KR100797161B1 - Quaternary pb-free solder composition incorporating sn-ag-cu-in - Google Patents

Quaternary pb-free solder composition incorporating sn-ag-cu-in Download PDF

Info

Publication number
KR100797161B1
KR100797161B1 KR1020070050905A KR20070050905A KR100797161B1 KR 100797161 B1 KR100797161 B1 KR 100797161B1 KR 1020070050905 A KR1020070050905 A KR 1020070050905A KR 20070050905 A KR20070050905 A KR 20070050905A KR 100797161 B1 KR100797161 B1 KR 100797161B1
Authority
KR
South Korea
Prior art keywords
solder
composition
free solder
lead
less
Prior art date
Application number
KR1020070050905A
Other languages
Korean (ko)
Inventor
이종현
이창우
김정한
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020070050905A priority Critical patent/KR100797161B1/en
Application granted granted Critical
Publication of KR100797161B1 publication Critical patent/KR100797161B1/en
Priority to US12/081,195 priority patent/US20080292493A1/en
Priority to JP2008104956A priority patent/JP2008290150A/en
Priority to CNA2008100938399A priority patent/CN101569965A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3046Co as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

A Sn-Ag-Cu-In quaternary Pb-free solder composition is provided to suppress an increase in the cost of the Pb-free solder composition and sufficiently secure processability and mechanical properties of the Pb-free solder composition as a solder material by adding a proper amount of indium(In) and optimizing the content of silver(Ag). A Sn-Ag-Cu-In quaternary Pb-free solder composition comprises not less than 0.3% to less than 2.5% by weight of silver(Ag), not less than 0.2% to less than 2% by weight of copper(Cu), not less than 0.2% to less than 0.8% by weight of indium(In), and the balance of tin(Sn). The Sn-Ag-Cu-In quaternary Pb-free solder composition further comprises not less than 0.0001% to less than 1% by weight of one element or a mixture of at least two elements selected from phosphorous(P), germanium(Ge), gallium(Ga), aluminum(Al), and silicon(Si). to improve oxidation resistance of the Pb-free solder composition. The Sn-Ag-Cu-In quaternary Pb-free solder composition further comprises not less than 0.0001% to less than 2% by weight of one element or a mixture of at least two elements selected from zinc(Zn) and arsenic(As) to improve interfacial reaction characteristics of the Pb-free solder composition.

Description

주석-은-구리-인듐의 4원계 무연솔더 조성물{Quaternary Pb-free Solder Composition Incorporating Sn-Ag-Cu-In}Quaternary Pb-free Solder Composition Incorporating Sn-Ag-Cu-In}

도 1 은 가열 상태에서 종래의 솔더 조성에 따른 흡열 피크를 나타낸 결과,Figure 1 shows the endothermic peak according to the conventional solder composition in the heating state,

도 2 는 가열 상태에서 본 발명의 솔더 조성에 따른 흡열 피크를 나타낸 결과,Figure 2 shows the endothermic peak according to the solder composition of the present invention in a heated state,

도 3 은 용융 후 냉각 상태에서 종래의 솔더 조성에 따른 발열 피크를 나타낸 결과,Figure 3 shows the exothermic peak according to the conventional solder composition in the cooling state after melting,

도 4 는 용융 후 냉각 상태에서 본 발명의 솔더 조성에 따른 발열 피크를 나타낸 결과,Figure 4 shows the exothermic peak according to the solder composition of the present invention in the cooling state after melting,

도 5 는 종래의 솔더 조성에서 솔더링 온도에 따른 제로 크로스 타임값(zero cross time value)을 나타낸 그래프,5 is a graph illustrating a zero cross time value according to soldering temperature in a conventional solder composition;

도 6 은 본 발명의 솔더 조성에서 솔더링 온도에 따른 제로 크로스 타임값(zero cross time value)을 나타낸 그래프,6 is a graph showing a zero cross time value according to soldering temperature in the solder composition of the present invention;

도 7 은 종래의 솔더 조성에서 솔더링 온도에 따른 2초 후 젖음력(wettting force at 2 seconds)의 변화를 나타낸 그래프,7 is a graph showing a change in wetting force at 2 seconds after soldering temperature according to the soldering temperature in the conventional solder composition;

도 8 은 본 발명의 솔더 조성에서 솔더링 온도에 따른 2초 후 젖음력(wettting force at 2 seconds)의 변화를 나타낸 그래프,8 is a graph showing a change in wetting force at 2 seconds after soldering temperature according to soldering temperature in the solder composition of the present invention;

도 9 는 종래의 솔더 조성에서 솔더링 온도에 따른 최종 젖음력(final wettting force)의 변화를 나타낸 그래프,9 is a graph showing the change in final wettting force (final wettting force) with the soldering temperature in the conventional solder composition,

도 10 은 본 발명의 솔더 조성에서 솔더링 온도에 따른 최종 젖음력(final wettting force)의 변화를 나타낸 그래프,10 is a graph showing the change in the final wettting force (final wettting force) with the soldering temperature in the solder composition of the present invention,

도 11 은 종래의 Sn-3.0Ag-0.5Cu, Sn-1.0Ag-0.5Cu, Sn-1.2Ag-0.5Cu-0.5Ni 솔더 조성을 인장시편으로 제작하여 시험한 결과를 나타낸 그래프,11 is a graph showing the results of tests made by fabricating a tensile specimen of Sn-3.0Ag-0.5Cu, Sn-1.0Ag-0.5Cu, and Sn-1.2Ag-0.5Cu-0.5Ni, respectively.

도 12 는 본 발명의 솔더 조성에서 Sn-1.2Ag-0.5Cu-0.4In 및 Sn-1.2Ag-0.5Cu-0.2In, Sn-1.2Ag-0.5Cu-0.6In, Sn-1.2Ag-0.5Cu-0.8In, Sn-1.0Ag-0.5Cu-1.0In 조성을 인장시편으로 제작하여 시험한 결과를 나타낸 그래프.12 shows Sn-1.2Ag-0.5Cu-0.4In and Sn-1.2Ag-0.5Cu-0.2In, Sn-1.2Ag-0.5Cu-0.6In, Sn-1.2Ag-0.5Cu- in the solder composition of the present invention. Graph showing the test results of 0.8In, Sn-1.0Ag-0.5Cu-1.0In composition prepared by tensile test.

본 발명은 무연솔더(Pb-free) 조성물에 관한 것으로, 특히 인듐의 사용으로 은의 사용량을 감소시킨 주석(Sn)-은(Ag)-구리(Cu)-인듐(In)의 4원계 무연솔더 조성물에 관한 것이다.The present invention relates to a lead-free solder (Pb-free) composition, in particular the quaternary lead-free solder composition of tin (Sn) -silver (Ag) -copper (Cu) -indium (In) reduced the amount of silver by the use of indium It is about.

현재 무연솔더 조성의 경우 Sn-Ag-Cu계가 가장 일반적으로 사용되고 있으며, 대표적인 조성으로는 Sn-3.0Ag-0.5Cu 조성을 들 수 있다. 또한 이러한 조성의 내산화성을 향상시키기 위하여 P, Ge, Ga, Al, Si 등이 각각 수십~수천 ppm 양으로 추 가 첨가되기도 하며, 기계적 특성 및 계면 반응 특성 등의 향상을 위하여 Ni, Co, Fe, Bi, Au, Pt, Pb, Mn, V, Ti, Cr, Nb, Pd, Sb, Mg, Ta, Cd, 희토류(Rare Earth) 금속 등이 각각 수십~수천 ppm 양으로 추가 첨가되기도 한다. Currently, the lead-free solder composition is Sn-Ag-Cu-based is most commonly used, the typical composition is Sn-3.0Ag-0.5Cu composition. In addition, P, Ge, Ga, Al, Si, etc. may be added in amounts of several tens to thousands of ppm, respectively, in order to improve oxidation resistance of such a composition, and Ni, Co, Fe may be added to improve mechanical properties and interfacial reaction properties. , Bi, Au, Pt, Pb, Mn, V, Ti, Cr, Nb, Pd, Sb, Mg, Ta, Cd and rare earth metals may be added in amounts of several tens to thousands of ppm each.

그러나 최근 전자 패키징 분야를 중심으로 원가 절감에 대한 노력이 점차 확대되면서 첨가 원소 중 가장 고가인 Ag 원소의 양을 줄이기 위한 연구들이 시도되고 있는데, 그 예로 Sn-2.5Ag-0.5Cu 및 Sn-1.0Ag-0.5Cu 조성이 적용되기도 하고, 최근에 들어서는 Sn-0.3Ag-0.5Cu 조성에 대한 특성 평가까지도 이루어지고 있는 실정이다.   However, as the efforts to reduce costs have been expanded in recent years in the field of electronic packaging, researches have been attempted to reduce the amount of Ag element, which is the most expensive element among the additive elements, for example, Sn-2.5Ag-0.5Cu and Sn-1.0Ag. The composition of -0.5Cu may be applied, and in recent years, even the characteristic evaluation of the composition of Sn-0.3Ag-0.5Cu has been performed.

Sn-Ag-Cu계 솔더에서 Ag 양에 따른 금속학적, 기계적인 특성 변화를 요약하면 다음과 같다.  The metal and mechanical properties of the Sn-Ag-Cu based solder according to the amount of Ag are summarized as follows.

1) 첨가 Ag 양이 감소할수록 액상선 온도와 고상선 온도가 벌어져 고상, 액상 공존영역(pasty range 또는 mush zone)이 증가한다.1) As the amount of added Ag decreases, the liquidus temperature and the solidus temperature increase, so that the solid phase and the liquid phase coexistence area (pasty range or mush zone) increase.

2) 첨가 Ag 양이 감소할수록 1)의 결과 등으로 젖음성(wettability)이 감소한다.2) As the amount of added Ag decreases, wettability decreases as a result of 1).

3) 첨가 Ag 양이 감소할수록 합금의 강도 및 내 크리프(creep) 특성이 감소한다.3) As the amount of added Ag decreases, the strength and creep resistance of the alloy decrease.

4) 첨가 Ag 양이 감소할수록 3)의 결과 등으로 열 사이클링(thermal cycling) 실험에 따른 솔더 조인트(solder joint)의 파단 속도가 증가한다.4) As the amount of added Ag decreases, the breaking speed of the solder joint increases according to the thermal cycling experiment as a result of 3).

5) 첨가 Ag 양이 감소할수록 합금의 연신율(elongation)이 증가하면서 기계적 충격(impact) 실험에 따른 솔더 조인트(solder joint)의 파단 속도가 감소한다.5) As the amount of added Ag decreases, the elongation of the alloy increases and the breaking speed of the solder joint decreases according to the mechanical impact test.

따라서 상기 1)의 경우는 솔더 내 Ag 함량에 따른 금속학적 특성 변화 현상에 해당하므로, Ag 함량을 감소시킬 경우는 적절한 Ag 양을 설정하는 한편, 기존 Sn-3.0Ag-0.5Cu 조성에 근접하는 젖음성(wettability)을 확보해야 솔더 재료로서의 적용이 원활해지고, Ag 함량의 절감을 통한 궁극적인 원가 절감이 가능해진다.Therefore, in the case of 1), it corresponds to the change in metallurgical properties according to the Ag content in the solder, and in order to reduce the Ag content, an appropriate amount of Ag is set, and the wettability close to the existing Sn-3.0Ag-0.5Cu composition is used. Wetability ensures smooth application as a solder material and ultimate cost reduction through reduced Ag content.

또한 상기 4)와 5)의 경우에는 솔더의 Ag 함량의 감소에 따라 서로 상치되는 특성을 보여준다고 할 수 있으므로, 역시 적절한 Ag 양을 설정하는 한편, 합금원소의 첨가 등에 의하여 기계적 특성의 향상을 보완해야 열 사이클링(thermal cycling) 및 기계적 충격(impact)에 대한 내성을 동시에 확보할 수 있는 이상적인 솔더 조성의 설계가 이루어지고, 더불어 Ag 함량의 절감을 통한 원가의 절감까지 확보하는 것이 가능해진다.In addition, in the case of 4) and 5), it may be said that they show mutually conflicting characteristics as the Ag content of the solder decreases. Therefore, an appropriate amount of Ag must be set, and the improvement of mechanical properties must be compensated for by the addition of alloying elements. The design of the ideal solder composition to achieve both thermal cycling and resistance to mechanical impact at the same time, as well as to reduce the cost by reducing the Ag content.

그러나 상기와 같은 조건을 만족하는 무연솔더 조성은 아직까지 개발되지 못하고 있는 실정이다.However, a lead-free solder composition that satisfies the above conditions has not been developed yet.

본 발명은 상기와 같은 실정을 고려하여 이루어진 것으로, 본 발명의 목적은 Ag의 함량 감소에 따른 젖음성(wettability)의 저하를 억제하고, 열 사이클링(thermal cycling) 및 기계적 충격(impact)에 대한 내성을 최적화 할 수 있도록 인듐(In)을 적정량 첨가함과 더불어 은(Ag)의 함량을 최적화하여 무연솔더 조성물의 원가 상승을 억제하고, 솔더 재료로서의 공정성과 기계적 특성을 충분히 확보할 수 있도록 하는 주석-은-구리-인듐의 4원계 무연솔더 조성물을 제공함에 있다.The present invention has been made in consideration of the above circumstances, and an object of the present invention is to suppress a decrease in wettability due to a decrease in the content of Ag, and to provide resistance to thermal cycling and mechanical impact. Tin-silver, which adds an appropriate amount of indium (In) to optimize the content, optimizes the silver (Ag) content to reduce the cost of the lead-free solder composition, and secures fairness and mechanical properties as a solder material. It is to provide a quaternary lead-free solder composition of copper-indium.

상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명은 0.3wt.%이상 2.5wt.%미만의 은(Ag)과, 0.1wt.%이상 2wt.%미만의 구리(Cu)와, 0.1wt.%이상 1.2wt.%이하의 인듐(In)과, 나머지는 주석(Sn)으로 이루어진 것을 특징으로 하는 주석-은-구리-인듐의 4원계 무연솔더 조성물을 특징으로 한다.The present invention to achieve the object as described above and to solve the conventional drawbacks is 0.3wt.% Or more less than 2.5wt.% Silver (Ag), 0.1wt.% Or more less than 2wt.% Copper (Cu), 0.1 wt.% Or more, 1.2 wt.% Or less, indium (In), and the remainder is tin (Sn), characterized in that the four-membered lead-free solder composition of the tin-silver-copper-indium do.

상기와 같은 특징으로 갖는 무연솔더 조성물은 무연솔더 조성물의 원가를 낮추기 위해 은의 첨가량을 감소시킴으로써 발생되는 젖음성(wettability) 저하 및 열 사이클링(thermal cycling)과 기계적 충격(impact) 신뢰성의 불균일함을 인듐(In) 첨가에 의해 보완함으로써 보다 낮은 가격으로 우수한 품질의 무연솔더 조성물을 제공할 수 있도록 한 것이다.The lead-free solder composition having the above characteristics is characterized by indium (wetness) degradation caused by reducing the amount of silver added to lower the cost of the lead-free solder composition, and the nonuniformity of thermal cycling and mechanical impact reliability. In) by supplementation to provide a lead-free solder composition of excellent quality at a lower price.

이하, 본 발명의 바람직한 실시 예를 통해 본 발명의 특징을 상세히 설명하면 다음과 같다. 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.Hereinafter, the features of the present invention will be described in detail with reference to preferred embodiments of the present invention. In describing the present invention, if it is determined that the detailed description of the related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.

본 발명의 무연솔더 조성물에서 은(Ag)의 첨가비율은 0.3 내지 2.5wt.%이다. 이는 0.3wt.% 미만으로 은(Ag)이 첨가될 경우 액상선 온도의 강하가 거의 이루어지지 않아 솔더의 융점 및 실장 공정 온도가 증가되는 단점이 있고, 2.5wt.% 이상으로 은(Ag)이 첨가될 경우 본 발명이 추구하는 원가 절감을 저해하는 단점이 있다. 따라서 은(Ag)의 첨가비율은 0.3wt.%이상 2.5wt.%미만이 첨가되며, 바람직하게는 1.2wt.% 첨가된다.In the lead-free solder composition of the present invention, the addition ratio of silver (Ag) is 0.3 to 2.5 wt.%. If silver (Ag) is added to less than 0.3wt.%, The liquidus temperature is hardly dropped, so that the melting point and mounting process temperature of the solder are increased, and silver (Ag) is more than 2.5wt.%. When added, there is a disadvantage that inhibits the cost reduction pursued by the present invention. Therefore, the addition ratio of silver (Ag) is 0.3wt.% Or more and less than 2.5wt.%, Preferably 1.2wt.%.

또한 본 발명의 무연솔더 조성에서 구리(Cu)의 첨가비율은 0.1 내지 2wt.%이다. 이는 0.1wt.% 미만으로 구리(Cu)가 첨가될 경우 액상선 온도의 강하가 미미하고, Cu6Sn5 상의 분율이 거의 존재하지 않아 솔더 합금의 강도가 지나치게 감소하는 단점이 있고, 2wt.% 이상으로 구리(Cu)가 첨가될 경우 액상선 온도와 고상선 온도가 벌어져 고상, 액상 공존영역(pasty range 또는 mush zone)이 증가하고, Cu6Sn5 상의 분율이 증가하여 솔더 합금의 기계적 특성을 지나치게 강하게 하며, 계면 반응층의 성장 속도를 증가시키는 단점이 있다. 따라서 구리(Cu)의 첨가비율은 0.1wt.%이상 2wt.%미만으로 첨가되며, 바람직하게는 0.5wt.% 첨가된다.In addition, the addition ratio of copper (Cu) in the lead-free solder composition of the present invention is 0.1 to 2wt.%. This is a disadvantage in that the liquidus temperature decreases when copper (Cu) is added at less than 0.1 wt.%, And the strength of the solder alloy is excessively reduced because there is almost no fraction of Cu 6 Sn 5 phase, and 2wt.% When copper (Cu) is added, the liquidus temperature and the solidus temperature are increased to increase the solid phase and the liquidus coexistence area (pasty range or mush zone), and to increase the fraction of Cu 6 Sn 5 phase to improve the mechanical properties of the solder alloy. It is too strong and has the disadvantage of increasing the growth rate of the interfacial reaction layer. Therefore, the addition ratio of copper (Cu) is added in more than 0.1wt.% Less than 2wt.%, Preferably 0.5wt.%.

또한 본 발명의 무연솔더 조성에서 인듐(In)의 첨가비율은 0.1 내지 1.2wt.%이다. 이는 0.1wt.% 미만으로 인듐(In)이 첨가될 경우 In의 첨가에 의한 젖음성의 개선 및 기계적 특성의 개선이 미미한 단점이 있고, 1.2wt.%를 초과하여 인듐(In)이 첨가될 경우 젖음성의 개선 및 기계적 특성의 개선이 In의 첨가량에 비례하여 향상되지 않는 한편, 솔더 합금의 가격은 급속히 증가하는 단점이 있다. 따라서 인듐(In)의 첨가비율은 0.1wt.%이상 1.2wt.%이하 첨가되며, 바람직하게는 0.4wt.% 첨가된다.In addition, the addition ratio of indium (In) in the lead-free solder composition of the present invention is 0.1 to 1.2wt.%. This is a disadvantage that the improvement of the wettability and the mechanical properties by the addition of In when the indium (In) is added less than 0.1wt.%, And the wettability when indium (In) is added more than 1.2wt.% While the improvement of and the improvement of the mechanical properties are not improved in proportion to the amount of In added, the price of the solder alloy has a disadvantage that increases rapidly. Therefore, the addition ratio of indium (In) is added in more than 0.1wt.% 1.2wt.% Or less, preferably 0.4wt.%.

한편 상기 각 첨가원소의 바람직한 첨가비율에 따르면 가장 이상적인 무연솔더 조성물은 Sn-1,2Ag-0.5Cu-0.4In 으로, 본 발명의 가장 이상적인 조성인 Sn-1,2Ag-0.5Cu-0.4In 및 그 외 여러 연구 조성과 종래의 Sn-3.0Ag-0.5Cu과 Sn-1.0Ag-0.5Cu 및 Sn-1.2Ag-0.5Cu-0.5Ni 조성을 동일한 실험과정을 통해 평가한 결과 가 도 1 내지 도 11에 도시되어 있다.Meanwhile, according to the preferred addition ratio of each of the additive elements, the most ideal lead-free solder composition is Sn-1,2Ag-0.5Cu-0.4In, and Sn-1,2Ag-0.5Cu-0.4In, which is the most ideal composition of the present invention, and its Various research compositions and conventional Sn-3.0Ag-0.5Cu, Sn-1.0Ag-0.5Cu, and Sn-1.2Ag-0.5Cu-0.5Ni compositions were evaluated through the same experimental procedures. It is.

도 1 및 도 2는 가열 상태에서 솔더 조성에 따른 흡열 피크를 나타낸 결과를 보여준다. 도 1, 2의 결과는 차동주사열량계(DSC, Differential Scanning Calorimeter)를 사용하여 약 8 mg의 솔더 합금을 50 ml/min의 질소 흐름 분위기에서 10 oC/min의 승온속도로 가열할 때 생성되는 흡열 피크를 측정한 결과이다. 도 1에 나타나 있듯이, Sn-3.0Ag-0.5Cu 조성의 경우는 217~218 oC의 흡열 피크 온도를 나타내었으며, 이는 이 합금의 융점과 일치함을 알 수 있다. 반면 Sn-1.0Ag-0.5Cu 조성의 경우 218~219 oC의 1차 흡열 피크와 226 oC의 2차 흡열 피크를 나타내어 각각 액상선 온도와 고상선 온도로 관찰되었으며, 고상, 액상 공존영역(pasty range 또는 mush zone)이 매우 증가했음을 알 수 있다. Sn-1.2Ag-0.5Cu-0.05Ni 조성의 경우 219~220 oC의 1차 흡열 피크와 225~226 oC의 2차 흡열 피크를 나타내어 각각 액상선 온도와 고상선 온도로 관찰되었으며, 역시 고상, 액상 공존영역(pasty range 또는 mush zone)이 매우 증가했음을 관찰할 수 있었다. 1 and 2 show the results of the endothermic peak according to the solder composition in the heating state. The results in FIGS. 1 and 2 are generated when heating about 8 mg of a solder alloy using a differential scanning calorimeter (DSC) at a heating rate of 10 o C / min in a nitrogen flow atmosphere of 50 ml / min. It is the result of measuring an endothermic peak. As shown in Figure 1, the Sn-3.0Ag-0.5Cu composition showed an endothermic peak temperature of 217 ~ 218 ° C, which can be seen that coincides with the melting point of this alloy. On the other hand, Sn-1.0Ag-0.5Cu composition showed the first endothermic peak of 218 ~ 219 o C and the second endothermic peak of 226 o C, respectively, and were observed in liquidus temperature and solidus temperature, respectively. It can be seen that the pasty range or mush zone has increased significantly. Sn-1.2Ag-0.5Cu-0.05Ni composition showed the first endothermic peak of 219 ~ 220 o C and the second endothermic peak of 225 ~ 226 o C, respectively, and were observed in liquidus temperature and solidus temperature, respectively. In addition, it was observed that the liquid phase coexistence area (pasty range or mush zone) was greatly increased.

한편 도 2에 나타나 있듯이, Sn-1.0Ag-0.5Cu-1.0In 조성의 경우 216 oC의 1차 흡열 피크와 224~225 oC의 2차 흡열 피크를 나타내어 각각 액상선 온도와 고상선 온도로 관찰되었으며, 역시 고상, 액상 공존영역(pasty range 또는 mush zone)이 매우 증가했으나, 액상선 온도와 고상선 온도가 전체적으로 저온으로 다소 떨어졌 음을 알 수 있다. 이러한 액상선 온도와 고상선 온도의 저온 전이 결과는 저온에서의 솔더 젖음성에 우수한 효과를 나타내는 주요 원인임을 알 수 있다. Sn-1.0Ag-0.5Cu-0.5In 조성의 경우 217 oC의 1차 흡열 피크와 225 oC의 2차 흡열 피크를 나타내어 각각 액상선 온도와 고상선 온도로 관찰되었으며, 역시 고상, 액상 공존영역(pasty range 또는 mush zone)이 매우 증가했으나, 액상선 온도와 고상선 온도가 전체적으로 저온으로 다소 떨어졌음을 알 수 있다.On the other hand, as shown in Figure 2, the Sn-1.0Ag-0.5Cu-1.0In composition shows a first endothermic peak of 216 ° C and a second endothermic peak of 224 ~ 225 ° C, respectively, liquid phase temperature and solidus temperature It was observed that the solid phase and the liquid phase coexistence area (pasty range or mush zone) were greatly increased, but it can be seen that the liquidus temperature and the solidus temperature dropped to low temperatures as a whole. It can be seen that the low temperature transition result of the liquidus temperature and the solidus temperature is the main cause of the excellent effect on the solder wetting at low temperatures. Sn-1.0Ag-0.5Cu-0.5In composition showed the first endothermic peak of 217 o C and the second endothermic peak of 225 o C, which were observed at liquidus temperature and solidus temperature, respectively. (pasty range or mush zone) increased greatly, but the liquidus temperature and the solidus temperature dropped slightly to the low temperature as a whole.

Sn-1.2Ag-0.5Cu-0.8~0.4In 조성의 경우 217~218 oC의 1차 흡열 피크와 224~225 oC의 2차 흡열 피크를 나타내어 각각 액상선 온도와 고상선 온도로 관찰되었으며, 고상, 액상 공존영역(pasty range 또는 mush zone)이 매우 증가했으나, 역시 액상선 온도와 고상선 온도가 전체적으로 저온으로 다소 떨어졌음을 알 수 있다. 그러나 Sn-1.2Ag-0.5Cu-0.2In 조성의 경우 219~220 oC의 1차 흡열 피크와 226 oC의 2차 흡열 피크를 나타내어 각각 액상선 온도와 고상선 온도로 관찰되었으며, 고상, 액상 공존영역(pasty range 또는 mush zone)이 매우 증가했으나, Sn-1.0Ag-0.5Cu 조성에 비하여 액상선 온도와 고상선 온도가 저온으로 떨어지지 않았음을 알 수 있다. 이러한 결과는 Sn-1.2Ag-0.5Cu-0.2In 조성의 경우 저온에서의 솔더 젖음성이 Sn-1.0Ag-0.5Cu 조성에 비하여 크게 개선되지 않은 주요 원인임을 알 수 있다.Sn-1.2Ag-0.5Cu-0.8 ~ 0.4In composition showed the first endothermic peak of 217 ~ 218 o C and the second endothermic peak of 224 ~ 225 o C and were observed at liquidus temperature and solidus temperature, respectively. The solid phase and the liquid phase coexistence area (pasty range or mush zone) was greatly increased, but it can also be seen that the liquidus temperature and the solidus temperature dropped to a low temperature as a whole. However, Sn-1.2Ag-0.5Cu-0.2In composition showed the first endothermic peak of 219 ~ 220 o C and the second endothermic peak of 226 o C, which were observed at liquidus temperature and solidus temperature, respectively. The coexistence area (pasty range or mush zone) was greatly increased, but it can be seen that the liquidus temperature and the solidus temperature did not drop to low temperatures compared to the Sn-1.0Ag-0.5Cu composition. These results indicate that the solder wettability at low temperature in the case of the Sn-1.2Ag-0.5Cu-0.2In composition is the main cause that is not significantly improved compared to the Sn-1.0Ag-0.5Cu composition.

도 3 및 도 4는 용융 후 냉각 상태에서 솔더 조성에 따른 1차 발열 피크를 나타낸 결과를 보여준다. 도 3, 4의 결과 역시 차동주사열량계(DSC, Differential Scanning Calorimeter)를 사용하여 약 8 mg의 솔더 합금을 50 ml/min의 질소 흐름 분위기에서 10 oC/min의 속도로 250 oC까지 가열한 후 냉각할 때 생성되는 1차 흡열 피크를 측정한 결과이다. 도 3에 나타나 있듯이, Sn-3.0Ag-0.5Cu 조성의 경우는 약 194 oC의 1차 발열 피크 온도를 나타내었으며, 이는 이 합금의 실제 응고 온도와 일치함을 알 수 있다. 금속학적으로 합금의 용융 온도와 실제 응고 온도의 차, 즉, 이 경우에서는 약 23~24 oC를 언더 쿨링(undercooling) 또는 수퍼 쿨링(supercooling) 이라고 칭한다. 함금 내의 Ag 함량에 따라서 이러한 언더 쿨링의 크기는 증가하게 되는데, 일 예로 Sn-1.0Ag-0.5Cu 조성의 경우 약 188 oC의 1차 발열 피크를 나타내어 언더 쿨링이 증가함을 보여주었다. 한편 Sn-1.2Ag-0.5Cu-0.05Ni 조성의 경우 약 206~207 oC의 1차 발열 피크를 나타내어 Ni의 소량 첨가가 언더 쿨링을 매우 크게 감소시킴을 알 수 있었다. 3 and 4 show the results of the first exothermic peak according to the solder composition in the cooling state after melting. The results of FIGS. 3 and 4 were also heated to 250 o C at a rate of 10 o C / min at 50 ml / min nitrogen flow atmosphere using a differential scanning calorimeter (DSC). It is the result of measuring the primary endothermic peak produced at the time of cooling. As shown in FIG. 3, the Sn-3.0Ag-0.5Cu composition exhibited a first exothermic peak temperature of about 194 ° C., which is consistent with the actual solidification temperature of this alloy. Metallographically, the difference between the melting temperature of the alloy and the actual solidification temperature, ie in this case about 23 to 24 o C, is called undercooling or supercooling. The amount of such undercooling increases with the Ag content in the alloy. For example, the Sn-1.0Ag-0.5Cu composition shows a first exothermic peak of about 188 o C, indicating that the undercooling increases. On the other hand, Sn-1.2Ag-0.5Cu-0.05Ni composition showed a first exothermic peak of about 206 ~ 207 ° C, indicating that the addition of a small amount of Ni significantly reduced undercooling.

In을 첨가했을 경우의 결과는 도 4와 같다. Sn-1.0Ag-0.5Cu-1.0In 조성의 경우는 약 200 oC의 1차 발열 피크 온도가 관찰되었으며, Sn-1.0Ag-0.5Cu-0.5In 조성의 경우는 약 190~191 oC의 1차 발열 피크 온도가 관찰되었다. 따라서 In 또한 언더 쿨링을 매우 감소시키는 원소로 분석되었다. 또한 Sn-1.2Ag-0.5Cu-0.8In 조성의 경우는 약 192~193 oC의 1차 발열 피크가, Sn-1.2Ag-0.5Cu-0.6In 조성의 경우는 약 197~198 oC의 1차 발열 피크가, Sn-1.2Ag-0.5Cu-0.4In 조성의 경우는 약 200~201 oC의 1차 발열 피크가, Sn-1.2Ag-0.5Cu-0.4In 조성의 경우는 약 202~223 oC의 1차 발열 피크가 관찰되었다.The result at the time of adding In is as shown in FIG. In the Sn-1.0Ag-0.5Cu-1.0In composition, the first exothermic peak temperature of about 200 o C was observed, and in the Sn-1.0Ag-0.5Cu-0.5In composition, about 190 to 191 o C A differential exothermic peak temperature was observed. Therefore, In was also analyzed as an element that greatly reduces undercooling. In the case of the Sn-1.2Ag-0.5Cu-0.8In composition, the primary exothermic peak of about 192 to 193 o C is 1, and about 197 to 198 o C for the Sn-1.2Ag-0.5Cu-0.6In composition. The secondary exothermic peak is about 200-201 ° C. for the Sn-1.2Ag-0.5Cu-0.4In composition, and the primary exothermic peak is about 202-223 for the Sn-1.2Ag-0.5Cu-0.4In composition. A first exothermic peak of o C was observed.

도 5 및 도 6은 솔더링 온도에 따른 제로 크로스 타임값(zero cross time value)을 나타내고 있다. 1회의 젖음 실험은 제로 크로스 타임값(zero cross time value), 2초 후 젖음력(wettting force at 2 seconds), 최종 젖음력(final wettting force) 등을 한꺼번에 측정하도록 하는데, 하기 각 결과들은 10회 이상의 시험 값을 평균한 결과를 보여준다. 젖음 실험에 사용한 시편은 3 mm의 폭과 10 mm의 길이의 Cu 조각이었으며, 센쥬(SENJU)사의 수용성(water-soluble type) 플럭스(flux)를 Cu 조각의 표면에 도포한 후 용융 솔더 내로 장입시켰으며, 그 장입 깊이는 2 mm였다. 그리고 Cu 조각의 장입 속도와 이탈 속도는 각각 5 mm/sec였다. 도 5에서 볼 수 있는 바와 같이, Sn-1.2Ag-0.5Cu-0.05Ni 및 Sn-1.0Ag-0.5Cu 조성의 경우 Sn-3.0Ag-0.5Cu에 비해 제로 크로스 타임값이 매우 크게 측정되었고, 특히 230~240 oC의 저온에서 제로 크로스 타임값은 보다 증가하는 것으로 측정되었다. 반면에 도 6과 같이 In을 첨가한 경우에서는 눈에 띄게 제로 크로스 타임값이 감소함이 관찰되었고, 230~240 oC의 저온에서 제로 크로스 타임값이 보다 효과적으로 감소하는 것이 측정되었다. 특히 본 발명에 따른 대표 조성인 Sn-1,2Ag-0.5Cu-0.4In 조성의 경우 Sn-3.0Ag-0.5Cu 조성과 유사하거나 다소 우수한 제로 크로스 타임값을 나타내어 솔더 재료로서 매우 우수한 젖음 특성을 보유하고 있음을 확인할 수 있다.5 and 6 illustrate zero cross time values according to soldering temperatures. One wetting experiment was performed to measure the zero cross time value, the wetting force at 2 seconds, and the final wettting force at the same time. The average result of the above test is shown. The specimens used in the wet experiment were 3 mm wide and 10 mm long Cu pieces, and the water-soluble type flux of SENJU was applied to the surface of the Cu pieces and loaded into molten solder. The charging depth was 2 mm. And the charging speed and the removal speed of Cu piece were 5 mm / sec, respectively. As can be seen in FIG. 5, in the compositions of Sn-1.2Ag-0.5Cu-0.05Ni and Sn-1.0Ag-0.5Cu, the zero cross time value was very large compared to Sn-3.0Ag-0.5Cu, in particular, At low temperatures of 230-240 ° C, the zero cross time value was measured to increase. On the other hand, when In is added as shown in FIG. 6, it was observed that the zero cross time value was remarkably decreased, and it was measured that the zero cross time value was more effectively reduced at low temperatures of 230 ° C to 240 ° C. In particular, the Sn-1,2Ag-0.5Cu-0.4In composition, which is a representative composition according to the present invention, exhibits a zero cross time value similar to or slightly better than that of Sn-3.0Ag-0.5Cu, and thus has very good wettability as a solder material You can see that.

