KR100912830B1 - 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고실리콘계 합금분말을 제조하는 장치 및 그 제조방법 - Google Patents

리튬 2차 전지의 음극 활물질로 사용되는 급냉응고실리콘계 합금분말을 제조하는 장치 및 그 제조방법 Download PDF

Info

Publication number
KR100912830B1
KR100912830B1 KR1020070031984A KR20070031984A KR100912830B1 KR 100912830 B1 KR100912830 B1 KR 100912830B1 KR 1020070031984 A KR1020070031984 A KR 1020070031984A KR 20070031984 A KR20070031984 A KR 20070031984A KR 100912830 B1 KR100912830 B1 KR 100912830B1
Authority
KR
South Korea
Prior art keywords
alloy powder
silicon
active material
secondary battery
negative electrode
Prior art date
Application number
KR1020070031984A
Other languages
English (en)
Other versions
KR20080089024A (ko
Inventor
김향연
강종구
Original Assignee
일진홀딩스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진홀딩스 주식회사 filed Critical 일진홀딩스 주식회사
Priority to KR1020070031984A priority Critical patent/KR100912830B1/ko
Priority to PCT/KR2008/001795 priority patent/WO2008120938A1/en
Publication of KR20080089024A publication Critical patent/KR20080089024A/ko
Application granted granted Critical
Publication of KR100912830B1 publication Critical patent/KR100912830B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명에 따른 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치는, 리튬 2차 전지의 음극 활물질로 사용되며, 기지상에 100㎚ 이하의 실리콘 입자들이 균일하게 석출 분산된 조직을 가지는 실리콘계 합금분말을 제조하는 장치로서, 실리콘이 포함된 합금분말을 융융하여 고속으로 분사하는 고속분사모듈; 상기 고속분사모듈에서 분사된 용융물을 고속으로 충돌시켜 급냉시키도록 상기 고속분사모듈에 대해 상대 회전되는 회전체; 및 상기 회전체를 수용하며 상기 회전체에 충돌되어 비산되는 입자의 산화를 방지하도록 외부와의 공기 유동을 차단하는 챔버;를 포함하며, 본 발명에 따른 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 방법은 리튬 2차 전지의 음극 활물질로 사용되며, 기지상에 100㎚ 이하의 실리콘 입자들이 균일하게 석출 분산된 조직을 가지는 실리콘계 합금분말을 제조하기 위하여, 실리콘이 포함된 합금분말을 융융하여 고속으로 분사하는 고속분사단계; 및 상기 고속분사단계에서 분사된 용융물을 대기와의 공기 유동이 차단된 챔버안에서 고속으로 회전하는 회전체에 충돌시켜 급속한 속도로 냉각시키는 냉각단계;를 포함하는 것을 특징으로 한다.

Description

리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치 및 그 제조방법{A Device for manufacturing rapidly solidified powder alloy including Si precipitates of active material for rechargable Li-battery and a Method thereof}
도 1은 일반적인 2차 전지의 개략적 개념도이다.
도 2는 종래의 일반적인 급냉응고 금속분말을 제조하기 위한 장치 또는 방법을 설명하기 위한 도면이다.
도 3은 종래의 일반적인 급냉응고 금속분말을 제조하기 위한 다른 장치 또는 방법을 설명하기 위한 도면이다.
도 4는 본 발명의 바람직한 제1 실시예에 따른 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치 또는 그 제조방법을 설명하기 위한 도면이다.
도 5는 본 발명의 바람직한 제2 실시예에 따른 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치 또는 그 제조방법을 설명하기 위한 도면이다.
도 6은 본 발명의 바람직한 제3 실시예에 따른 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치 또는 그 제조방법을 설 명하기 위한 도면이다.
도 7은 본 발명의 바람직한 제4 실시예에 따른 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치 또는 그 제조방법을 설명하기 위한 도면이다.
도 8은 본 발명의 바람직한 제5 실시예에 따른 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치 또는 그 제조방법을 설명하기 위한 도면이다.
도 9는 본 발명에 따른 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 방법을 설명하기 위한 순서도이다.
도 10은 리튬 2차 전지에 사용되는 급냉응고 실리콘계 음극 활물질에서 실리콘 입자의 분포를 설명하기 위한 개념도이다.
<도면의 주요부분에 대한 부호의 설명>
10a.10b,10c,10d,10e...실리콘계 합금분말을 제조하는 장치
20...고속분사모듈 30a,30b,30c,30d,30e,...회전체
40...챔버 50...회전모터
60...진공펌프 70...냉각매체공급관
80...산화방지가스공급관
θ...분사각도
본 발명은 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치 및 방법에 관한 것으로서, 더 구체적으로는 기지상에 실리콘 입자가 100㎚ 이하로 균일하게 석출된 구조의 합금분말을 제조하는 장치 및 방법에 관한 것이다.
일반적으로 2차 전지라 함은 충전과 방전이 반복되는 전지를 말한다. 그러한 2차 전지 중에서 최근에는 휴대폰이나 노트북 PMP(portable multimedia player)와 같은 모바일(mobile) 기기의 사용이 급증함에 따라, 가벼우면서도 고용량의 충방전용량을 가지는 리튬 2차 전지가 각광받고 있다.
일반적인 리튬 2차 전지(100)는 도 1에 도시된 바와 같이 밀폐된 케이스 내에 양극(101)과 음극(102)이 분리된 상태로 배치되고 그 사이에는 분리막(103)이 위치하며 전해질(104)로 나머지 공간이 채워져 있다. 전해질(104)에 포함된 리튬이온(105)은 양극(101) 및 음극(102)과 전기 화학적 반응을 일으켜서 전류를 발생시키게 된다. 이와 같은 전기 화학적 반응을 일으키기 위해 상기 양극(101)에는 양극 활물질로서 리튬 코발트 산화물이 젤(gel) 형태로 도포 되어 있으며, 상기 음극(102)에는 탄소(C)계 음극 활물질이 도포 되어 있다.
최근 이동 통신용 기기 또는 휴대용 전자기기의 발달로 인해서 고효율의 에너지 저장매체에 대한 요구가 증대되고 있다. 이러한 환경에서 가장 고에너지 밀도가 기대되고 있는 리튬 2차 전지의 고효율화(高容量, 長壽命 특성)에 대한 연구가 진행 중에 있다. 현재 상용화된 리튬 2차 전지의 탄소계 음극 활물질은 그 이론용 량이 372mAh/g로서 향후 요구되는 고용량의 2차 전지의 성능을 구현하기에는 문제가 있다. 그래서, 리튬 2차 전지의 음극 활물질로서 이론 용량이 4000mAh/g 인 실리콘계 물질에 관한 관심이 집중되고 있다. 그러나 실리콘계 물질 합금분말은 리튬이온과 반응시 그 입자의 부피팽창률이 300%에 이르기 때문에 전극이 깨지는 문제점이 있다. 이러한 문제점을 해결하기 위해서는 실리콘 입자가 기지(matrix)상에 미세하게 균일하게 분포되어 있어서 그 기지상이 실리콘 입자의 부피 팽창을 억제해야 한다. 또한, 기지상은 높은 강도와 우수한 전기 전도도를 가져야 한다.
일반적으로 합금분말을 제조하는 방법으로는 아토마이져(atomization)법, 멜트 스피닝(melt-spinning)법, 회전전극(RSR)법, 기계적 분쇄법, 화학적방법 등이 있다.
그러나 실리콘계 합금분말은 위에서 요구하는 미세조직을 가져야 하므로 기계적 분쇄법이나 화학적 방법으로는 제조가 곤란하다. 따라서, 리튬 2차 전지의 음극 활물질로서 사용되는 급냉응고 실리콘계 합금분말을 제조하기 위해서는 급냉응고에 의해 실리콘계 합금분말을 제조해야할 필요가 있다.
도 2 및 도 3에는 종래의 급냉응고에 의한 금속분말의 제조장치 또는 개념을 보여주는 개략적 도면이 도시되어 있다.
도 2에는 기체를 이용한 아토마이져법이 도시되어 있다. 합금을 용융하여 도가니(201)에 담은 상태에서 노즐(202)을 개방시켜 그 용융합금을 고속의 기체(203)를 운반체로 하여 분사함으로써 공기와의 접촉면적을 극대화하여 냉각속도를 높이 는 원리이다. 이와 같은 기체 아토마이져법에 의한 냉각속도는 최대 105℃/sec 정도이다.
도 3에는 멜트 스피닝법에 의한 급냉응고 합금의 제조장치가 도시되어 있다. 도 3을 참조하면, 도가니(301)에 수용된 용융 합금(302)을 회전하는 롤러(303)에 접촉시킴으로써 큰 냉각속도를 얻는 것이다. 이와 같은 멜트 스피닝법은 일반적으로 비정질 스트립 형태의 합금을 얻기 위해 사용되는 것이다. 상기 멜트 스피닝법의 냉각속도는 약 107℃/sec 정도이다.
종래의 급냉응고법에 의해 실리콘계 합금분말을 제조하는 경우에는 여러 가지 문제점이 있다. 도 2에 도시된 기체 아토마이져법은 냉각속도가 상대적으로 낮아서 기지상에 실리콘 입자의 석출물이 수백㎚~수십nm이며, 최종 분말의 크기를 일정하게 제어하기 곤란하므로 분사입자에 대한 일정한 냉각속도를 유지하기가 어렵다. 도 3에 도시된 멜트 스피닝법에 의한 실리콘 분말을 제조하는 경우에도 제조하고자하는 미세조직을 갖는데 필요한 임계냉각속도를 구현하기 어렵다. 이와 같은 종래의 방법들은 107℃/sec이하의 냉각속도를 갖는 제조공정법으로 실리콘계 합금에서 실리콘 입자를 100㎚이하로 균일하게 분산석출시키는데에는 적합하지 않으므로 새로운 분말제조장치 및 방법이 필요하다.
실리콘계 합금분말을 제조하기 위한 새로운 장치는 용율물의 냉각속도가 107℃/sec이상이 보장되며, 입자의 표면이 산화되지 않도록 하는 조건을 만족해야 한 다. 또한, 미세한 합금분말입자를 가지도록 제조될 수 있어야 한다.
본 발명은 상술한 바와 같은 문제점들을 해결하기 위하여 도출된 것으로서, 기지상에 100㎚ 이하의 실리콘 입자의 석출물이 고르게 분포된 리튬 2차 전지용 합금분말을 제조하기 위한 장치 및 방법을 제공함에 목적이 있다.
상기한 바와 같은 목적을 달성하기 위하여 본 발명에 따른 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치는, 리튬 2차 전지의 음극 활물질로 사용되며, 기지상에 100㎚ 이하의 실리콘 입자들이 균일하게 석출 분산된 조직을 가지는 실리콘계 합금분말을 제조하는 장치로서,
실리콘이 포함된 합금분말을 융융하여 고속으로 분사하는 고속분사모듈;
상기 고속분사모듈에서 분사된 용융물을 고속으로 충돌시켜 급냉시키도록 상기 고속분사모듈에 대해 상대 회전되는 회전체; 및
상기 회전체를 수용하며 상기 회전체에 충돌되어 비산되는 입자의 산화를 방지하도록 외부와의 공기 유동을 차단하는 챔버;를 포함하는 점에 특징이 있다.
또한, 상기한 바와 같은 목적을 달성하기 위하여 본 발명에 따른 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 방법은, 리튬 2차 전지의 음극 활물질로 사용되며, 기지상에 100㎚ 이하의 실리콘 입자들이 균일하게 석출 분산된 조직을 가지는 실리콘계 합금분말을 제조하기 위하여,
실리콘이 포함된 합금분말을 융융하여 고속으로 분사하는 고속분사단계; 및
상기 고속분사단계에서 분사된 용융물을 대기와의 공기 유동이 차단된 챔버안에서 고속으로 회전하는 회전체에 충돌시켜 급속한 속도로 냉각시키는 냉각단계;를 포함하는 점을 특징으로 한다.
상기 고속분사모듈은 플라즈마 용사장치인 것이 바람직하다.
상기 고속분사모듈에서 상기 합금분말을 융융하여 고속으로 분사함에 있어서, 기체 아르곤을 그 용융물의 운반체로 하는 것이 바람직하다.
상기 고속분사모듈에서 고속으로 분사된 용융물의 분사각도는 0° 이상 40° 미만인 것이 바람직하다.
상기 고속분사모듈에서 액체 용율물의 분사속도는 150m/s 이상인 것이 바람직하다.
상기 회전체에 충돌하여 비산되는 입자의 비산속도는 40m/s 이상인 것이 바람직하다.
상기 챔버 내부의 초기 작동 압력은 1.3×10-5 MPa 이하인 것이 바람직하다.
상기 회전체는 구리판, 크롬이 도금된 구리판, 철판 중 어느 하나인 것이 바람직하다.
상기 회전체는 상기 챔버 외부로부터 공급되어 그 회전체에 분사되는 액체 아르곤 또는 액체 헬륨에 의해 냉각되는 것이 바람직하다.
상기 회전체에 충돌시 미소액적의 산화물 형성 억제와 냉각효과를 높이기 위하여여, 상기 챔버 내부에는 그 챔버 외부로부터 기체 아르곤 또는 기체 헬륨이 공 급되는 것이 바람직하다.
상기 회전체의 형상은 판 형상, 콘형상, 단일롤 형상, 쌍롤 형상, 드럼형상 중 어느 하나인 것이 바람직하다.
상기 고속분사단계에서 실리콘이 포함된 합금분말을 융융하여 고속으로 분사하는 수단은 플라즈마 용사법을 채용한 것이 바람직하다.
상기 고속분사단계에서 상기 합금분말을 융융하여 고속으로 분사함에 있어서, 기체 아르곤을 용융물의 운반체로 하는 것이 바람직하다.
상기 고속분사단계에서 고속으로 분사된 용융물의 분사각도는 0° 이상 40° 미만인 것이 바람직하다.
상기 고속분사단계에서 용융물의 분사속도는 150m/s 이상인 것이 바람직하다.
상기 냉각단계에서 상기 회전체에 충돌하여 비산되는 합금분말 입자의 비산속도는 40m/s 이상인 것이 바람직하다.
상기 냉각단계에서 상기 챔버 내부의 초기 작동 압력은 1.3×10-5 MPa 이하인 것이 바람직하다.
상기 냉각단계에서 상기 회전체는 구리판, 크롬이 도금된 구리판, 철판 중 어느 하나인 것이 바람직하다.
상기 회전체는 상기 챔버 외부로부터 공급되어 그 회전체에 분사되는 액체 아르곤 또는 액체 헬륨에 의해 냉각되는 것이 바람직하다.
상기 냉각단계에서 형성된 미소액적의 산화물 형성 억제와 냉각효과를 높이기 위하여, 상기 챔버 내부에는 그 챔버 외부로부터 기체 아르곤 또는 기체 헬륨이 공급되는 것이 바람직하다.
상기 고속분사단계에서 공급되는 합금분말은 실리콘이 50at% 이상 포함된 3성분계 이상의 합금인 것이 바람직하다.
상기 고속분사단계에 공급되는 분말의 입자 크기는 50~200㎛ 이하인 것이 바람직하다.
이하, 본 발명에 따른 바람직한 일 실시 예를 첨부된 도면을 참조하면서 상세히 설명하기로 한다.
도 4는 본 발명의 바람직한 제1 실시예에 따른 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치 또는 그 제조방법을 설명하기 위한 도면이다.
도 4를 참조하면, 본 발명의 바람직한 제1 실시 예에 따른 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치(10a)는 고속분사모듈(20)과, 회전체(30)와, 챔버(40)와, 회전모터(50)와, 진공펌프(60)와, 냉각매체공급관(70)과, 산화방지가스공급관(80)을 포함하고 있다.
상기 고속분사모듈(20)은 기 공지된 플라즈마 용사장치를 채용하였다. 따라서, 플라즈마 용사장치의 원리 및 구조에 대한 서술은 생략하기로 한다. 상기 고속분사모듈(20)은 20㎛~200㎛ 정도의 입자 크기를 가지는 실리콘계 합금분말을 입력받아 초고압의 전압에 의해 상기 실리콘계 합금분말을 순간적으로 용융시킨후 노즐 을 통해 그 고속분사모듈(20) 외부로 고속으로 분사시킨다. 상기 고속분사모듈(20)은 아르곤 기체를 운반체로 하여 용융물의 분사속도를 제어할 수 있다.
상기 고속분사모듈(20)에서 고속으로 분사된 용융물의 분사각도(θ)는 0° 이상 40° 미만인 것이 바람직하다. 상기 분사각도(θ)는 도 4에 도시된 바와 같이 상기 고속분사모듈(20)의 노즐의 길이방향과 용융물의 분사방향이 이루는 각도를 의미한다. 상기 분사각도(θ)가 0°경우가 가장 이상적인 경우이며, 상기 분사각도(θ)가 40°이상인 경우에는 상기 고속분사모듈(20)에서 분사된 용융물이 후술하는 회전체(30a)에 충돌하지 않게될 가능성이 있기 때문에 냉각속도가 충분히 크지 않게 되는 문제점이 있다.
상기 고속분사모듈에서 용융물의 분사속도는 150m/s 이상인 것이 바람직하다. 상기 분사속도가 150m/s 미만인 경우에는 107℃/sec이상의 냉각속도를 얻을 수 없는 문제점이 있다.
상기 회전체(30a)는 상기 고속분사모듈(20)의 하측에 그 고속분사모듈(20)과 이격되어 배치되어 있다. 상기 회전체(30a)는 상기 고속분사모듈(20)에 대해 상대회전할 수 있도록 설치되어 있다. 상기 회전체(30a)는 상기 고속분사모듈에서 분사된 용융물이 고속으로 충돌되어 미소액적을 급냉시키는 역할을 한다. 상기 회전체(30a)에 충돌된 용융물은 회전체의 속도에 의해 냉각속도가 커지는 것이다.
상기 회전체(30a)에 충돌하여 비산되는 합금분말 입자의 비산속도는 40m/s 이상인 것이 바람직하다. 상기 비산속도는 고속으로 회전하는 상기 회전체(30a)에 충돌 후 그 회전방향에 수직하게 진행하는 선속도를 의미한다. 상기 비산속도가 40m/s 미만인 경우에는 상기 회전체(30a)와 충돌시에 용융물이 충분히 미세하게 분산되지 않기 때문에 냉각속도가 107℃/sec에 이르지 못하게 되는 문제점이 있다.
상기 회전체(30a)는 구리(Cu)판, 크롬(Cr)이 도금된 구리판, 철판(Fe) 중 어느 하나인 것이 바람직하다. 상기 회전체(30a)는 열전도성이 우수한 재질을 사용하는 것이 바람직하다 또한 상기 회전체(30a)는 고속의 용융물이 충돌하는 부분이므로 강도가 높은 것이 좋다. 이와 같은 점들을 고려하여 위에서 열거한 재질들 중 어느 하나로 이루어진 회전체(30a)를 제작하는 것이 바람직한 것이다. 즉, 상기 구리판은 열전도도가 우수하며, 크롬은 구리보다 강도가 강해서 용융물의 충돌로 인한 구리판의 마모를 억제하며, 철판은 열전도도가 구리판과 비교하여 낮지만 가격이 저렴하다는 장점이 있다. 상기 회전체(30a)의 형상은 다양하게 제작될 수 있으며, 본 실시예에서는 판(plate) 형상이다.
상기 챔버(40)는 상기 회전체(30a)를 수용하도록 설치되어 있다. 상기 챔버(40)는 상기 회전체(30a)에 충돌되어 비산되는 합금분말 입자의 산화를 방지하도록 외부와의 공기 유동을 차단하기 위해 마련된 것이다. 상기 챔버(40)는 상기 고속분사모듈(20)과 결합되어 있다. 상기 챔버(40) 내부의 초기 작동 압력은 1.3×10-5 MPa 이하인 것이 바람직하다. 그 이유는 상기 챔버(40) 내부에서 냉각되는 실리콘계 합금분말 입자의 표면이 산화되는 것을 방지하도록 그 챔버(40)내부의 산소 분자의 수를 감소시키기 위한 것이다.
상기 회전모터(50)는 상기 회전체(30a)를 회전시키기 위해 마련된 것이다. 상기 회전모터(50)는 공지된 일반적인 모터 중에서 채용할 수 있는 것이므로 그 회전모터(50)의 구조에 대한 상세한 서술은 생략하기로 한다. 상기 회전모터(50)는 상기 회전체(30a)에 동력적으로 연결되어 그 회전모터(50)가 회전하면 상기 회전체(30a)가 연동하여 회전되도록 설치되어 있다.
상기 진공펌프(60)는 작동 초기의 상기 챔버(40) 내부의 압력을 대기압보다 충분히 낮게 하여 그 챔버(40)내에 산소 분자의 수를 감소시키도록 하기 위해 마련된 것이다. 상기 진공펌프(60)로는 일반적인 로터리 펌프 또는 확산펌프 중 적어도 하나 이상을 사용할 수 있다. 상기 진공펌프(60)는 초기에만 작동시키고 후술하는 냉각매체가 공급되면 그 작동을 멈추도록 되어 있다.
상기 냉각매체공급관(70)은 상기 챔버(40)에 연결되어 그 챔버(40) 외부로부터 공급되는 냉각매체의 통로이다. 상기 냉각매체공급관(70)을 통해 상기 챔버(40) 내부로 유입되는 냉각매체로는 액체 아르곤(Ar) 또는 액체 헬륨(He)을 사용할 수 있다. 상기 냉각매체공급관(70)을 통해 공급된 냉각매체는 상기 회전체(30a)에 분사되어 그 회전체(30a)의 온도를 효과적으로 낮추는 역할을 한다.
상기 산화방지가스공급관(80)은 상기 챔버에 연결되어 있다. 상기 산화방지가스공급관(80)은 상기 챔버(40) 내부에서 상기 회전체(30a)에 충돌하여 급냉 형성된 합금분말 입자의 표면이 산화되는 것을 효과적으로 방지하기 위해 마련된 것이다. 상기 산화방지가스공급관(80)을 통해 상기 챔버(40) 외부로부터 유입되는 산화방지가스로는 기체 아르곤(Ar) 또는 기체 헬륨(He)을 사용할 있다.
도 4 및 도 9를 참조하여 이와 같은 구조를 가지는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치(10a)를 사용하여 리튬 2차 전지의 음극 활물질로 사용되며, 기지상에 100㎚ 이하의 실리콘 입자들이 균일하게 석출 분산된 조직을 가지는 실리콘계 합금분말을 제조하는 방법을 상기 실리콘계 합금분말을 제조하는 장치(10a)의 작용과 함께 상세히 서술하기로 한다.
먼저, 상기 챔버(40)의 내부의 압력이 충분히 낮은 상태 예컨대, 1.3×10-5 MPa 이하가 되도록 상기 진공펌프(60)를 가동한다.
그런 연후에, 상기 고속분사모듈(20)에 실리콘계 합금분말을 장입한다. 고속분사단계(S1)에 공급되는 합금분말의 입자 크기는 200㎛ 이하인 것이 바람직하다. 상기 입자 크기가 200㎛를 초과하는 경우에는 상기 고속분사모듈(20)에서 순간적으로 용융하는데 문제가 발생할 수 있으며 냉각속도가 낮아지게 된다. 또한, 실질적으로 이용되는 공급 입자의 크기는 50㎛~200㎛ 정도의 입자 크기를 가지는 것이 더욱 바람직하다.
이제, 플라즈마 용사법이 채용된 상기 고속분사모듈(20)을 작동시켜 미량의 함금 합금분말에 초고압의 전기에너지를 가하여 순간적으로 용융한 상태에서 액체 아르곤을 운반체로 하여 그 고속분사모듈(20)로부터 분사하는 고속분사단계(S1)를 실행한다. 상기 고속분사단계(S1)에 공급되는 합금분말은 실리콘이 50at% 이상 포함된 3성분계 이상의 합금인 것이 바람직하다. 상기 실리콘이 50at% 미만이 포함된 합금계의 경우에는 리튬 2차전지의 음극 활물질로서의 전기적 특성이 나타나지 않 는 문제점이 있다.
상기 고속분사단계(S1)에서 용융물의 분사속도는 운반체인 액체 아르곤의 분사속도를 조절함으로써 제어할 수 있다. 상기 고속분사단계(S1)에서 분사되는 용융물의 분사속도는 150m/s 이상인 것이 바람직하다. 상기 합금의 분사속도가 150m/s 이하인 경우의 문제점은 상기 실리콘계 합금분말을 제조하는 장치(10a)의 구조를 서술하면서 이미 서술하였으므로 그 서술을 생략한다. 상기 고속분사단계(S1)에서 고속으로 분사된 용융물의 분사각도(θ)는 0° 이상 40° 미만인 것이 바람직하다. 상기 분사각도(θ)의 범위를 벗어나는 경우의 문제점은 상기 실리콘계 합금분말을 제조하는 장치(10a)의 구조를 서술하면서 이미 서술하였으므로 그 서술을 생략한다.
이와 동시에 상기 고속분사단계(S1)에서 분사된 융융 합금을 대기압보다 낮은 압력으로 유지되는 챔버(40)안에서 고속으로 회전하는 회전체(30a)에 충돌시켜 급속한 속도로 냉각시키는 냉각단계(S2)를 실행한다. 상기 냉각 단계(S2)에서는 상기 회전모터(50)를 작동시켜 그 회전모터(50)에 동력적으로 연결된 상기 회전체(30a)를 회전시킨다. 상기 고속분사단계(S1)에서 분사된 용융물은 상기 회전모터(50)에 의해 고속으로 회전되는 회전체(30a)에 충돌되어 미세한 입자 크기를 가지는 합금분말로 냉각된다. 상기 냉각단계(S2)에서 상기 회전체(30a)에 충돌하여 비산되는 합금분말 입자의 비산속도는 40m/s 이상인 것이 바람직하다. 상기 비산속도가 40m/s 미만인 경우의 문제점은 상기 실리콘계 합금분말을 제조하는 장치(10a)의 구조를 서술하면서 이미 서술하였으므로 그 서술을 생략한다.
상기 냉각단계(S2)에서 상기 챔버(40)의 내부와 외부 사이의 공기 유동은 차단시켜야 한다. 또한, 상기 챔버(40)내부의 초기 작동 압력은 1.3×10-5 MPa 이하인 것이 더욱 바람직하다. 상기 챔버(40) 내부의 초기 작동 압력이 1.3×10-5 MPa을 초과하는 경우에는 상기 챔버(40) 내부에 존재하는 산소 분자로 인하여 상기 냉각단계(S2)에서 형성되는 합금분말 입자의 표면이 산화되는 문제점이 있다는 것은 앞서 서술한 상기 실리콘계 합금분말을 제조하는 장치(10a)의 구조를 서술하면서 이미 서술한 문제점과 동일하다.
상기 냉각단계(S2)에서 상기 회전체(30a)는 구리판, 크롬이 도금된 구리판, 철판 중 어느 하나인 것이 바람직하다. 이와 같은 재질을 사용하는 것이 바람직한 이유는 상기 실리콘계 합금분말을 제조하는 장치(10a)의 구조를 서술하면서 이미 서술하였으므로 중복 서술은 생략하기로 한다. 상기 냉각단계(S2)에서 상기 회전체(30a)는 상기 챔버(40) 외부로부터 공급되어 그 회전체(30a)에 분사되는 액체 아르곤 또는 액체 헬륨에 의해 더욱 효과적으로 냉각될 수 있다. 또한, 상기 냉각단계(S2)에서 형성된 합금분말 입자의 산화를 방지하기 위하여, 상기 챔버(40) 내부에는 그 챔버(40) 외부로부터 기체 아르곤 또는 기체 헬륨이 공급되는 것이 더욱 효과적이다. 이와 같이 상기 액체 아르곤 또는 액체와 같은 냉각매체가 공급되거나, 기체 아르곤이나 기체 헬륨과 같은 산화방지기체가 공급되는 경우에는 상기 진공펌프(60)의 작동은 멈추어도 된다. 이 경우에는 상기 챔버(40) 내부의 압력이 대기의 압력보다 높아질 수 있으며, 그 경우에는 상기 챔버(40)에 적절한 배출밸브를 설치하여 그 챔버(40) 내부의 압력이 지나치게 높아지지 않도록 할 수 있다.
상기 냉각단계(S1)에서 상기 회전체(30a)의 형상은 판 형상이다.
이와 같은 장치 및 방법에 의해 제조된 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말의 미세 조직을 개념적으로 보여주는 도면이 도 10에 도시되어 있다. 도 10에서 검은 원으로 표기된 부분이 실리콘 입자의 석출물이며, 흰 부분이 기지상을 나타낸다. 본 출원의 발명자는 다음과 같은 조건하에서 실험을 하여 도 10과 매우 유사한 미세조직을 가지는 실리콘계 합금문말을 얻을 수 있었다. 즉, 플라즈마 용사장치가 채용된 고속분사모듈(20)을 사용하였고, 그 고속분사모듈(20)에 공급된 실리콘계 합금분말의 입자 크기는 90㎛였으며, 용융물의 분사각도는 10°, 분사속도는 150m/s이고, 상기 회전체(30a)의 직경은 200mm, 그 회전체(30a)의 회전속도는 4000rpm, 상기 회전체(30a)에 충돌 후 비산되는 입자들의 선속도는 71.3m/s였다. 이와 같이 본 발명의 바람직한 실시예에 따르면 기지상에 실리콘 석출물이 미세하고 균일하게 분포된 미세조직을 가지는 100nm이하의 실리콘 석출물들이 균일하게 분포된 조직을 가지는 합금분말을 제조할 수 있는 제조장치 및 방법을 제공할 수 있는 효과가 있다.
도 5는 본 발명의 바람직한 제2 실시예에 따른 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치(10b) 또는 그 제조방법을 설명하기 위한 도면이다. 도 5를 참조하면, 회전체(30b)의 형상이 콘 형상이라는 점을 제외하고는 도 4를 참조하여 서술한 실리콘계 합금분말을 제조하는 장치(10a)와 동일하므로 상세한 서술은 생략하기로 한다.
도 6은 본 발명의 바람직한 제3 실시예에 따른 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치(10c) 또는 그 제조방법을 설명하기 위한 도면이다. 도 6을 참조하면, 회전체(30c)의 형상이 단일롤(single roll) 형상이라는 점을 제외하고는 도 4를 참조하여 서술한 실리콘계 합금분말을 제조하는 장치(10a)와 동일하므로 상세한 서술은 생략하기로 한다.
도 7은 본 발명의 바람직한 제4 실시예에 따른 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치(10d) 또는 그 제조방법을 설명하기 위한 도면이다. 도 7을 참조하면, 회전체(30d)의 형상이 쌍롤(twin roll) 형상이라는 점을 제외하고는 도 4를 참조하여 서술한 실리콘계 합금분말을 제조하는 장치(10a)와 동일하므로 상세한 서술은 생략하기로 한다.
도 8은 본 발명의 바람직한 제5 실시예에 따른 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치(10e) 또는 그 제조방법을 설명하기 위한 도면이다. 도 8을 참조하면, 회전체(30e)의 형상이 드럼(drum) 형상이라는 점을 제외하고는 도 4를 참조하여 서술한 실리콘계 합금분말을 제조하는 장치(10a)와 동일하므로 상세한 서술은 생략하기로 한다.
이상, 바람직한 실시 예들을 들어 본 발명에 대해 설명하였으나, 본 발명이 그러한 예들에 의해 한정되는 것은 아니며, 본 발명의 기술적 사상을 벗어나지 않는 범주 내에서 다양한 형태의 실시 예가 구체화될 수 있을 것이다.
이상에서 설명한 바와 같이 본 발명에 따른 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치 및 방법은 기지상에 실리콘 석출물이 균일하게 분포된 100㎚ 이하의 입자 크기를 가지는 실리콘계 합금분말을 제조할 수 있는 장치 및 방법을 제공하는 효과가 있다. 이와 같이 본 발명에 따른 장치 및 방법을 사용하여 리튬 2차 전지의 활물질로서 새롭게 사용이 유망한 실리콘계 합금분말을 대량으로 생산할 수 있는 효과가 있다.

Claims (24)

  1. 리튬 2차 전지의 음극 활물질로 사용되며, 기지상에 100㎚ 이하의 실리콘 입자들이 균일하게 석출 분산된 조직을 가지는 실리콘계 합금분말을 제조하는 장치로서,
    실리콘이 포함된 합금분말을 융융하여 고속으로 분사하는 고속분사모듈;
    상기 고속분사모듈에서 분사된 용융물을 고속으로 충돌시켜 급냉시키도록 상기 고속분사모듈에 대해 상대 회전되는 회전체; 및
    상기 회전체를 수용하며 상기 회전체에 충돌되어 비산되는 합금분말 입자의 산화를 방지하도록 외부와의 공기 유동을 차단하는 챔버;를 포함하며,
    상기 고속분사모듈에서 상기 합금분말을 융융하여 고속으로 분사함에 있어서, 기체 아르곤을 그 용융물의 운반체로 하는 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치.
  2. 제1항에 있어서,
    상기 고속분사모듈은 플라즈마 용사장치인 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치.
  3. 삭제
  4. 제1항에 있어서,
    상기 고속분사모듈에서 고속으로 분사된 용융물의 분사각도는 0° 이상 40° 미만인 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치.
  5. 제1항에 있어서,
    상기 고속분사모듈에서 용융물의 분사속도는 150m/s 이상인 것을 특징으로 하는 실리콘계 합금분말을 제조하는 장치.
  6. 제1항에 있어서,
    상기 회전체에 충돌하여 비산되는 합금분말 입자의 비산속도는 40m/s 이상인 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치.
  7. 제1항에 있어서,
    상기 챔버 내부의 초기 작동 압력은 1.3×10-5 MPa 이하인 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하 는 장치.
  8. 제1항에 있어서,
    상기 회전체는 구리판, 크롬이 도금된 구리판, 철판 중 어느 하나인 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치.
  9. 제1항에 있어서,
    상기 회전체는 상기 챔버 외부로부터 공급되어 그 회전체에 분사되는 액체 아르곤 또는 액체 헬륨에 의해 냉각되는 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치.
  10. 제1항에 있어서,
    상기 회전체에 충돌시 미소액적의 산화물 형성 억제와 냉각효과를 높이기 위하여여, 상기 챔버 내부에는 그 챔버 외부로부터 기체 아르곤 또는 기체 헬륨이 공급되는 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치.
  11. 제1항에 있어서,
    상기 회전체의 형상은 판 형상, 콘형상, 단일롤 형상, 쌍롤 형상, 드럼형상 중 어느 하나인 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 장치.
  12. 리튬 2차 전지의 음극 활물질로 사용되며, 기지상에 100㎚ 이하의 실리콘 입자들이 균일하게 석출 분산된 조직을 가지는 실리콘계 합금분말을 제조하기 위하여,
    실리콘이 포함된 합금분말을 융융하여 고속으로 분사하는 고속분사단계; 및
    상기 고속분사단계에서 분사된 용융물을 대기와의 공기 유동이 차단된 챔버안에서 고속으로 회전하는 회전체에 충돌시켜 급속한 속도로 냉각시키는 냉각단계;를 포함하며,
    상기 고속분사단계에서 상기 합금분말을 융융하여 고속으로 분사함에 있어서, 기체 아르곤을 용융물의 운반체로 하는 것을 특징으로 하는 실리콘계 합금분말을 제조하는 방법.
  13. 제12항에 있어서,
    상기 고속분사단계에서 실리콘이 포함된 합금분말을 융융하여 고속으로 분사하는 수단은 플라즈마 용사법을 채용한 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 방법.
  14. 삭제
  15. 제12항에 있어서,
    상기 고속분사단계에서 고속으로 분사된 용융물의 분사각도는 0° 이상 40° 미만인 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 방법.
  16. 제12항에 있어서,
    상기 고속분사단계에서 용융물의 분사속도는 150m/s 이상인 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 방법.
  17. 제12항에 있어서,
    상기 냉각단계에서 상기 회전체에 충돌하여 비산되는 합금분말 입자의 비산속도는 40m/s 이상인 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 방법.
  18. 제12항에 있어서,
    상기 냉각단계에서 상기 챔버 내부의 초기 작동 압력은 1.3×10-5 MPa 이하인 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘 계 합금분말을 제조하는 방법.
  19. 제12항에 있어서,
    상기 냉각단계에서 상기 회전체는 구리판, 크롬이 도금된 구리판, 철판 중 어느 하나인 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 방법.
  20. 제12항에 있어서,
    상기 회전체는 상기 챔버 외부로부터 공급되어 그 회전체에 분사되는 액체 아르곤 또는 액체 헬륨에 의해 냉각되는 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 방법.
  21. 제12항에 있어서,
    상기 냉각단계에서 형성된 미소액적의 산화물 형성 억제와 냉각효과를 높이기 위하여, 상기 챔버 내부에는 그 챔버 외부로부터 기체 아르곤 또는 기체 헬륨이 공급되는 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 방법.
  22. 제12항에 있어서,
    상기 회전체의 형상은 판 형상, 콘형상, 단일롤 형상, 쌍롤 형상, 드럼형상 중 어느 하나인 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 방법.
  23. 제12항에 있어서,
    상기 고속분사단계에서 공급되는 합금분말은 실리콘이 50at% 이상 포함된 3성분계 이상의 합금인 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 방법.
  24. 제13항에 있어서,
    상기 고속분사단계에 공급되는 분말의 입자 크기는 50㎛~200㎛인 것을 특징으로 하는 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 실리콘계 합금분말을 제조하는 방법.
KR1020070031984A 2007-03-30 2007-03-30 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고실리콘계 합금분말을 제조하는 장치 및 그 제조방법 KR100912830B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070031984A KR100912830B1 (ko) 2007-03-30 2007-03-30 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고실리콘계 합금분말을 제조하는 장치 및 그 제조방법
PCT/KR2008/001795 WO2008120938A1 (en) 2007-03-30 2008-03-31 A device for manufacturing rapidly solidified powder alloy including si precipitates of active material for rechargable li-battery and a method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070031984A KR100912830B1 (ko) 2007-03-30 2007-03-30 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고실리콘계 합금분말을 제조하는 장치 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20080089024A KR20080089024A (ko) 2008-10-06
KR100912830B1 true KR100912830B1 (ko) 2009-08-18

Family

ID=39808462

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070031984A KR100912830B1 (ko) 2007-03-30 2007-03-30 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고실리콘계 합금분말을 제조하는 장치 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR100912830B1 (ko)
WO (1) WO2008120938A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101702987B1 (ko) * 2009-11-04 2017-02-23 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
KR101527286B1 (ko) * 2013-09-30 2015-06-09 고려대학교 산학협력단 리튬 이차 전지용 음극의 형성 방법
KR101426021B1 (ko) * 2014-02-12 2014-08-05 공주대학교 산학협력단 비정질 합금분말 제조방법 및 그 제조장치
CN109107492A (zh) * 2018-10-29 2019-01-01 大连颐和顺新材料科技有限公司 一种金刚线切割硅粉的高温转移电弧造粒设备和方法
AT524161B1 (de) * 2020-09-08 2023-04-15 Karl Rimmer Dipl Ing Dr Herstellung eines metallpulvers
CN113636559A (zh) * 2021-08-11 2021-11-12 华南师范大学 一种硅基电极材料的制备装置和制备方法
KR102556300B1 (ko) 2021-09-30 2023-07-14 조영기 수산화리튬 분쇄장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000053949A (ko) * 2000-05-12 2000-09-05 김상동 수용성 용융 염입자를 이용한 다공질 금속의 제조 방법 및그 제품과 제조장치
KR20020009668A (ko) * 2000-07-26 2002-02-02 정은 금속용탕으로부터의 금속분말 제조방법과 그 장치
JP2003268419A (ja) * 2002-03-14 2003-09-25 Akihisa Inoue 高融点焼結材料微粉末の製造方法とその装置
JP2006213986A (ja) * 2005-02-07 2006-08-17 Minerva Kiki Kk 微細金属粉末の製造方法及びその製造装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754019A (ja) * 1993-08-17 1995-02-28 Nippon Sozai Kk 多段階分裂及び急冷による粉末の作製法
JP2000144214A (ja) * 1998-11-17 2000-05-26 Teikoku Piston Ring Co Ltd 水素吸蔵合金粉末及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000053949A (ko) * 2000-05-12 2000-09-05 김상동 수용성 용융 염입자를 이용한 다공질 금속의 제조 방법 및그 제품과 제조장치
KR20020009668A (ko) * 2000-07-26 2002-02-02 정은 금속용탕으로부터의 금속분말 제조방법과 그 장치
JP2003268419A (ja) * 2002-03-14 2003-09-25 Akihisa Inoue 高融点焼結材料微粉末の製造方法とその装置
JP2006213986A (ja) * 2005-02-07 2006-08-17 Minerva Kiki Kk 微細金属粉末の製造方法及びその製造装置

Also Published As

Publication number Publication date
KR20080089024A (ko) 2008-10-06
WO2008120938A1 (en) 2008-10-09

Similar Documents

Publication Publication Date Title
KR100912830B1 (ko) 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고실리콘계 합금분말을 제조하는 장치 및 그 제조방법
CN105655564B (zh) SiOx/C复合负极材料及其制备方法和应用
US7431750B2 (en) Nanostructured metal powder and method of fabricating the same
TWI565127B (zh) 陽極活性材料及製備彼之方法
CN108630945B (zh) 一种电池电极及其制备方法和电池
CN101376172B (zh) 旋成膜二次喷射金属雾化装置
KR101430709B1 (ko) 이차 전지용 음극 활물질 및 이를 포함하는 이차 전지
US20070224513A1 (en) Electrode for cell of energy storage device and method of forming the same
CN103855364A (zh) 一种SiOx基复合材料、制备方法及锂离子电池
JP2016505093A (ja) 固相薄膜電池用の膜を少なくとも1層成膜する方法、その成膜方法に用いるプラズマ粉体噴射装置、及び固相薄膜電池
KR20110063390A (ko) 박막전지의 음극용 나노 합금 분말의 제조방법
JP2015002036A (ja) 珪素含有材料、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池及びその製造方法
KR101166252B1 (ko) 리튬 2차 전지의 음극 활물질로 사용되는 급냉응고 합금분말을 제조하는 장치
JP2008181708A (ja) 非水電解質二次電池用電極の製造方法、非水電解質二次電池用電極、および非水電解質二次電池
CN112993253A (zh) 一种高性能硅基锂离子电池负极材料及其制备方法
CN100438149C (zh) 一种高容量锂离子电池负极材料的制备方法
WO2024055444A1 (zh) 一种三维锂负极及其制备方法和锂电池
CN104752692A (zh) 一种磷酸亚铁锂/碳复合正极材料的制备方法
CN105345019B (zh) 3d打印用金属粉末高效电弧放电制备装置
US20210288300A1 (en) Method of making particles containing metal and active battery material for electrode fabrication
KR100540181B1 (ko) 이차전지의 전극활물질용 탄소복합체 및 그 제조방법,이를 이용한 이차전지
KR100761000B1 (ko) 가스분산 플라즈마 스프레이 코팅법에 의한 탄소복합체의제조방법과 이를 이용한 이차전지 음극소재로서의 응용
CN113636559A (zh) 一种硅基电极材料的制备装置和制备方法
CN113059167A (zh) 一种钝化锂微球的制备方法及其装置和应用
CN215392472U (zh) 金属粉末的制备设备

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130627

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140613

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150612

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160704

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180702

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190701

Year of fee payment: 11