor deposition
Günther et al. Immobilization of microorganisms for AFM studies in liquids
CN110903581B (zh) 一种具有紫外线屏蔽功能的聚乙烯醇/淀粉纳米复合材料及其制备方法
Li et al. Nanoscale multiparametric imaging of peptide-assembled nanofibrillar hydrogels by atomic force microscopy
Yamada et al. Use of AFM for imaging and measurement of the mechanical properties of light-convertible organelles in plants
CN112575382B (zh) 一种微流控高分子聚合物单晶薄膜及其制备方法
Liu et al. Observation of the mica surface by atomic force microscopy
Wang et al. Preparation of h-BN nano-tubes,-bamboos, and-fibers from borazine oligomer with alumina porous template
Frenken et al. Seeing dynamic phenomena with live scanning tunneling microscopy
JP2010047448A (ja) Itoナノ粒子合成法および有機修飾itoナノ粒子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 512400 area B, No.3 Ping'an 1st Road, Dongguan Dalingshan (Nanxiong) industrial transfer industrial park, Nanxiong City, Shaoguan City, Guangdong Province

Patentee after: Guoke Guanghua fine chemical incubator (Nanxiong) Co.,Ltd.

Patentee after: GUANGZHOU CHEMISTRY Co.,Ltd. CHINESE ACADEMY OF SCIENCES

Patentee after: Guoke Guanghua (Nanxiong) New Materials Research Institute Co.,Ltd.

Patentee after: Shaoguan Institute of new materials

Patentee after: University OF CHINESE ACADEMY OF SCIENCES

Address before: 512400 area B, No.3 Ping'an 1st Road, Dongguan Dalingshan (Nanxiong) industrial transfer industrial park, Nanxiong City, Shaoguan City, Guangdong Province

Patentee before: NANXIONG CAS INCUBATOR OPERATION CO.,LTD.

Patentee before: GUANGZHOU CHEMISTRY Co.,Ltd. CHINESE ACADEMY OF SCIENCES

Patentee before: Guoke Guanghua (Nanxiong) New Materials Research Institute Co.,Ltd.

Patentee before: GUANGZHOU CHEMICAL INSTITUTE SHAOGUAN TECHNOLOGY INNOVATION AND BREEDING CENTER, CHINESE ACADEMY OF SCIENCES

Patentee before: University OF CHINESE ACADEMY OF SCIENCES