도 7 및 도 8은 솔더링 온도에 따른 2초 후 젖음력(wettting force at 2 seconds)의 변화를 나타내고 있다. 도 7에서 볼 수 있는 바와 같이, Sn-1.0Ag-0.5Cu 및 Sn-1.2Ag-0.5Cu-0.05Ni 조성의 경우 Sn-3.0Ag-0.5Cu에 비하여 2초 후 젖음력(wetting force at 2 seconds)이 매우 작게 측정되며, 특히 230~240 oC의 낮은 온도에서 2초 후 젖음력(wetting force at 2 seconds)의 저하는 더욱 두드러지게 측정되었다. 반면에 도 8과 같이 In을 첨가한 경우에서는 눈에 띄게 2초 후 젖음력(wetting force at 2 seconds)이 증가함이 관찰되었고, 230~240 oC의 저온에서 2초 후 젖음력(wetting force at 2 seconds)은 보다 효과적으로 증가하는 것이 측정되었다. 특히 본 발명의 대표 조성인 Sn-1.2Ag-0.5Cu-0.4In 조성의 경우, Sn-3.0Ag-0.5Cu에 유사하거나 다소 우수한 2초 후 젖음력(wetting force at 2 seconds)을 구비하고 있음을 확인할 수 있다.7 and 8 show a change in the wetting force at 2 seconds after the soldering temperature. As can be seen in Figure 7, in the composition of Sn-1.0Ag-0.5Cu and Sn-1.2Ag-0.5Cu-0.05Ni wetting force at 2 seconds compared to Sn-3.0Ag-0.5Cu ) Is measured very small, especially the drop in wetting force at 2 seconds after 2 seconds at low temperatures of 230 ~ 240 ° C. On the other hand, in the case of adding In as shown in Figure 8, wetting force (wetting force at 2 seconds) was noticeably increased after 2 seconds, wetting force after 2 seconds at a low temperature of 230 ~ 240 o C at 2 seconds) was measured to increase more effectively. In particular, the Sn-1.2Ag-0.5Cu-0.4In composition, which is a representative composition of the present invention, has a wetting force at 2 seconds similar or somewhat superior to Sn-3.0Ag-0.5Cu. You can check it.

상기와 같은 결과를 볼 때 본 발명의 조성은 매우 저렴한 합금 가격에도 불구하고 우수한 젖음성(wettability) 특성을 나타내어 솔더링(soldering) 재료로서 매우 적합한 특성을 보유하고 있음을 알 수 있다. 따라서 본 발명의 무연솔더 조성물은 솔더 페이스트, 솔더 볼, 솔더 바, 솔더 와이어(wire), 솔더 범프(bump), 솔더 박판, 솔더 분말과 솔더 펠렛(pellet), 솔더 입자(granule), 솔더 리본(ribbon), 솔더 와셔(washer), 솔더 링(ring), 솔더 디스크(disk)와 같은 솔더 프리폼(preform)의 제조에 적용될 수 있다.In view of the above results, it can be seen that the composition of the present invention exhibits excellent wettability characteristics despite very low alloy prices, and thus has very suitable properties as a soldering material. Therefore, the lead-free solder composition of the present invention is a solder paste, solder ball, solder bar, solder wire, solder bump, solder thin plate, solder powder and solder pellet (pellet), solder granules, solder ribbon ( It can be applied to the manufacture of solder preforms such as ribbons, solder washers, solder rings, solder disks.

도 9 및 도 10은 솔더링 온도에 따른 최종 젖음력(final wettting force)의 변화를 나타내고 있다. 도 9에서 볼 수 있는 바와 같이, Sn-1.0Ag-0.5Cu 및 Sn-1.2Ag-0.5Cu-0.05Ni 조성의 경우 Sn-3.0Ag-0.5Cu에 비하여 최종 젖음력(final wetting force)이 매우 작게 측정되며, 특히 230~240 oC의 낮은 온도에서 최종 젖음력(final wetting force)의 저하는 더욱 크게 측정되었다. 반면에 도 10과 같이 In을 첨가한 경우에서는 흥미로운 결과가 관찰되었는데, Sn-1.2Ag-0.5Cu-xIn 조성을 기준으로 볼 때, In의 양이 0.8wt.%와 같이 많은 경우에는 용융 In의 낮은 표면 장력값에 의하여 최종 젖음력의 개선이 미미했고, In의 양이 0.2wt.%와 같이 적은 경우에는 젖음력의 개선이 미미하여 최종 젖음력의 향상 또한 이루어지지 않았으나, 본 발명의 대표 조성인 Sn-1.2Ag-0.5Cu-0.4In 조성의 경우, Sn-3.0Ag-0.5Cu에 유사하거나 다소간 열악한 최종 젖음력(final wetting force)을 구비하고 있음을 확인할 수 있다. 특히 Sn-1.2Ag-0.5Cu-0.4In 조성은 230~240 oC의 낮은 온도에서의 최종 젖음력(final wetting force)이 기타 저 Ag 함유 조성에 비하여 매우 우수함을 확인할 수 있었다.9 and 10 show the change in final wettting force with soldering temperature. As can be seen in Figure 9, in the composition of Sn-1.0Ag-0.5Cu and Sn-1.2Ag-0.5Cu-0.05Ni the final wetting force is very small compared to Sn-3.0Ag-0.5Cu The lowering of the final wetting force, in particular at low temperatures of 230-240 ° C., was even greater. On the other hand, an interesting result was observed in the case of adding In as shown in FIG. 10, based on the Sn-1.2Ag-0.5Cu-xIn composition, when the amount of In is high, such as 0.8 wt.%, The final wetting force was insignificant due to the surface tension value, and when the amount of In was less than 0.2 wt.%, The improvement of the wetting force was insignificant, so that the final wetting force was not improved. In the case of -1.2Ag-0.5Cu-0.4In composition, it can be confirmed that Sn-3.0Ag-0.5Cu has similar or somewhat poor final wetting force. Especially Sn-1.2Ag-0.5Cu-0.4In composition was confirmed that the final wetting force (final wetting force) at a low temperature of 230 ~ 240 ° C is very superior to other low Ag containing composition.

도 11은 종래의 Sn-3.0Ag-0.5Cu, Sn-1.0Ag-0.5Cu, Sn-1.2Ag-0.5Cu-0.5Ni 조성을 인장시편으로 제작하여 시험한 결과를 나타내고 있다. 인장 시험편은 KS규격 13A에 따른 비례 인장 시험편으로 제작되었으며, 그 두께는 2 mm, 그 길이는 27 mm이었고, 인장시험 온도는 상온, 인장시험 속도는 7.8 mm/min이었다. 도 11에서 볼 수 있는 바와 같이, Sn-3.0Ag-0.5Cu 조성의 경우, 강도(strength)는 크지만 연신율(elongation)이 매우 작아 솔더 조인트(joint) 재료로 사용될 경우 열 사이클링(thermal cycling)에 대한 내성은 우수하나, 기계적 임팩트(impact)에 대한 내성은 매우 열악한 특성을 나타낼 것으로 예상되었다. 반면 Sn-1.0Ag-0.5Cu 조성의 경우 연신율(elongation)은 다소 증가되지만, 강도(strength)가 매우 작아 기계적 임팩트(impact)에 대한 내성은 Sn-3.0Ag-0.5Cu 조성에 비해 상대적으로 향상되나, 열 사이클링(thermal cycling)에 대한 내성은 열악한 특성을 나타낼 것으로 예상되었다. 또한 Sn-1.2Ag-0.5Cu-0.5Ni 조성의 경우, 상기 언급된 두 조성, 즉,Sn-3.0Ag-0.5Cu와 Sn-1.0Ag-0.5Cu의 중간적 특성을 나타냄을 관찰할 수 있었다.Figure 11 shows the results of the test by preparing the tensile specimens Sn-3.0Ag-0.5Cu, Sn-1.0Ag-0.5Cu, Sn-1.2Ag-0.5Cu-0.5Ni composition. Tensile test specimens were made of proportional tensile test specimens according to KS standard 13A, the thickness was 2 mm, the length was 27 mm, the tensile test temperature was room temperature, the tensile test speed was 7.8 mm / min. As can be seen in FIG. 11, in the case of Sn-3.0Ag-0.5Cu composition, the strength is large but the elongation is very small, and when used as a solder joint material, the thermal cycling is performed. The resistance to mechanical strength is excellent, but the resistance to mechanical impact is expected to exhibit very poor properties. On the other hand, in the case of Sn-1.0Ag-0.5Cu composition, the elongation is slightly increased, but the strength is so small that the resistance to mechanical impact is relatively improved compared to Sn-3.0Ag-0.5Cu composition. , Resistance to thermal cycling was expected to exhibit poor properties. In addition, in the case of the Sn-1.2Ag-0.5Cu-0.5Ni composition, it can be observed that the two characteristics mentioned above, that is, the intermediate characteristics of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.5Cu.

도 12는 본 발명의 대표 조성인 Sn-1.2Ag-0.5Cu-0.4In 조성과 기타 Sn-1.2Ag-0.5Cu-0.2In, Sn-1.2Ag-0.5Cu-0.6In, Sn-1.2Ag-0.5Cu-0.8In, Sn-1.0Ag-0.5Cu-1.0In 조성을 인장시편으로 제작하여 시험한 결과를 보여주고 있다. Sn-1.2Ag-0.5Cu-0.4In의 경우 유사조성인 Sn-1.0Ag-0.5Cu에 비하여 강도(strength)가 크게 향상되었고, 더욱이 연신율(elongation) 또한 매우 향상되면서 전체적으로 합금의 인성(toughness)이 매우 향상되었음을 알 수 있다. 이와 같은 특성은 기계적 임팩트(impact)에 대한 가장 우수한 내성을 나타내면서도 열 사이클링(thermal cycling)에 대한 내성 또한 비교적 우수할 것으로 예상되어 특히 기계적 충격 또는 진동에 노출되기 쉬운 모바일 제품(mobile product) 및 자동차 내부 일렉트로닉스(electronics)의 접합 재료로서 매우 적합한 솔더 조성으로 기대된다. Sn-1.2Ag-0.5Cu-0.2In의 경우는 In 첨가에 의한 금속의 강화 현상이 감소하면서 강도 값이 떨어졌으며, Sn-1.2Ag-0.5Cu-0.6In과 Sn-1.2Ag-0.5Cu-0.8In의 경우는 In의 첨가량 증가로 연신율이 점차 감소하는 현상을 나타내었다. Sn-1.0Ag-0.5Cu-1.0In의 경우는 In의 첨가량이 큰 데에도 불구하고 우수한 강도 값이 관찰되지 않았다.12 is Sn-1.2Ag-0.5Cu-0.4In composition and other Sn-1.2Ag-0.5Cu-0.2In, Sn-1.2Ag-0.5Cu-0.6In, Sn-1.2Ag-0.5 which are representative compositions of this invention. Cu-0.8In and Sn-1.0Ag-0.5Cu-1.0In compositions were tested by tensile specimens. In the case of Sn-1.2Ag-0.5Cu-0.4In, the strength is greatly improved compared to the similar composition Sn-1.0Ag-0.5Cu, and in addition, the elongation is greatly improved and the toughness of the alloy as a whole is improved. It can be seen that the improvement. This property is expected to exhibit the best resistance to mechanical impact, but also relatively good resistance to thermal cycling, particularly mobile products and automobiles that are susceptible to mechanical shock or vibration. It is expected to have a solder composition that is very suitable as a joining material for internal electronics. In the case of Sn-1.2Ag-0.5Cu-0.2In, the strength value decreased while the strengthening of metal by In addition was reduced, and Sn-1.2Ag-0.5Cu-0.6In and Sn-1.2Ag-0.5Cu-0.8 In the case of In, the elongation was gradually decreased due to the increased amount of In. In the case of Sn-1.0Ag-0.5Cu-1.0In, an excellent strength value was not observed even though the amount of In added was large.

한편 본 발명에 따른 Sn-Ag-Cu-In의 4원계 무연솔더 조성물의 내산화성을 향상시키기 위하여 인(P), 게르마늄(Ge), 갈륨(Ga), 알루미늄(Al), 실리콘(Si) 중 선택된 한개 또는 두개 이상의 원소를 혼합하여 0.0001wt.%이상 1wt.%미만 추가로 첨가할 수 있다.Meanwhile, in order to improve oxidation resistance of the Sn-Ag-Cu-In quaternary lead-free solder composition according to the present invention, phosphorus (P), germanium (Ge), gallium (Ga), aluminum (Al), silicon (Si) One or two or more selected elements may be mixed and additionally added at least 0.0001 wt.% And less than 1 wt.%.

또한 본 발명에 따른 Sn-Ag-Cu-In의 4원계 무연솔더 조성물의 계면 반응 특성을 향상시키기 위하여 아연(Zn)과 비소(Bi) 중 선택된 하나의 원소 또는 두 원소를 혼합하여 0.0001 wt.%이상 2 wt.%미만 추가로 첨가할 수 있다.In addition, in order to improve the interfacial reaction characteristics of the Sn-Ag-Cu-In quaternary lead-free solder composition according to the present invention, 0.0001 wt.% By mixing one or two elements selected from zinc (Zn) and arsenic (Bi). More than 2 wt.% Or more may be further added.

또한 본 발명에 따른 Sn-Ag-Cu-In의 4원계 무연솔더 조성물의 기계적 특성 및 계면 반응 특성을 향상시키기 위하여 니켈(Ni), 코발트(Co), 철(Fe), 금(Au), 백금(Pt), 납(Pb), 망간(Mn), 바나듐(V), 티타늄(Ti), 크롬(Cr), 니오브(Nb), 팔라듐(Pd), 안티몬(Sb), 마그네슘(Mg), 탈탄(Ta), 카드뮴(Cd), 희토류(Rare Earth)금속 중 선택된 하나 또는 두개 이상의 원소를 혼합하여 0.0001wt.%이상 1wt.%미만 추가로 첨가할 수 있다.In addition, nickel (Ni), cobalt (Co), iron (Fe), gold (Au), platinum in order to improve the mechanical properties and interfacial reaction properties of the quaternary lead-free solder composition of Sn-Ag-Cu-In according to the present invention (Pt), lead (Pb), manganese (Mn), vanadium (V), titanium (Ti), chromium (Cr), niobium (Nb), palladium (Pd), antimony (Sb), magnesium (Mg), decarburization At least one selected from (Ta), cadmium (Cd), rare earth (Rare Earth) metals, or a mixture of two or more elements may be added at least 0.0001 wt.% And less than 1 wt.%.

상기와 같은 첨언은 본 발명에 따른 Sn-Ag-Cu-In의 4원계 무연솔더 조성물의 특허를 회피하고자 Sn-Ag-Cu-In의 4원계 무연솔더 조성물에 미량의 원소나 원소들을 첨부하는 방법 또한 본 발명에 속하는 기술 분야임을 알리고자 함이다. As described above, the method of attaching a trace element or elements to the quaternary lead-free solder composition of Sn-Ag-Cu-In to avoid the patent of the quaternary lead-free solder composition of Sn-Ag-Cu-In according to the present invention It is also to inform that the technical field belonging to the present invention.

본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

본 발명은 상술한 바와 같이 은(Ag)의 함량을 감소시키되 인듐(In)을 첨가함으로써 은(Ag)의 감소에 따른 젖음성(wettability)을 보완하고, 열 사이클링(thermal cycling) 및 기계적 임팩트(impact)에 대한 내성을 최적화하여 낮은 원가로 우수한 품질의 무연솔더 조성물을 제공할 수 있게 되었다.The present invention reduces the content of silver (Ag) as described above, but supplements the wettability due to the reduction of silver (Ag) by adding indium (In), thermal cycling and mechanical impact (impact) Optimizing the resistance to the present invention provides a good quality lead-free solder composition at low cost.

Claims (5)

0.3wt.%이상 2.5wt.%미만의 은(Ag)과, 0.2wt.%이상 2wt.%미만의 구리(Cu)와, 0.2wt.%이상 0.8wt.%이하의 인듐(In)과, 나머지는 주석(Sn)으로 이루어진 것을 특징으로 하는 주석-은-구리-인듐의 4원계 무연솔더 조성물.0.3 wt.% Or more of silver (Ag) less than 2.5 wt.%, 0.2 wt.% Or more of copper (Cu), 0.2 wt.% Or more of indium (In) of 0.8 wt.% Or less, The tin-silver-copper-indium quaternary lead-free solder composition, the remainder is made of tin (Sn). 제 1 항에 있어서,The method of claim 1, 상기 무연솔더 조성물의 내산화성 향상을 위해 인(P), 게르마늄(Ge), 갈륨(Ga), 알루미늄(Al), 실리콘(Si) 중 선택된 한개 또는 두개 이상의 원소를 혼합하여 0.0001wt.%이상 1wt.%미만 추가로 첨가하는 것을 특징으로 하는 주석-은-구리-인듐의 4원계 무연솔더 조성물.In order to improve oxidation resistance of the lead-free solder composition, one or two or more elements selected from phosphorus (P), germanium (Ge), gallium (Ga), aluminum (Al), and silicon (Si) are mixed and 0.0001 wt.% Or more and 1 wt. A four-membered lead-free solder composition of tin-silver-copper-indium further comprising less than.%. 제 1 항에 있어서,The method of claim 1, 상기 무연솔더 조성물의 계면 반응 특성 향상을 위해 아연(Zn)과 비소(Bi) 중 선택된 하나 또는 두 원소를 혼합하여 0.0001wt.%이상 2wt.%미만 추가로 첨가하는 것을 특징으로 하는 주석-은-구리-인듐의 4원계 무연솔더 조성물.To improve the interfacial reaction characteristics of the lead-free solder composition, one or two selected from zinc (Zn) and arsenic (Bi) are mixed and added to 0.0001 wt.% Or more and less than 2 wt.%. A quaternary lead-free solder composition of copper-indium. 제 1 항에 있어서,The method of claim 1, 상기 무연솔더 조성물에 니켈(Ni), 코발트(Co), 철(Fe), 금(Au), 백금(Pt), 납(Pb), 망간(Mn), 바나듐(V), 티타늄(Ti), 크롬(Cr), 니오브(Nb), 팔라듐(Pd), 안티몬(Sb), 마그네슘(Mg), 탈탄(Ta), 카드뮴(Cd), 희토류(Rare Earth) 금속 중 선택된 하나 또는 두개 이상의 원소를 혼합하여 0.0001wt.%이상 1wt.%미만 추가로 첨가하는 것을 특징으로 하는 주석-은-구리-인듐의 4원계 무연솔더 조성물.Nickel (Ni), cobalt (Co), iron (Fe), gold (Au), platinum (Pt), lead (Pb), manganese (Mn), vanadium (V), titanium (Ti), One or two or more selected from chromium (Cr), niobium (Nb), palladium (Pd), antimony (Sb), magnesium (Mg), decarburization (Ta), cadmium (Cd) and rare earth metals The tin-silver-copper-indium quaternary lead-free solder composition, characterized in that the addition of more than 0.0001wt.% More than 1wt.%. 제 1 내지 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4, 상기 무연솔더 조성물은 솔더 페이스트, 솔더 볼, 솔더 바, 솔더 와이어(wire), 솔더 범프(bump), 솔더 박판, 솔더 분말과 솔더 펠렛(pellet), 솔더 입자(granule), 솔더 리본(ribbon), 솔더 와셔(washer), 솔더 링(ring), 솔더 디스크(disk)와 같은 솔더 프리폼(preform)의 제조에 적용되는 것을 특징으로 하는 주석-은-구리-인듐의 4원계 무연솔더 조성물.The lead-free solder composition may include solder paste, solder balls, solder bars, solder wires, solder bumps, solder sheets, solder powders and solder pellets, solder granules, solder ribbons, A ternary lead-free solder composition of tin-silver-copper-indium, which is applied to the production of solder preforms such as solder washers, solder rings, and solder disks.
KR1020070050905A 2007-05-25 2007-05-25 Quaternary pb-free solder composition incorporating sn-ag-cu-in KR100797161B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020070050905A KR100797161B1 (en) 2007-05-25 2007-05-25 Quaternary pb-free solder composition incorporating sn-ag-cu-in
US12/081,195 US20080292493A1 (en) 2007-05-25 2008-04-11 Quaternary Pb-free solder composition incorporating Sn-Ag-Cu-In
JP2008104956A JP2008290150A (en) 2007-05-25 2008-04-14 QUATERNARY Pb-FREE SOLDER COMPOSITION OF Sn-Ag-Cu-In
CNA2008100938399A CN101569965A (en) 2007-05-25 2008-04-30 Quaternary Pb-free solder composition incorporating Sn-Ag-Cu-In

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070050905A KR100797161B1 (en) 2007-05-25 2007-05-25 Quaternary pb-free solder composition incorporating sn-ag-cu-in

Publications (1)

Publication Number Publication Date
KR100797161B1 true KR100797161B1 (en) 2008-01-23

Family

ID=39218967

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070050905A KR100797161B1 (en) 2007-05-25 2007-05-25 Quaternary pb-free solder composition incorporating sn-ag-cu-in

Country Status (4)

Country Link
US (1) US20080292493A1 (en)
JP (1) JP2008290150A (en)
KR (1) KR100797161B1 (en)
CN (1) CN101569965A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089119A (en) * 2008-10-07 2010-04-22 Nihon Almit Co Ltd Solder alloy
KR101172174B1 (en) 2010-07-30 2012-08-07 엘지이노텍 주식회사 The printed circuit board and the method for manufacturing the same
KR101513494B1 (en) * 2013-12-04 2015-04-21 엠케이전자 주식회사 Lead-free solder, solder paste and semiconductor device
KR101551050B1 (en) * 2011-03-23 2015-09-07 센주긴조쿠고교 가부시키가이샤 Lead-free solder alloy
KR101865727B1 (en) * 2016-03-22 2018-06-08 현대자동차 주식회사 Lead-free solder composition
WO2017160132A3 (en) * 2016-03-18 2018-09-07 덕산하이메탈(주) Thin film material for low temperature bonding
KR101904891B1 (en) * 2016-11-14 2018-10-10 덕산하이메탈(주) Solder ball and embedded chip package of semiconductor using the same
KR20190013316A (en) 2017-08-01 2019-02-11 서울시립대학교 산학협력단 High performance lead-free solder composition and manufacturing method of the same
KR20190086230A (en) 2018-01-12 2019-07-22 서울시립대학교 산학협력단 Lead-Free Solder Composition and Method for Manufacturing Thereof
KR20220129112A (en) * 2020-02-14 2022-09-22 센주긴조쿠고교 가부시키가이샤 Lead-free and antimony-free solder alloys, solder balls and solder joints

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100203353A1 (en) * 2009-02-06 2010-08-12 Iowa State University Research Foundation, Inc. Pb-Free Sn-Ag-Cu-Mn Solder
WO2010106848A1 (en) 2009-03-19 2010-09-23 日本ライフライン株式会社 Medical guide wire
CN103962744B (en) * 2009-04-20 2016-05-18 松下知识产权经营株式会社 Soldering tin material and electronic unit conjugant
CN102341142B (en) * 2009-05-20 2016-08-03 日本来富恩株式会社 Medical guiding wire
JP2011031253A (en) * 2009-07-30 2011-02-17 Eishin Kogyo Kk Lead-free solder alloy
JP4787384B1 (en) * 2010-10-29 2011-10-05 ハリマ化成株式会社 Low silver solder alloy and solder paste composition
CN102477501B (en) * 2010-11-22 2014-06-25 中国科学院金属研究所 Atmospheric corrosion resisting industrial pure Sn and application thereof
CN102248319A (en) * 2011-06-30 2011-11-23 哈尔滨工业大学 Low-silver Sn-Ag-Cu unleaded brazing filler metal
CN102430872A (en) * 2011-10-17 2012-05-02 上海交通大学 Sn-Cu-Bi-Ni Pb-free solder
CN102500948A (en) * 2011-11-04 2012-06-20 浙江亚通焊材有限公司 Lead-free high-temperature soft solder and preparation method thereof
CN102601541A (en) * 2012-03-27 2012-07-25 郑州机械研究所 High heat intensity multielement solder alloy containing niobium and palladium
JP2013252548A (en) * 2012-06-08 2013-12-19 Nihon Almit Co Ltd Solder paste for joining micro component
CN102728965A (en) * 2012-07-04 2012-10-17 深圳市亿铖达工业有限公司 High strength LED solder
CN102717203B (en) * 2012-07-04 2015-07-22 深圳市亿铖达工业有限公司 Low-silver lead-free solder paste soldering flux with high ductility
CN103028869A (en) * 2012-12-13 2013-04-10 深圳市唯特偶新材料股份有限公司 Low-silver high-wetting soldering paste and preparation method thereof
CN103212919A (en) * 2013-03-22 2013-07-24 宁波市鄞州品达电器焊料有限公司 Improved lead-free solder wire and flux thereof
CN104070303A (en) * 2013-03-28 2014-10-01 北京康普锡威科技有限公司 Anti-oxidation high-temperature soft-solder solid wire and manufacturing method thereof
EP2992553A4 (en) 2013-05-03 2017-03-08 Honeywell International Inc. Lead frame construct for lead-free solder connections
US10076808B2 (en) * 2013-08-05 2018-09-18 Senju Metal Industry Co., Ltd. Lead-free solder alloy
JP2017509489A (en) 2014-02-20 2017-04-06 ハネウェル・インターナショナル・インコーポレーテッド Lead-free solder composition
CN104722951B (en) * 2015-03-20 2016-10-12 郑州机械研究所 A kind of manganese nickel cobalt porpezite solder and preparation method thereof
CN104889592B (en) * 2015-04-28 2018-01-16 太仓巨仁光伏材料有限公司 A kind of solder on the mutual latticing of solar cell module
MY186064A (en) 2015-05-05 2021-06-18 Indium Corp High reliability lead-free solder alloys for harsh environment electronics applications
JP5880766B1 (en) 2015-05-26 2016-03-09 千住金属工業株式会社 Solder alloy, solder ball, chip solder, solder paste and solder joint
JP2017094368A (en) * 2015-11-26 2017-06-01 株式会社リソー技研 Solder for enamel-coated electric cable, and soldering method for enamel-coated electric cable
CN105397329B (en) * 2015-12-16 2017-12-05 仲恺农业工程学院 A kind of Sn Ag Cu low silver leadless solders containing Nd, Re, In
CN105618954A (en) * 2016-03-15 2016-06-01 力创(台山)电子科技有限公司 Welding flux for welding in electro-hydraulic servo valve assembly technology
CN105665956A (en) * 2016-03-23 2016-06-15 徐宏达 Soft solder alloy used for brazing aluminum and brazing aluminum alloy
US9741676B1 (en) * 2016-06-24 2017-08-22 Indium Corporation Tin-indium based low temperature solder alloy
CN106181109B (en) * 2016-08-16 2018-12-28 镇江市锶达合金材料有限公司 A kind of High-performance green brazing material
CN106825982B (en) * 2017-02-07 2019-04-16 深圳市斯特纳新材料有限公司 A kind of anti-collapse leadless soldering tin paste of low viscosity and preparation method thereof
TWI602929B (en) * 2017-05-17 2017-10-21 Solder composition
US11344976B2 (en) * 2017-11-24 2022-05-31 Senju Metal Industry Co., Ltd. Solder material, solder paste, and solder joint
CN108080810A (en) * 2017-12-13 2018-05-29 柳州智臻智能机械有限公司 A kind of solder alloy used for electronic packaging and preparation method thereof
CN111936264A (en) * 2018-04-13 2020-11-13 千住金属工业株式会社 Solder paste
JP2020049543A (en) * 2018-09-28 2020-04-02 株式会社ケーヒン Solder material
CN108994480A (en) * 2018-10-10 2018-12-14 云南锡业锡材有限公司 A kind of SnBiAgCu high-reliability lead-free solder alloy
CN109234566A (en) * 2018-11-07 2019-01-18 广州宇智科技有限公司 A kind of high heat storage density tin alloy and its technique of the operating temperature less than 100 degree
CN109332940A (en) * 2018-11-21 2019-02-15 深圳市兴鸿泰锡业有限公司 A kind of dedicated the solder reduction of sound equipment and preparation method thereof
CN112247394B (en) * 2020-09-25 2022-04-08 河南理工大学 Lead-free solder for sealing toughened vacuum glass in atmospheric environment and pressure brazing sealing method thereof
CN112743256A (en) * 2020-12-09 2021-05-04 深圳市朝日电子材料有限公司 Composite low-temperature lead-free soldering paste and preparation method thereof
CN113857713B (en) * 2021-09-15 2023-02-28 昆明理工大学 Low-silver Sn-Ag-Cu lead-free solder and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155586A (en) * 1995-11-29 1997-06-17 Uchihashi Estec Co Ltd Leadless solder alloy

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0612578A1 (en) * 1993-02-22 1994-08-31 AT&T Corp. An Article comprising a pb-free solder having improved mechanical properties
JP3220635B2 (en) * 1996-02-09 2001-10-22 松下電器産業株式会社 Solder alloy and cream solder
US5837191A (en) * 1996-10-22 1998-11-17 Johnson Manufacturing Company Lead-free solder
US6033488A (en) * 1996-11-05 2000-03-07 Samsung Electronics Co., Ltd. Solder alloy
US6176947B1 (en) * 1998-12-31 2001-01-23 H-Technologies Group, Incorporated Lead-free solders
KR100407448B1 (en) * 2000-06-12 2003-11-28 가부시키가이샤 히타치세이사쿠쇼 Electronic apparatus and semiconductor device
DE60217199T2 (en) * 2001-02-09 2007-10-04 Taiho Kogyo Co., Ltd., Toyota Lead-free soft solder and soft solder connection
JP3776361B2 (en) * 2001-02-09 2006-05-17 大豊工業株式会社 Lead-free solder and solder joints
US20030021718A1 (en) * 2001-06-28 2003-01-30 Osamu Munekata Lead-free solder alloy
JP2005040847A (en) * 2003-07-25 2005-02-17 Hitachi Metals Ltd Manufacturing method of solder bowl
JP2005046882A (en) * 2003-07-29 2005-02-24 Hitachi Metals Ltd Solder alloy, solder ball, and solder joined body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155586A (en) * 1995-11-29 1997-06-17 Uchihashi Estec Co Ltd Leadless solder alloy

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089119A (en) * 2008-10-07 2010-04-22 Nihon Almit Co Ltd Solder alloy
KR101172174B1 (en) 2010-07-30 2012-08-07 엘지이노텍 주식회사 The printed circuit board and the method for manufacturing the same
KR101551050B1 (en) * 2011-03-23 2015-09-07 센주긴조쿠고교 가부시키가이샤 Lead-free solder alloy
KR101513494B1 (en) * 2013-12-04 2015-04-21 엠케이전자 주식회사 Lead-free solder, solder paste and semiconductor device
WO2017160132A3 (en) * 2016-03-18 2018-09-07 덕산하이메탈(주) Thin film material for low temperature bonding
KR101865727B1 (en) * 2016-03-22 2018-06-08 현대자동차 주식회사 Lead-free solder composition
KR101904891B1 (en) * 2016-11-14 2018-10-10 덕산하이메탈(주) Solder ball and embedded chip package of semiconductor using the same
KR20190013316A (en) 2017-08-01 2019-02-11 서울시립대학교 산학협력단 High performance lead-free solder composition and manufacturing method of the same
KR20190086230A (en) 2018-01-12 2019-07-22 서울시립대학교 산학협력단 Lead-Free Solder Composition and Method for Manufacturing Thereof
KR20220129112A (en) * 2020-02-14 2022-09-22 센주긴조쿠고교 가부시키가이샤 Lead-free and antimony-free solder alloys, solder balls and solder joints
KR102543580B1 (en) 2020-02-14 2023-06-15 센주긴조쿠고교 가부시키가이샤 Lead-free and antimony-free solder alloys, solder balls and solder joints

Also Published As

Publication number Publication date
US20080292493A1 (en) 2008-11-27
CN101569965A (en) 2009-11-04
JP2008290150A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
KR100797161B1 (en) Quaternary pb-free solder composition incorporating sn-ag-cu-in
US6156132A (en) Solder alloys
TWI383052B (en) Low silver solder alloy and solder paste composition
KR101339025B1 (en) Solder alloy
CN100540206C (en) Scolding tin and use the mounted article of this scolding tin
CN103249519B (en) Pb-free solder alloy having Zn as main component
CA2607286A1 (en) Tin alloy solder compositions
JP2024009991A (en) Lead-free solder composition
KR20220048483A (en) High-temperature ultra-reliable alloy
JP5861559B2 (en) Pb-free In solder alloy
CN108136548A (en) Brazing alloy
CN115397606A (en) Lead-free and antimony-free solder alloy, solder ball and solder joint
JP3262113B2 (en) Solder alloy
US7335269B2 (en) Pb-free solder alloy compositions comprising essentially Tin(Sn), Silver(Ag), Copper(Cu), and Phosphorus(P)
CA2502747A1 (en) Pb-free solder alloy compositions comprising essentially tin, silver, copper and phosphorus
KR101360142B1 (en) Lead-free solder composition
CA2540486A1 (en) Pb-free solder alloy compositions comprising essentially tin (sn), silver (ag), copper (cu), nickel (ni), phosphorus (p) and/or rare earth: cerium (ce) or lanthanum (la)
JP2001287082A (en) Solder
CN106624443A (en) Yellow brass brazing filler metal alloy
WO2007014530A1 (en) Lead-free sn-ag-cu-ni-al system solder alloy
Gumaan et al. Improvement of the mechanical properties of Sn-Ag-Sb Lead-free solders: effects of Sb addition and rapidly solidified
CN113385853A (en) Low-silver high-reliability lead-free soft solder and preparation method and application thereof
JP2001191196A (en) Sn BASE Pb-FREE SOLDER EXCELLENT IN WETTABILITY, HEAT CYCLE CHARACTERISTICS AND OXIDATION RESISTANCE
Hasan et al. Effect of Minor Addition of Ni on the Microstructure and Properties of Zn-Based High-Temperature Solder
US20040208779A1 (en) Lead-free alloy

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131021

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150713

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170117

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190102

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20191223

Year of fee payment: 13