KR100881510B1 - Bpsg 라이너의 형성 방법 - Google Patents

Bpsg 라이너의 형성 방법 Download PDF

Info

Publication number
KR100881510B1
KR100881510B1 KR1020060134569A KR20060134569A KR100881510B1 KR 100881510 B1 KR100881510 B1 KR 100881510B1 KR 1020060134569 A KR1020060134569 A KR 1020060134569A KR 20060134569 A KR20060134569 A KR 20060134569A KR 100881510 B1 KR100881510 B1 KR 100881510B1
Authority
KR
South Korea
Prior art keywords
liner
bpsg
forming
siof
oxide film
Prior art date
Application number
KR1020060134569A
Other languages
English (en)
Other versions
KR20080060459A (ko
Inventor
최승철
Original Assignee
동부일렉트로닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부일렉트로닉스 주식회사 filed Critical 동부일렉트로닉스 주식회사
Priority to KR1020060134569A priority Critical patent/KR100881510B1/ko
Publication of KR20080060459A publication Critical patent/KR20080060459A/ko
Application granted granted Critical
Publication of KR100881510B1 publication Critical patent/KR100881510B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

본 발명은 BPSG라이너 형성 방법의 개선을 통해 우수한 확산방지능력과 높은 식각선택비를 갖는 BPSG라이너(liner)를 형성하는 방법의 제공을 그 목적으로 한다. 상기와 같은 목적을 달성하기 위하여 본 발명은 종래의 단일막의 라이너과는 달리 B, P 이온포집능력이 뛰어난 불화실리콘산화막(SiOF)와 식각선택비가 높은 실리콘 질화막을 적층한 이중층을 이용하여 라이너를 형성하는 방법을 그 특징으로 한다. 본 발명에 의할 시, 층간절연막으로 BPSG를 사용하는 경우 이층구조의 라이너로 인해 B 및 P의 확산을 효과적을 방지함으로서 소자의 작동에 악영향을 끼치는 원인을 제거함과 동시에 식각중단층으로서의 역할도 수행할 수 있다.

Description

BPSG 라이너의 형성 방법{Method for forming of BPSG liner}
도 1a 내지 도1c는 본 발명의 특징에 따른 BPSG 라이너의 형성 방법을 단계별로 나타낸 것이다.
(도면의 주요 부분에 대한 부호의 설명)
101:기판 102:금속선
103:제1라이너 104:제2라이너
105:BPSG
본 발명은 층간절연막으로 BPSG를 사용하는 경우, 상기 BPSG에 포함된 B 이온 또는 P 이온의 확산을 방지하면서 상기 BPSG에 대한 높은 식각 선택비를 가지는 BPSG 라이너(liner)를 형성하는 방법에 관한 것이다.
반도체 소자에 있어서 금속배선을 형성한 후 층간절연막을 도포하여 금속배선간의 절연을 수행하고 있다. 이때 상기 층간절연막으로는 HDP(high density plasma) 산화막이나 또는 CVD(chemical vapor deposition)법에 의한 BPSG(Boron phosphorous Silicate Glass) 등이 일반적으로 사용되고 있다. BPSG는 실리콘 산화물에 B 및 P가 도핑된 것으로써 이러한 B 및 P가 도핑됨으로 인해 특정 영역대의 온도 조건 하에서 리플로우(reflow)가 일어나는 특성을 가지고 있다. 즉 도핑이 되지 않은 일반 산화막에 비해 낮은 온도에서도 리플로우가 발생한다. 따라서 층간절연막의 도포 후 하부층의 구조로 인하여 발생한 단차를 감소시키는 공정, 즉 평탄화 공정에 BPSG의 리플로우가 사용되기도 한다. 또한 이러한 B 또는 P는 소자 작동의 장애가 되는 양이온, 예를 들어 Na이온 등과 같은 양이온들을 포집하는 능력이 뛰어나다. 이 BPSG막의 리플로우 특성과 양이온 포집 능력은 BPSG막에 함유 되어 있는 B, P의 양에 의해 결정 된다. 즉 함유량이 높으면 리플로우에 필요한 온도가 낮아지게 되고 양이온 포집 능력이 증가되게 된다. 그러나 이러한 B, P는 BPSG막 형성 후 후속 열처리 공정에서 실리콘 기판에 형성된 게이트나 웰(well)로 이온 형태로 확산되어 소자의 누설 전류를 야기시키는 악영향을 발생시키기도 한다. 이러한 문제를 방지하기 위하여 층간절연막을 형성하기 전에 B, P의 확산을 방지하는 확산방지층을 형성하여야 하면 이러한 확산방지층을 라이너(liner)라고 한다. 따라서 라이너는 B 및 P의 확산을 방지하는 능력이 뛰어나야 한다. 한편 경우에 따라 라이너는 층간절연막인 BPSG의 식각시 식각중단층으로의 역할을 수행하여야 하며 이를 위해서는 BPSG의 식각속도에 대한 식각속도의 비율인 식각선택비가 커야 한다. 예를 들어 듀 얼 다마신(dual damascene) 공정에 있어서는 트렌치를 형성하는 단계에서 식각중단층이 필요하며 이 경우 라이너가 식각중단층으로 사용될 수 있다. 그러나 종래의 라이너로 사용되는 실리콘 산화막은 고농도 BPSG, 즉 B가 3wt% 이상이고, P가 5wt% 이상인 경우에는 B 및 P의 방지막으로의 역할을 충분히 수행하지 못하다. 또한 식각선택비도 높지 않아 식각중단층으로의 역할을 충분히 수행하지 못한다. 한편 실리콘 질화막의 경우 BPSG와의 식각선택비가 커서 듀얼 다마신 공정에서 식각중단층으로 사용되고 있으나, 역시 고농도 BPSG에서는 B 및 P의 방지막으로서의 역할을 충분히 수행하지 못한다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 라이너 형성 방법의 개선을 통해 우수한 확산방지능력과 높은 식각선택비를 갖는 라이너를 형성하는 방법의 제공을 그 목적으로 한다.
상기와 같은 목적을 달성하기 위하여 본 발명은 종래의 단일막의 라이너과는 달리 B 및 P 이온포집능력이 뛰어난 막과 식각선택비가 높은 막을 적층한 이중층을 이용하여 라이너를 형성하는 방법을 그 특징으로 한다.
즉 BPSG와 접촉되는 계면에는 이온포집능력이 뛰어난 막을 사용하여 B 및 P의 확산 을 방지하는 기능을 담당하게 하고, 나머지층은 식각중단층으로의 기능을 담당하게 하는 것이다. 이온포집능력이 뛰어난 막으로는 플로린(fluorine)이 함유된 산화막, 즉 SiOF를 사용한다. 플로린의 경우 반응성이 우수하여 이온포집능력이 뛰어나다. 따라서 이러한 플로린이 포함된 가스, 실리콘이 포함된 가스 및 산소가 포함된 가스를 반응시켜 SiOF를 형성한다. 또한 식각중단층으로는 BPSG에 대한 식각선택비가 큰 실리콘 질화막이 사용될 수 있다.
이하 첨부된 도면을 참고로 하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 본 발명의 기술적 사상의 한도 내에서 여러 형태로 구현될 수 있으며 여기에 설명하는 실시예에 한정되지 않는다.
도1a내지 도1c에는 본 발명의 특징에 다른 이층 라이너의 형성 방법이 단계별로 나타나 있다. 도1a에 나타낸 것과 같이, 금속선(102)이 형성된 기판(101)에 제1라이너(103)를 형성한다. 상기 금속선은 구리, 알루미늄과 같은 금속으로 이루어진 배선 뿐만 아니라 게이트나 메모리 소자의 비트라인에 사용되는 폴리사이드 구조의 폴리실리콘으로 이루어진 배선도 모두 포함한다. 상기 제1라이너로서 BPSG에 대한 식각선택비가 우수한 실리콘 질화막을 도포할 수 있다. 상기 질화막은 화학기상증착법(chemical vapoer depostion)을 이용하여100Å~800Å범위에서 형성할 수 있다. 이때 실리콘 공급 가스로는 SiH4, SiHCl3, SiH2Cl2, SiH3Cl 중 선택된 어느 하나가 사용될 수 있으며, 질소 공급가스로는 N2, NH3 중 선택된 어느 하나가 사용될 수 있다. 반응의 에너지를 열을 공급하는 열 화학기상증착법(thermal chemical vapor deposition)에서의 도포는 700℃~850℃ 온도 범위에서 수행되며, 반응 가스를 플라즈마화 한 후 반응을 수행하는 플라즈마 화학기상증착법(plasma assisted chemical vapor depostion)에서는 300℃ ~ 500℃ 온도 범위에서 수행된다.
다음, 도1b에 나타낸 것과 같이 제1라이너 위에 B 및 P의 이온포집능력이 우수한 제2라이너(104)를 형성한다. 상기 제2라이너로는 플라즈마 화학기상증착법에 의해 형성된SiOF가 사용될 수 있다. 상기 SiOF막은 플로린 공급 가스, 실리콘 공급 가스 및 산소 공급 가스를 반응시켜 형성한다. 상기 플로린의 공급가스로는 C2F6, CF4, CHF3 중에서 선택된 어느 하나를 사용될 수 있고, 상기 실리콘 공급가스로는 SiH4, TEOS(Tetraethyl orthosilicate)가 사용될 수 있고, 상기 산소 공급 가스로는 O2 또는 N2O가 사용될 수 있으며, 반응온도는 350℃ ~ 500℃ 범위에서 수행될 수 있다. 상기 SiOF 막의 두께는 이층 구조의 라이너 두께 전체의 10% ~ 20% 범위에서 형성한다. 또한 상기 SiOF 막 내의 F 농도는 B및 P의 농도가 증가할수록 증가시키는 것이 바람직하며 예를 들어, B가 3wt%, P가 5wt% 인 경우에는 SiOF내의 플로린의 농도는 1% ~ 3%의 범위를 갖는다. 다음, 도1c에 나타난 것과 같이 층간절연막이 BPSG(105)을 도포한 후 리플로우를 통해 평탄화 할 수 있다.
다음 도1c에 나타낸 것과 같이 BPSG(105)를 CVD에 의해 도포한 후 적정온도에서 리플로우 처리하여 평탄화를 수행한다.
본 발명에 의할 시, 층간절연막으로 BPSG를 사용하는 경우 이층구조의 라이너로 인해 B 및 P의 확산을 효과적을 방지함으로서 소자의 작동에 악영향을 끼치는 원인을 제거함과 동시에 식각중단층으로서의 역할도 수행할 수 있다.

Claims (6)

  1. 삭제
  2. 기판에 금속선을 형성하는 단계와,
    상기 금속선이 형성된 기판에 실리콘 질화막을 형성하는 단계와,
    상기 실리콘 질화막 상부에 불화실리콘산화막(SiOF)을 형성하는 단계와,
    상기 불화실리콘산화막 상부에 BPSG를 도포하는 단계
    를 포함하는 BPSG 라이너 형성 방법.
  3. 제2항에 있어서, 상기 불화실리콘산화막(SiOF)은 플라즈마 화학기상증착법에 의해 350℃ ~ 500℃ 온도 범위에서 형성되는 것을 특징으로 하는 BPSG 라이너 형성 방법.
  4. 제3항에 있어서, 상기 불화실리콘산화막(SiOF)의 플로린 공급가스로는 C2F6, CF4, CHF3 중에서 선택된 어느 하나가 사용되고, 실리콘 공급가스로는 SiH4, TEOS(Tetraethyl orthosilicate)중에서 선택된 어느 하나가 사용되고, 산소 공급 가스로는 O2 또는 N2O 중 선택된 어느 하나가 사용되는 것을 특징으로 하는 BPSG 라이너 형성 방법.
  5. 제2항에 있어서, 상기 불화실리콘산화막(SiOF)의 두께는 상기 BPSG 라이너의 전체 두께의 10% ~ 20% 범위에서 형성하는 것을 특징으로 하는 BPSG 라이너 형성방법.
  6. 제2항에 있어서, 상기 불화실리콘산화막(SiOF) 내의 플로린 농도는 1% ~ 3% 인 것을 특징으로 하는 BPSG 라이너 형성 방법.
KR1020060134569A 2006-12-27 2006-12-27 Bpsg 라이너의 형성 방법 KR100881510B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060134569A KR100881510B1 (ko) 2006-12-27 2006-12-27 Bpsg 라이너의 형성 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060134569A KR100881510B1 (ko) 2006-12-27 2006-12-27 Bpsg 라이너의 형성 방법

Publications (2)

Publication Number Publication Date
KR20080060459A KR20080060459A (ko) 2008-07-02
KR100881510B1 true KR100881510B1 (ko) 2009-02-05

Family

ID=39812981

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060134569A KR100881510B1 (ko) 2006-12-27 2006-12-27 Bpsg 라이너의 형성 방법

Country Status (1)

Country Link
KR (1) KR100881510B1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000045888A (ko) * 1998-12-30 2000-07-25 김영환 저유전율 절연막 형성방법
KR20060017173A (ko) * 2004-08-20 2006-02-23 동부아남반도체 주식회사 반도체 소자의 절연막 형성 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000045888A (ko) * 1998-12-30 2000-07-25 김영환 저유전율 절연막 형성방법
KR20060017173A (ko) * 2004-08-20 2006-02-23 동부아남반도체 주식회사 반도체 소자의 절연막 형성 방법

Also Published As

Publication number Publication date
KR20080060459A (ko) 2008-07-02

Similar Documents

Publication Publication Date Title
US7589012B1 (en) Method for fabricating semiconductor memory device
KR20090050371A (ko) H2 원격 플라즈마 처리를 이용한 반도체 소자의 콘택플러그 형성방법
JP4987796B2 (ja) 半導体装置の製造方法
US7846850B2 (en) Method of fabricating insulation layer and method of fabricating semiconductor device using the same
KR100758124B1 (ko) 반도체 소자 및 이의 제조 방법
JP4672697B2 (ja) 半導体装置の製造方法
KR100881510B1 (ko) Bpsg 라이너의 형성 방법
JP4724146B2 (ja) 半導体装置
KR101142334B1 (ko) 반도체 소자 및 그의 제조방법
KR20080061075A (ko) 반도체 소자의 금속배선 형성방법
KR100646524B1 (ko) 반도체 장치 제조 방법
KR100596277B1 (ko) 반도체 소자 및 그의 절연막 형성 방법
KR100443148B1 (ko) 반도체소자의 제조방법
JP2009094477A (ja) 半導体素子の金属配線形成方法
KR100623587B1 (ko) 반도체소자 및 그의 제조 방법
KR0149468B1 (ko) 반도체 장치의 제조방법
US8053369B2 (en) Process for forming opening portion in interlayer insulation film on metallic layer of semiconductor device
KR100540635B1 (ko) 에프에스지막의 표면 처리 방법
KR100678007B1 (ko) 반도체 소자의 층간 절연막 형성 방법
KR100367499B1 (ko) 반도체소자의제조방법
KR100574560B1 (ko) 반도체 소자의 금속배선 형성 방법
KR100392896B1 (ko) 반도체 금속 배선 형성 방법
KR100459063B1 (ko) 반도체 소자의 금속 배선의 층간 절연막 제조 방법
KR100582438B1 (ko) 반도체 소자 및 그 제조방법
KR100256232B1 (ko) 반도체소자의층간절연막형성방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111220

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee