TWI602929B - Solder composition - Google Patents

Solder composition Download PDF

Info

Publication number
TWI602929B
TWI602929B TW106116294A TW106116294A TWI602929B TW I602929 B TWI602929 B TW I602929B TW 106116294 A TW106116294 A TW 106116294A TW 106116294 A TW106116294 A TW 106116294A TW I602929 B TWI602929 B TW I602929B
Authority
TW
Taiwan
Prior art keywords
solder
test
solder composition
composition
ball
Prior art date
Application number
TW106116294A
Other languages
Chinese (zh)
Other versions
TW201900893A (en
Inventor
Shu-Qiu Huang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW106116294A priority Critical patent/TWI602929B/en
Application granted granted Critical
Publication of TWI602929B publication Critical patent/TWI602929B/en
Priority to CN201710993750.7A priority patent/CN107900550B/en
Publication of TW201900893A publication Critical patent/TW201900893A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent

Description

焊料組成物Solder composition

本發明是有關於一種焊料組成物,特別是指一種適用於製成球體直徑介於0.05mm~0.1mm的焊球之焊料組成物。The present invention relates to a solder composition, and more particularly to a solder composition suitable for use in forming solder balls having a sphere diameter of 0.05 mm to 0.1 mm.

一般消費者對於消費性電子產品的品質優劣印象,很重要的一部分取決於消費性電子產品是否耐用。當一個消費性電子產品受到撞擊,或經長時間使用而於不同效能高低運轉情況下,歷經多次溫度高低變換循環時,如不會出現損壞、失效之情況,往往能因為耐用而帶給使用者品質良好的印象。消費性電子產品是否耐受衝擊及溫度之考驗,很重要的一部分取決於其所採用的封裝方式,以及用以封裝之焊料的品質。電子零組件的封裝方式有許多種,舉例來說其中一種即為晶圓級晶片尺寸封裝 (Wafer Level Chip Scale Package, WLCSP)。晶圓級晶片尺寸封裝是一種利用焊料所形成的焊球進行封裝之技術,此種封裝方法中所使用的焊料的品質,對封裝品質的好壞有很大的影響。The general consumer's impression of the quality of consumer electronics is important, depending on whether the consumer electronics are durable. When a consumer electronic product is impacted, or used for a long period of time at different performance levels, after repeated high temperature and low cycle, if there is no damage or failure, it can often be brought to life due to durability. The impression of good quality. Whether a consumer electronics product withstands shock and temperature is important, depending on the package used and the quality of the solder used to encapsulate it. There are many ways to package electronic components. For example, one of them is the Wafer Level Chip Scale Package (WLCSP). Wafer-level wafer size packaging is a technology that uses solder balls formed by solder for packaging. The quality of the solder used in this packaging method has a great influence on the quality of the package.

一般而言,如焊料的降伏強度及抗拉強度等性質較佳,而使得該焊料所焊接形成的焊點,能在推球試驗(Ball Shear Test)中獲得較大的剪力時,該焊點往往能於溫度循環試驗(Thermal Cycling Test, TCT)中有較佳表現,亦即有較佳的抗溫度時效之能力;而如焊料的延展性亦能相當維持,或以該焊料焊接後所形成的焊點能於推球試驗中自焊料部位產生斷裂,而非自界金屬化合物(Intermetallic Compound, IMC,以下簡稱界金屬)部位產生脆性斷裂(以下簡稱界金屬斷裂, IMC Crack)時,則該焊點除了能於溫度循環試驗中有較佳表現外,也能於掉落衝擊試驗(Drop Test)中有良好表現。In general, the properties such as the drop strength and the tensile strength of the solder are better, and the solder joint formed by the solder can obtain a large shear force in the Ball Shear Test. The point can often be better in the Thermal Cycling Test (TCT), that is, it has better resistance to temperature aging; and the ductility of the solder can be maintained fairly, or after the solder is soldered. The formed solder joint can be broken from the solder portion in the push ball test, and the brittle fracture (hereinafter referred to as the boundary metal break, IMC Crack) is generated in the non-intermetallic compound (IMC). In addition to its better performance in the temperature cycling test, the solder joints also perform well in the Drop Test.

早期焊球所採用的焊料為編號105至405之錫銀銅合金(Sn-Ag-Cu, SAC)。其中編號第一位代表含銀量,末兩位則代表含銅量。例如SAC105即代表焊料含有1wt%的銀,及0.5wt%的銅,以及餘量的錫。此種SAC焊料,隨著銀的使用量由1wt%提升至4wt%,焊料的硬度、降伏強度及抗拉強度等機械性質也會隨之提升。然而隨著電子零組件之封裝密集及精密程度與產熱能力的提高,為了進一步提高電子零組件之封裝強度,一種於SAC合金焊料中添加鎳(Ni)及鉍(Bi)之SACNB焊料問世。The solder used in the early solder balls was a tin-silver-copper alloy (Sn-Ag-Cu, SAC) numbered 105 to 405. The first digit of the number represents the amount of silver, and the last two digits represent the amount of copper. For example, SAC 105 means that the solder contains 1 wt% silver, and 0.5 wt% copper, and the balance tin. With such a SAC solder, as the amount of silver used is increased from 1 wt% to 4 wt%, the mechanical properties such as hardness, tensile strength and tensile strength of the solder are also increased. However, in order to further increase the packaging strength of electronic components, a series of SACNB solders in which nickel (Ni) and bismuth (Bi) are added to the SAC alloy solder have been introduced as the packaging of the electronic components is intensive and the degree of precision and heat generation are improved.

此種SACNB焊料,相較於SAC焊料擁有更好的降伏強度及抗拉強度,但此種SACNB焊料製成焊球應用於WLCSP封裝時,其所形成的焊點於推球試驗中,往往因為機械強度過高而容易發生自界金屬脆性斷裂之情況,或於溫度循環試驗過程中發生RDL斷裂、Pad Peeling而被判定為封裝不良,無法通過檢測而有待改善。This kind of SACNB solder has better lodging strength and tensile strength than SAC solder. However, when this kind of SACNB solder is used in WLCSP package, the solder joint formed in the push ball test is often because If the mechanical strength is too high and brittle fracture of the self-bounding metal is likely to occur, or RDL fracture or Pad Peeling occurs during the temperature cycle test, it is judged to be poorly packaged, and it cannot be improved by detection.

本發明的目的,在於提供一種能夠克服先前技術的至少一個缺點的焊料組成物。It is an object of the present invention to provide a solder composition that overcomes at least one of the disadvantages of the prior art.

以該焊料組成物的總重為100wt%計,該焊料組成物包含3~4 wt%的銀、0.5~1 wt%的銅、0.04~0.07 wt%的鎳、2.5~3.5 wt%的鉍、0.2~1.5 wt%的銦,以及餘量的錫。The solder composition contains 3 to 4 wt% of silver, 0.5 to 1 wt% of copper, 0.04 to 0.07 wt% of nickel, and 2.5 to 3.5 wt% of rhodium, based on 100 wt% of the total weight of the solder composition. 0.2 to 1.5 wt% of indium, and the balance of tin.

該焊料組成物因包含有適量的3~4wt%的銀,而能具有較佳的降伏強度及抗拉強度等性質,並能使得以該焊料組成物形成的焊點,於溫度循環試驗中有較佳表現。如一低含銀量的焊料組成物其含銀量低於3wt%,則該低含銀量的焊料組成物將因降伏強度及抗拉強度等性質較差,而無法使以該低含銀量的焊料組成物形成的焊點,於溫度循環試驗中有較佳表現。如一高含銀量的焊料組成物其含銀量高於4wt%,則該高含銀量的焊料組成物,將因錫與銀所形成的Ag 3Sn界金屬的粗大化,而使得以該高含銀量的焊料組成物形成的焊點,將於推球試驗中產生自界金屬部位斷裂的現象,而無法通過推球試驗。 The solder composition can have better properties such as lodging strength and tensile strength because it contains an appropriate amount of 3-4% by weight of silver, and can make the solder joint formed by the solder composition in the temperature cycle test. Better performance. If a low-silver-containing solder composition has a silver content of less than 3% by weight, the low-silver-containing solder composition may have poor properties such as a drop strength and a tensile strength, and the low silver content cannot be used. The solder joint formed by the solder composition is better in the temperature cycle test. If a high silver content solder composition has a silver content of more than 4% by weight, the high silver content solder composition will be coarsened by the Ag 3 Sn boundary metal formed by tin and silver, so that the high silver content solder The solder joint formed by the composition will cause breakage of the self-bounding metal portion in the push ball test, and cannot pass the push ball test.

該焊料組成物因包含適量的0.5至1wt%的銅,而能有較佳的機械性質。如一低銅含量的焊料組成物,其含銅量低於0.5wt%,則該低含銅量的焊料組成物的機械性質將較差而不符使用需求。如一高含銅量的焊料組成物,其含銅量超過1%,則所形成的焊球於熔化時將呈流動性不佳之漿態,而存有潤濕能力不佳的問題。The solder composition has better mechanical properties because it contains an appropriate amount of 0.5 to 1% by weight of copper. If a low copper content solder composition contains less than 0.5% by weight of copper, the mechanical properties of the low copper content solder composition will be poor and will not meet the requirements for use. For example, if a copper composition having a high copper content has a copper content of more than 1%, the formed solder ball will be in a slurry state with poor fluidity upon melting, and there is a problem that the wettability is poor.

該焊料組成物因包含有適量的0.04~0.07 wt%的鎳,而能有效減少以該焊料組成物形成的焊點其界金屬部位的厚度,從而避免該焊點於推球試驗時發生自界金屬部位斷裂的情況。如一低含鎳量的焊料組成物的其含鎳量低於0.04wt%,將無法有效抑制以該低含鎳量的焊料組成物所形成的焊點其界金屬的生成厚度。如一高含鎳量的焊料組成物其含鎳量高於0.07wt%,則以該高含鎳量的焊料組成物形成的焊點,將會因為鎳的偏析而容易出現自界金屬部位或自焊墊/基板斷裂的情況。The solder composition can effectively reduce the thickness of the metal portion of the solder joint formed by the solder composition because it contains an appropriate amount of 0.04 to 0.07 wt% of nickel, thereby avoiding the self-border of the solder joint during the push ball test. The case where the metal part is broken. If the nickel composition of a low nickel content solder composition is less than 0.04% by weight, the thickness of the boundary metal formed by the solder composition formed by the low nickel content of the solder composition cannot be effectively suppressed. If the nickel composition of the high nickel content solder composition is higher than 0.07 wt%, the solder joint formed by the high nickel content solder composition will easily appear as a self-bounding metal part or self due to segregation of nickel. The case where the pad/substrate is broken.

該焊料組成物因包含有適量的2.5~3.5 wt%的鉍,而具有較佳的降伏強度及抗拉強度等性質,並對銅基材有較佳的濕潤性,且以該焊料組成物形成的焊點,還不會有過厚的界金屬部位。如一低含鉍量的焊料組成物其含鉍量低於2.5wt%,則該低含鉍量的焊料組成物的降伏強度及抗拉強度等性質將較差,除了無法使以該低含鉍量的焊料組成物形成的焊點於溫度循環試驗中取得較佳表現外,該低含鉍量的焊料組成物對於銅基材的濕潤性也較差。如一高含鉍量的焊料組成物其含鉍量高於3.5wt%,其降伏強度及抗拉強度等性質將會過強,使得以該高含鉍量的焊料組成物形成的焊點,於推球試驗中容易產生自界金屬部位斷裂的情況,同時該高含鉍量的焊料組成物的相對於銅基板的濕潤性也較差。較佳地,該焊料組成物是包含3wt%的鉍,對於銅基材能有最佳的濕潤表現,並能最佳地降低焊點所具有的界金屬部位的厚度。The solder composition has a suitable property of reducing strength and tensile strength because it contains an appropriate amount of 2.5 to 3.5 wt% of antimony, and has good wettability to the copper substrate, and is formed by the solder composition. The solder joints will not have too thick metal parts. If a low-ruthenium-containing solder composition has a niobium content of less than 2.5% by weight, the low-ruthenium-containing solder composition may have poor properties such as a drop strength and a tensile strength, except that the low niobium content cannot be obtained. In addition to the better performance of the solder joint formed by the solder composition in the temperature cycle test, the solder composition having a low niobium content is also inferior to the wettability of the copper substrate. For example, a high-yield solder composition having a cerium content of more than 3.5% by weight, the properties such as the strength of the drop and the tensile strength will be too strong, so that the solder joint formed by the high-yield solder composition is In the push ball test, it is easy to cause breakage of the self-bounding metal portion, and the wettability of the high-ruth-containing solder composition with respect to the copper substrate is also inferior. Preferably, the solder composition comprises 3% by weight of bismuth, which has the best wet performance for the copper substrate and can optimally reduce the thickness of the boundary metal portion of the solder joint.

一般而言,如該焊料組成物之降伏強度及抗拉強度越強,以該焊料組成物製成之焊球所形成之焊點,雖能於溫度循環試驗中取得較佳表現,但於推球試驗中卻也越容易發生自界金屬部位斷裂的情況,而如該焊料組成物之延展性越好,則以該焊料組成物製成之焊球所形成之焊點,於推球試驗中將較不易自界金屬部位斷裂,而容易自焊料部位斷裂而通過推球試驗。In general, if the solder composition has a higher drop strength and tensile strength, the solder joint formed by the solder ball made of the solder composition can perform better in the temperature cycle test, but In the ball test, the more easily the self-bounding metal part is broken, and the better the ductility of the solder composition, the solder joint formed by the solder ball made of the solder composition is in the push ball test. It is less likely to break the self-bounding metal part, and it is easy to break from the solder part and pass the push ball test.

本發明焊料組成物因包含有0.2~1.5wt%的銦,相較於未包含銦之習知焊料組成物,因形成有較多的晶格邊界且因為銦的柔軟及延展性佳等特性,使得該焊料組成物能在維持或增加降伏強度及抗拉強度的同時,提高以該焊料組成物形成之焊點通過推球試驗之合格率。The solder composition of the present invention contains 0.2 to 1.5% by weight of indium, and has a relatively large lattice boundary due to the formation of a large number of lattice boundaries and a good flexibility and ductility of indium compared to a conventional solder composition not containing indium. The solder composition can improve the yield of the solder joint formed by the solder composition through the push ball test while maintaining or increasing the drop strength and the tensile strength.

如一低銦含量的焊料組成物其含銦量低於0.2wt%,則以該低含銦量的焊料組成物形成之焊點,仍會有無法通過推球試驗的情況發生;如一高銦含量的焊料組成物其含銦量高於1.5wt%,則該高含銦量的焊料組成物將會因為降伏強度及機械強度過強,同樣會有無法通過推球試驗的情況發生。較佳地,該焊料組成物是包含1wt%的銦,能在擁有較高的推球試驗合格率的同時,有較佳的抗拉強度及降伏強度。For example, if the indium content of the solder composition having a low indium content is less than 0.2% by weight, the solder joint formed by the solder composition having the low indium content may still be unable to pass the push ball test; for example, a high indium content If the amount of indium contained in the solder composition is more than 1.5% by weight, the solder composition having a high indium content will be too strong due to the strength of the drop and the mechanical strength, and the test may not be performed by the push ball test. Preferably, the solder composition comprises 1 wt% of indium, which has a higher tensile strength and a lower tensile strength while having a higher push test yield.

本發明焊料組成物還可進一步包含一抗氧化組分,該抗氧化組分選自於大於0且在0.02wt%以下的鍺、大於0且在0.003wt%以下的鎵,及前述二者的組合。該焊料組成物如包含前述適量的抗氧化組分,將更不易氧化,使得以該焊料組成物形成之焊點,不易因氧化而老化失效,且適量的抗氧化組分,還有能提高該焊料組成物之濕潤性的優點。The solder composition of the present invention may further comprise an antioxidant component selected from the group consisting of ruthenium greater than 0 and less than 0.02 wt%, gallium greater than 0 and less than 0.003 wt%, and both combination. The solder composition, if it contains the above-mentioned appropriate amount of the antioxidant component, will be less susceptible to oxidation, so that the solder joint formed by the solder composition is not easily aged due to oxidation, and an appropriate amount of the antioxidant component can also be improved. The advantage of the wettability of the solder composition.

本發明焊料組成物還可進一步包含一大於0wt%但在0.05wt%以下的鉑族組分,該鉑族組分選自於鈀、鉑,及前述二者的組合。該焊料組成物如包含前述適量的鉑族組分,以該焊料組成物所形成的焊點,於溫度循環試驗中,能經受更多次的溫度循環考驗。如提高鉑族組分的使用量至超過0.05wt%,將無法如預期地進一步提高以該焊料組成物形成的焊點其耐受溫度循環次數的能力,而導致成本增加。The solder composition of the present invention may further comprise a platinum group component greater than 0 wt% but less than 0.05 wt%, the platinum group component being selected from the group consisting of palladium, platinum, and combinations of the foregoing. The solder composition, if it contains the above-mentioned appropriate amount of the platinum group component, can withstand more temperature cycling tests in the temperature cycle test by the solder joint formed by the solder composition. If the amount of the platinum group component used is increased to more than 0.05% by weight, the ability of the solder joint formed of the solder composition to withstand the number of temperature cycles can not be further increased as expected, resulting in an increase in cost.

該焊料組成物的功效在於:包含有適量的銀、銅、鎳、鉍、銦及錫,相較於習知焊料組成物,能在維持或提高降伏強度及抗拉強度等性質的同時,促使以該焊料組成物所形成的焊點在溫度循環試驗中維持良好的或更佳的表現,並使該焊點於推球試驗中有較高的合格率,且具有更好的剪切強度。The solder composition has the effect of containing an appropriate amount of silver, copper, nickel, bismuth, indium and tin, which can promote or improve the properties of the lodging strength and the tensile strength as compared with the conventional solder composition. The solder joint formed by the solder composition maintains a good or better performance in the temperature cycle test, and the solder joint has a higher yield in the push ball test and has better shear strength.

《實施例1》"Embodiment 1"

本發明焊料組成物的一個實施例1,包含3wt%的銀、0.5wt%的銅、0.05wt%的鎳、2.5wt%的鉍、0.2wt%的銦,以及餘量的錫。對該實施例1進行以下試驗,以瞭解該實施例1之性質,並將測試結果記錄於表1中。One embodiment 1 of the solder composition of the present invention comprises 3 wt% silver, 0.5 wt% copper, 0.05 wt% nickel, 2.5 wt% bismuth, 0.2 wt% indium, and the balance tin. The following test was conducted on this Example 1 to understand the properties of the Example 1, and the test results are recorded in Table 1.

《硬度試驗》Hardness Test

以購自台灣中澤股份有限公司,產品型號為FM-100e的維克氏硬度測量儀進行測試,將所測得的維克氏硬度(Vickers-Hardness, HV)記錄於表1中。The measured Vickers hardness (Vickers-Hardness, HV) was recorded in Table 1 using a Vickers hardness tester purchased from Taiwan Nakazawa Co., Ltd., model number FM-100e.

《拉伸試驗》"Stretching test"

以萬能拉力試驗機進行測試。將所測得的降伏強度、抗拉強度及延展率等機械性質記錄於表1中。Tested with a universal tensile tester. The mechanical properties such as measured drop strength, tensile strength and elongation were recorded in Table 1.

《推球試驗》Push Ball Test

以AEC Q100-010 -Q003 標準測試法進行測試,概述如下:提供一包含銅基板(焊墊)。於該焊墊開設一個直徑為270µm的開口(opening)。於該開口(opening)中放置一個以實施例1製成且直徑為250µm的焊球,並將該焊球回焊於該銅基板上以形成焊點,再利用購自實密公司且型號為Dage-4000之推拉力機,對該焊點進行推球試驗。根據JEDEC規範中的JESD22-B117B,推刀與焊點之接觸高度(推球高度)不可高於回焊球體高度的25%(最佳為10%),且推刀不可碰觸到該焊墊之抗悍層。該樣品相對於推刀的移動速率為350µm/s,提供的推力則為2Kg。進行數次的推球試驗,並將推球試驗所得到的不同測試結果類型所占之百分比,以及該焊點所能承受之平均剪力,記錄於表1當中。 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 推球試驗結果 </td></tr><tr><td><img wi="85" he="38" file="IMG-2/Draw/02_image001.gif" img-format="jpg"></img></td><td> 斷裂部位/方式 </td><td> 斷面焊料殘留量 </td><td> 測試結果 </td></tr><tr><td> Mode1 </td><td> 自焊料部位發生延性斷裂 </td><td> 100% </td><td> Pass </td></tr><tr><td> Mode2 </td><td> 自焊料部位發生脆性斷裂 </td><td> 100% </td><td> Pass </td></tr><tr><td> Mode3 </td><td> 自焊料部位及介金屬部位斷裂 </td><td> 小於25% </td><td> Failure </td></tr><tr><td> Mode4 </td><td> 焊墊(銅基板) </td><td> 0% </td><td> Failure </td></tr></TBODY></TABLE>The test is conducted in accordance with the AEC Q100-010-Q003 standard test method, which is summarized as follows: A copper substrate (pad) is provided. An opening of 270 μm in diameter is opened in the pad. A solder ball made of Example 1 and having a diameter of 250 μm was placed in the opening, and the solder ball was soldered back to the copper substrate to form a solder joint, and the model was purchased from a company. The Dage-4000 push-pull machine performs a push ball test on the solder joint. According to JESD22-B117B in the JEDEC specification, the contact height of the pusher and the solder joint (pushing height) cannot be higher than 25% of the height of the reflow ball (preferably 10%), and the pusher must not touch the pad. Anti-mite layer. The sample has a movement rate of 350 μm/s relative to the pusher and provides a thrust of 2 kg. The number of different test results obtained by pushing the ball test and the average shear force that the solder joint can withstand are recorded in Table 1.         <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Push ball test results</td></tr><tr><td><img wi ="85" he="38" file="IMG-2/Draw/02_image001.gif" img-format="jpg"></img></td><td> Location/Method </td>< Td> cross-section solder residue </td><td> test result</td></tr><tr><td> Mode1 </td><td> ductile fracture from solder site</td><td > 100% </td><td> Pass </td></tr><tr><td> Mode2 </td><td> Brittle fracture from solder joints</td><td> 100% </ Td><td> Pass </td></tr><tr><td> Mode3 </td><td> Fracture from solder and intermetallic parts</td><td> less than 25% </td> <td> Failure </td></tr><tr><td> Mode4 </td><td> Pad (Copper Substrate) </td><td> 0% </td><td> Failure < /td></tr></TBODY></TABLE>

前述回焊是從室溫開始加溫,並在內外均溫的情況下升至峰溫,前述回焊之升溫曲線(Profile)的峰溫約245±5℃,維持在該峰溫之加熱時間(Peak time)約40~60秒。The reflowing is started from room temperature and rises to the peak temperature when the temperature is uniform inside and outside. The peak temperature of the profile of the reflow is about 245±5° C., and the heating time is maintained at the peak temperature. (Peak time) is about 40 to 60 seconds.

《焊球硬度測試》"Bearing Ball Hardness Test"

將實施例1如前述推球試驗中所述地製成焊球,並焊接於銅基板形成一package部位(PKG部位)後,以一形成有形狀與該PKG部位匹配之凹槽的模具,覆蓋於該PKG部位,並於該PKG部位與該模具間注入樹脂進行鑲埋,使該PKG部位被樹脂固定,接著將該模具掀離並進行切割該PKG部位,再以研磨機研磨該PKG部位直至球體剩餘約三分之二處,再進行如前所述的硬度試驗,並將結果記錄於表1中。The welding ball was formed as described in the above-mentioned push ball test, and welded to the copper substrate to form a package portion (PKG portion), and covered with a mold having a groove having a shape matching the PKG portion. In the PKG portion, a resin is injected between the PKG portion and the mold to be embedded, and the PKG portion is fixed by a resin. Then, the mold is separated and the PKG portion is cut, and the PKG portion is polished by a grinder until the PKG portion is polished. About two-thirds of the remaining spheres were subjected to the hardness test as described above, and the results are reported in Table 1.

《實施例2至9》Embodiments 2 to 9

實施例2至9與該實施例1類似,不同的地方在於各實施例中所包含的成分有所變化,或各成分的比例有所變化。各實施例中實際使用之成分,以及各成分之實際比例,記錄於表1及表2當中。實施例1至3彼此差異在於銦的使用量有所不同。實施例4至7的主要差異也在於銦的使用量不同,但銀的使用量提高至4wt%,其中實施例6、7分別進一步包含有0.05wt%及0.1wt%的鈀,實施例8進一步包含有0.02wt%的鍺,以及0.003wt%的鎵,實施例9進一步包含有0.1wt%的鍺,以及0.01wt%的鎵。Examples 2 to 9 are similar to this Example 1, except that the ingredients contained in the respective examples are changed, or the proportions of the respective components are changed. The components actually used in the respective examples, as well as the actual ratios of the components, are shown in Tables 1 and 2. Examples 1 to 3 differ from each other in that the amount of indium used differs. The main difference between Examples 4 and 7 is also that the amount of indium used is different, but the amount of silver used is increased to 4% by weight, wherein Examples 6 and 7 respectively further contain 0.05% by weight and 0.1% by weight of palladium, and Example 8 further Including 0.02 wt% of ruthenium and 0.003 wt% of gallium, Example 9 further comprises 0.1 wt% of ruthenium, and 0.01 wt% of gallium.

《比較例1至3》Comparative Examples 1 to 3

比較例1至3為先前技術中所提及之現有的SACNB焊料。比較例1至3之錫、銀、銅、鎳、鉍各成分的使用量記錄於表3中。Comparative Examples 1 to 3 are the existing SACNB solders mentioned in the prior art. The amounts of the respective components of tin, silver, copper, nickel, and ruthenium of Comparative Examples 1 to 3 are shown in Table 3.

《比較例4至7》Comparative Examples 4 to 7

比較例4至7與實施例1類似,不同的地方在於各比較例中所包含的成分有所變化,或各成分的比例有所變化。其中,比較例4之銦的使用量為0.1wt%而低於0.2wt%,比較例5之銦的使用量為2wt%而高於1.5wt%,比較例6及比較例7之鉍的使用量為2wt%而低於2.5wt%。比較例1至4各成分的使用量記錄於表4中。Comparative Examples 4 to 7 are similar to Example 1, except that the components contained in the respective comparative examples are changed, or the proportions of the respective components are changed. The amount of indium used in Comparative Example 4 was 0.1 wt% and less than 0.2 wt%, and the amount of indium used in Comparative Example 5 was 2 wt% and more than 1.5 wt%, and the use of Comparative Example 6 and Comparative Example 7 was used. The amount is 2% by weight and less than 2.5% by weight. The amounts of the components of Comparative Examples 1 to 4 are reported in Table 4.

《討論與說明》Discussion and Description

從實施例1至9與比較例1至3的比較可以發現,當焊料組成物包含有0.2至1.5wt%的銦時,經過多次回焊後於推球試驗中不會出現Mode3至Mode4等失效情況,而比較例1至3因未添加適量的銦元素,而於推球試驗中發生Mode3、4等失效情況。從實施例4及比較例2的比較可以發現,當焊料組成物添加0.5wt%的銦時,雖然實施例4與拉伸相關之機械性質與比較例2差不多,但以實施例4形成的焊點於推球試驗中,出乎意料地能承受的剪力卻大幅提升,且界金屬上緣之平均硬度亦有所提高,並不會出現無法通過推球試驗的情況。從實施例4及實施例5的比較也可以發現,當銦的添加量由0.5wt%提升至1wt%時,以實施例5形成的焊點,於推球試驗中所能承受的剪力以及界金屬上緣之硬度能進一步提高,顯見於適量範圍中提高銦的使用量是有好處的,其中銦的添加量為1wt%之實施例5,相較於銦的添加量為0.5wt%之實施例4,提升效果最為顯著,且相較於銦的添加量為1.5wt%並含有鈀之實施例6,兩者效果相差不多。From the comparison of Examples 1 to 9 and Comparative Examples 1 to 3, it was found that when the solder composition contained 0.2 to 1.5% by weight of indium, no failure of Mode3 to Mode4 occurred in the push ball test after repeated reflowing. In the case, in Comparative Examples 1 to 3, since an appropriate amount of indium element was not added, Mode 3 and 4 failure occurred in the push ball test. From the comparison of Example 4 and Comparative Example 2, it was found that when the solder composition was added with 0.5 wt% of indium, although the mechanical properties related to the stretching of Example 4 were similar to those of Comparative Example 2, the welding formed in Example 4 was used. In the push ball test, the unexpectedly tolerable shear force is greatly improved, and the average hardness of the upper edge of the boundary metal is also improved, and there is no possibility that the ball cannot be tested by pushing the ball. From the comparison of Example 4 and Example 5, it can also be found that when the addition amount of indium is increased from 0.5 wt% to 1 wt%, the solder joint formed in Example 5 can withstand the shear force in the push ball test and The hardness of the upper edge of the boundary metal can be further improved, and it is advantageous to increase the amount of indium used in an appropriate amount range, wherein the amount of indium added is 1 wt% of Example 5, and the addition amount of indium is 0.5 wt%. In Example 4, the effect of the lift was most remarkable, and the effect was similar to that of Example 6 in which the amount of indium added was 1.5 wt% and palladium was contained.

從實施例4與比較例4、5的比較可以發現,當銦的添加量低於0.2wt%或高於1.5wt%時,以該比較例4、5所形成的焊點,仍將會無法通過推球試驗的情況。From the comparison between Example 4 and Comparative Examples 4 and 5, it can be found that when the addition amount of indium is less than 0.2% by weight or more than 1.5% by weight, the solder joint formed by the comparative examples 4 and 5 will still be unable to be obtained. The situation by pushing the ball test.

從實施例2、3與比較例6、7的比較可以發現,當鉍的添加量低於2.5重量份時,以比較例6、7所製成的焊球形成的焊點,所能承受的剪力將下降,且不符合使用需求。From the comparison of Examples 2 and 3 with Comparative Examples 6 and 7, it can be found that when the amount of niobium added is less than 2.5 parts by weight, the solder joints formed by the solder balls prepared in Comparative Examples 6 and 7 can withstand The shear force will drop and it will not meet the usage requirements.

進一步對實施例1至5及實施例6、7進行如下所述的溫度循環試驗,則可得到的結果為:實施例1至5約可耐受約1000次至2000次的溫度循環考驗,含有0.05wt%的鈀之實施例6能承受的溫度循環次數則進一步提高至約2000次以上,惟含有0.1wt%的鈀之實施例7所能承受的溫度循環試驗次數卻又會再次降至2000次以下。因此,從實施例1至7中的比較可以發現,適當添加鈀能有助於提高焊點於溫度循環測試中的表現,但是當鈀的添加量超過0.05wt%,例如0.1wt%時,則無法再次提高焊點所能承受的溫度循環考驗次數,只是增加生產成本,故證實添加過量之鈀元素無法有效提升溫度循環試驗次數。Further, by performing the temperature cycle tests as described below for Examples 1 to 5 and Examples 6 and 7, the results obtained are as follows: Examples 1 to 5 can withstand about 1000 to 2000 temperature cycles, including The number of temperature cycles that can be withstood by Example 6 of 0.05 wt% of palladium is further increased to about 2,000 times or more, but the number of temperature cycle tests that can be withstood by Example 7 containing 0.1 wt% of palladium is again reduced to 2000. Below. Therefore, it can be found from the comparison in Examples 1 to 7 that the appropriate addition of palladium can contribute to the improvement of the solder joint performance in the temperature cycle test, but when the amount of palladium added exceeds 0.05 wt%, for example, 0.1 wt%, It is impossible to increase the number of temperature cycle tests that the solder joint can withstand, but only increases the production cost. Therefore, it has been confirmed that the addition of excess palladium element cannot effectively increase the number of temperature cycle tests.

《溫度循環試驗》"Temperature Cycle Test"

依IPC-9701規範進行試驗,試驗概述如下:利用實施例1至7將電子元件焊接於銅基板上製得一待測品,該待測品的規格係符合JESD22-B111之標準板規範。將該待測品置於溫度可循環變化之環境中,於檢測出該待測品失效之訊息時記錄該待測品所歷經之溫度循環次數。其中,每一循環共計有四個階段,每一階段歷時15分鐘,分別為升溫階段、高溫停留階段、降溫階段,以及低溫停留階段。高溫停留階段之溫度設定為125℃。低溫停留階段之溫度設定為-40℃。The test was carried out in accordance with the IPC-9701 specification. The test is summarized as follows: The electronic component is soldered on the copper substrate by using Examples 1 to 7 to obtain a test object, and the specification of the test article conforms to the standard plate specification of JESD22-B111. The test object is placed in an environment where the temperature can be cyclically changed, and the number of temperature cycles experienced by the test article is recorded when the message of the test article is detected to be invalid. Among them, there are four stages in each cycle, each of which lasts for 15 minutes, which is the heating phase, the high temperature staying phase, the cooling phase, and the low temperature staying phase. The temperature during the high temperature dwell phase was set to 125 °C. The temperature in the low temperature residence phase was set to -40 °C.

《濕潤性測試》Wetness Test

準備以實施例8、9製成之焊球各100克,以及鋁盤兩個。將實施例8、9所製成之焊球,各自平鋪放入對應的鋁盤後,連同該鋁盤置入烤箱,並以240℃烘烤10分鐘後取出觀察。以添加較多之鍺與鎵的實施例9所製成的該等焊球在烘烤後,以肉眼或顯微鏡觀察,球體外觀並未有彼此擴散互溶的現象發生。以添加適量的鍺與鎵的實施例8所製成的該等焊球於烘烤後,球體則能在無助焊劑的幫助下彼此擴散互溶地分布於該鋁盤上。因此,從實施例8、9的比較可以明白添加適量的鍺及鎵,除了能提高抗氧化能力外,還具有提高濕潤性的效果。100 g of each of the solder balls prepared in Examples 8 and 9 and two aluminum discs were prepared. The solder balls prepared in Examples 8 and 9 were placed in the corresponding aluminum pans, placed in the oven together with the aluminum pan, and baked at 240 ° C for 10 minutes, and then taken out for observation. The solder balls prepared in Example 9 in which a large amount of germanium and gallium were added were observed by naked eyes or under a microscope after baking, and the appearance of the spheres did not diffuse and dissolve each other. After the solder balls prepared in Example 8 in which an appropriate amount of bismuth and gallium were added were baked, the spheres were diffused and miscible with each other on the aluminum pan without the aid of the flux. Therefore, from the comparison of Examples 8 and 9, it can be understood that the addition of an appropriate amount of bismuth and gallium has an effect of improving the wettability in addition to the improvement of the antioxidant ability.

綜上所述,本發明焊料組成物的功效在於:包含有適量的銀、銅、鎳、鉍、銦及錫,能在維持或提高降伏強度及抗拉強度等性質的同時,促使以該焊料組成物所形成的焊點在溫度循環試驗中維持良好的或更佳的表現,並使該焊點於推球試驗中有較高的合格率,且具有更好的剪切強度。In summary, the solder composition of the present invention has the effect of containing an appropriate amount of silver, copper, nickel, antimony, indium and tin, which can promote the solder while maintaining or improving the properties of the tensile strength and the tensile strength. The solder joint formed by the composition maintains a good or better performance in the temperature cycling test, and the solder joint has a higher yield in the push ball test and has a better shear strength.

以上所述者,僅為本發明的實施例而已,不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。The above is only the embodiment of the present invention, and the scope of the present invention is not limited thereto. The simple equivalent changes and modifications made by the content of the patent application and the contents of the patent specification of the present invention are still the patents of the present invention. Covered by the scope.

無。<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表1 </td><td> 實施例1 </td><td> 實施例2 </td><td> 實施例3 </td><td> 實施例4 </td><td> 實施例5 </td></tr><tr><td> 合金組成 </td><td> 重量百分率 </td><td> Ag </td><td> 3 </td><td> 3 </td><td> 3 </td><td> 4 </td><td> 4 </td></tr><tr><td> Cu </td><td> 0.5 </td><td> 0.5 </td><td> 0.5 </td><td> 0.5 </td><td> 0.5 </td></tr><tr><td> Ni </td><td> 0.05 </td><td> 0.05 </td><td> 0.05 </td><td> 0.05 </td><td> 0.05 </td></tr><tr><td> Bi </td><td> 2.5 </td><td> 3.5 </td><td> 3 </td><td> 3 </td><td> 3 </td></tr><tr><td> In </td><td> 0.2 </td><td> 0.5 </td><td> 0.9 </td><td> 0.5 </td><td> 1 </td></tr><tr><td> Ge </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> Ga </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> Pd </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> Sn </td><td> 餘量 </td><td> 餘量 </td><td> 餘量 </td><td> 餘量 </td><td> 餘量 </td></tr><tr><td> 機械性質 </td><td> 硬度 </td><td> HV </td><td> 24.6 </td><td> 25.6 </td><td> 26.3 </td><td> 26.03 </td><td> 26.2 </td></tr><tr><td> 降伏強度 </td><td> Mpa </td><td> 49 </td><td> 51 </td><td> 53 </td><td> 53 </td><td> 52 </td></tr><tr><td> 抗拉強度 </td><td> Mpa </td><td> 78 </td><td> 81 </td><td> 89 </td><td> 89 </td><td> 85 </td></tr><tr><td> 延展率 </td><td> % </td><td> 14 </td><td> 13 </td><td> 10 </td><td> 18 </td><td> 18 </td></tr><tr><td> 推球測試〈銅基板〉 </td><td> 回焊一次 </td><td> IMC平均厚度(µm) </td><td> 2.07 </td><td> 2.33 </td><td> 2.53 </td><td> 2.4 </td><td> 2.2 </td></tr><tr><td> Mode1 </td><td> % </td><td> 100 </td><td> 100 </td><td> 100 </td><td> 100 </td><td> 100 </td></tr><tr><td> Mode2 </td><td> % </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> Mode3 </td><td> % </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> Mode4 </td><td> % </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> 回焊三次 </td><td> IMC平均厚度(µm) </td><td> 3.33 </td><td> 3.83 </td><td> 3.86 </td><td> 3.53 </td><td> 3.41 </td></tr><tr><td> Mode1 </td><td> % </td><td> 100 </td><td> 100 </td><td> 100 </td><td> 100 </td><td> 100 </td></tr><tr><td> Mode2 </td><td> % </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> Mode3 </td><td> % </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> Mode4 </td><td> % </td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> ball shear 平均值 (g) (回焊一次) </td><td> 325.38 </td><td> 332.7 </td><td> 343.48 </td><td> 408.8 </td><td> 430.53 </td></tr><tr><td> ball shear 平均值 (g) (回焊三次) </td><td> 311.4 </td><td> 296.12 </td><td> 298.48 </td><td> 384.2 </td><td> 411.9 </td></tr><tr><td> 焊球硬度測試 </td><td> 界面IMC上緣 平均硬度(Hv) (回焊一次) </td><td> 42.6 </td><td> 43.6 </td><td> 39.7 </td><td> 44.4 </td><td> 48.4 </td></tr><tr><td> 界面IMC上緣 平均硬度(Hv) (回焊三次) </td><td> 45.7 </td><td> 45.6 </td><td> 44.5 </td><td> 45.7 </td><td> 49.6 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表2 </td><td> 實施例6 </td><td> 實施例7 </td><td> 實施例8 </td><td> 實施例9 </td></tr><tr><td> 合金組成 </td><td> 重量百分率 </td><td> Ag </td><td> 4 </td><td> 3 </td><td> 4 </td><td> 4 </td></tr><tr><td> Cu </td><td> 0.5 </td><td> 0.5 </td><td> 0.5 </td><td> 0.5 </td></tr><tr><td> Ni </td><td> 0.05 </td><td> 0.05 </td><td> 0.05 </td><td> 0.05 </td></tr><tr><td> Bi </td><td> 3 </td><td> 3 </td><td> 3 </td><td> 3 </td></tr><tr><td> In </td><td> 1.5 </td><td> 0.2 </td><td> 1.5 </td><td> 1.5 </td></tr><tr><td> Ge </td><td></td><td></td><td> 0.02 </td><td> 0.1 </td></tr><tr><td> Ga </td><td></td><td></td><td> 0.003 </td><td> 0.01 </td></tr><tr><td> Pd </td><td> 0.05 </td><td> 0.1 </td><td></td><td></td></tr><tr><td> Sn </td><td> 餘量 </td><td> 餘量 </td><td> 餘量 </td><td> 餘量 </td></tr><tr><td> 機械性質 </td><td> 硬度 </td><td> HV </td><td> 26.5 </td><td> 24.8 </td><td> 26.45 </td><td> 26.5 </td></tr><tr><td> 降伏強度 </td><td> Mpa </td><td> 53 </td><td> 56 </td><td> 54 </td><td> 55 </td></tr><tr><td> 抗拉強度 </td><td> Mpa </td><td> 88 </td><td> 91 </td><td> 90 </td><td> 91 </td></tr><tr><td> 延展率 </td><td> % </td><td> 16 </td><td> 16 </td><td> 12 </td><td> 11 </td></tr><tr><td> 推球測試〈銅基板〉 </td><td> 回焊一次 </td><td> IMC平均厚度(µm) </td><td> 2.13 </td><td> 1.99 </td><td> 2.58 </td><td> 2.6 </td></tr><tr><td> Mode1 </td><td> % </td><td> 100 </td><td> 100 </td><td> 100 </td><td> 100 </td></tr><tr><td> Mode2 </td><td> % </td><td></td><td></td><td></td><td></td></tr><tr><td> Mode3 </td><td> % </td><td></td><td></td><td></td><td></td></tr><tr><td> Mode4 </td><td> % </td><td></td><td></td><td></td><td></td></tr><tr><td> 回焊三次 </td><td> IMC平均厚度(µm) </td><td> 3.81 </td><td> 3.11 </td><td> 3.32 </td><td> 3.56 </td></tr><tr><td> Mode1 </td><td> % </td><td> 100 </td><td> 100 </td><td> 100 </td><td> 100 </td></tr><tr><td> Mode2 </td><td> % </td><td></td><td></td><td></td><td></td></tr><tr><td> Mode3 </td><td> % </td><td></td><td></td><td></td><td></td></tr><tr><td> Mode4 </td><td> % </td><td></td><td></td><td></td><td></td></tr><tr><td> ball shear 平均值 (g) (回焊一次) </td><td> 433.15 </td><td> 333.1 </td><td> 442.3 </td><td> 441.6 </td></tr><tr><td> ball shear 平均值 (g) (回焊三次) </td><td> 416.5 </td><td> 315.7 </td><td> 418.8 </td><td> 419.6 </td></tr><tr><td> 焊球硬度測試 </td><td> 界面IMC上緣 平均硬度(Hv) (回焊一次) </td><td> 48.6 </td><td> 43.1 </td><td> 44.8 </td><td> 43.9 </td></tr><tr><td> 界面IMC上緣 平均硬度(Hv) (回焊三次) </td><td> 49.9 </td><td> 46.8 </td><td> 47.9 </td><td> 47.3 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表3 </td><td> 比較例1 </td><td> 比較例2 </td><td> 比較例3 </td></tr><tr><td> 合金組成 </td><td> 重量百分率 </td><td> Ag </td><td> 3 </td><td> 4 </td><td> 4.5 </td></tr><tr><td> Cu </td><td> 0.5 </td><td> 0.5 </td><td> 0.5 </td></tr><tr><td> Ni </td><td> 0.05 </td><td> 0.05 </td><td> 0.05 </td></tr><tr><td> Bi </td><td> 4 </td><td> 3 </td><td> 2 </td></tr><tr><td> In </td><td></td><td></td><td></td></tr><tr><td> Ge </td><td></td><td></td><td></td></tr><tr><td> Ga </td><td></td><td></td><td></td></tr><tr><td> Pd </td><td></td><td></td><td></td></tr><tr><td> Sn </td><td> 餘量 </td><td> 餘量 </td><td> 餘量 </td></tr><tr><td> 機械性質 </td><td> 硬度 </td><td> HV </td><td> 24.22 </td><td> 25.41 </td><td> 25.6 </td></tr><tr><td> 降伏強度 </td><td> Mpa </td><td> 48 </td><td> 53 </td><td> 61 </td></tr><tr><td> 抗拉強度 </td><td> Mpa </td><td> 77 </td><td> 89 </td><td> 88 </td></tr><tr><td> 延展率 </td><td> % </td><td> 15 </td><td> 19 </td><td> 10 </td></tr><tr><td> 推球測試〈銅基板〉 </td><td> 回焊一次 </td><td> IMC平均厚度(µm) </td><td> 2.5 </td><td> 2.41 </td><td> 2.7 </td></tr><tr><td> Mode1 </td><td> % </td><td> 100 </td><td> 100 </td><td> 95 </td></tr><tr><td> Mode2 </td><td> % </td><td></td><td></td><td></td></tr><tr><td> Mode3 </td><td> % </td><td></td><td></td><td> 5 </td></tr><tr><td> Mode4 </td><td> % </td><td></td><td></td><td></td></tr><tr><td> 回焊三次 </td><td> IMC平均厚度(µm) </td><td> 3.91 </td><td> 3.83 </td><td> 3.17 </td></tr><tr><td> Mode1 </td><td> % </td><td> 90 </td><td> 90 </td><td> 90 </td></tr><tr><td> Mode2 </td><td> % </td><td></td><td></td><td></td></tr><tr><td> Mode3 </td><td> % </td><td> 5 </td><td> 5 </td><td> 5 </td></tr><tr><td> Mode4 </td><td> % </td><td> 5 </td><td> 5 </td><td> 5 </td></tr><tr><td> ball shear 平均值 (g) (回焊一次) </td><td> 455.3 </td><td> 379.77 </td><td> 390.6 </td></tr><tr><td> ball shear 平均值 (g) (回焊三次) </td><td> 431.2 </td><td> 346.26 </td><td> 375.8 </td></tr><tr><td> 焊球硬度測試 </td><td> 界面IMC上緣 平均硬度(Hv) (回焊一次) </td><td> 42.7 </td><td> 42.9 </td><td> 41.5 </td></tr><tr><td> 界面IMC上緣 平均硬度(Hv) (回焊三次) </td><td> 42.9 </td><td> 43.2 </td><td> 43.6 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 表4 </td><td> 比較例4 </td><td> 比較例5 </td><td> 比較例6 </td><td> 比較例7 </td></tr><tr><td> 合金組成 </td><td> 重量百分率 </td><td> Ag </td><td> 4 </td><td> 4 </td><td> 3 </td><td> 3 </td></tr><tr><td> Cu </td><td> 0.5 </td><td> 0.5 </td><td> 0.8 </td><td> 0.8 </td></tr><tr><td> Ni </td><td> 0.05 </td><td> 0.05 </td><td> 0.05 </td><td> 0.05 </td></tr><tr><td> Bi </td><td> 3 </td><td> 3 </td><td> 2 </td><td> 2 </td></tr><tr><td> In </td><td> 0.1 </td><td> 2 </td><td> 0.5 </td><td> 0.9 </td></tr><tr><td> Ge </td><td>   </td><td></td><td></td><td></td></tr><tr><td> Ga </td><td>   </td><td></td><td></td><td></td></tr><tr><td> Pd </td><td>   </td><td></td><td></td><td></td></tr><tr><td> Sn </td><td> 餘量 </td><td> 餘量 </td><td> 餘量 </td><td> 餘量 </td></tr><tr><td> 機械性質 </td><td> 硬度 </td><td> HV </td><td> 25.48 </td><td> 26.77 </td><td> 26.4 </td><td> 27.27 </td></tr><tr><td> 降伏強度 </td><td> Mpa </td><td> 52 </td><td> 63 </td><td> 45 </td><td> 39 </td></tr><tr><td> 抗拉強度 </td><td> Mpa </td><td> 88 </td><td> 97 </td><td> 74 </td><td> 67 </td></tr><tr><td> 延展率 </td><td> % </td><td> 18 </td><td> 8 </td><td> 15 </td><td> 18 </td></tr><tr><td> 推球測試〈銅基板〉 </td><td> 回焊一次 </td><td> IMC平均厚度(µm) </td><td> 2.35 </td><td> 2.3 </td><td> 2.8 </td><td> 2.5 </td></tr><tr><td> Mode1 </td><td> % </td><td> 100 </td><td> 90 </td><td> 100 </td><td> 100 </td></tr><tr><td> Mode2 </td><td> % </td><td>   </td><td></td><td></td><td></td></tr><tr><td> Mode3 </td><td> % </td><td>   </td><td> 10 </td><td></td><td></td></tr><tr><td> Mode4 </td><td> % </td><td>   </td><td></td><td></td><td></td></tr><tr><td> 回焊三次 </td><td> IMC平均厚度(µm) </td><td> 3.78 </td><td> 3.53 </td><td> 3.1 </td><td> 3.83 </td></tr><tr><td> Mode1 </td><td> % </td><td> 90 </td><td> 85 </td><td> 100 </td><td> 85 </td></tr><tr><td> Mode2 </td><td> % </td><td>   </td><td></td><td></td><td></td></tr><tr><td> Mode3 </td><td> % </td><td> 5 </td><td> 10 </td><td></td><td> 10 </td></tr><tr><td> Mode4 </td><td> % </td><td> 5 </td><td> 5 </td><td></td><td> 5 </td></tr><tr><td> ball shear 平均值 (g) (回焊一次) </td><td> 381.3 </td><td> 441 </td><td> 282.32 </td><td> 269.85 </td></tr><tr><td> ball shear 平均值 (g) (回焊三次) </td><td> 348.6 </td><td> 423.5 </td><td> 252.25 </td><td> 266.69 </td></tr><tr><td> 焊球硬度測試 </td><td> 界面IMC上緣 平均硬度(Hv) (回焊一次) </td><td> 43.2 </td><td> 40.5 </td><td> 40.5 </td><td> 40.1 </td></tr><tr><td> 界面IMC上緣 平均硬度(Hv) (回焊三次) </td><td> 43.8 </td><td> 46.3 </td><td> 41.9 </td><td> 41.8 </td></tr></TBODY></TABLE>no. <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 1 </td><td> Example 1 </td><td> Example 2 </td><td> Example 3 </td><td> Example 4 </td><td> Example 5 </td></tr><tr><td> Alloy Composition </td ><td> Weight percentage</td><td> Ag </td><td> 3 </td><td> 3 </td><td> 3 </td><td> 4 </td> <td> 4 </td></tr><tr><td> Cu </td><td> 0.5 </td><td> 0.5 </td><td> 0.5 </td><td> 0.5 </td><td> 0.5 </td></tr><tr><td> Ni </td><td> 0.05 </td><td> 0.05 </td><td> 0.05 </ Td><td> 0.05 </td><td> 0.05 </td></tr><tr><td> Bi </td><td> 2.5 </td><td> 3.5 </td>< Td> 3 </td><td> 3 </td><td> 3 </td></tr><tr><td> In </td><td> 0.2 </td><td> 0.5 </td><td> 0.9 </td><td> 0.5 </td><td> 1 </td></tr><tr><td> Ge </td><td></td> <td></td><td></td><td></td><td></td></tr><tr><td> Ga </td><td></td> <td></td><td></td><td></td><td></td></tr><tr><td> Pd </td><td></td> <td></td><td></td><td></td><td></td></tr><tr><td> Sn </td><td> balance </ Td><td> margin </td><td> margin </td><td> margin </td><td> margin </td></tr><tr><td> Mechanical properties</td><td> Hardness</td><td> HV </td><td> 24.6 </td><td> 25.6 </td><td> 26.3 </td><td> 26.03 </td><td> 26.2 </td></tr><tr><td> Falling strength</td><td> Mpa </td><td> 49 </td><td> 51 </ Td><td> 53 </td><td> 53 </td><td> 52 </td></tr><tr><td> tensile strength</td><td> Mpa </td ><td> 78 </td><td> 81 </td><td> 89 </td><td> 89 </td><td> 85 </td></tr><tr><td > Extension rate</td><td> % </td><td> 14 </td><td> 13 </td><td> 10 </td><td> 18 </td><td> 18 </td></tr><tr><td> Push ball test <copper substrate> </td><td> reflow once</td><td> average thickness of IMC (μm) </td>< Td> 2.07 </td><td> 2.33 </td><td> 2.53 </td><td> 2.4 </td><td> 2.2 </td></tr><tr><td> Mode1 </td><td> % </td><td> 100 </td><td> 100 </td><td> 100 </td><td> 100 </td><td> 100 </ Td></tr><tr><td> Mode2 </td><td> % </td><td></td><td></td><td></td><td>< /td><td></td></tr><tr><td> Mode3 </td><td> % </td><td></td><td></td><td> </td><td></td><td></td></tr><tr><td> Mode4 </td><td> % </td><td></td><td ></td><td></td><td></td><td></td></tr><tr><td> reflow Three times</td><td> IMC average thickness (μm) </td><td> 3.33 </td><td> 3.83 </td><td> 3.86 </td><td> 3.53 </td> <td> 3.41 </td></tr><tr><td> Mode1 </td><td> % </td><td> 100 </td><td> 100 </td><td> 100 </td><td> 100 </td><td> 100 </td></tr><tr><td> Mode2 </td><td> % </td><td></td ><td></td><td></td><td></td><td></td></tr><tr><td> Mode3 </td><td> % </ Td><td></td><td></td><td></td><td></td><td></td></tr><tr><td> Mode4 </ Td><td> % </td><td></td><td></td><td></td><td></td><td></td></tr>< Tr><td> ball shear average (g) (reflow once) </td><td> 325.38 </td><td> 332.7 </td><td> 343.48 </td><td> 408.8 < /td><td> 430.53 </td></tr><tr><td> ball shear average (g) (reflow three times) </td><td> 311.4 </td><td> 296.12 /td><td> 298.48 </td><td> 384.2 </td><td> 411.9 </td></tr><tr><td> Solder Ball Hardness Test</td><td> Interface IMC Upper edge average hardness (Hv) (reflow once) </td><td> 42.6 </td><td> 43.6 </td><td> 39.7 </td><td> 44.4 </td><td > 48.4 </td></tr><tr><td> Interface IMC upper edge average hardness (Hv) (reflow three times) </td><td> 45. 7 </td><td> 45.6 </td><td> 44.5 </td><td> 45.7 </td><td> 49.6 </td></tr></TBODY></TABLE>< TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 2 </td><td> Example 6 </td><td> Example 7 </td><td> Example 8 </td><td> Example 9 </td></tr><tr><td> Alloy Composition</td><td> Weight Percentage</td>< Td> Ag </td><td> 4 </td><td> 3 </td><td> 4 </td><td> 4 </td></tr><tr><td> Cu </td><td> 0.5 </td><td> 0.5 </td><td> 0.5 </td><td> 0.5 </td></tr><tr><td> Ni </td ><td> 0.05 </td><td> 0.05 </td><td> 0.05 </td><td> 0.05 </td></tr><tr><td> Bi </td><td > 3 </td><td> 3 </td><td> 3 </td><td> 3 </td></tr><tr><td> In </td><td> 1.5 < /td><td> 0.2 </td><td> 1.5 </td><td> 1.5 </td></tr><tr><td> Ge </td><td></td>< Td></td><td> 0.02 </td><td> 0.1 </td></tr><tr><td> Ga </td><td></td><td></td ><td> 0.003 </td><td> 0.01 </td></tr><tr><td> Pd </td><td> 0.05 </td><td> 0.1 </td><td ></td><td></td></tr><tr><td> Sn </td><td> balance </td><td> balance </td><td> balance </td><td> balance</td></tr><tr><td> mechanical </td><td> Hardness</td><td> HV </td><td> 26.5 </td><td> 24.8 </td><td> 26.45 </td><td> 26.5 </ Td></tr><tr><td> drop strength</td><td> Mpa </td><td> 53 </td><td> 56 </td><td> 54 </td> <td> 55 </td></tr><tr><td> Tensile strength</td><td> Mpa </td><td> 88 </td><td> 91 </td>< Td> 90 </td><td> 91 </td></tr><tr><td> Extension rate</td><td> % </td><td> 16 </td><td> 16 </td><td> 12 </td><td> 11 </td></tr><tr><td> Push ball test <copper substrate> </td><td> reflow once </ Td><td> IMC average thickness (μm) </td><td> 2.13 </td><td> 1.99 </td><td> 2.58 </td><td> 2.6 </td></tr ><tr><td> Mode1 </td><td> % </td><td> 100 </td><td> 100 </td><td> 100 </td><td> 100 </ Td></tr><tr><td> Mode2 </td><td> % </td><td></td><td></td><td></td><td>< /td></tr><tr><td> Mode3 </td><td> % </td><td></td><td></td><td></td><td> </td></tr><tr><td> Mode4 </td><td> % </td><td></td><td></td><td></td><td ></td></tr><tr><td> Reflow three times</td><td> IMC average thickness (μm) </td><td> 3.81 </td><td> 3.11 </td ><td> 3.32 </td><td> 3.56 </td></tr><tr><td> Mod E1 </td><td> % </td><td> 100 </td><td> 100 </td><td> 100 </td><td> 100 </td></tr>< Tr><td> Mode2 </td><td> % </td><td></td><td></td><td></td><td></td></tr> <tr><td> Mode3 </td><td> % </td><td></td><td></td><td></td><td></td></tr ><tr><td> Mode4 </td><td> % </td><td></td><td></td><td></td><td></td></ Tr><tr><td> ball shear average (g) (reflow once) </td><td> 433.15 </td><td> 333.1 </td><td> 442.3 </td><td > 441.6 </td></tr><tr><td> ball shear average (g) (reflow three times) </td><td> 416.5 </td><td> 315.7 </td><td > 418.8 </td><td> 419.6 </td></tr><tr><td> Solder Ball Hardness Test</td><td> Average IMC Upper Edge Hardness (Hv) (Reflow Once) < /td><td> 48.6 </td><td> 43.1 </td><td> 44.8 </td><td> 43.9 </td></tr><tr><td> Interface IMC upper edge average Hardness (Hv) (reflow three times) </td><td> 49.9 </td><td> 46.8 </td><td> 47.9 </td><td> 47.3 </td></tr>< /TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 3 </td><td> Comparative Example 1 </ Td><td> Comparative Example 2 </td><td> Comparative Example 3 </td></tr><tr><td> Alloy Composition</td><td> Weight Percentage</td><td> Ag </td><td> 3 </td><td> 4 </td><td> 4.5 </td></tr ><tr><td> Cu </td><td> 0.5 </td><td> 0.5 </td><td> 0.5 </td></tr><tr><td> Ni </td ><td> 0.05 </td><td> 0.05 </td><td> 0.05 </td></tr><tr><td> Bi </td><td> 4 </td><td > 3 </td><td> 2 </td></tr><tr><td> In </td><td></td><td></td><td></td> </tr><tr><td> Ge </td><td></td><td></td><td></td></tr><tr><td> Ga </td ><td></td><td></td><td></td></tr><tr><td> Pd </td><td></td><td></td ><td></td></tr><tr><td> Sn </td><td> balance </td><td> balance </td><td> balance </td> </tr><tr><td> Mechanical properties</td><td> Hardness</td><td> HV </td><td> 24.22 </td><td> 25.41 </td><td > 25.6 </td></tr><tr><td> Falling strength</td><td> Mpa </td><td> 48 </td><td> 53 </td><td> 61 </td></tr><tr><td> Tensile strength</td><td> Mpa </td><td> 77 </td><td> 89 </td><td> 88 < /td></tr><tr><td> Extension rate</td><td> % </td><td> 15 </td><td> 19 </td><td> 10 </td ></tr><tr><td> Push ball test <copper substrate> </td><td> reflow once</td><td> average thickness of IMC Degree (μm) </td><td> 2.5 </td><td> 2.41 </td><td> 2.7 </td></tr><tr><td> Mode1 </td><td> % </td><td> 100 </td><td> 100 </td><td> 95 </td></tr><tr><td> Mode2 </td><td> % </ Td><td></td><td></td><td></td></tr><tr><td> Mode3 </td><td> % </td><td>< /td><td></td><td> 5 </td></tr><tr><td> Mode4 </td><td> % </td><td></td><td ></td><td></td></tr><tr><td> Reflow three times</td><td> IMC average thickness (μm) </td><td> 3.91 </td> <td> 3.83 </td><td> 3.17 </td></tr><tr><td> Mode1 </td><td> % </td><td> 90 </td><td> 90 </td><td> 90 </td></tr><tr><td> Mode2 </td><td> % </td><td></td><td></td> <td></td></tr><tr><td> Mode3 </td><td> % </td><td> 5 </td><td> 5 </td><td> 5 </td></tr><tr><td> Mode4 </td><td> % </td><td> 5 </td><td> 5 </td><td> 5 </td ></tr><tr><td> ball shear average (g) (reflow once) </td><td> 455.3 </td><td> 379.77 </td><td> 390.6 </td ></tr><tr><td> ball shear average (g) (reflow three times) </td><td> 431.2 </td><td> 346.26 </td><td> 375.8 </td ></tr><tr><td> Solder Ball Hardness Test</td><td> Interface IMC Upper Edge Hardness (Hv) (reflow once) </td><td> 42.7 </td><td> 42.9 </td><td> 41.5 </td></tr><tr><td> Interface IMC Upper edge average hardness (Hv) (reflow three times) </td><td> 42.9 </td><td> 43.2 </td><td> 43.6 </td></tr></TBODY></ TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Table 4 </td><td> Comparative Example 4 </td><td> Comparative Example 5 </td><td> Comparative Example 6 </td><td> Comparative Example 7 </td></tr><tr><td> Alloy Composition</td><td> Weight Percentage </ Td><td> Ag </td><td> 4 </td><td> 4 </td><td> 3 </td><td> 3 </td></tr><tr>< Td> Cu </td><td> 0.5 </td><td> 0.5 </td><td> 0.8 </td><td> 0.8 </td></tr><tr><td> Ni </td><td> 0.05 </td><td> 0.05 </td><td> 0.05 </td><td> 0.05 </td></tr><tr><td> Bi </td ><td> 3 </td><td> 3 </td><td> 2 </td><td> 2 </td></tr><tr><td> In </td><td > 0.1 </td><td> 2 </td><td> 0.5 </td><td> 0.9 </td></tr><tr><td> Ge </td><td> </ Td><td></td><td></td><td></td></tr><tr><td> Ga </td><td> </td><td></ Td><td></td><td></td></tr><tr><td> Pd </td><td> </td><td></td><td></ Td><td></td></tr><tr><td> Sn </td><td> balance </td><td> balance </td><td> balance </td><td> balance </td></tr><tr><td > Mechanical properties</td><td> Hardness</td><td> HV </td><td> 25.48 </td><td> 26.77 </td><td> 26.4 </td><td> 27.27 </td></tr><tr><td> Falling strength</td><td> Mpa </td><td> 52 </td><td> 63 </td><td> 45 < /td><td> 39 </td></tr><tr><td> Tensile strength</td><td> Mpa </td><td> 88 </td><td> 97 </ Td><td> 74 </td><td> 67 </td></tr><tr><td> Extension rate</td><td> % </td><td> 18 </td> <td> 8 </td><td> 15 </td><td> 18 </td></tr><tr><td> Push ball test <copper substrate> </td><td> reflow Once </td><td> IMC average thickness (μm) </td><td> 2.35 </td><td> 2.3 </td><td> 2.8 </td><td> 2.5 </td> </tr><tr><td> Mode1 </td><td> % </td><td> 100 </td><td> 90 </td><td> 100 </td><td> 100 </td></tr><tr><td> Mode2 </td><td> % </td><td> </td><td></td><td></td>< Td></td></tr><tr><td> Mode3 </td><td> % </td><td> </td><td> 10 </td><td></td ><td></td></tr><tr><td> Mode4 </td><td> % </td><td> </td><td></td><td></ Td><td></td></tr><tr><td> reflow three </td><td> IMC average thickness (μm) </td><td> 3.78 </td><td> 3.53 </td><td> 3.1 </td><td> 3.83 </td>< /tr><tr><td> Mode1 </td><td> % </td><td> 90 </td><td> 85 </td><td> 100 </td><td> 85 </td></tr><tr><td> Mode2 </td><td> % </td><td> </td><td></td><td></td><td ></td></tr><tr><td> Mode3 </td><td> % </td><td> 5 </td><td> 10 </td><td></td ><td> 10 </td></tr><tr><td> Mode4 </td><td> % </td><td> 5 </td><td> 5 </td><td ></td><td> 5 </td></tr><tr><td> ball shear average (g) (reflow once) </td><td> 381.3 </td><td> 441 </td><td> 282.32 </td><td> 269.85 </td></tr><tr><td> ball shear average (g) (reflow three times) </td><td> 348.6 </td><td> 423.5 </td><td> 252.25 </td><td> 266.69 </td></tr><tr><td> Solder Ball Hardness Test</td><td> Interface IMC upper edge average hardness (Hv) (reflow once) </td><td> 43.2 </td><td> 40.5 </td><td> 40.5 </td><td> 40.1 </td> </tr><tr><td> Average hardness (Hv) of the upper edge of the interface IMC (reflow three times) </td><td> 43.8 </td><td> 46.3 </td><td> 41.9 </ Td><td> 41.8 </td></tr></TBODY></TABLE>

無。no.

:無:no

Claims (3)

一種焊料組成物,以該焊料組成物的總重為100wt%計,該焊料組成物包含:   3   ~  4   wt%的銀; 0.5  ~  1   wt%的銅; 0.04 ~ 0.07 wt%的鎳; 2.5  ~ 3.5  wt%的鉍; 0.2  ~ 1.5  wt%的銦;及 餘量的錫。A solder composition comprising: 3 to 4 wt% of silver; 0.5 to 1 wt% of copper; 0.04 to 0.07 wt% of nickel; 2.5 ~ based on the total weight of the solder composition: 100% by weight 3.5 wt% of bismuth; 0.2 to 1.5 wt% of indium; and the balance of tin. 如請求項1所述的焊料組成物,其中,該焊料組成物還包含大於0且在0.02wt%以下的鍺、大於0且在0.003wt%以下的鎵,或前述二者的組合。The solder composition of claim 1, wherein the solder composition further comprises cerium greater than 0 and less than 0.02 wt%, gallium greater than 0 and less than 0.003 wt%, or a combination of the two. 如請求項1所述的焊料組成物,其中,該焊料組成物還包含大於0wt%但在0.05wt%以下的鉑族組分,該鉑族組分選自於鈀、鉑,或前述二者的組合。The solder composition of claim 1, wherein the solder composition further comprises more than 0 wt% but less than 0.05 wt% of a platinum group component selected from palladium, platinum, or both The combination.
TW106116294A 2017-05-17 2017-05-17 Solder composition TWI602929B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW106116294A TWI602929B (en) 2017-05-17 2017-05-17 Solder composition
CN201710993750.7A CN107900550B (en) 2017-05-17 2017-10-23 Solder composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106116294A TWI602929B (en) 2017-05-17 2017-05-17 Solder composition

Publications (2)

Publication Number Publication Date
TWI602929B true TWI602929B (en) 2017-10-21
TW201900893A TW201900893A (en) 2019-01-01

Family

ID=61011007

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106116294A TWI602929B (en) 2017-05-17 2017-05-17 Solder composition

Country Status (2)

Country Link
CN (1) CN107900550B (en)
TW (1) TWI602929B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714825B (en) * 2018-02-07 2021-01-01 大瑞科技股份有限公司 Solder composition alloy and tin ball
TWI761657B (en) * 2018-03-28 2022-04-21 日商住友金屬鑛山股份有限公司 Copper alloy targets for forming solder joint electrodes and coatings for solder joint electrodes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201422356A (en) * 2012-10-09 2014-06-16 Alpha Metals High temperature reliability alloy

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1087994C (en) * 1995-09-29 2002-07-24 松下电器产业株式会社 Lead-free solder
KR100797161B1 (en) * 2007-05-25 2008-01-23 한국생산기술연구원 Quaternary pb-free solder composition incorporating sn-ag-cu-in
KR100833113B1 (en) * 2007-12-31 2008-06-12 덕산하이메탈(주) Lead free solder alloy and manufacturing method thereof
JP4787384B1 (en) * 2010-10-29 2011-10-05 ハリマ化成株式会社 Low silver solder alloy and solder paste composition
WO2012127642A1 (en) * 2011-03-23 2012-09-27 千住金属工業株式会社 Lead-free solder alloy
KR20130014913A (en) * 2011-08-01 2013-02-12 금오공과대학교 산학협력단 Composite for lead-free solder sn-ag-cu-in-bi alloy having low melting point
JP5238088B1 (en) * 2012-06-29 2013-07-17 ハリマ化成株式会社 Solder alloy, solder paste and electronic circuit board
US20140284794A1 (en) * 2012-11-07 2014-09-25 Mk Electron Co., Ltd. Tin-based solder ball and semiconductor package including the same
TWI460046B (en) * 2012-11-12 2014-11-11 Accurus Scient Co Ltd High strength silver-free lead-free solder
CN105290636A (en) * 2015-10-27 2016-02-03 广东中实金属有限公司 Tin alloy powder for preparing electronic-grade, low-sliver, high-reliability and lead-free soldering paste
CN108406158A (en) * 2015-12-30 2018-08-17 弘硕科技(宁波)有限公司 High temperature resistance timeliness high intensity Pb-free solder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201422356A (en) * 2012-10-09 2014-06-16 Alpha Metals High temperature reliability alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714825B (en) * 2018-02-07 2021-01-01 大瑞科技股份有限公司 Solder composition alloy and tin ball
TWI761657B (en) * 2018-03-28 2022-04-21 日商住友金屬鑛山股份有限公司 Copper alloy targets for forming solder joint electrodes and coatings for solder joint electrodes

Also Published As

Publication number Publication date
CN107900550B (en) 2020-07-21
CN107900550A (en) 2018-04-13
TW201900893A (en) 2019-01-01

Similar Documents

Publication Publication Date Title
TW201442818A (en) High strength lead-free solder at high temperature aging resistance
US6689488B2 (en) Lead-free solder and solder joint
JP6145164B2 (en) Lead-free solder, lead-free solder ball, solder joint using this lead-free solder, and semiconductor circuit having this solder joint
TWI602929B (en) Solder composition
JP4836009B2 (en) Solder alloy, solder ball and solder joint using the same
JP5784109B2 (en) Lead-free solder alloy
CN102592700B (en) Composite silver wire
JP2007237249A (en) Lead-free solder alloy, solder ball and electronic member
Terashima et al. Improvement of thermal fatigue properties of Sn-Ag-Cu lead-free solder interconnects on Casio’s wafer-level packages based on morphology and grain boundary character
TWI714420B (en) Lead-free copper-free tin alloy and tin balls for ball grid array packaging
Liu et al. The superior drop test performance of SAC-Ti solders and its mechanism
TWI714825B (en) Solder composition alloy and tin ball
JP4890221B2 (en) Die bond material
WO2013052428A1 (en) A mn doped sn-base solder alloy and solder joints thereof with superior drop shock reliability
TWI610378B (en) High temperature resistant, high strength, lead free solder
Teo Thermal cycling aging effect on the reliability and morphological evolution of SnAgCu solder joints
Jang et al. Failure morphology after the drop impact test of the ball grid array package with lead-free Sn-3.8 Ag-0.7 Cu on Cu and Ni under-bump metallurgies
Son et al. Study on the characteristics of various dopants in Sn-1Ag-0.8 Cu solder
KR20150127445A (en) Silver-free and lead-free solder composition
Zhu et al. Effects of ZrO 2 nanoparticles on the mechanical properties of Sn 42 Bi 58 solder joint
TWI762119B (en) Lead-Free Copper-Free Tin Alloys and Solder Balls for Ball Grid Array Packaging
Tian et al. Intermetallics evolution and its reliability effects on micro-joints in flip chip assemblies
Ribas et al. Thermal and mechanical reliability of low-temperature solder alloys for handheld devices
Leng et al. A comparison study on SnAgNiCo and Sn3. 8Ag0. 7Cu C5 lead free solder system
Miaosen et al. Study of creep performance of Sn-0.7 Ag-0.5 Cu-3.5 Bi-0.05 Ni/Cu by nanoindentation