KR100859068B1 - 스파크 플러그 - Google Patents

스파크 플러그 Download PDF

Info

Publication number
KR100859068B1
KR100859068B1 KR1020020038668A KR20020038668A KR100859068B1 KR 100859068 B1 KR100859068 B1 KR 100859068B1 KR 1020020038668 A KR1020020038668 A KR 1020020038668A KR 20020038668 A KR20020038668 A KR 20020038668A KR 100859068 B1 KR100859068 B1 KR 100859068B1
Authority
KR
South Korea
Prior art keywords
spark plug
sealing material
insulator
conductive
insulating filler
Prior art date
Application number
KR1020020038668A
Other languages
English (en)
Other versions
KR20030005028A (ko
Inventor
혼다도시타케
Original Assignee
니혼도꾸슈도교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 니혼도꾸슈도교 가부시키가이샤 filed Critical 니혼도꾸슈도교 가부시키가이샤
Publication of KR20030005028A publication Critical patent/KR20030005028A/ko
Application granted granted Critical
Publication of KR100859068B1 publication Critical patent/KR100859068B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/34Sparking plugs characterised by features of the electrodes or insulation characterised by the mounting of electrodes in insulation, e.g. by embedding

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spark Plugs (AREA)

Abstract

(과제) 절연체의 관통구멍의 내경이 작더라도 충분히 높은 밀봉성능을 확보할 수 있고, 더 나아가서는 고출력 엔진에 적용된 경우에서도 충분한 내구성을 달성할 수 있는 스파크 플러그를 제공한다.
(해결수단) 스파크 플러그(100)는, 절연체(2)가 알루미나질 세라믹으로 구성됨과 아울러 관통구멍(6)의 내경이 도전성 밀봉재(16,17)의 배치위치에서 4㎜ 이하로 된다. 그리고, 상기 도전성 밀봉재(16,17)의 선팽창계수가 6.5×10-6/℃ 이하의 범위 내로 조정된다.

Description

스파크 플러그{SPARK PLUG}
도 1은 본 발명의 스파크 플러그의 일례를 나타낸 전체 종단면도
도 2는 도전성 밀봉재층의 조직 모식도
도 3은 절연체의 몇 개의 실시예를 나타낸 종단면도
도 4는 도전성 밀봉재 중에 함유되는 미립 절연성 필러의, 밀봉공정시의 거동을 모식적으로 나타낸 도면
도 5는 도 1의 스파크 플러그의 제조공정 설명도
도 6은 도 5에 계속되는 설명도
도 7은 도 6에 계속되는 설명도
도 8은 도전성 밀봉재층의 작용 설명도
도 9는 밀봉성 평가의 실험계를 나타낸 도면
* 도면 중 주요 부분에 대한 부호의 설명 *
1 - 금속 셸(metallic shell) 2 - 절연체
3 - 중심전극 4 - 접지전극
13 - 단자전극 16,17 - 도전성 밀봉재층
본 발명은 내연기관에 사용되는 스파크 플러그에 관한 것이다.
종래에는, 절연체의 축방향으로 형성된 관통구멍에 대해서 그 일단부측에 단자전극을 삽입함과 아울러 타단부측에 중심전극을 삽입하고, 상기 관통구멍 내에 있어서 단자전극과 중심전극을 도전성 밀봉재로 밀봉(seal)ㆍ고착한 구조를 가지는 스파크 플러그가 널리 사용되고 있다. 절연체의 관통구멍 내에 있어서, 단자전극과 중심전극은 도전성 밀봉재에 의해서 직결되거나 혹은 각각의 측의 도전성 밀봉재층 사이에 저항체를 배치하는 형태로 결합된다. 도전성 밀봉재는, 일반적으로 금속과 베이스 글라스(base glass)의 혼합물로 이루어지는 것이고, 금속입자가 글라스 매트릭스 중에 네트워크 형상으로 접촉한 형태로 분산됨으로써, 절연성 글라스에 대해서 복합 재료적으로 도전성을 부여한 것이다.
여기서, 스파크 플러그용 절연체는 최근 그 대부분의 것이 내전압이 우수한 알루미나질 세라믹으로 구성된 것이 사용된다. 한편, 단자전극 혹은 중심전극은 Fe이나 Ni 등을 주성분으로 하는 금속제이다. 그런데, 단자전극 혹은 중심전극과 절연체는 그 선팽창계수의 차가 상당히 크다(예를 들면, 알루미나는 7.3×10-6/℃, Fe 및 Ni은 12∼14×10-6/℃ 전후이다). 따라서, 예를 들어, 사용시에 고온화된 스파크 플러그가 냉각될 때, 단자전극 혹은 중심전극이 절연체보다도 수축량이 크기 때문 에, 도전성 밀봉재가 이것에 추종할 수 없는 경우에는 박리 등을 일으킬 현념(懸念)도 있다. 여기서, 도전성 밀봉재는 금속과 글라스(무기재료)의 혼합체이고, 종래에는 단자전극 혹은 중심전극과 절연체와의 중간에 선팽창계수를 가지는 것으로서 구성되어 있었기 때문에, 상기 양자의 수축변위의 차는 다소 경감되는 경향이 있었다고 말할 수 있다.
그러나, 최근에는 스파크 플러그가 적용되는 엔진의 사양이 고출력화됨에 따라서 혼합기의 압축비도 높아지고 있다는 점에서, 밀봉재의 기밀성능도 보다 고레벨의 것이 요구되고 있다. 또한, 최근의 엔진은 스파크 플러그를 부착하는 실린더 헤드의 주변 기구가 복잡화됨에 따라서 부착 스페이스도 확보하기 어렵게 되고 있다는 점에서, 스파크 플러그의 소형화도 강력하게 요구되고 있다.
스파크 플러그가 소형화되면, 절연체 더 나아가서는 이것에 형성되는 관통구멍의 내경도 축소되게 되는데, 이와 같은 스파크 플러그의 중심전극에 엔진의 연소압이 가해지면, 관통구멍 내의 밀봉재에 부가되는 단위 면적당의 압력이 높아지게 되어 혼합기의 압축비가 높아지게 됨과 더불어, 종래의 도전성 밀봉재의 사양으로는 이제는 내구성을 충분히 확보할 수 없게 되어 가고 있다.
본 발명의 과제는, 절연체의 관통구멍 내경이 작더라도 도전성 밀봉재에 의한 충분히 높은 밀봉성능을 확보할 수 있고, 더 나아가서는 고출력의 엔진에 적용된 경우에도 충분한 내구성을 달성할 수 있는 스파크 플러그를 제공하는데 있다.
본 발명의 스파크 플러그는, 상기한 제 1 과제를 해결하기 위해서, 절연체에 형성된 관통구멍 내에 단자전극과 중심전극이 도전성 밀봉재를 통해서 고착된 스파크 플러그에 있어서, 상기 절연체가 알루니마질 세라믹으로 구성됨과 아울러 상기 관통구멍의 내경이 상기 도전성 밀봉재의 배치위치에서 4㎜ 이하로 되고, 또한 상기 도전성 밀봉재의 선팽창계수가 6.8×10-6/℃ 미만의 범위로 조정되어 이루어지는 것을 특징으로 한다. 또한, 본 발명에 있어서, 알루미나질 세라믹은, 알루미나의 함유율이 80질량% 이상의 것을 말하며, 선팽창계수는 20℃∼350℃의 평균값을 의미한다.
상기한 바와 같이 절연체를 구성하는 알루미나의 선팽창계수는 7×10-6/℃ 정도이고, 종래의 스파크 플러그에 있어서의 도전성 밀봉재(이하, 단지 '밀봉재'라고도 한다)는 단자전극 혹은 중심전극을 구성하는 금속과 알루미나의 중간 선팽창계수를 가지는 것으로 구성하고 있었다. 이 경우, 고온으로부터의 냉각시에 있어서는, 도 8의 (a)에 나타낸 바와 같이, 밀봉재는 알루미나질 세라믹으로 이루어지는 절연체보다 수축량이 커지게 되어, 관통구멍의 내면에 있어서의 밀봉재와 절연체의 접합면에는 알루미나가 수축되지 않는 양만큼 밀봉재측으로 인장응력이 잔류하기 쉽고, 이것에 의해서 크랙의 진전이나 박리 등이 쉽게 발생하게 된다. 따라서, 관통구멍의 내경이 4㎜ 이하인 소형 스파크 플러그에 있어서는, 예를 들면 고출력ㆍ고압축비의 조건에서 운전되는 엔진에 적용하였을 때, 상기한 요인과 더불어 내구 성을 확보할 수 없었던 것이라 생각된다. 또, 밀봉재의 반경방향의 수축이 크게 발생하면, 절연체의 관통구멍의 내면에서 밀봉재가 박리되어 간극을 발생시킴으로써, 기밀성이나 밀봉재 자체의 내구성 저하를 초래할 우려도 있다.
그러나, 본 발명의 스파크 플러그의 제 1 구성에 있어서는, 밀봉재의 선팽창계수를 알루미나보다도 작은 값, 보다 구체적으로는 6.8×10-6/℃ 미만의 범위 내로 조정하였기 때문에, 도 8의 (b)에 나타낸 바와 같이, 냉각시에 있어서의 밀봉재와 절연체의 수축량의 대소관계가 역전되어, 크랙의 진전 억제에 유익한 압축응력이 잔류한다. 이 결과, 관통구멍의 내경이 4㎜ 이하인 소형 스파크 플러그를 고출력ㆍ고압축비의 조건으로 운전되는 엔진에 적용한 경우에도 밀봉재 접합부의 충분한 내구성을 확보할 수 있고, 더 나아가서는 양호한 기밀성능을 장기간에 걸쳐서 유지하는 것이 가능하게 된다. 또, 밀봉재의 반경방향의 수축이 억제됨으로써, 절연체의 관통구멍의 내면에서 밀봉재가 박리되어 간극을 발생시키는 현념도 생기지 않는다. 또한, 밀봉재의 선팽창계수는 6.0×10-6/℃ 이하로 하는 것이 바람직하다.
밀봉재의 선팽창계수가 6.8×10-6/℃ 이상에서는 상기한 효과가 불충분하게 된다. 또, 밀봉재의 선팽창계수의 하한값에는 특히 한정은 없으나, 재료선택에 의한 조정의 한계는 자연히 존재한다. 본 발명자의 검토에 의하면, 적절한 재료선택에 의해서, 예를 들면 3.0×10-6/℃ 정도까지 선팽창계수를 억제한 밀봉재를 실현할 수 있다는 것을 확인하였다.
도전성 밀봉재는, 구체적으로는 베이스 글라스와 도전성 필러와 절연성 필러를 함유한 것으로 할 수 있으며, 상기한 바와 같은 선팽창계수를 가진 것으로 하기 위해서, 절연성 필러가 산화알루미늄보다도 선팽창계수가 낮은 무기재료를 함유시킬 수 있다. 도전성 밀봉재의 선팽창계수를 보다 낮게 억제하기 위해서는, 절연성 필러가 베이스 글라스보다도 선팽창계수가 낮은 무기재료로 이루어지는 것이 더욱 바람직하다.
베이스 글라스는, 종래의 도전성 밀봉재와 마찬가지로 예를 들면 붕규산염계의 것 등, 산화물을 주체로 한 것을 사용할 수 있다. 이 경우, 절연성 필러를 산화물계 무기재료로 구성하면, 베이스 클라스와의 친화성을 높일 수 있으며, 강도 및 기밀성이 우수한 밀봉구조를 실현함에 있어서 유익하다. 이와 같은 산화물계 무기재료로서, 예를 들면 β-유크립타이트(eucryptite), β-스포듀민(spodumene), 키이다이트(keatite), 실리카, 물라이트, 코디어라이트(cordierite), 지르콘 및 티탄산알루미늄으로부터 선택되는 1종 또는 2종 이상으로 이루어지는 것을 본 발명에 매우 적합하게 사용할 수 있다.
절연성 필러로서 산화알루미늄보다도 선팽창계수가 작은 산화물계 무기재료로 이루어지는 절연성 필러를 사용할 경우, 도전성 밀봉재의 단면 조직에서 관찰되는 절연성 필러의 입자 중, 입경이 100∼350㎛의 범위에 속하는 것의 단면 조직 중에 점유하는 면적율이 2∼40%인 것이 바람직하다. 또한, 본 명세서에 있어서, "단면 조직에서 관찰되는 절연성 필러의 입자의 입경"이란, 상기 단면상의 입자와 동일 면적을 가지는 원의 직경으로 나타내는 것으로 한다.
산화알루미늄보다도 선팽창계수가 작은 산화물계 무기재료로 이루어지는 절연성 필러를 이용함으로써, 도전성 밀봉재의 선팽창계수를 알루미나질 세라믹으로 이루어지는 절연체보다도 적당한 정도로 저하시키는 것이 가능하게 되며, 밀봉재 접합부의 내구성을 확보함에 있어서 유익하게 된다. 그리고, 밀봉재의 단면 조직에 있어서의 상기 절연성 필러의 형태를 상기한 바와 같이 조정함으로써, 밀봉성 및 그 내구성이 격단으로 향상되며, 예를 들면 관통구멍의 내경이 4㎜ 이하인 소형 스파크 플러그를 고출력ㆍ고압축비의 조건에서 운전되는 엔진에 적용항 경우에도 양호한 기밀성능을 장기간에 걸쳐서 유지하는 것이 가능하게 된다.
단면 조직에서 관찰되는 절연성 필러의 입자에 있어서, 입경이 100∼350㎛의 범위에 속하는 것의 면적율이 2% 미만으로 되는 것은, 최초 배합한 산화물계 무기재료로 이루어지는 절연성 필러의 입자 중, 작은 입경의 것(예를 들면, 50㎛ 미만의 것)이 가열에 의한 밀봉공정시에 베이스 글라스 중에 녹아 들어가는 것을 의미한다. 이 결과, 밀봉재의 연화점이 과도하게 상승하여 양호한 밀봉성 혹은 밀봉재 접합부의 접합강도를 확보할 수 없게 된다. 한편, 상기 면적율이 40%를 초과하면, 절연성 필러 입자의 함유율 자체가 과잉되게 되며, 연화시의 밀봉재의 유동성이 상실되어 상기한 바와 마찬가지로 양호한 밀봉성 혹은 밀봉부의 접합강도를 확보할 수 없게 된다.
(발명의 실시형태)
이하, 본 발명의 실시형태를 첨부한 도면을 참조하여 설명한다.
도 1은 본 발명에 관한 스파크 플러그의 일 실시예를 나타낸다. 상기 스파크 플러그(100)는 통형상의 금속 셸(1), 선단부(21)가 돌출되도록 상기 금속 셸(1)의 내측에 삽입된 절연체(2), 선단에 형성된 발화부(31)를 돌출시킨 상태로 절연체(2)의 내측에 형성된 중심전극(3), 및 금속 셸(1)에 일단이 용접 등에 의해서 결합됨과 아울러 타단측이 측방으로 굽혀져서 그 측면이 중심전극(3)의 선단부와 대향하도록 배치된 접지전극(4) 등을 구비하고 있다. 또, 상기 접지전극(4)에는 상기 발화부(31)와 대향하는 발화부(32)가 형성되어 있으며, 이들 발화부(31,32)간의 간극이 불꽃방전 갭(g)으로 되어 있다.
금속 셸(1)은 저탄소강 등의 금속에 의해서 원통형상으로 형성되어 스파크 플러그(100)의 하우징을 구성함과 아울러, 그 외주면에는 스파크 플러그(100)를 도시하지 않은 엔진 블록에 부착하기 위한 나사부(7)가 형성되어 있다. 또한, 도면부호 1e는, 금속 셸(1)을 엔진 블록에 부착할 때에 스패너나 렌치 등의 공구를 걸어맞추기 위한 공구걸어맞춤부로서 육각형의 축단면 형상을 이루고 있다.
절연체(2)는 그 내부에 축방향을 따라서 중심전극(3)을 삽입하기 위한 관통구멍(6)을 가지고 있으며, 전체가 이하의 절연재료에 의해서 구성되어 있다. 즉, 이 절연재료는 알루미나를 주체로 하여 구성되며, Al성분을 Al2O3으로 환산한 값으로 80∼98㏖%(바람직하게는 90∼98㏖%) 함유하는 알루미나질 세라믹 소결체로서 구성된다.
Al 이외의 성분은, 구체적으로는 하기한 범위 내에서 1종 또는 2종 이상을 함유시킬 수 있다.
Si성분 : SiO2 환산값으로 1.50∼5.00㏖%;
Ca성분 : CaO 환산값으로 1.20∼4.00㏖%;
Mg성분 : MgO 환산값으로 0.05∼0.17㏖%;
Ba성분 : BaO 환산값으로 0.15∼0.50㏖%;
B성분 : B2O3 환산값으로 0.15∼0.50㏖%;
절연체(2)의 축방향 중간에는 둘레방향 외측으로 돌출되는 돌출부(2e)가 플랜지형상으로 형성되어 있다. 그리고, 절연체(2)에 있어서는, 중심전극(3)의 선단부를 향하는 측을 전방측이라 하였을 때, 상기 돌출부(2e)보다도 후방측이 이것보다도 작은 지름으로 형성된 본체부(2b)로 되어 있다. 한편, 돌출부(2e)의 전방측에는 이것보다도 작은 지름으로 형성된 제 1 축부(2g)와 이 제 1 축부(2g)보다도 더 작은 지름으로 형성된 제 2 축부(2i)가 순차 형성되어 있다. 또한, 본체부(2b)의 외주면 후단부에는 파형부(2c)가 형성되어 있고, 그 외주면에는 유약층(2d)이 형성되어 있다, 또, 제 1 축부(2g)의 외주면은 대략 원통형상으로 형성되어 있고, 제 2 축부(2i)의 외주면은 선단측을 향하여 갈수록 지름이 축소되는 대략 원추면형상으로 형성되어 있다.
절연체(2)의 관통구멍(6)은 중심전극(3)이 삽입되는 대략 원통형상의 제 1 부분(6a)과, 이 제 1 부분(6a)의 후방측(도 1의 상측)에 이것보다도 큰 지름으로 형성된 대략 원통형상의 제 2 부분(6b)을 가지고 있다. 단자전극(13)과 저항체(15)는 제 2 부분(6b) 내에 수용되고, 중심전극(3)은 제 1 부분(6a) 내에 삽입된다. 중 심전극(3)의 후단부에는 그 외주면에서 외측으로 돌출되는 전극고정용 볼록부(3c)가 형성되어 있다. 그리고, 상기 관통구멍(6)의 제 1 부분(6a)과 제 2 부분(6b)은 도 3의 (a)에 나타낸 제 1 축부(2g) 내에서 서로 접속되어 있으며, 이 접속위치에는 중심전극(3)의 전극고정용 볼록부(3c)를 받치기 위한 볼록부 받이면(6c)이 테이퍼면 혹은 R곡면 형상으로 형성되어 있다.
또, 제 1 축부(2g)와 제 2 축부(2i)가 접속되는 접속부(2h)의 외주면은 단차면으로 되어 있으며, 이 접속부(2h)와 금속 셸(1)의 내면에 형성된 걸어맞춤부로서의 돌조부(1c)가 링형상의 판패킹(63)을 개재시킨 상태에서 걸어맞춰짐으로써, 축방향으로의 빠짐이 방지된다. 한편, 금속 셸(1)의 후방측 개구부 내면과 절연체(2)의 외면의 사이에는 플랜지형상의 돌출부(2e)의 후방측 둘레가장자리와 걸어맞춰지는 링형상의 패킹(62)이 배치되어 있고, 그 후방측에는 활석 등의 충진층(61)을 개재시키고서 링형상의 패킹(60)이 배치되어 있다. 그리고, 절연체(2)를 금속 셸(1)내에 전방측을 향해서 압입한 상태에서, 금속 셸(1)의 개구부 가장자리를 패킹(60)을 에워싸도록 내측으로 코킹하여 코킹부(1d)를 형성함으로써, 금속 셸(1)이 절연체(2)에 대해서 고정된다.
도 3의 (a) 및 (b)는 절연체(2)의 몇 개의 예를 나타낸 것이다. 그 각부의 치수를 이하에 예시한다.
ㆍ 전체 길이(L1) : 30∼75㎜.
ㆍ 제 1 축부(2g)의 길이(L2) : 0∼30㎜{단, 돌출부(2e)와의 접속부(2f)는
포함하지 않고, 제 2 축부(2i)와의 접속부(2h)는 포함한다}.
ㆍ 제 2 축부(2i)의 길이(L3) : 2∼27㎜.
ㆍ 본체부(2b)의 외경(D1) : 9∼13㎜.
ㆍ 돌출부(2e)의 외경(D2) : 11∼16㎜.
ㆍ 제 1 축부(2g)의 외경(D3) : 5∼11㎜.
ㆍ 제 2 축부(2i)의 기단부 외경(D4) : 3∼8㎜.
ㆍ 제 2 축부(2i)의 선단부 외경(D5){단, 선단면 외주연에 R 내지 모따기가
실시된 경우는, 중심축선(O)을 포함하는 단면에 있어서, 상기 R 내지 모따
기의 기단부 위치에 있어서의 외경을 나타낸다) : 2.5∼7㎜.
ㆍ 관통구멍(6)의 제 2 부분(6b)의 내경(D6) : 2∼4㎜{상기한 도전성 밀봉재
층(16,17)이 형성된다}.
ㆍ 관통구멍(6)의 제 1 부분(6a)의 내경(D7) : 1∼3.5㎜.
ㆍ 제 1 축부(2g)의 두께(t1) : 0.5∼4.5㎜.
ㆍ 제 2 축부(2i)의 기단부 두께(t2){중심축선(O)과 직교하는 방향에 있어서
의 값} : 0.3∼3.5㎜
ㆍ 제 2 축부(2i)의 선단부 두께(t3){중심축선(O)과 직교하는 방향에 있어서
의 값;단, 선단면 외주연에 R 내지 모따기가 실시된 경우는, 중심축선(O)
을 포함하는 단면에 있어서, 상기 R 내지 모따기의 기단부 위치에서의 두
께를 나타낸다} : 0.2∼3㎜.
ㆍ 제 2 축부(2i)의 평균두께(tA){(t2+t3)/2} : 0.25∼3.25㎜.
또한, 도 3의 (a)에 나타낸 절연체(2)에 있어서의 상기 각부의 치수는, 예를 들면 다음과 같다 : L1 = 약 60㎜, L2 = 약 10㎜, L3 = 약 14㎜, D1 = 약 11㎜, D2 = 약 13㎜, D3 = 약 7.3㎜, D4 = 5.3㎜, D5 = 4.3㎜, D6 = 3.9㎜, D7 = 2.6㎜, t1 = 3.3㎜, t2 = 1.4㎜, t3 = 0.9㎜, tA = 1.15㎜.
또, 도 3의 (b)에 나타낸 절연체(2)는, 제 1 축부(2g) 및 제 2 축부(2i)가 도 3의 (a)에 나타낸 것에 비해 약간 큰 외경으로 되어 있다. 각부의 치수는, 예를 들면 다음과 같다 : L1 = 약 60㎜, L2 = 약 10㎜, L3 = 약 14㎜, D1 = 약 11㎜, D2 = 약 13㎜, D3 = 약 9.2㎜, D4 = 6.9㎜, D5 = 5.1㎜, D6 = 3.9㎜, D7 = 2.7㎜, t1 = 3.3㎜, t2 = 2.1㎜, t3 = 1.2㎜, tA = 1.65㎜.
절연체(2)의 관통구멍(6)의 후단부측에는 단자전극(13)이 삽입ㆍ고정되어 있고, 전단부측에는 중심전극(3)이 삽입ㆍ고정되어 있다. 또, 상기 관통구멍(6) 내에 있어서, 단자전극(13)과 중심전극(3)의 사이에 저항체(15)가 배치되어 있다. 상기 저항체(15)의 양 단부는 도전성 밀봉재층(16,17)을 통해서 중심전극(3)과 단자전극 (13)에 각각 전기적으로 접속되어 있다. 저항체(15)는, 글라스 분말과 도전재료 분말(및 필요에 따라서는 글라스 이외의 세라믹 분말)의 혼합 분말을 원료로 하며, 후술하는 글라스 밀봉공정에서 이것을 가열ㆍ프레스함에 의해서 얻어지는 저항체 조성물로 구성된다. 또한, 저항체(15)를 생략한, 즉 한 개의 도전성 밀봉재층에 의해서 단자전극(13)과 중심전극(3)을 일체화한 구성으로 하여도 된다.
단자전극(13)은 저탄소강 등으로 구성되며, 표면에 방식(防蝕)을 위한 Ni도금층(층두께 : 예를 들면 5㎛)이 형성되어 있다. 그리고, 상기 단자전극(13)은 밀봉부(13c)(선단부)와, 절연체(2)의 후단부 가장자리에서 돌출되는 단자부(13a)와, 단자부(13a)와 밀봉부(13c)를 접속하는 봉형상부(13b)를 가지고 있다. 밀봉부(13c)는 축방향으로 긴 원통형상으로 형성되어 있으며, 그 외주면에는 나사형상 혹은 리브형상 등과 같은 형태의 볼록부를 가짐과 아울러, 도전성 밀봉재층(17) 중에 투입되는 형태로 배치되며, 관통구멍(6)의 내면과의 사이가 상기 도전성 밀봉재층(17)에 의해서 밀봉된다. 또한, 밀봉부(13c)의 외주면과 관통구멍(6)의 내주면과의 사이의 간극은 0.1∼0.5㎜ 정도이다.
도전성 밀봉재층(16,17)은 본 발명의 스파크 플러그의 요부를 나타내는 것으로서, 베이스 글라스와 도전성 필러와 절연성 필러를 함유한 것으로 구성된다. 베이스 글라스는, 종래의 도전성 밀봉재와 마찬가지로 예를 들면 붕규산염계의 것 등, 산화물을 주체로 한 것이다. 또, 도전성 필러는, 예를 들면 Cu 및 Fe 등과 같이 금속성분의 1종 또는 2종 이상을 주체로 하는 금속 분말이다. 한편, 절연성 필러는 β-유크립타이트, β-스포듀민, 키이다이트, 실리카, 물라이트, 코디어라이트, 지르콘 및 티탄산알루미늄 등에서 선택되는 1종 또는 2종 이상의 산화물계 무기재료이다.
이미 설명한 바와 같이, 스파크 플러그(100)에 있어서는, 절연체(2)의 관통구멍(6)의 내경이 도전성 밀봉재층(16,17)의 배치위치에서, 즉 제 2 부분(6b)에서 내경(D6)이 4㎜ 이하이고, 상기 도전성 밀봉재층(16,17)은 그 선팽창계수가 알루미나보다도 작은 값, 구체적으로는 6.8×10-6/℃ 미만이 되도록 성분 및 조성이 조정되어 있다. 도 2는 도전성 밀봉재층(16,17)의 바람직한 조직형태를 모식적으로 나 타낸 것으로, 베이스 글라스에 의거하는 글라스 매트릭스 중에 네트워크 형상의 도전로를 형성하는 형태로 도전성 필러 입자가 분산되는 한편, 절연성 필러 입자는, 배합시의 절연성 필러 입자의 요부(예를 들면, 60체적% 이상)가 베이스 글라스 중에 용해되지 않고 결정질 입자의 형태로 잔류ㆍ분산된 것이다. 상기한 재질의 절연성 필러 입자는 연화점이 높기 때문에, 베이스 글라스 중으로의 용해가 과잉되게 발생하면 글라스 연화점이 상승하게 되어, 유동성 저하에 의해서 밀봉성을 확보할 수 없게 되는 등의 문제점으로 이어진다.
도전성 밀봉재에 대한 배합시에 있어서(즉, 밀봉공정을 실시하기 전의 상태에 있어서), 절연성 필러 중에 존재하는 입경 50㎛ 미만의 입자는 도 4에 나타낸 바와 같이 베이스 글라스, 더 나아가서는 글라스 매트릭스에 쉽게 용해되며, 함유율이 과잉된 경우에는 글라스 연화점의 과도한 상승을 초래하기 쉽다. 한편, 절연체(2)와 단자전극(13) 혹은 중심전극(3)의 밀봉면에 있어서 도전성 밀봉재층(16, 17)의 밀봉기능을 담당하는 것은 글라스 매트릭스이고, 밀봉면에 개재되는 절연성 필러 입자는 그 밀봉기능을 실현하지 않는 비밀봉영역을 형성한다. 그리고, 입경 350㎛를 초과하는 입자는 밀봉면에 개재되었을 때에 국부적으로 큰 비밀봉영역을 형성하기 때문에, 이것이 다량으로 형성되면 밀봉성의 저하로 이어진다. 이러한 이유에서, 밀봉재에 배합되는 절연성 필러는 입경 50㎛ 미만의 입자의 함유율이 10질량% 이하이고, 또한 입경 350㎛를 초과하는 입자의 함유율이 5질량% 이하인 것을 사용하는 것이 바람직하다. 또한, 배합시에 있어서의 절연성 필러의 입경은, 표준 스크린을 이용하여 측정된 것을 의미하며, 메시(와이어 내연간 거리로 나타낸다)가 50㎛인 스크린을 통과한 입자는 입경 50㎛ 미만이고, 마찬가지로 메시가 350㎛인 스트린을 통과하지 않은 입자는 입경 350㎛를 초과하는 것이다.
또, 절연성 필러의 도전성 밀봉재 중에 있어서의 배합량을 2∼40질량%로 하는 것이 좋다. 이 배합량이 2질량% 미만에서는, 절연성 필러의 배합에 의한 밀봉재의 선팽창계수의 조정효과가 부족하고, 40질량%를 초과하면, 연화시의 밀봉재의 유동성이 상실되어 양호한 밀봉성 혹은 밀봉부의 접합강도를 확보할 수 없게 된다.
상기한 바와 같은 절연성 필러를 이용함으로써, 도전성 밀봉재층(16,17)은 단면 조직에서 관찰되는 절연성 필러의 입자 중, 입경이 100∼350㎛의 범위에 속하는 것의 단면 조직 중에 점유하는 면적율을 2∼40%로 할 수 있다. 이와 같은 조직이 형성됨으로써, 도전성 밀봉재층(16,17)의 밀봉성 및 그 내구성이 격단으로 향상되며, 양호한 기밀성능을 장기간에 걸쳐서 유지하는 것이 가능하게 된다.
이어서, 도전성 필러를 이루는 금속 분말 입자는, 그 평균입경이 20∼40㎛가 되고, 도전성 밀봉재 전체에 있어서의 배합량이 예를 들면 35∼70질량%가 된다. 평균입경이 20㎛ 미만에서는 화학적인 안정성이 상실되어 산화 열화 등의 문제점, 더 나아가서는 필요한 도전성의 확보가 곤란하게 되고, 40㎛를 초과하면 밀봉재의 저항율 분포에 불균일이 발생하며, 또 밀봉공정시의 유동성도 쉽게 상실되게 된다. 한편, 금속 분말의 배합량이 35질량% 미만에서는 필요한 도전성의 확보가 곤란하게 되고, 70질량%를 초과하면 밀봉성 확보를 위한 베이스 글라스의 배합량이 부족하게 될 뿐만 아니라 도전성 밀봉재층(16,17)의 선팽창계수가 과도하게 상승하여 상기한 본 발명의 효과를 충분히 달성할 수 없게 된다.
도 1에 나타낸 바와 같이, 접지전극(4) 및 중심전극(3)의 각 본체부(4a,3a)는 Ni합금이나 Fe합금 등으로 구성되어 있다. 또, 중심전극(3)의 본체부(3a)의 내부에는 방열촉진을 위해서 Cu 혹은 Cu합금 등으로 구성된 심재(3b)가 매설되어 있다. 한편, 상기 발화부(31)와 이것에 대향하는 발화부(32)는 Ir, Pt 및 Rh 중 1종 또는 2종 이상을 주성분으로 하는 귀금속 합금을 주체로 하여 구성된다. 또한, 발화부(31) 및 이것에 대향하는 발화부(32)는 일측 또는 쌍방을 생략할 수도 있다.
상기 스파크 플러그(100)는, 예를 들면 다음과 같은 방법에 의해서 제조할 수 있다.
우선, 절연체(2)에 대해서는 원료분말로서 알루미나 분말과 Si성분, Ca성분, Mg성분, Ba성분 및 B성분의 각 성분원 분말을 소성후에 산화물 환산으로 상술한 조성이 되는 소정 비율로 배합하고, 소정량의 결합제(예를 들면, PVA)와 물을 첨가ㆍ혼합하여 성형용 소지 슬러리를 만든다. 또한, 각 성분원 분말은, 예를 들면 Si성분은 SiO2분말, Ca성분은 CaCO3분말, Mg성분은 MgO분말, Ba성분은 BaCO3분말, B성분은 H3BO3분말의 형태로 배합할 수 있다. 또한, H3BO3는 용액의 형태로 배합하여도 된다.
성형용 소지 슬러리는 스프레이 드라이법 등에 의해서 분무건조되어 성형용 소지 조립물(造粒物)이 된다. 그리고, 성형용 소지 조립물을 러버 프레스 성형함에 의해서 절연체의 원형이 되는 프레스 성형체를 만든다. 여기서는, 내부에 축방향으로 관통되는 캐버티(cavity)를 가진 고무형틀이 사용되며, 이 캐버티의 하측 개구 부에 하부 펀치가 끼워져 있다. 또, 하부 펀치의 펀치면에는, 캐버티 내에 있어서 그 축방향으로 연장됨과 아울러 절연체(2)의 관통구멍(6)의 형상을 규정하는 프레스 핀이 일체적으로 돌출형성되어 있다.
이 상태에서 캐버티 내로 소정량의 성형용 소지 조립물을 충진하고, 캐버티의 상측 개구부를 상부 펀치로 덮어서 밀봉한다. 이 상태에서 고무형틀의 외주면에 액압을 인가하여 캐버티 내의 조립물을 이 고무형틀을 통해서 압축함으로써 프레스 성형체를 얻는다. 또한, 성형용 소지 조립물은, 프레스시에 있어서의 조립물의 분말입자로의 해쇄(解碎)가 촉진되도록, 이 성형용 소지 조립물의 중량을 100중량부로 하여, 0.7∼1.3질량부의 수분을 첨가한 후, 상기 프레스 성형을 한다. 성형체는 그 외면측이 그라인더 절삭 등에 의해서 가공되어 절연체(2)에 대응한 외형형상(도 3 참조)으로 다듬어 지고, 이어서 대기중에서 온도 1400∼1600℃로 1∼8시간 소성되어 절연체(2)가 된다.
이어서, 도전성 밀봉재 분말을 다음과 같이 하여 조제한다.
즉, 도 5의 (a)에 나타낸 바와 같이 베이스 글라스 분말, 도전성 필러 분말로서의 금속 분말 및 절연성 필러 분말을 소정량 배합하여 배합원료로 하고, 수계 용매 및 혼합용 매체(예를 들면, 알루미나 등의 세라믹제의 것)와 함께 혼합용 포트 중에 투입하고, 도 5의 (b)에 나타낸 바와 같이 포트를 회전시켜서 상기 원료를 균일하게 혼합ㆍ분산시킨다. 절연성 필러 분말로서 상기한 산화물계의 것을 사용함으로써 수계 용매를 이용한 혼합에 의한 분산성이 높아지고, 연화시의 유동성이 보다 양호하고, 입자의 편중에 의한 결함 등이 적은 균질한 도전성 밀봉재층(16,17) 을 얻을 수 있다.
또, 절연체(2)에 대한 중심전극(3)과 단자전극(13)의 조립 및 저항체(15)와 도전성 밀봉재층(16,17)의 형성은, 이하에 설명하는 글라스 밀봉공정에 의해서 행해진다.
우선, 유약 슬러리를 분무노즐에서 중심전극(3)의 필요한 표면에 분무ㆍ도포함에 의해서 도 1에 나타낸 유약층(2d)이 형성되도록 유약 슬러리 도포층(2d')을 형성하고, 이것을 건조한다. 이어서, 도 6의 (a)에 나타낸 바와 같이, 절연체(2)의 관통구멍(6)에 대해서, 그 제 1 부분(6a)에 중심전극(3)을 삽입한 후, 도 6의 (b)에 나타낸 바와 같이, 도전성 밀봉재 분말(H)를 충진한다. 그리고, 도 6의 (c)에 나타낸 바와 같이, 관통구멍(6) 내에 압입봉(28)을 삽입하여 충진된 도전성 밀봉재 분말(H)를 예비 압축함으로써 제 1 도전성 밀봉재 분말층(26)을 형성한다. 이어서, 저항체 조성물의 원료분말을 절연체(2)의 후단부측에서 관통구멍(6) 내로 충진하고서 상기한 바와 마찬가지로 예비 압축하고, 또한 도전성 밀봉재 분말(H)을 충진하고서 압입봉(28)에 의해서 예비 압축함으로써, 도 6의 (d)에 나타낸 바와 같이 관통구멍(6) 내에는 중심전극(3)측(하측)으로부터 제 1 도전성 밀봉재 분말층(26), 저항체 조성물 분말층(25) 및 제 2 도전성 밀봉재 분말층(27)이 적층된 상태로 된다.
그리고, 도 7의 (a)에 나타낸 바와 같이, 관통구멍(6)에 단자전극(13)을 후단부측에서 배치한 조립체(PA)를 형성한다. 이 상태로 가열로에 삽입하여 700∼950℃의 소정 온도로 가열하고, 그 후, 단자전극(13)을 관통구멍(6) 내로 중심전극(3) 의 반대측에서 축방향으로 압입하여 적층상태의 각 분말층(25∼27)을 축방향으로 프레스한다. 이것에 의해서, 도 7의 (b)에 나타낸 바와 같이 각 분말층(25∼27)은 압축ㆍ소결되어 각각 도전성 밀봉재층(16), 저항체(15) 및 도전성 밀봉재층(17)이 된다(이상, 밀봉공정).
이와 같은 밀봉공정에 적용할 경우, 베이스 글라스 분말, 금속 분말 및 절연성 필러 분말의 배합량 및 입경을 조정하여, 도전성 밀봉재 분말의 겉보기 연화점이 500℃∼1000℃가 되도록 하여 두는 것이 바람직하다. 연화점이 500℃ 미만에서는 얻어지는 도전성 밀봉재층(16,17)의 내열성이 부족하게 되는 것으로 이어지고, 1000℃를 초과하면 밀봉성의 부족으로 이어진다. 또한, 연화점은 분말시료 50mg을 가열하면서 시차열(示差熱)분석을 하되, 실온에서 측정을 개시하여 2번째의 흡열 피크가 된 온도로 나타내는 것으로 한다. 또한, 상기 글라스 밀봉공정시에 도포한 유약 슬러리 도포층(2d')의 유약 소성도 동시에 행함으로써 유약층(2d)이 된다.
이와 같이 하여 글라스 밀봉공정이 완료된 조립체(PA)에는 금속 셸(1)이나 접지전극(4) 등이 조립되어 도 1에 나타낸 스파크 플러그(100)가 완성된다. 스파크 플러그(100)는 그 나사부(7)가 엔진 블록에 부착되어 연소실에 공급되는 혼합기에 대한 착화원으로서 사용된다.
〈실험예〉
본 발명의 효과를 확인하기 위해서 이하의 실험을 하였다.
절연체(2)를 다음과 같이 하여 제작하였다. 우선 원료분말로서, 알루미나 분 말{알루미나 95㏖%, Na함유량(Na2O환산값) 0.1㏖%, 평균입경 3.0㎛}에 대해서, SiO2(순도 99.5%, 평균입경 1.5㎛), CaCO3(순도 99.9%, 평균입경 2.0㎛), MgO(순도 99.5%, 평균입경 2㎛), BaCO3(순도 99.5%, 평균입경 1.5㎛), H3BO3(순도 99.0%, 평균입경 1.5㎛)을 소정 비율로 배합함과 아울러, 이 배합된 분말 총량을 100질량부로 하여, 친수성 바인더로서의 PVA를 3질량부, 물 103질량부를 첨가하여 습식 혼합함으로써 성형용 소지 슬러리를 제작하였다.
계속해서, 얻어진 성형용 소지 슬러리를 스프레이 드라이법에 의해서 건조하여 구(球)형상의 성형용 소지 조립물을 조제하였다. 또한, 조립물은 스크린에 의해서 입경 50∼100㎛로 조정하였다. 그리고, 이 조립물을 이미 설명한 러버 프레스법에 의해서 압력 50MPa로 성형하고, 그 성형체의 외주면을 그라인더 연삭하여 소정의 절연체 형상으로 가공함과 아울러 온도 1550℃로 2시간 소성함으로써, 도 3의 (a)에 나타낸 절연체(2)(D6=3.9㎜)를 얻었다. 또한, 형광 X선 분석에 의해서 절연체(2)는 하기의 조성을 가지고 있는 것이 판명되었다.
Al성분 : Al2O3 환산값으로 94.9㏖%;
Si성분 : SiO2 환산값으로 2.4㏖%;
Ca성분 : CaO 환산값으로 1.9㏖%;
Mg성분 : MgO 환산값으로 0.1㏖%;
Ba성분 : BaO 환산값으로 0.4㏖%;
B성분 : B2O3 환산값으로 0.3㏖%;
계속해서, 질량비로서 1:1로 배합된 Cu 분말과 Fe 분말(모두 평균입경 30㎛)과 베이스 글라스 분말(평균입경 150㎛)을, 금속 분말의 함유량이 약 50질량%가 되도록 혼합하여 도전성 글라스 혼합물을 만들었다. 또한, 글라스 분말의 재질은 SiO2를 60질량%, B2O5을 30질량%, Na2O을 5질량% 및 BaO을 5질량% 각각 배합ㆍ용해하여 얻어지는 붕규산소다 글라스이고, 그 연화온도는 750℃이었다. 그리고, 이 도전성 글라스 혼합물에 대해서, β-유크립타이트, β-스포듀민, 키이다이트, 실리카, 물라이트, 코디어라이트, 지르콘 및 티탄산알루미늄의 각종 산화물계 무기재료로 이루어지는 절연성 필러를 여러 비율로 배합하고, 도 5에 나타내는 방법으로 혼합한 후 건조함으로써 각종 도전성 밀봉재로 하였다. 또한, 각 절연성 필러는, 스크린으로 거른 후 재배합함으로써 150㎛ 이상 250㎛ 미만의 입경범위에 속하는 것이 40질량%, 106㎛ 이상 150㎛ 미만의 입경범위에 속하는 것이 40질량%, 50㎛ 이상 106㎛ 미만의 것이 15질량%. 50㎛ 미만의 것이 5질량%가 되도록 입도분포를 조정한 것을 이용하였다.
또, 저항체 원료분말은 다음과 같이 하여 조제하였다. 우선, 미립(微粒) 글라스 분말(평균입경 80㎛)을 30질량%, 세라믹 분말로서의 ZrO2(평균입경 3㎛)을 66질량%, 카본블랙을 1질량% 및 유기 바인더로서의 덱스트린을 3질량% 배합하고, 물을 용매로 하여 볼 밀에 의해서 습식 혼합하고, 그 후 이것을 건조한 예비 소재를 조제하였다. 그리고, 이것에 조립(粗粒) 글라스 분말(평균입경 250㎛)을 상기 예비 소재 20질량부에 대해서 80질량부 배합하여 저항체 원료분말을 얻었다. 또한, 글라스 분말의 재질은, SiO2를 50질량%, B2O5를 29질량%, Li2O을 4질량%, 및 BaO을 17질량% 각각 배합ㆍ용해하여 얻어지는 붕규산리튬 글라스이고, 그 연화온도는 585℃이었다.
계속해서, 상기 도전성 밀봉재 분말 및 저항체 조성물 분말을 이용하여 도 6 및 도 7에 나타낸 공정을 거쳐 도 1에 나타낸 저항체를 구비한 스파크 플러그(100)의 샘플을 각종 제작하였다. 또한, 제 1 도전성 밀봉재 분말층(26)을 형성하기 위한 도전성 밀봉재 분말의 충진량은 0.15g, 저항체 원료분말의 충진량은 0.40g, 및 제 2 도전성 밀봉재 분말층(27)을 형성하기 위한 도전성 글라스 분말의 충진량은 0.15g으로 하고, 고온 프레스 처리의 가열온도는 900℃, 가압력은 100kg/㎠으로 하였다.
또, 각 도전성 밀봉재 분말은, 절연체(2)를 둘레방향으로 연마ㆍ제거하여 내부의 도전성 밀봉재층을 떼어내고, 이것에서 직경 3∼4㎜, 높이 2∼4㎜의 측정시료를 잘라내고, 공지의 시사팽창계(示唆膨脹計)를 이용하여 선팽창계수를 20℃에서 350℃까지의 평균값으로서 측정하였다. 또, 절연체(2)에서도 같은 치수의 측정시료를 잘라내어 같은 측정을 한 바. 그 값은 7.3×10-6/℃이었다.
이와 같이 하여 얻어진 스파크 플러그 샘플(각 조건 공통, 제작수 100개)의 나사부(7)를 도 9에 나타낸 바와 같이 가압 시험대에 형성된 가압 캐버티의 암나사부에 부착하고, 이 가압 캐버티 내의 압축공기를 1.5MPa(표준시험) 및 2.5MPa(가속 시험)의 2수준으로 도입하여, 단자전극(13)측에서의 공기 누설량을 측정함과 아울러, 누설량이 0.5ml/분 이상으로 된 것을 누설품으로서 밀봉성을 판정하였다. 표 1은 절연성 필러로서 코디어라이트를 여러 배합율로 한 밀봉재를 이용한 경우의 결과를 나타낸 것이다(100개 중의 누설품 발생수로 나타내고 있다). 이것에 의하면, 코디어라이트를 5질량% 이상 배합함으로써 도전성 글라스 밀봉재의 선팽창계수의 값을 6.8×10-6/℃ 미만으로 할 수 있는 것을 알 수 있다. 또, 이와 같은 선팽창계수의 값을 채용함으로써 가속시험을 하였을 때의 밀봉성이 분명히 향상되고, 특히 선팽창계수의 값을 5.1×10-6/℃ 이하로 하면 더욱 양호한 결과가 얻어지는 것을 알 수 있다.
절연성 필러 : 코디어라이트
측정조건 절연성 필러 배합율(질량%) 0 5 10 15 20 25 30
조정 밀봉 글라스의 평균 선팽창계수 (10-6/℃) 6.8 6.3 5.6 5.1 4.5 4.1 3.7
1.5㎫ 누설수/테스트 개수 0/100 0/100 0/100 0/100 0/100 0/100 0/100
발생률(%) 0% 0% 0% 0% 0% 0% 0%
2.5㎫ 누설수/테스트 개수 40/100 15/100 3/100 0/100 0/100 0/100 0/100
발생률(%) 40% 15% 3% 0% 0% 0% 0%

계속해서, 코디어라이트 이외의 각종 절연성 필러를, 배합율 15질량%로 첨가한 밀봉재를 이용하여 같은 실험을 한 경우의 결과를 표 2에 나타내다. 모두 선팽 창계수의 값이 6.8×10-6/℃ 미만이고, 양호한 밀봉성이 얻어지는 것을 알 수 있다. 또한, 표 2에는 기재하지 않았으나, 선팽창계수의 값이 6.8×10-6/℃ 미만인 절연성 필러로서 실리카 혹은 키이다이트를 이용한 경우에 대해서도 같은 실험을 한 바. 1.5MPa(표준시험) 및 25.MPa(가속시험)의 2수준 모두에 대해서도 10개 중의 누설수는 '0'이고, 양호한 밀봉성이 얻어지는 것을 확인하였다.
절연성 필러의 배합비율 : 15질량%
측정조건 절연성 필러의 종류 지르콘 물라이트 유크립타이트 스포듀민 티탄산알루미늄
조정 밀봉 글라스의 평균 선팽창계수 (10-6/℃) 6.5 6.4 5.3 4.5 3.7
1.5㎫ 누설수/테스트 개수 0/100 0/100 0/100 0/100 0/100
발생률(%) 0% 0% 0% 0% 0%
2.5㎫ 누설수/테스트 개수 0/100 0/100 0/100 0/100 0/100
발생률(%) 0% 0% 0% 0% 0%

또, 표 1의 실험결과는 절연체의 관통구멍의 내경(D6)을 3.9㎜로 하여 실시한 경우의 것이나, 절연체의 외형치수는 동일하게 하고, 관통구멍의 내경(D6)의 값만을 여러 값으로 변화시킨 것을 이용하여 같은 실험(가속시험만)을 한 결과를 표 3에 나타낸다. 이것에 의하면, 관통구멍의 내경(D6)이 4㎜를 초과한 경우, 예를 들면 5㎜로 된 경우에는 밀봉성의 문제 그 것이 발생하지 않았으며, 본 발명의 효과가 유효하게 발휘되는 내경(D6)의 범위가 4㎜ 이하인 것을 나타내고 있다.
절연성 필러 : 코디어라이트
첨가비율 (질량%) 내경(㎜) 0 5 10 15
3.0 54/100 17/100 5/100 0/100
3.5 45/100 15/100 3/100 0/100
3.9 40/100 15/100 3/100 0/100
5.0 0/100 0/100 0/100 0/100

이상과 같이, 본 발명에 의하면, 절연체의 관통구멍의 내경이 작더라도 충분히 높은 밀봉성능을 확보할 수 있고, 더 나아가서는 고출력 엔진에 적용된 경우에서도 충분한 내구성을 달성할 수 있는 스파크 플러그를 제공할 수 있다.

Claims (9)

  1. 절연체에 형성된 관통구멍 내에 단자전극과 중심전극이 도전성 밀봉재를 통해서 고착된 스파크 플러그에 있어서,
    상기 절연체가 알루니마질 세라믹으로 구성됨과 아울러 상기 관통구멍의 내경이 상기 도전성 밀봉재의 배치위치에서 4㎜ 이하로 되고, 또한 상기 도전성 밀봉재의 선팽창계수가 6.8×10-6/℃ 미만의 범위로 조정되어 이루어지는 것을 특징으로 하는 스파크 플러그.
  2. 청구항 1에 있어서,
    상기 도전성 밀봉재는 베이스 글라스와 도전성 필러와 절연성 필러를 함유한 것이고, 또한 상기 절연성 필러가 산화알루미늄보다도 선팽창계수가 낮은 무기재료로 이루어지는 것을 특징으로 하는 스파크 플러그.
  3. 청구항 2에 있어서,
    상기 절연성 필러가 상기 베이스 글라스보다도 선팽창계수가 낮은 무기재료로 이루어지는 것을 특징으로 하는 스파크 플러그.
  4. 청구항 2에 있어서,
    상기 절연성 필러는 산화물계 무기재료로 이루어지는 것인 것을 특징으로 하는 스파크 플러그.
  5. 청구항 2에 있어서,
    상기 도전성 밀봉재의 단면 조직에서 관찰되는 절연성 필러의 입자 중, 입경이 100∼350㎛의 범위에 속하는 것의 상기 단면 조직 중에 점유하는 면적율이 2∼40%인 것을 특징으로 하는 스파크 플러그.
  6. 청구항 5에 있어서,
    상기 도전성 밀봉재의 선팽창계수가 3.0×10-6/℃∼6.5×10-6/℃의 범위 내로 조정되어 이루어지는 것을 특징으로 하는 스파크 플러그.
  7. 청구항 2에 있어서,
    상기 절연성 필러의 상기 도전성 밀봉재 중에 있어서의 배합량이 2∼40질량%인 것을 특징으로 하는 스파크 플러그.
  8. 청구항 2에 있어서,
    상기 절연성 필러로서 입경 50㎛ 미만의 입자의 함유율이 10질량% 이하이고 또한 입경 350㎛를 초과하는 입자의 함유율이 5질량% 이하인 것이 사용되는 것을 특징으로 하는 스파크 플러그.
  9. 청구항 2에 있어서,
    상기 절연성 필러의 재질로서 β-유크립타이트, β-스포듀민, 키이다이트, 실리카, 물라이트, 코디어라이트, 지르콘 및 티탄산알루미늄으로부터 선택되는 1종 또는 2종 이상이 사용되는 것을 특징으로 하는 스파크 플러그.
KR1020020038668A 2001-07-06 2002-07-04 스파크 플러그 KR100859068B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2001-00206711 2001-07-06
JP2001206711A JP4578025B2 (ja) 2001-07-06 2001-07-06 スパークプラグ

Publications (2)

Publication Number Publication Date
KR20030005028A KR20030005028A (ko) 2003-01-15
KR100859068B1 true KR100859068B1 (ko) 2008-09-17

Family

ID=19042801

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020038668A KR100859068B1 (ko) 2001-07-06 2002-07-04 스파크 플러그

Country Status (7)

Country Link
US (1) US6744189B2 (ko)
EP (1) EP1274157B1 (ko)
JP (1) JP4578025B2 (ko)
KR (1) KR100859068B1 (ko)
CN (1) CN100346545C (ko)
BR (1) BRPI0202584B1 (ko)
DE (1) DE60204388T2 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7858547B2 (en) 2003-11-12 2010-12-28 Federal-Mogul World Wide, Inc. Ceramic with improved high temperature electrical properties for use as a spark plug insulator
US7365480B2 (en) 2004-04-30 2008-04-29 Ngk Spark Plug Co., Ltd. Spark plug
US7573185B2 (en) * 2006-06-19 2009-08-11 Federal-Mogul World Wide, Inc. Small diameter/long reach spark plug with improved insulator design
DE102006061907A1 (de) * 2006-12-20 2008-06-26 Beru Ag Zündkerze mit einem Isolator aus hochreiner Aluminiumoxid-Keramik
JP4829265B2 (ja) * 2008-03-24 2011-12-07 日本特殊陶業株式会社 スパークプラグの製造方法
EP2348589B1 (en) * 2008-11-04 2018-02-21 NGK Sparkplug Co., Ltd. Spark plug
WO2011036871A1 (ja) * 2009-09-25 2011-03-31 日本特殊陶業株式会社 スパークプラグ
JP4648476B1 (ja) * 2009-09-25 2011-03-09 日本特殊陶業株式会社 内燃機関用スパークプラグ
US8866369B2 (en) 2011-01-13 2014-10-21 Federal-Mogul Ignition Company Spark plug having improved ground electrode orientation and method of forming
JP6183129B2 (ja) * 2013-10-07 2017-08-23 株式会社デンソー 内燃機関用のスパークプラグ
JP5992022B2 (ja) * 2014-09-12 2016-09-14 日本特殊陶業株式会社 絶縁体、および、スパークプラグ
US11214618B2 (en) 2016-06-20 2022-01-04 F-Star Therapeutics Limited LAG-3 binding members
CA3027612A1 (en) 2016-06-20 2017-12-28 F-Star Delta Limited Binding molecules binding pd-l1 and lag-3
GB201612520D0 (en) 2016-07-19 2016-08-31 F-Star Beta Ltd Binding molecules
JP6373313B2 (ja) 2016-08-11 2018-08-15 日本特殊陶業株式会社 点火プラグ
WO2019121906A1 (en) 2017-12-19 2019-06-27 F-Star Beta Limited Specific pd-l1 binding sequences inserted in a ch3 domain
JP6898274B2 (ja) * 2018-06-14 2021-07-07 日本特殊陶業株式会社 点火プラグ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02239582A (ja) * 1989-03-10 1990-09-21 Ngk Spark Plug Co Ltd スパークプラグのシール材
EP0959542A1 (en) * 1998-05-22 1999-11-24 NGK Spark Plug Co. Ltd. Spark plug and method of manufacturing the same
US6590318B2 (en) * 2000-02-29 2003-07-08 Ngk Spark Plug Co., Ltd. Spark plug having a reduced lead glaze layer on the insulator thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112330A (en) * 1977-05-20 1978-09-05 General Motors Corporation Metallized glass seal resistor compositions and resistor spark plugs
JPH11185930A (ja) * 1997-12-18 1999-07-09 Ngk Spark Plug Co Ltd 抵抗体入りスパークプラグ
US6509676B1 (en) * 2000-02-23 2003-01-21 Delphi Technologies, Inc. Spark plug construction for enhanced heat transfer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02239582A (ja) * 1989-03-10 1990-09-21 Ngk Spark Plug Co Ltd スパークプラグのシール材
EP0959542A1 (en) * 1998-05-22 1999-11-24 NGK Spark Plug Co. Ltd. Spark plug and method of manufacturing the same
US6590318B2 (en) * 2000-02-29 2003-07-08 Ngk Spark Plug Co., Ltd. Spark plug having a reduced lead glaze layer on the insulator thereof

Also Published As

Publication number Publication date
EP1274157A1 (en) 2003-01-08
DE60204388D1 (de) 2005-07-07
JP4578025B2 (ja) 2010-11-10
KR20030005028A (ko) 2003-01-15
US20030030355A1 (en) 2003-02-13
DE60204388T2 (de) 2006-05-04
BR0202584A (pt) 2003-04-29
CN100346545C (zh) 2007-10-31
BRPI0202584B1 (pt) 2015-05-26
JP2003022886A (ja) 2003-01-24
US6744189B2 (en) 2004-06-01
EP1274157B1 (en) 2005-06-01
CN1396687A (zh) 2003-02-12

Similar Documents

Publication Publication Date Title
EP1592101B1 (en) Spark plug
KR100859068B1 (ko) 스파크 플러그
EP1104062B1 (en) Insulator for spark plug and spark plug comprising same
KR100584943B1 (ko) 스파크 플러그
JP4465290B2 (ja) スパークプラグ
KR101515271B1 (ko) 내연기관용 스파크 플러그
EP3148021B1 (en) Spark plug
EP3148020B1 (en) Spark plug
JP2002175863A (ja) スパークプラグ
JP5728416B2 (ja) スパークプラグ
EP0975074B1 (en) Sintered ceramic body for spark plug, process for preparing the same and spark plug
EP3148022B1 (en) Spark plug
JP4547098B2 (ja) スパークプラグ
JP3632953B2 (ja) スパークプラグ
JP3510172B2 (ja) スパークプラグ
JP4508439B2 (ja) スパークプラグ
JP2007042656A (ja) スパークプラグ及びその製造方法
JP2002246146A (ja) スパークプラグ用絶縁体及びスパークプラグ
JP2006196474A (ja) スパークプラグ
JP4833526B2 (ja) スパークプラグ
JP2002117955A (ja) スパークプラグ
JP2000095557A (ja) スパ―クプラグ用アルミナ系絶縁体、その製造方法及びそれを用いたスパ―クプラグ

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120821

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130822

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150819

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160818

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170822

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee