CN112993253A - 一种高性能硅基锂离子电池负极材料及其制备方法 - Google Patents

一种高性能硅基锂离子电池负极材料及其制备方法 Download PDF

Info

Publication number
CN112993253A
CN112993253A CN202110055605.0A CN202110055605A CN112993253A CN 112993253 A CN112993253 A CN 112993253A CN 202110055605 A CN202110055605 A CN 202110055605A CN 112993253 A CN112993253 A CN 112993253A
Authority
CN
China
Prior art keywords
silicon
carbon
lithium ion
ion battery
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110055605.0A
Other languages
English (en)
Inventor
赵海雷
杨朝
李兆麟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202110055605.0A priority Critical patent/CN112993253A/zh
Publication of CN112993253A publication Critical patent/CN112993253A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/45Others, including non-metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种高性能硅基锂离子电池负极材料及其制备方法,属于电池材料制备技术领域。该负极材料为核壳结构,内核为硅基颗粒/M‑碳复合颗粒,M为过渡金属或其化合物,包覆层为碳层;其制备方法为:首先制备硅基颗粒/M复合材料,作为第一前驱体材料;再加入碳源材料与第一前驱体材料均匀混合,经二次造粒获得硅基颗粒/M‑碳颗粒,作为第二前驱体材料;最后用固相烧结或气相沉积的方式在第二前驱体材料表面包覆均匀连续的碳层。本发明通过引入含过渡金属元素的物质,活化硅基材料在嵌锂过程中产生的惰性产物,提高硅基材料的首次库仑效率。同时,该工艺能够实现具有高比容量、长循环寿命等优异性能的锂离子电池的工业化生产。

Description

一种高性能硅基锂离子电池负极材料及其制备方法
技术领域
本发明属于电池材料制备技术领域,特别涉及一种硅基锂离子电池负极材 料及其制备方法。
背景技术
在锂离子电池负极材料中,硅不仅具有高理论比容量(4200mAh/g)以及 合理的嵌/脱锂电位平台,而且来源丰富、价格低廉、环境友好,被视为是最有 希望代替石墨的新一代锂离子电池负极材料。
然而,硅负极在脱/嵌锂的过程中 常伴随着较大的体积膨胀(高达300%),且其自身电导率不高,易导致颗粒破 碎、粉化,从而使材料失去活性。此外,硅表面固体电解质界面(solid electrolyte interface,SEI)膜也会不断破裂和增生,导致循环性能的严重衰减,最终造成 电池首次不可逆容量较大、倍率性能较差。
现有锂离子电池硅基电极材料的研发集中在高容量、高倍率性能、高循环 稳定性和长寿命方面,而对于首次库仑效率的关注较少。例如,中国专利申请 CN110391406A公开了一种具有高倍率性能的锂离子电池硅氧负极材料,其首先 通过高速球磨得到元素掺杂的石墨粉,并进一步加入硅氧化物并包覆一层热解 碳,最终获得核壳结构硅氧负极。中国专利申请CN110021737A则利用过渡金 属元素催化有机碳源的石墨化,提高了硅碳材料对应电池的循环稳定性。
氧化亚硅(SiOx)材料在硅基材料中最具实用前景,其在脱/嵌锂过程中可 原位生成惰性组分,进而适当缓解或解决硅基材料循环性能差的问题。但SiOx在首次嵌锂过程中生成Li2O和锂硅酸盐的不可逆反应会消耗活性锂离子,形成 “死锂”,导致电池首次库仑效率大大降低,一般仅为50~80%,故氧化亚硅在 首次库仑效率方面存在严重缺陷,造成电池整体的能量密度降低。此外,正极 材料的消耗无疑也进一步提升了电池成本。
预锂化(Journal of Power Sources 195(2010)6143-6147;Nano Letters 16(2016)282-288)是提高电池首次库仑效率最有效的方法之一。但金属锂粉通常 活泼性高,原料储存和运输中都需要特殊处理,从而增加了电池成本。且金属 锂粉一般颗粒较大,在电极中难以实现均匀分散,加入量过多容易造成嵌锂过 程中锂聚集生长,产生锂枝晶,产生安全隐患。
在硅基材料中引入金属或金属化合物是提高硅基材料电化学性能的重要手 段,但常见金属与硅基复合材料中的金属和硅很难形成良好的键合,导致很难 通过纳米金属与Li2O或硅酸锂的可逆转化达到提高硅基材料首次库仑效率的目 的。通常引入的金属及金属化合物常常只提高材料的电导率,稳定材料结构, 以及减小复合材料的体积膨胀。因而,通过将硅基材料与金属或金属化合物复 合策略有效提高锂离子的容量、倍率及循环稳定性,同时提升其首次库仑效率, 一直是硅基锂离子电池负极材料研究的难点,具有重要意义。
发明内容
本发明针对硅基材料作为锂离子电池负极材料时存在首次库伦效率低的问 题,提供了一种高性能硅基锂离子电池负极材料及其制备方法,通过引入含过 渡金属元素的物质,活化硅基材料在嵌锂过程中产生的惰性产物(氧化锂、硅 酸锂),提高硅基材料的首次库仑效率。该工艺能够实现具有高比容量、长循环 寿命等优异性能的锂离子电池的工业化生产。
为实现上述目的,本发明采用如下的技术方案:
本发明的一方面提供了一种高性能硅基锂离子电池负极材料,所述负极材 料为核壳结构,其内核为硅基颗粒/M-碳复合颗粒,M为过渡金属或其化合物, 包覆层为碳层;所述内核是通过硅基颗粒和过渡金属源首先获得硅基颗粒/M复 合材料,再加入碳源进行二次造粒的方法所制备的。
进一步的,所述负极材料中各元素的质量百分含量为:Si:5-99wt%;O: 0-55wt%;C:0.5-90wt%;N:0-15wt%,S:0-15wt%,P:0-15wt%,过渡 金属:0.01-30wt%。
进一步的,所述M中过渡金属元素包括Ti、V、Cr、Mn、Fe、Co、Ni、Zn、 Cu、Ag、Au、Pt中的一种或多种;所述硅基颗粒/M-碳复合颗粒中M的存在形 式包括金属单质、金属-碳合金、金属-硅合金、金属氮化物、金属氧化物、金属 磷化物、金属硫化物、金属硅酸盐中的一种或多种。
本发明的另一方面提供了一种上述高性能硅基锂离子电池负极材料的制备 方法,包括以下步骤:
(1)以硅基颗粒和过渡金属源为原料,制备硅基颗粒/M复合材料,作为第 一前驱体材料;
(2)加入碳源材料与所述第一前驱体材料均匀混合,通过二次造粒方法获 得硅基颗粒/M-碳颗粒,作为第二前驱体材料;
(3)用固相烧结或气相沉积的方式在所述第二前驱体材料表面包覆均匀连 续的碳层,最终获得硅基颗粒/M-碳@碳复合材料。
进一步的,步骤(1)中所述硅基颗粒包括单质硅、硅碳复合材料、硅氧化 物、硅氧化物/碳复合材料中的一种或多种。
进一步的,步骤(1)中所述第一前驱体材料的平均粒径为0.005-1μm,比 表面积为0.5-1000m2/g。
进一步的,步骤(1)中所述第一前驱体材料的制备方法选自气相沉积法、 湿化学法、物理混合法、固相烧结法中任一种。
更进一步的,所述气相沉积法包括化学气相沉积与物理气相沉积。
本发明中所述气相沉积法是指过渡金属源在适当温度下气化,引入反应器 中在特定气氛、特定温度下在固相硅基材料上沉积,获得第一前驱体材料。
其中,所述过渡金属源汽化或升华的温度为50-800℃。
所述过渡金属源包括金属有机配合物、金属无机配合物、无机金属化合物 中的一种或多种的任意比例组合;所述金属有机配合物包括羰基金属、芳基金 属、茂基金属或烷基金属;所述无机金属化合物包括金属卤化物。
所述气相沉积的反应温度为120-1300℃,沉积反应的时间不小于0.1h;升/ 降温速率控制在1-100℃/min,升降温速率随反应进程改变。
所述气相沉积反应器内气压为0.1-200kPa;填充气和吹扫载气为氢气、氮气、 氩气、氦气、氖气、氧气、氪气、氙气、氨气、硫化氢、磷化氢、水蒸气中的 一种或多种;气体流量控制在1-1000sccm范围内。
所述反应器包括固定床、移动床或流化床。
更进一步的,所述湿化学法包括沉淀法、溶胶凝胶、醇盐水解、水热法、 微乳液法、电解法、混合蒸干等方法。
本发明中所述湿化学法包括以下步骤:
(1-1a)过渡金属源分散在溶剂中,加入一定量添加剂,充分混合;
(1-1b)按照一定比例向上述混合溶液中加入硅基颗粒,充分混合;
(1-1c)通过沉淀、水解缩合、水热、聚结团聚、蒸干或通电沉积处理0.5-100 h,温度控制在0-300℃,获得均匀结合M的硅基材料前驱体;
(1-1d)上述前驱体依次经离心分离、干燥、热处理、破碎步骤,获得第一 前驱体材料。
其中,步骤(1-1a)中所述过渡金属源为含过渡金属的无机化合物或有机化 合物中的一种或多种的任意比例组合。
步骤(1-1a)中所述溶剂包括水、硫酸、液氨、二硫化碳、烃类、烃衍生物 类、醇类、醚类、酮类、羧酸、二醇衍生物、腈类、胺类、吡啶、苯酚、丙酮 中的一种或多种的任意比例组合。
步骤(1-1a)中所述添加剂包括pH调节试剂、表面活性剂、沉淀剂中一种 或几种组合;所述pH调节试剂包括氨水、氢氧化钠、硝酸或盐酸;所述表面活 性剂包括聚丙烯酸、十六烷基三甲基溴化铵、聚乙烯吡咯烷酮、烷基磺酸盐、 季铵盐、脂肪酸盐、卵磷脂、氨基酸型、甜菜碱型、多元醇或聚氧乙烯型表面 活性剂;所述沉淀剂包括碳酸盐、强碱、氨水、尿素或乙酸。
步骤(1-1a)中所述pH调节试剂加入溶液调节pH值控制在3-11范围内。
步骤(1-1a)中所述金属源与表面活性剂或沉淀剂的质量比为0.01-100;两 种以上表面活性剂或沉淀剂加入量比值在0.01-100之间。
步骤(1-1b)中所述过渡金属源与硅基颗粒加入量的质量比例为0.005-1000。
步骤(1-1d)中所述离心分离的转速为500-10000r/min,时间为0.5-1000min。
步骤(1-1d)中所述干燥包括普通烘干、鼓风烘干、真空烘干或冷冻干燥, 干燥时间为0.5-50h,除冷冻干燥外干燥温度为30-250℃。
步骤(1-1d)中所述热处理的温度为200-1200℃,保温时间为0.5-50h,升 /降温速率为1-100℃/min,升/降温速率随反应进程改变;热处理气氛包括常压/ 低压吹扫通气和封管密闭气氛,所述吹扫气包括氢气、氮气、氩气、氦气、氖 气、氧气、氪气、氙气、氨气、硫化氢、磷化氢、水蒸气中的一种或多种的任 意比例组合,气体流量为1-1000sccm。
更进一步的,所述物理混合法包括机械化学和高能球磨方法。
本发明中所述物理混合法包括以下步骤:
(1-2a)将过渡金属源、硅基颗粒、添加剂混合,经机械粉碎、机械压力、 超声或球磨处理得到凝聚态含过渡金属的硅基材料前驱体;
(1-2b)将所述前驱体依次经离心分离、干燥、热处理、破碎步骤,获得第 一前驱体材料。
其中,步骤(1-2a)中所述过渡金属源包括含过渡金属的无机盐、有机盐、 氮化物、氧化物、硫化物、磷化物、卤化物;所述过渡金属源与硅基颗粒加入 量的质量比为0.005-1000。
步骤(1-2a)中所述添加剂包括pH调节试剂、表面活性剂中一种或两种; 所述pH调节试剂包括氨水、氢氧化钠、硝酸、盐酸;所述表面活性剂包括聚丙 烯酸、十六烷基三甲基溴化铵、聚乙烯吡咯烷酮、烷基磺酸盐、季铵盐、脂肪 酸盐、卵磷脂、氨基酸型、甜菜碱型、多元醇、聚氧乙烯型表面活性剂。
步骤(1-2a)中所述pH调节试剂加入溶液调节pH值控制在3-11范围内。
步骤(1-2a)中所述金属源与表面活性剂的质量比为0.01-100,两种以上表 面活性剂加入量比值在0.01-100之间。
步骤(1-2a)中所述球磨转速为50-1000r/min,时间为0.5-100h,球磨温度 控制在1-200℃;采用真空低气压状态球磨或者在球磨罐内通入反应气体进行球 磨;所述反应气体包括氢气、氮气、氩气、氦气、氖气、氧气、氪气、氙气、 氨气、硫化氢、磷化氢中的一种或多种。
步骤(1-2a)中采用湿磨时,加入的溶剂包括水、硫酸、液氨、二硫化碳、 烃类、烃衍生物类、醇类、醚类、酮类、羧酸、二醇衍生物、腈类、胺类、吡 啶、苯酚、丙酮中的一种或多种的任意比例组合。
步骤(1-2b)中所述干燥包括普通烘干、鼓风烘干、真空烘干或冷冻干燥, 干燥时间为0.5-50h,除冷冻干燥外干燥温度为30-250℃。
步骤(1-2b)中所述热处理的温度为200-1200℃,保温时间为0.5-50h,升 /降温速率为1-100℃/min,升/降温速率随反应进程改变;热处理气氛为常压/低 压吹扫通气和封管密闭气氛,其中吹扫气包括氢气、氮气、氩气、氦气、氖气、 氧气、氪气、氙气、氨气、硫化氢、磷化氢、水蒸气中的一种或多种的任意比 例组合,气体流量为1-1000sccm。
更进一步的,所述固相烧结法包括热分解法、热还原法、高温固相反应方 法。
本发明中所述固相烧结法包括以下步骤:
(1-3a)将过渡金属源、硅基颗粒、表面活性剂混合,经球磨、砂磨或搅拌 得到固体混合物;
(1-3b)将上述混合物依次经高温处理,破碎步骤,获得第一前驱体材料。
其中,步骤(1-3a)中所述过渡金属源与硅基颗粒加入量的质量比例为 0.005-1000。
步骤(1-3a)中所述表面活性剂包括聚丙烯酸、十六烷基三甲基溴化铵、聚 乙烯吡咯烷酮、烷基磺酸盐、季铵盐、脂肪酸盐、卵磷脂、氨基酸型、甜菜碱 型、多元醇、聚氧乙烯型表面活性剂。
步骤(1-3a)中所述金属源与所述表面活性剂的质量比为0.01-100。
步骤(1-3a)中所述球磨或砂磨的转速为50-1000r/min,时间为0.5-100h, 球磨温度控制在1-200℃;采用真空低气压状态研磨或者在磨罐内通入反应气体 进行球磨;所述反应气体包括氢气、氮气、氩气、氦气、氖气、氧气、氪气、 氙气、氨气、硫化氢、磷化氢中的一种或多种。
步骤(1-3b)中所述高温处理的温度为200-1500℃,保温时间为0.5-100h, 升/降温速率为1-100℃/min,升/降温速率随反应进程改变;高温处理气氛为常 压/低压吹扫通气和封管密闭气氛,其中,吹扫气包括氢气、氮气、氩气、氦气、 氖气、氧气、氪气、氙气、氨气、硫化氢、磷化氢、水蒸气中的一种或多种的 任意比例组合,气体流量为1-1000sccm。
进一步的,步骤(2)中所述碳源材料包括糖类、树脂类、橡胶类、沥青、 聚乙烯吡咯烷酮、有机酸、聚乙烯及其衍生物、聚醇类、聚乙烯醇及其衍生物 或固相碳源材料中的一种或多种的任意比例组合;所述固相碳源材料包括碳纤 维、石墨、石墨烯、炭黑、碳纳米颗粒、洋葱碳、活性炭或碳纳米管;所述固 相碳源材料的平均粒径为0.005-150μm,比表面积为0.05-1000m2/g。
进一步的,步骤(2)中所述第一前驱体材料与所述碳源材料的质量比为 0.01-100。
进一步的,步骤(2)具体包括以下步骤:
(2-1)将所述第一前驱体材料分散于溶剂中,使其与溶剂中所述碳源材料 充分接触,形成均匀的凝聚态混合物;
(2-2)将上述混合物通过喷雾干燥法、团聚造粒、冷冻干燥、挤压造粒、 挤出造粒、湿法造粒、熔融造粒或流化造粒方法获得二次颗粒;
(2-3)将获得的二次颗粒进行热处理获得最终的硅基颗粒/M-碳@碳复合材 料。
更进一步的,步骤(2-1)中所述溶剂包括水、硫酸、液氨、二硫化碳、烃 类、烃衍生物类、醇类、醚类、酮类、羧酸、二醇衍生物、腈类、胺类、吡啶、 苯酚中的一种或多种的任意比例组合。
更进一步的,步骤(2-1)中所述分散方式包括超声分散、搅拌分散、球磨 分散中的一种或多种,分散时间为10min-24h。
进一步的,步骤(3)所述固相烧结是指在一定烧结气氛和温度制度下直接 碳化二次颗粒的碳源,获得碳层。
更进一步的,所述烧结气氛为低压或吹扫通气,其中,吹扫气包括氢气、 氮气、氩气、氦气、氖气、氧气、氪气、氙气中的一种或多种的任意比例组合, 气体流量为1-1000sccm,真空低气压状态下完成。
更进一步的,所述温度制度为:碳化温度为200-1300℃,保温时间为 0.5-100h,升/降温速率为1-100℃/min,升/降温速率随反应进程改变。
进一步的,步骤(3)所述气相沉积采用的碳源包括甲烷、乙炔、丙烯、甲 苯、苯、脱油沥青或煤沥青;载气包括氢气、氮气、氩气、氦气、氖气、氪气、 氙气中的一种或多种的任意比例组合;所述载气与碳源的体积比为0.01-100,气 体流量为1-1000sccm。
进一步的,步骤(3)所述气相沉积的沉积温度为200-1300℃,沉积时间为 0.5-100h,升/降温速率为1-100℃/min,升/降温速率随反应进程改变。
与现有技术相比,本申请技术方案具有如下有益效果或技术优势:
本发明所述锂离子电池负极材料为一种核壳结构的硅基材料,其中壳层为 导电性良好的碳材料,内核部分为过渡金属或其化合物改性的硅基颗粒。碳材 料的包覆提高材料整体的电子电导。过渡金属可以活化硅基材料在嵌锂过程中 产生的惰性产物(氧化锂、硅酸锂),部分过渡金属化合物可以参与可逆脱嵌锂 反应,提高材料脱嵌锂时库仑效率;并且在硅脱嵌锂电位下呈金属单质状,态 均化硅基材料脱嵌锂时的电流,缓解体积膨胀带来的应力集中,减少裂纹延缓 材料容量衰减。
本发明中技术要点在于运用气相沉积法或湿化学法、物理混合法、固相烧 结法合成了过渡金属或其化合物与硅基均匀分布的过渡金属或其化合物改性的 硅基颗粒,并将其与碳复合获得最终高性能硅基锂离子电池负极材料。
本发明制备的锂离子电池硅基负极材料具有首次库伦效率高、倍率性能好、 储锂容量高、循环寿命长等优点。
附图说明
图1为本发明所述的高性能硅基锂离子电池负极材料结构示意图;
图2为本发明所述的高性能硅基锂离子电池负极材料的制备工艺流程图;
图3为本发明一实施例中所制备的硅基锂离子电池负极材料的充放电曲 线;
图4为本发明一实施例中所制备的硅基锂离子电池负极材料的扫描电镜照 片。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明实施方式 作进一步地详细描述。
本发明公开了一种高性能硅基锂离子电池负极材料及其制备方法,通过引 入含过渡金属元素的物质,活化硅基材料在嵌锂过程中产生的惰性产物(氧化 锂、硅酸锂),提高硅基材料的首次库仑效率。所述负极材料为核壳结构,结构 示意图如附图1所示:其内核为硅基颗粒/M-碳复合颗粒,M为过渡金属或其化 合物,包覆层为碳层;所述内核是通过硅基颗粒和过渡金属源首先获得硅基颗 粒/M复合材料,再加入碳源进行二次造粒的方法所制备的。制备工艺流程图如 附图2所示,该工艺能够实现具有高比容量、长循环寿命等优异性能的锂离子 电池的工业化生产。
【实施例1】
纳米硅粉(Si,50nm)称取0.7g均匀铺在氧化铝坩埚中,置于化学气相沉 积(CVD)炉沉积位置。二茂镍(Ni(C5H5)2)用作金属源,9.5g溶解于二甲苯 中置于气化炉中,略高于二茂镍升华温度的175℃获得反应气体。以含5%氢的 氢氩混气为载气并以50sccm的气体流量通入CVD炉,以5℃/min升温速率升 温至500℃,保温2h,随后以5℃/min冷却至室温,取出黑色样品Si-Ni。
将质量比1:2的样品Si-Ni和1g石墨(1μm)分散于乙醇中固含量15%, 频率20kHz超声处理20min,将混合溶液置于球磨罐中充满氩气,以300r/min 行星式球磨机中常温球磨2h,喷雾干燥造粒,得到Si-Ni/石墨复合颗粒。
取1g Si-Ni/石墨复合颗粒均匀铺在氧化铝坩埚中置于CVD炉内,以体积比 1:4的乙炔和氩气为裂解气并以50sccm的气体流量通入CVD炉,以10℃/min 升温速率升温至600℃,保温1h,随后停止加热冷却至室温,获得得到Si-Ni/ 石墨@碳复合材料。
以质量比为70:15:15的比例称取活性物质(Si-Ni/石墨@碳复合材料)、乙 炔黑和粘结剂,使之与适量水混合均匀,制成浆料,均匀涂覆在铜箔上,真空 烘干后冲压为圆形电极极片,以金属锂为对电极,1mol/L LiPF6/EMC+DMC+EC (体积比为1:1:1)为电解液,Celgard 2400为隔膜,组成纽扣半电池。
将装配好的电池进行恒流充放电测试,充放电电压范围为0.01~2.5V。结果 表明,Si-Ni/石墨@碳复合材料在0.1A/g的电流密度下首次放电比容量仅为940 mAh/g,首次库伦效率为92.1%,循环100次后比容量为790mAh/g,容量保持 达到91%。
【实施例2】
将质量比4:1的氧化亚硅(SiO)和纳米铁粉(50nm)混合真空密封于球磨 罐中,以300r/min行星式球磨机中常温球磨5h,得到SiO-Fe样品。
将质量比1:1:2的样品SiO-Fe、炭黑(400nm)和聚丙烯腈(PAN)混合于 二甲基甲酰胺(DMF)中,频率20kHz超声处理20min,以800rpm的搅拌速 度分散2h,高压静电纺丝造粒,得到SiO-Fe/炭黑-PAN复合纤维。
取1g SiO-Fe/炭黑-PAN复合纤维均匀铺在氧化铝坩埚中置于管式炉内,通 入含5%氢气的氩氢混合气(50sccm的气体流量),以10℃/min升温速率升温 至600℃,保温3h,随后5℃/min冷却至室温,获得得到SiO-Fe/炭黑@碳复合 材料。
以与实施例1中相同方式制备SiO-Fe/炭黑@碳复合材料为活性物质的电极 及对应电池。
SiO-Fe/炭黑@碳复合材料对应电池在充放电电压0.01~3V范围内完成恒流 充放电测试。结果表明,SiO-Fe/炭黑@碳复合材料电极在0.1A/g的电流密度下, 首次可逆比容量为1550mAh/g,首次库伦效率为79.1%,循环500次后比容量 保持在初始容量的85%以上。
【实施例3】
将氧化亚硅(SiO)球磨破碎为<200nm的亚微米粉体,与氯化钴以质量比 3:1混合溶解于含5%蔗糖的水溶液中,超声分散1h,磁力搅拌分散2h,将混合 溶液封装入旋蒸瓶中,以95rpm旋转蒸发至溶剂消失,取出后80℃真空烘干 12h,研磨破碎至200目,置于管式炉内700℃碳化还原保温3h后降温,得到 SiO-Co/C样品。
取1g SiO-Co/C样品均匀铺在氧化铝坩埚中置于CVD炉内,以体积比1:5 的乙炔和氩气为裂解气并以100sccm的气体流量通入CVD炉,以5℃/min升 温速率升温至600℃,保温2h,随后停止加热冷却至室温,获得得到SiO-Co/C@ 碳复合材料,其形貌如附图4所示。
以与实施例1中相同方式制备SiO-Co/C@碳复合材料为活性物质的电极及 对应电池。
SiO-Co/C@碳复合材料对应电池在充放电电压0.01~2V范围内完成恒流充 放电测试。结果表明,如附图3所示,SiO-Co/C@碳复合材料电极在0.1A/g的 电流密度下,首次可逆比容量为850mAh/g,首次库伦效率为75.12%,循环100 次后比容量为782mAh/g,容量保持达到92%。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的 精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的 保护范围之内。

Claims (10)

1.一种高性能硅基锂离子电池负极材料,其特征在于,所述负极材料为核壳结构,其内核为硅基颗粒/M-碳复合颗粒,M为过渡金属或其化合物,包覆层为碳层;所述内核是通过硅基颗粒和过渡金属源首先获得硅基颗粒/M复合材料,再加入碳源进行二次造粒的方法所制备的。
2.根据权利要求1所述的高性能硅基锂离子电池负极材料,其特征在于,所述负极材料中各元素的质量百分含量为:Si:5-99%;C:0.5-90%;过渡金属:0.01-30%;O:0-55%;N:0-15%,S:0-15%,P:0-15%。
3.根据权利要求1或2所述的高性能硅基锂离子电池负极材料,其特征在于,所述过渡金属元素包括Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Cu、Ag、Au、Pt中的一种或多种;所述硅基颗粒/M-碳复合颗粒中M的存在形式包括金属单质、金属-碳合金、金属-硅合金、金属氮化物、金属氧化物、金属磷化物、金属硫化物、金属硅酸盐中的一种或多种。
4.一种根据权利要求3所述的高性能硅基锂离子电池负极材料的制备方法,其特征在于,包括以下步骤:
(1)以硅基颗粒和过渡金属源为原料,制备硅基颗粒/M复合材料,作为第一前驱体材料;
(2)加入碳源材料与所述第一前驱体材料均匀混合,通过二次造粒方法获得硅基颗粒/M-碳颗粒,作为第二前驱体材料;
(3)用固相烧结或气相沉积的方式在所述第二前驱体材料表面包覆均匀连续的碳层,最终获得硅基颗粒/M-碳@碳复合材料。
5.根据权利要求4所述的高性能硅基锂离子电池负极材料的制备方法,其特征在于,步骤(1)中所述硅基颗粒包括单质硅、硅碳复合材料、硅氧化物、硅氧化物/碳复合材料中的一种或多种;所述第一前驱体材料的平均粒径为0.005-1μm,比表面积为0.5-1000m2/g。
6.根据权利要求4所述的高性能硅基锂离子电池负极材料的制备方法,其特征在于,步骤(1)中所述第一前驱体材料的制备方法选自气相沉积法、湿化学法、物理混合法、固相烧结法中任一种。
7.根据权利要求4所述的高性能硅基锂离子电池负极材料的制备方法,其特征在于,步骤(2)中所述碳源材料包括糖类、树脂类、橡胶类、沥青、聚乙烯吡咯烷酮、有机酸、聚乙烯及其衍生物、聚醇类、聚乙烯醇及其衍生物或固相碳源材料中的一种或多种的任意比例组合;所述固相碳源材料包括碳纤维、石墨、石墨烯、炭黑、碳纳米颗粒、洋葱碳、活性炭或碳纳米管;所述固相碳源材料的平均粒径为0.005-150μm,比表面积为0.05-1000m2/g;第一前驱体材料与所述碳源材料的质量比为0.01-100。
8.根据权利要求4所述的高性能硅基锂离子电池负极材料的制备方法,其特征在于,步骤(2)包括以下步骤:
(2-1)将所述第一前驱体材料分散于溶剂中,使其与溶剂中所述碳源材料充分接触,形成均匀的凝聚态混合物;
(2-2)将上述混合物通过喷雾干燥法、团聚造粒、冷冻干燥、挤压造粒、挤出造粒、湿法造粒、熔融造粒或流化造粒方法获得二次颗粒;
(2-3)将获得的二次颗粒进行热处理获得最终的硅基颗粒/M-碳@碳复合材料。
9.根据权利要求4所述的高性能硅基锂离子电池负极材料的制备方法,其特征在于,步骤(3)中所述固相烧结是指在一定烧结气氛和温度制度下直接碳化二次颗粒的碳源,获得碳层;所述烧结气氛为低压或吹扫通气,吹扫气包括氢气、氮气、氩气、氦气、氖气、氧气、氪气、氙气中的一种或多种的任意比例组合,气体流量为1-1000sccm;所述温度制度为:碳化温度为200-1300℃,保温时间为0.5-100h,升/降温速率为1-100℃/min,升/降温速率随反应进程改变。
10.根据权利要求4所述的高性能硅基锂离子电池负极材料的制备方法,其特征在于,步骤(3)所述气相沉积采用的碳源包括甲烷、乙炔、丙烯、甲苯、苯、脱油沥青或煤沥青;载气包括氢气、氮气、氩气、氦气、氖气、氪气、氙气中的一种或多种的任意比例组合;所述载气与碳源的体积比为0.01-100,气体流量为1-1000sccm;所述气相沉积的沉积温度为200-1300℃,沉积时间为0.5-100h,升/降温速率为1-100℃/min,升/降温速率随反应进程改变。
CN202110055605.0A 2021-01-15 2021-01-15 一种高性能硅基锂离子电池负极材料及其制备方法 Pending CN112993253A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110055605.0A CN112993253A (zh) 2021-01-15 2021-01-15 一种高性能硅基锂离子电池负极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110055605.0A CN112993253A (zh) 2021-01-15 2021-01-15 一种高性能硅基锂离子电池负极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN112993253A true CN112993253A (zh) 2021-06-18

Family

ID=76344380

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110055605.0A Pending CN112993253A (zh) 2021-01-15 2021-01-15 一种高性能硅基锂离子电池负极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112993253A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113506861A (zh) * 2021-09-06 2021-10-15 北京壹金新能源科技有限公司 一种锂离子电池硅基复合负极材料及其制备方法
CN113629228A (zh) * 2021-07-23 2021-11-09 江苏科技大学 氧化硅/磷化物碳化复合物及其制备方法和应用
CN114050247A (zh) * 2021-11-16 2022-02-15 欣旺达电动汽车电池有限公司 改性硅基材料及其制备方法、锂电池负极材料
CN114203956A (zh) * 2021-12-10 2022-03-18 湖南宸宇富基新能源科技有限公司 一种夹心结构负极片、前驱极片及其制备和应用
CN114614000A (zh) * 2022-04-12 2022-06-10 浙江极氪智能科技有限公司 一种负极活性物质、电池用负极及电池
CN114665083A (zh) * 2022-03-21 2022-06-24 深圳市贝特瑞新能源技术研究院有限公司 负极材料及其制备方法、锂离子电池
CN116014087A (zh) * 2022-06-13 2023-04-25 浙江锂宸新材料科技有限公司 一种长循环高性能二次电池用负极材料的制备方法及其产品
CN117199327A (zh) * 2023-11-07 2023-12-08 南通大学 一种锂电池用快充硅基负极材料及其制备方法
CN117476920A (zh) * 2023-12-28 2024-01-30 贝特瑞新材料集团股份有限公司 负极材料及其制备方法、锂离子电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165187A (zh) * 2019-06-05 2019-08-23 安普瑞斯(南京)有限公司 一种锂离子电池用硅碳二次颗粒材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110165187A (zh) * 2019-06-05 2019-08-23 安普瑞斯(南京)有限公司 一种锂离子电池用硅碳二次颗粒材料及其制备方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113629228A (zh) * 2021-07-23 2021-11-09 江苏科技大学 氧化硅/磷化物碳化复合物及其制备方法和应用
CN113629228B (zh) * 2021-07-23 2022-07-22 江苏科技大学 氧化硅/磷化物碳化复合物及其制备方法和应用
CN113506861A (zh) * 2021-09-06 2021-10-15 北京壹金新能源科技有限公司 一种锂离子电池硅基复合负极材料及其制备方法
CN113506861B (zh) * 2021-09-06 2022-05-17 北京壹金新能源科技有限公司 一种锂离子电池硅基复合负极材料及其制备方法
CN114050247A (zh) * 2021-11-16 2022-02-15 欣旺达电动汽车电池有限公司 改性硅基材料及其制备方法、锂电池负极材料
CN114203956A (zh) * 2021-12-10 2022-03-18 湖南宸宇富基新能源科技有限公司 一种夹心结构负极片、前驱极片及其制备和应用
CN114665083A (zh) * 2022-03-21 2022-06-24 深圳市贝特瑞新能源技术研究院有限公司 负极材料及其制备方法、锂离子电池
CN114665083B (zh) * 2022-03-21 2024-07-02 深圳市贝特瑞新能源技术研究院有限公司 负极材料及其制备方法、锂离子电池
CN114614000A (zh) * 2022-04-12 2022-06-10 浙江极氪智能科技有限公司 一种负极活性物质、电池用负极及电池
CN114614000B (zh) * 2022-04-12 2023-08-18 浙江极氪智能科技有限公司 一种负极活性物质、电池用负极及电池
CN116014087A (zh) * 2022-06-13 2023-04-25 浙江锂宸新材料科技有限公司 一种长循环高性能二次电池用负极材料的制备方法及其产品
CN117199327A (zh) * 2023-11-07 2023-12-08 南通大学 一种锂电池用快充硅基负极材料及其制备方法
CN117199327B (zh) * 2023-11-07 2024-05-03 南通大学 一种锂电池用快充硅基负极材料及其制备方法
CN117476920A (zh) * 2023-12-28 2024-01-30 贝特瑞新材料集团股份有限公司 负极材料及其制备方法、锂离子电池

Similar Documents

Publication Publication Date Title
CN112993253A (zh) 一种高性能硅基锂离子电池负极材料及其制备方法
CN109755482B (zh) 硅/碳复合材料及其制备方法
CN102468485B (zh) 一种钛酸锂复合材料、其制备方法和应用
CN112349899B (zh) 一种硅基复合负极材料及其制备方法和锂离子电池
JP2022518585A (ja) シリコン複合物負極材料、その調製方法及びリチウムイオン電池
CN111710845A (zh) 硅氧复合负极材料及其制备方法和锂离子电池
WO2022016951A1 (zh) 硅基负极材料、负极和锂离子电池及其制备方法
CN111048770B (zh) 一种三元掺杂的硅基复合材料及其制备方法和应用
WO2022002057A1 (zh) 硅氧复合负极材料、负极和锂离子电池及其制备方法
CN111048764A (zh) 一种硅碳复合材料及其制备方法和应用
CN1889290A (zh) 一种橄榄石碳绒球复合材料及其用途
CN110931753B (zh) 硅负极材料及其制备方法
CN113764642A (zh) 一种含锂硅氧化物复合负极材料及其制备方法和锂离子电池
CN108281627B (zh) 一种锂离子电池用锗碳复合负极材料及其制备方法
CN110729471B (zh) 一种锂离子电池硅@石墨烯/cvd碳复合负极材料及其制备方法和应用
CN100540456C (zh) 一种纳米硅线/碳复合材料及其制备方法和用途
CN105576221B (zh) 一种锂离子电池负极活性材料前驱体和锂离子电池负极活性材料及其制备方法
CN109473665A (zh) 一种纳米硅基材料及其制备方法和应用
CN112886012A (zh) 一种高首次库仑效率的硅基锂离子电池负极材料及其制备方法
CN107634193B (zh) 一种多孔硫化亚铁纳米线与氮掺杂碳复合材料及其制备方法和应用
CN109494399A (zh) 一种硅/固态电解质纳米复合材料及其制备方法和应用
Wang et al. High-performance anode of lithium ion batteries with plasma-prepared silicon nanoparticles and a three-component binder
CN109309234B (zh) 金属锂负极、其制备方法和包含该金属锂负极的锂电池
CN110600710B (zh) 硫化铁-碳复合材料及其制备方法、锂离子电池负极材料、锂离子电池负极片和锂离子电池
CN110854359B (zh) 硅/碳复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210618