KR100774908B1 - 플라즈마 디스플레이 패널의 구동방법 - Google Patents

플라즈마 디스플레이 패널의 구동방법 Download PDF

Info

Publication number
KR100774908B1
KR100774908B1 KR1020040093725A KR20040093725A KR100774908B1 KR 100774908 B1 KR100774908 B1 KR 100774908B1 KR 1020040093725 A KR1020040093725 A KR 1020040093725A KR 20040093725 A KR20040093725 A KR 20040093725A KR 100774908 B1 KR100774908 B1 KR 100774908B1
Authority
KR
South Korea
Prior art keywords
scan
address
pulse
electrode
application
Prior art date
Application number
KR1020040093725A
Other languages
English (en)
Other versions
KR20060054882A (ko
Inventor
양희찬
김진영
정윤권
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020040093725A priority Critical patent/KR100774908B1/ko
Priority to TW094120763A priority patent/TWI280542B/zh
Priority to US11/157,976 priority patent/US7868849B2/en
Priority to JP2005192910A priority patent/JP4112576B2/ja
Priority to CNB2005100823279A priority patent/CN100426349C/zh
Priority to EP05254144A priority patent/EP1657704A3/en
Publication of KR20060054882A publication Critical patent/KR20060054882A/ko
Application granted granted Critical
Publication of KR100774908B1 publication Critical patent/KR100774908B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/293Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for address discharge
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge
    • G09G3/2948Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge by increasing the total sustaining time with respect to other times in the frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • H01J11/26Address electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0218Addressing of scan or signal lines with collection of electrodes in groups for n-dimensional addressing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/025Reduction of instantaneous peaks of current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/06Handling electromagnetic interferences [EMI], covering emitted as well as received electromagnetic radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

본 발명은 플라즈마 디스플레이 패널의 구동방법에 관한 것이다. 본 발명의 플라즈마 디스플레이 패널의 구동방법은 어드레스 전극을 복수의 전극군으로 나누고, 프레임의 모든 서브필드에서는 어드레스 기간에서 적어도 하나 이상의 어드레스 전극군에 인가되는 데이터 펄스의 인가시점은 스캔 전극에 인가되는 스캔 펄스의 인가시점과 서로 다르고, 프레임의 서브필드 중 임의의 서브필드의 어드레스 기간에서 인가되는 스캔 펄스의 폭은 이후의 다른 서브필드에서 인가되는 스캔 펄스의 폭 보다 더 크다. 이와 같은 본 발명에 의하면, 스캔 전극 또는 서스테인 전극에 인가되는 파형에 발생하는 노이즈를 저감하고, 어드레스 지터(Jitter) 특성의 악화를 방지함으로써, 어드레스 방전을 안정시켜 구동효율을 높이는 효과가 있다.
플라즈마 디스플레이 패널, 노이즈, 전극군, 데이터 펄스, 스캔 펄스, 인가시점, 지터(Jitter), 스캔 펄스 폭

Description

플라즈마 디스플레이 패널의 구동방법{Driving Method for Plasma Display Panel}
도 1은 일반적인 플라즈마 디스플레이 패널의 구조를 도시한 도.
도 2는 플라즈마 디스플레이 패널과 구동모듈의 결합관계를 나타낸 도.
도 3은 종래 플라즈마 디스플레이 패널의 화상 계조를 구현하는 방법을 나타낸 도.
도 4는 종래 플라즈마 디스플레이 패널의 구동 방법에 따른 구동파형을 나타낸 도.
도 5는 종래 플라즈마 디스플레이 패널의 구동 방법에서 어드레스 기간에 인가되는 펄스의 인가시점을 설명하기 위한 도.
도 6은 종래 플라즈마 디스플레이 패널의 구동 방법에서 어드레스 기간에 인가되는 펄스에 의한 노이즈의 발생을 설명하기 위한 도.
도 7a 내지 도 7e는 본 발명의 제 1 실시예에 따른 플라즈마 디스플레이 패널의 구동방법의 구동파형을 설명하기 위한 도.
도 8a 내지 도 8e는 본 발명의 제 1 실시예에 따른 플라즈마 디스플레이 패널의 구동방법에 있어서 서브필드별 스캔 펄스의 폭을 설명하기 위한 도.
도 9a 내지 도 9b는 본 발명의 제 1 실시예에 따른 구동파형에 의해 감소되 는 노이즈를 설명하기 위한 도.
도 10은 본 발명의 제 2 실시예에 따른 플라즈마 디스플레이 패널의 구동방법을 설명하기 위해 어드레스 전극(X1~Xn)들을 4개의 어드레스 전극군으로 나눈 것을 설명하기 위한 도.
도 11a 내지 도 11c는 본 발명의 제 2 실시예에 따른 플라즈마 디스플레이 패널의 구동방법의 구동파형을 설명하기 위한 도.
도 12는 본 발명의 제 3 실시예에 따른 플라즈마 디스플레이 패널의 구동방법의 구동파형을 설명하기 위한 도.
도 13a 내지 도 13c는 도 12에 도시된 본 발명의 제 3 실시예에 따른 플라즈마 디스플레이 패널의 구동방법의 구동파형을 좀 더 상세히 설명하기 위한 도.
도 14는 본 발명의 제 4 실시예에 따른 플라즈마 디스플레이 패널의 구동방법의 구동파형을 설명하기 위한 도.
<도면의 주요 부분에 대한 부호의 설명>
20 : 데이터 드라이버 IC 21 : 스캔 드라이버 IC
23 : 서스테인 보드 100 : 패널
101 : Xa 전극군 102 : Xb 전극군
103 : Xc 전극군 104 : Xd 전극군
본 발명은 플라즈마 디스플레이 패널(Plasma Display Panel)에 관한 것으로, 보다 상세하게는 어드레스 기간(Address Period)에서 인가되는 펄스의 인가시점과 펄스폭을 개선함으로써, 스캔 전극 또는 서스테인 전극에 인가되는 파형에 발생하는 노이즈를 저감하고 지터(Jitter)특성의 악화를 방지함으로써, 어드레스 방전을 안정시켜 구동효율을 높이는 플라즈마 디스플레이 패널의 구동방법에 관한 것이다.
일반적으로 플라즈마 디스플레이 패널은 전면기판과 후면기판 사이에 형성된 격벽이 하나의 단위 셀을 이루는 것으로, 각 셀 내에는 네온(Ne), 헬륨(He) 또는 네온 및 헬륨의 혼합기체(Ne+He)와 같은 주 방전 기체와 소량의 크세논을 함유하는 불활성 가스가 충진되어 있다. 고주파 전압에 의해 방전이 될 때, 불활성 가스는 진공자외선(Vacuum Ultraviolet rays)을 발생하고 격벽 사이에 형성된 형광체를 발광시켜 화상이 구현된다. 이와 같은 플라즈마 디스플레이 패널은 얇고 가벼운 구성이 가능하므로 차세대 표시장치로서 각광받고 있다.
도 1은 일반적인 플라즈마 디스플레이 패널의 구조를 나타낸 도이다.
도 1에 도시된 바와 같이, 플라즈마 디스플레이 패널은 화상이 디스플레이 되는 표시면인 전면 글라스(101)에 스캔 전극(102)과 서스테인 전극(103)이 쌍을 이뤄 형성된 복수의 유지전극쌍이 배열된 전면기판(100) 및 배면을 이루는 후면 글라스(111) 상에 전술한 복수의 유지전극쌍과 교차되도록 복수의 어드레스 전극(113)이 배열된 후면기판(110)이 일정거리를 사이에 두고 평행하게 결합된다.
전면기판(100)은 하나의 방전셀에서 상호 방전시키고 셀의 발광을 유지하기 위한 스캔 전극(102) 및 서스테인 전극(103), 즉 투명한 ITO 물질로 형성된 투명 전극(a)과 금속재질로 제작된 버스 전극(b)으로 구비된 스캔 전극(102) 및 서스테인 전극(103)이 쌍을 이뤄 포함된다. 스캔 전극(102) 및 서스테인 전극(103)은 방전 전류를 제한하며 전극 쌍 간을 절연시켜주는 하나 이상의 상부 유전체층(104)에 의해 덮여지고, 상부 유전체층(104) 상면에는 방전 조건을 용이하게 하기 위하여 산화마그네슘(MgO)을 증착한 보호층(105)이 형성된다.
후면기판(110)은 복수개의 방전 공간 즉, 방전셀을 형성시키기 위한 스트라이프 타입(또는 웰 타입)의 격벽(112)이 평행을 유지하여 배열된다. 또한, 어드레스 방전을 수행하여 진공자외선을 발생시키는 다수의 어드레스 전극(113)이 격벽(112)에 대해 평행하게 배치된다. 후면기판(110)의 상측면에는 어드레스 방전시 화상표시를 위한 가시광선을 방출하는 R, G, B 형광체(114)가 도포된다. 어드레스 전극(113)과 형광체(114) 사이에는 어드레스 전극(113)을 보호하기 위한 하부 유전체층(115)이 형성된다.
이러한 구조의 플라즈마 디스플레이 패널은 방전셀이 매트릭스(Matrix) 구조로 복수개가 형성되고, 방전셀에 소정의 펄스를 공급하기 위한 구동회로를 포함하는 구동모듈이 부착되어 구동된다. 이러한 플라즈마 디스플레이 패널과 구동모듈의 결합관계를 살펴보면 도 2와 같다.
도 2는 플라즈마 디스플레이 패널과 구동모듈의 결합관계를 나타낸 도면이다.
도 2에 도시된 바와 같이, 구동모듈은 예컨대, 데이터 드라이버 IC(Integrated Circuit)(20), 스캔 드라이버 IC(21), 서스테인 보드(23)를 포함하여 구성된다. 플라즈마 디스플레이 패널(22)은 외부로부터 영상신호를 입력받아 소정의 신호 처리 과정을 거쳐 데이터 드라이버 IC(20)로부터 출력된 데이터 펄스를 입력받고, 스캔 드라이버 IC(21)로부터 출력된 스캔 펄스 및 서스테인 펄스를 입력받고, 서스테인 보드(23)로부터 출력된 서스테인 펄스를 입력받는다. 데이터 펄스, 스캔 펄스, 서스테인 펄스 등을 입력받은 플라즈마 디스플레이 패널(22)에 포함된 다수의 셀 중에서 스캔 펄스에 의해 선택된 셀에 방전이 발생하고, 방전이 발생한 셀은 소정의 휘도로 발광한다. 여기서 데이터 드라이버 IC(20)은 FPC(Flexible Printed Circuit)(미도시)와 같은 연결체를 통해 각 어드레스 전극(X1~Xn)에 소정의 데이터 펄스를 출력한다.
이와 같은 플라즈마 디스플레이 패널에서 화상 계조를 구현하는 방법은 다음 도 3과 같다.
도 3은 종래 플라즈마 디스플레이 패널의 화상 계조를 구현하는 방법을 나타낸 도이다.
도 3에 도시된 바와 같이, 종래 플라즈마 디스플레이 패널의 화상 계조(Gray Level) 표현 방법은 한 프레임을 발광횟수가 다른 여러 서브필드로 나누고, 각 서브필드는 다시 모든 셀들을 초기화시키기 위한 리셋 기간(RPD), 방전될 셀을 선택하기 위한 어드레스 기간(APD) 및 방전횟수에 따라 계조를 구현하는 서스테인 기간(SPD)으로 나뉘어진다. 예를 들어, 256 계조로 화상을 표시하고자 하는 경우에 1/60 초에 해당하는 프레임기간(16.67ms)은 도 3과 같이 8개의 서브필드들(SF1 내지 SF8)로 나누어지고, 8개의 서브 필드들(SF1 내지 SF8) 각각은 리셋 기간, 어드레스 기간 및 서스테인 기간으로 다시 나누어지게 된다.
각 서브필드의 리셋 기간 및 어드레스 기간은 각 서브필드마다 동일하다. 방전될 셀을 선택하기 위한 어드레스방전은 어드레스 전극과 스캔 전극인 투명전극 사이의 전압차에 의해 일어난다. 서스테인 기간은 각 서브필드에서 2n(단, n = 0, 1, 2, 3, 4, 5, 6, 7)의 비율로 증가된다. 이와 같이 각 서브필드에서 서스테인 기간이 달라지게 되므로 각 서브필드의 서스테인 기간 즉, 서스테인 방전 횟수를 조절하여 화상의 계조를 표현하게 된다. 이러한 플라즈마 디스플레이 패널의 구동 방법에 따른 구동파형을 살펴보면 다음 도 4와 같다.
도 4는 종래 플라즈마 디스플레이 패널의 구동 방법에 따른 구동파형을 나타낸 도면이다.
도 4에 도시된 바와 같이, 플라즈마 디스플레이 패널은 모든 셀들을 초기화시키기 위한 리셋 기간, 방전할 셀을 선택하기 위한 어드레스 기간, 선택된 셀의 방전을 유지시키기 위한 서스테인 기간 및 방전된 셀 내의 벽전하를 소거하기 위한 소거 기간으로 나뉘어 구동된다.
리셋 기간에 있어서, 셋업 기간에는 모든 스캔 전극들에 상승 램프파형(Ramp-up)이 동시에 인가된다. 이 상승 램프파형에 의해 전화면의 방전셀들 내에는 약한 암방전(Dark Discharge)이 일어난다. 이 셋업 방전에 의해 어드레스 전극과 서스테인 전극 상에는 정극성 벽전하가 쌓이게 되며, 스캔 전극 상에는 부극성의 벽전하가 쌓이게 된다.
셋다운 기간에는 상승 램프파형이 공급된 후, 상승 램프파형의 피크전압보다 낮은 정극성 전압에서 떨어지기 시작하여 그라운드(GND)레벨 전압 이하의 특정 전압레벨까지 떨어지는 하강 램프파형(Ramp-down)이 셀들 내에 미약한 소거방전을 일으킴으로써 스캔 전극에 과도하게 형성된 벽 전하를 충분히 소거시키게 된다. 이 셋다운 방전에 의해 어드레스 방전이 안정되게 일어날 수 있을 정도의 벽전하가 셀들 내에 균일하게 잔류된다.
어드레스 기간에는 부극성 스캔 펄스가 스캔 전극들에 순차적으로 인가됨과 동시에 스캔 펄스에 동기되어 어드레스 전극에 정극성의 데이터 펄스가 인가된다. 이 스캔 펄스와 데이터 펄스의 전압 차와 리셋 기간에 생성된 벽 전압이 더해지면서 데이터 펄스가 인가되는 방전셀 내에는 어드레스 방전이 발생된다. 어드레스 방전에 의해 선택된 셀들 내에는 서스테인 전압(Vs)이 인가될 때 방전이 일어날 수 있게 하는 정도의 벽전하가 형성된다. 서스테인 전극에는 셋다운 기간과 어드레스 기간 동안에 스캔 전극과의 전압차를 줄여 스캔 전극과의 오방전이 일어나지 않도록 정극성 전압(Vz)이 공급된다.
서스테인 기간에는 스캔 전극과 서스테인 전극들에 교번적으로 서스테인 펄스(Sus)가 인가된다. 어드레스 방전에 의해 선택된 셀은 셀 내의 벽 전압과 서스테인 펄스가 더해지면서 매 서스테인 펄스가 인가될 때 마다 스캔 전극과 서스테인 전극 사이에 서스테인 방전 즉, 표시방전이 일어나게 된다.
서스테인 방전이 완료된 후, 소거 기간에서는 펄스폭과 전압레벨이 작은 소거 램프파형(Ramp-ers)의 전압이 서스테인 전극에 공급되어 전화면의 셀들 내에 잔류하는 벽 전하를 소거시키게 된다.
이러한 구동파형으로 구동되는 플라즈마 디스플레이 패널은 어드레스 기간에서 스캔 전극에 인가되는 스캔 펄스와 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스의 인가시점은 동일하다. 이러한 종래 어드레스 기간에서의 스캔 펄스와 데이터 펄스의 인가시점을 살펴보면 다음 도 5와 같다.
도 5는 종래 플라즈마 디스플레이 패널의 구동 방법에서 어드레스 기간에 인가되는 펄스의 인가시점을 설명하기 위한 도면이다.
도 5에 도시된 바와 같이, 종래 플라즈마 디스플레이 패널의 구동방법에서는 어드레스 기간에서 어드레스 전극(X1~Xn)에 인가되는 모든 데이터 펄스는 스캔 전극에 인가되는 스캔 펄스와 동시(ts)에 인가된다. 이와 같이 동일한 시점에서 데이터 펄스와 스캔 펄스가 각각 어드레스 전극(X1~Xn)과 스캔 전극에 인가되면 스캔 전극에 인가되는 파형과 서스테인 전극에 인가되는 파형에 노이즈(Noise)가 발생하게 된다. 이러한 동일한 시점에서 데이터 펄스와 스캔 펄스가 각각 어드레스 전극(X1~Xn)과 스캔 전극에 인가되는 경우에 발생되는 노이즈가 발생되는 일예를 살펴보면 다음 도 6과 같다.
도 6은 종래 플라즈마 디스플레이 패널의 구동 방법에서 어드레스 기간에 인가되는 펄스에 의한 노이즈의 발생을 설명하기 위한 도면이다.
도 6에 도시된 바와 같이, 종래 플라즈마 디스플레이 패널의 구동방법에서 어드레스 기간에 데이터 펄스와 스캔 펄스가 각각 어드레스 전극(X1~Xn)과 스캔 전극에 인가되면 스캔 전극과 서스테인 전극에 인가되는 파형에 노이즈가 발생한다. 이러한 노이즈는 패널의 정전용량(Capacitance)을 통한 커플링(Coupling)으로 인해 발생되는 것으로, 데이터 펄스가 급상승하는 시점에서는 스캔 전극과 서스테인 전극에 인가되는 파형에 상승노이즈가 발생되고, 데이터 펄스가 급하강하는 시점에서는 스캔 전극과 서스테인 전극에 인가되는 파형에 하강노이즈가 발생된다.
전술한 것과 같이 스캔 전극에 인가되는 스캔 펄스와 동시에 어드레스 전극에 인가되는 데이터 펄스에 의해 스캔 전극과 서스테인 전극에 인가되는 파형에 발생하는 노이즈는 어드레스 기간에서 일어나는 어드레스 방전을 불안정하게 하여 플라즈마 디스플레이 패널의 구동효율을 저감시킨다.
이러한 문제점을 해결하기 위해 본 발명은, 어드레스 기간에서 스캔 전극 또는 서스테인 전극에 인가되는 파형의 노이즈 발생을 저감시키는 플라즈마 디스플레이 패널의 구동방법을 제공하는데 그 목적이 있다.
이러한 목적을 이루기 위한 본 발명은 리셋 기간, 어드레스 기간 및 서스테인 기간에 어드레스 전극(X1~Xn)(n은 양의 정수), 스캔 전극 및 서스테인 전극에 소정의 펄스가 인가되는 적어도 하나 이상의 서브필드의 조합에 의하여 소정의 개수 의 프레임으로 이루어지는 화상을 표현하는 플라즈마 디스플레이 패널의 구동 방법에 있어서, 상기 어드레스 전극을 복수의 전극군으로 나누고, 상기 프레임의 모든 서브필드에서는 상기 어드레스 기간에서 적어도 하나 이상의 상기 어드레스 전극군에 인가되는 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점과 서로 다르고, 상기 프레임의 서브필드 중 임의의 서브필드의 어드레스 기간에서 인가되는 스캔 펄스의 폭은 다른 서브필드의 어드레스 기간에서 인가되는 스캔 펄스의 폭 보다 더 큰 것을 특징으로 한다.
상기 프레임의 서브필드 중 임의의 서브필드는 제 1 서브필드로부터 제 3 서브필드까지인 것을 특징으로 한다.
상기 프레임의 서브필드 중 임의의 서브필드의 어드레스 기간에서 인가되는 스캔 펄스의 폭은 다른 서브필드의 어드레스 기간에서 인가되는 스캔 펄스의 폭의 1배 이상 3배 이하인 것을 특징으로 한다.
상기 어드레스 기간에 적어도 하나 이상의 상기 어드레스 전극군에 인가되는 상기 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점보다 앞서는 것을 특징으로 한다.
상기 어드레스 기간에 모든 상기 어드레스 전극군에 인가되는 상기 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점보다 앞서는 것을 특징으로 한다.
상기 어드레스 기간에 적어도 하나 이상의 상기 어드레스 전극군에 인가되는 상기 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점 보다 늦는 것을 특징으로 한다.
상기 어드레스 기간에 모든 상기 어드레스 전극군에 인가되는 상기 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점보다 늦는 것을 특징으로 한다.
상기 어드레스 전극군의 개수는 2개 이상이고, 상기 어드레스 전극의 총 개수이하인 것을 특징으로 한다.
상기 어드레스 전극군은 1개 이상의 상기 어드레스 전극을 포함하는 것을 특징으로 한다.
상기 어드레스 전극군은 모두 동일한 개수의 상기 어드레스 전극을 포함하거나 하나 이상에서 상이한 개수의 상기 어드레스 전극을 포함하는 것을 특징으로 한다.
상기 어드레스 전극군에 포함된 모든 어드레스 전극에는 상기 데이터 펄스를 동일한 시점에 인가하는 것을 특징으로 한다.
상기 서브필드 내에서 상기 스캔 펄스의 인가시점과 상기 스캔 펄스의 인가시점과 가장 근접한 데이터 펄스의 인가시점 간의 차이는 동일하거나 상이한 것을 특징으로 한다.
상기 서브필드 내에서 상기 스캔 펄스의 인가시점과 상기 스캔 펄스의 인가시점과 가장 근접한 데이터 펄스의 인가시점 간의 차이는 10ns 이상 1000ns 이하인 것을 특징으로 한다.
상기 서브필드 내에서 상기 스캔 펄스의 인가시점과 상기 스캔 펄스의 인가 시점과 가장 근접한 데이터 펄스의 인가시점 간의 차이는 소정 스캔 펄스폭의 1/100배 이상 1배 이하의 범위 내의 값을 갖는 것을 특징으로 한다.
상이한 두 개 이상의 상기 전극군 중 상이한 시점에 인가되는 두 개의 상기 데이터 펄스의 인가 시점 간의 차이는 동일하거나 상이한 것을 특징으로 한다.
상이한 두 개 이상의 전극군 중 상이한 시점에 인가되는 두 개의 상기 데이터 펄스 간의 인가 시점의 차이는 10ns 이상 1000ns 이하인 것을 특징으로 한다.
상이한 두 개 이상의 전극군 중 상이한 시점에 인가되는 두 개의 상기 데이터 펄스 간의 인가 시점의 차이는 소정 스캔 펄스폭의 1/100배 이상 1배 이하의 범위 내의 값을 갖는 것을 특징으로 한다.
이러한 목적을 이루기 위한 본 발명은, 리셋 기간, 어드레스 기간 및 서스테인 기간에 어드레스 전극(X1~Xn)(n은 양의 정수), 스캔 전극(Y1~Ym)(m은 양의 정수) 및 서스테인 전극에 소정의 펄스가 인가되는 적어도 하나 이상의 서브필드의 조합에 의하여 소정의 개수의 프레임으로 이루어지는 화상을 표현하는 플라즈마 디스플레이 패널의 구동 방법에 있어서, 상기 어드레스 전극을 복수의 전극군으로 나누고, 상기 프레임의 모든 서브필드에서는 상기 어드레스 기간에서 적어도 하나 이상의 상기 어드레스 전극군에 인가되는 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점과 서로 다르고, 상기 프레임의 서브필드 중 임의의 서브필드의 어드레스 기간에서 복수의 상기 스캔 전극(Y1~Ym) 중 적어도 어느 하나의 스캔 전극에 인가되는 스캔 펄스의 폭은 다른 스캔 전극으로 인가되는 스캔 펄 스의 폭 보다 더 큰 것을 특징으로 한다.
상기 프레임의 서브필드 중 임의의 서브필드의 어드레스 기간에서 상기 스캔 펄스의 인가순서에 따라 복수의 상기 스캔 전극(Y1~Ym) 중 상기 스캔 펄스의 인가순서가 빠른 소정 개수의 상기 스캔 전극(Y1~Ya)(a는 n미만의 양의정수)에 인가되는 스캔 펄스의 폭은 다른 스캔 펄스의 폭 보다 더 큰 것을 특징으로 한다.
상기 프레임의 서브필드 중 임의의 서브필드의 어드레스 기간에서 각각의 상기 스캔 전극(Y1~Ym)에 인가되는 상기 스캔 펄스의 폭은 상기 Y1스캔 전극에서 Ym스캔 전극으로 갈수록 점차 감소하는 것을 특징으로 한다.
상기 Y1스캔 전극에서 Yn스캔 전극으로 갈수록 점차 감소하는 스캔 펄스의 폭의 감소량은 일정하게 유지되는 것을 특징으로 한다.
상기 스캔 펄스 중 상대적으로 더 큰 펄스폭을 갖는 스캔 펄스의 폭은 상대적으로 더 작은 펄스폭을 갖는 스캔 펄스의 폭의 1배 이상 3배 이하인 것을 특징으로 한다.
상기 어드레스 기간에 적어도 하나 이상의 상기 어드레스 전극군에 인가되는 상기 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점보다 앞서는 것을 특징으로 한다.
상기 어드레스 기간에 모든 상기 어드레스 전극군에 인가되는 상기 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점보다 앞서는 것을 특징으로 한다.
상기 어드레스 기간에 적어도 하나 이상의 상기 어드레스 전극군에 인가되는 상기 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점보다 늦는 것을 특징으로 한다.
상기 어드레스 기간에 모든 상기 어드레스 전극군에 인가되는 상기 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점보다 늦는 것을 특징으로 한다.
상기 어드레스 전극군의 개수는 2개 이상이고, 상기 어드레스 전극의 총 개수이하인 것을 특징으로 한다.
상기 어드레스 전극군은 1개 이상의 상기 어드레스 전극을 포함하는 것을 특징으로 한다.
상기 어드레스 전극군은 모두 동일한 개수의 상기 어드레스 전극을 포함하거나 하나 이상에서 상이한 개수의 상기 어드레스 전극을 포함하는 것을 특징으로 한다.
상기 어드레스 전극군에 포함된 모든 어드레스 전극에는 상기 데이터 펄스를 동일한 시점에 인가하는 것을 특징으로 한다.
상기 서브필드 내에서 상기 스캔 펄스의 인가시점과 상기 스캔 펄스의 인가시점과 가장 근접한 데이터 펄스의 인가시점 간의 차이는 동일하거나 상이한 것을 특징으로 한다.
상기 서브필드 내에서 상기 스캔 펄스의 인가시점과 상기 스캔 펄스의 인가시점과 가장 근접한 데이터 펄스의 인가시점 간의 차이는 10ns 이상 1000ns 이하인 것을 특징으로 한다.
상기 서브필드 내에서 상기 스캔 펄스의 인가시점과 상기 스캔 펄스의 인가시점과 가장 근접한 데이터 펄스의 인가시점 간의 차이는 소정 스캔 펄스폭의 1/100배 이상 1배 이하의 범위 내의 값을 갖는 것을 특징으로 한다.
상이한 두 개 이상의 상기 전극군 중 상이한 시점에 인가되는 두 개의 상기 데이터 펄스의 인가 시점 간의 차이는 동일하거나 상이한 것을 특징으로 한다.
상이한 두 개 이상의 전극군 중 상이한 시점에 인가되는 두 개의 상기 데이터 펄스 간의 인가 시점의 차이는 10ns 이상 1000ns 이하인 것을 특징으로 한다.
상이한 두 개 이상의 전극군 중 상이한 시점에 인가되는 두 개의 상기 데이터 펄스 간의 인가 시점의 차이는 소정 스캔 펄스폭의 1/100배 이상 1배 이하의 범위 내의 값을 갖는 것을 특징으로 한다.
이하, 첨부된 도면을 참조하여 본 발명의 플라즈마 디스플레이 패널의 구동방법의 실시예를 상세히 설명한다.
<제 1 실시예>
도 7a 내지 도 7e는 본 발명의 제 1 실시예에 따른 플라즈마 디스플레이 패널의 구동방법의 구동파형을 설명하기 위한 도면이다.
도 7a 내지 도 7e를 살펴보면, 본 발명의 제 1 실시예에 따른 구동파형은 한 서브필드의 어드레스 기간에서 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스의 인 가시점은 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 각각 서로 다르다. 또한, 도 7a 내지 도 7e에 도시되지는 않았지만 프레임의 서브필드 중에서 임의의 서브필드, 바람직하게는 최초 서브필드부터 소정 개수의 서브필드까지의 어드레스 기간에서 스캔 전극에 인가되는 스캔 펄스의 폭은 이후의 다른 서브필드의 어드레스 기간에서 스캔 전극에 인가되는 스캔 펄스의 폭보다 더 크다. 여기서 어드레스 기간에서 스캔 펄스의 폭을 다른 스캔 펄스의 폭 보다 크게 하는 초기의 서브필드는 어드레스 방전의 지터(Jitter)특성을 보존할 수 있는 서브필드인 것이 바람직하다. 즉, 프레임의 서브필드 중 최초의 서브필드부터 어드레스 방전의 지터(Jitter)특성을 보존하기 위한 임의의 서브필드까지의 모든 서브필드에서는 어드레스 기간에서 스캔 전극에 인가되는 스캔 펄의 폭은 이후의 다른 스캔 펄스의 폭 보다 더 크다.
여기서, 전술한 스캔 펄스의 폭을 크게 설정하는 임의의 서브필드, 바람직하게는 프레임의 서브필드 중 어드레스 방전의 지터(Jitter)특성을 보존하기 위한 임의의 서브필드는 각각의 플라즈마 디스플레이 패널의 방전 특성에 따라 변경될 수 있다. 예를 들면, 제 1 서브필드 하나에서만 스캔 펄스의 폭을 다른 서브필드의 스캔 펄스의 폭 보다 크게 하거나 또는, 제 1 서브필드와 제 2 서브필드 또는, 제 1, 2, 3, 4 서브필드에서 스캔 펄스의 폭을 다른 서브필드의 스캔 펄스의 폭 보다 크도록 설정할 수 있다. 다만, 어드레스 기간의 길이가 상대적으로 짧은 초기 서브필드에서 상대적으로 어드레스 지터 특성이 더 악화될 가능성이 크다는 플라즈마 디스플레이 패널의 방전 특성을 고려할 때 스캔 전극에 인가되는 스캔 펄스의 폭을 상대적으로 크게 하는 서브필드는 제 1 서브필드, 제 2 서브필드, 제 3 서브필드인 것이 바람직하다. 이러한 상대적으로 큰 펄스폭을 갖는 스캔 펄스를 좀 더 도 8a 내지 도 8e를 결부하여 좀 더 상세히 살펴보면 다음과 같다.
예를 들어, 도 8a에 나타난 바와 같이, 제 1, 2, 3 서브필드의 어드레스 기간에서 스캔 전극에 인가되는 스캔 펄스의 폭을 이후의 다른 서브필드, 즉 제 4, 5, 6, 7, 8 서브필드의 어드레스 기간에서 스캔 전극에 인가되는 스캔 펄스의 폭 보다 크게 설정하였을 경우에, 도 8a의 D영역, 즉 제 1 서브필드의 어드레스 기간에서 스캔 전극으로 인가되는 스캔 펄스의 폭은 도 8b의 경우에서와 같이 Wa로서, 도 8a의 E영역, 즉 제 6 서브필드의 어드레스 기간에서 스캔 전극으로 인가되는 스캔 펄스의 폭 Wb보다 더 크다. 이러한 상대적으로 넓은 스캔 펄스의 폭 Wa는 상대적으로 작은 스캔 펄스의 폭 Wb의 1배 이상 3배 이하인 것이 바람직하다. 이렇게 Wa의 크기를 Wb의 크기에 비해 1배 이상 3배 이하로 설정하는 이유는, 스캔 펄스와 데이터 펄스간의 충분한 Duration Time을 확보하면서 동시에 어드레스 방전의 지터(Jitter)특성의 악화를 방지하기 위해서이다.
이러한 Wa에 의한 Duration Time은 도 8d와 같이, 스캔 펄스의 인가시점과 데이터 펄스의 인가시점간의 시간차이가 Δt라고 가정하면, Wa의 펄스폭을 갖는 스캔 펄스와 데이터 펄스간의 Duration Time은 ta이다. 또한, Wb에 의한 Duration Time은 도 8e와 같이, 스캔 펄스의 인가시점과 데이터 펄스의 인가시점간의 시간차이가 도 8d와 같은 Δt라고 가정하면, Wb의 펄스폭을 갖는 스캔 펄스와 데이터 펄스간의 Duration Time은 tb이다. 이러한 ta와 tb간에는 0<(ta-tb)의 관계가 성립한다. 결국, 상대적으로 넓은 펄스폭(Wa)을 갖는 스캔 펄스가 인가되는 초기 서브필 드에서 충분한 Duration Time이 확보되어 어드레스 지터의 악화를 방지한다.
또한, 본 발명은 전술한 바와 같이, 스캔 펄스의 인가시점과 데이터 펄스의 인가시점을 서로 다르게 설정하고 있다. 이렇게 스캔 펄스의 인가시점과 데이터 펄스의 인가시점을 서로 다르게 하는 이유는 노이즈의 발생을 저감시키기 위해서이며, 이러한 시점차이를 갖는 본 발명의 구동파형은 예컨대, 도 7a에 나타난 바와 같이 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점을 ts라 가정할 때 어드레스 전극(X1~Xn)의 배치 순서에 맞추어 어드레스 전극 X1에는 스캔 전극(Y)에 스캔 펄스가 인가되는 시점 보다 2Δt만큼 앞선 시점 즉, 시점 ts-2Δt에서 데이터 펄스가 인가된다. 또한, 어드레스 전극 X2에는 스캔 전극(Y)에 스캔 펄스가 인가되는 시점 보다 Δt만큼 앞선 시점 즉, 시점 ts-Δt에서 데이터 펄스가 인가된다. 이러한 방법으로, X(n-1)전극에는 시점 ts+Δt에서 데이터 펄스가 인가되고, Xn전극에는 시점 ts+2Δt에서 데이터 펄스가 인가된다. 즉, 도 7a와 같이 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스는 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점의 이전 또는 이후에 인가된다. 또한, 도 7a에 도시되지는 않았지만, 초기의 서브필드의 어드레스 기간에 인가되는 스캔 펄스의 폭은 이후의 다른 서브필드의 어드레스 기간에 인가되는 스캔 펄스의 폭 보다 더 크다. 이러한 도 7a와는 다르게 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스의 인가시점을 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 다르게 설정하되, 적어도 하나 이상의 어드레스 전극(X1~Xn)에 인가 되는 데이터 펄스의 인가시점을 스캔 펄스의 인가시점보다 늦도록 설정할 수도 있는데, 이러한 구동파형을 살펴보면 도 7b와 같다.
도 7b를 살펴보면, 도 7a와는 다르게 본 발명의 구동파형은 초기 서브필드의 어드레스 기간에서 인가되는 스캔 펄스의 폭을 다른 서브필드의 어드레스 기간에서 인가되는 스캔 펄스의 폭보다 크게 하면서, 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스의 인가시점이 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 다르고, 또한 모든 데이터 펄스의 인가시점은 전술한 스캔 펄스의 인가시점보다 늦다. 여기 도 7b에서는 모든 데이터 펄스의 인가시점을 스캔 펄스의 인가시점보다 늦게 설정하였지만, 하나의 데이터 펄스의 인가시점만을 전술한 스캔 펄스의 인가시점보다 늦게 설정할 수도 있으며, 이러한 스캔 펄스의 인가시점보다 늦게 인가되는 데이터 펄스의 개수는 변경 가능한 것이다. 예컨대, 도 7b에 나타난 바와 같이 본 발명의 구동방법에 따른 구동파형은 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점을 ts라 가정할 때 어드레스 전극(X1~Xn)의 배치 순서에 맞추어 어드레스 전극 X1에는 스캔 전극(Y)에 스캔 펄스가 인가되는 시점 보다 Δt만큼 늦은 시점 즉, 시점 ts+Δt에서 데이터 펄스가 인가된다. 또한, 어드레스 전극 X2에는 스캔 전극(Y)에 스캔 펄스가 인가되는 시점 보다 2Δt만큼 늦은 시점 즉, 시점 ts+2Δt에서 데이터 펄스가 인가된다. 이러한 방법으로, X3전극에는 시점 ts+3Δt에서 데이터 펄스가 인가되고, Xn전극에는 시점 ts+(n-1)Δt에서 데이터 펄스가 인가된다. 즉, 도 7b와 같이 어드 레스 전극(X1~Xn)에 인가되는 데이터 펄스는 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점의 이후에 인가된다. 이러한 도 7b의 구동파형에서의 방전인 영역 A를 도 7c를 참고하여 설명하면, 예를 들어 어드레스 방전 개시 전압(Firing Voltage)이 170V이고, 스캔 펄스의 전압은 100V이고, 데이터 펄스의 전압은 70V라고 가정할 때 A 영역에서는 먼저 스캔 전극(Y)에 인가되는 스캔 펄스에 의해 스캔 전극(Y)과 어드레스 전극 X1 사이의 전압차이가 100V가 되고, 전술한 스캔 펄스의 인가 이후 Δt만큼의 시간이 흐른 후에 어드레스 전극 X1에 인가되는 데이터 펄스에 의해 스캔 전극(Y)과 어드레스 전극 X1 사이의 전압차이가 170V로 상승한다. 이에 따라, 스캔 전극(Y)과 어드레스 전극 X1 사이의 전압차이가 어드레스 방전 개시 전압이 되어 스캔 전극(Y)과 어드레스 전극 X1 사이에 어드레스 방전이 발생한다. 이러한 도 7b와는 다르게 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스의 인가시점을 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 다르게 설정하되, 데이터 펄스의 인가시점을 스캔 펄스의 인가시점보다 앞서도록 설정할 수도 있는데, 이러한 구동파형을 살펴보면 도 7d와 같다.
도 7d를 살펴보면, 도 7a 또는 도 7b와는 다르게 본 발명의 구동파형은 초기 서브필드의 어드레스 기간에서 인가되는 스캔 펄스의 폭을 다른 서브필드의 어드레스 기간에서 인가되는 스캔 펄스의 폭보다 크게 하면서, 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스의 인가시점이 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점 과 다르고, 또한 모든 데이터 펄스의 인가시점은 전술한 스캔 펄스의 인가시점보다 앞선다. 여기 도 7d에서는 모든 데이터 펄스의 인가시점을 스캔 펄스의 인가시점보다 앞서도록 설정하였지만, 하나의 데이터 펄스의 인가시점만을 전술한 스캔 펄스의 인가시점보다 앞서도록 설정할 수도 있으며, 이러한 스캔 펄스의 인가시점보다 앞서서 인가되는 데이터 펄스의 개수는 변경 가능한 것이다. 예컨대, 도 7d에 나타난 바와 같이 본 발명의 구동방법에 따른 구동파형은 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점을 ts라 가정할 때 어드레스 전극(X1~Xn)의 배치 순서에 맞추어 어드레스 전극 X1에는 스캔 전극(Y)에 스캔 펄스가 인가되는 시점 보다 Δt만큼 앞선 시점 즉, 시점 ts-Δt에서 데이터 펄스가 인가된다. 또한, 어드레스 전극 X2에는 스캔 전극(Y)에 스캔 펄스가 인가되는 시점 보다 2Δt만큼 앞선 시점 즉, 시점 ts-2Δt에서 데이터 펄스가 인가된다. 이러한 방법으로, X3전극에는 시점 ts-3Δt에서 데이터 펄스가 인가되고, Xn전극에는 시점 ts-(n-1)Δt에서 데이터 펄스가 인가된다. 즉, 도 7d와 같이 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스는 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점의 이전에 인가된다. 이러한 도 7d의 구동파형에서의 방전인 영역 B를 도 7e를 참고하여 설명하면, 예를 들어 어드레스 방전 개시 전압이 도 7c에서와 같이 170V이고, 스캔 펄스의 전압은 100V이고, 데이터 펄스의 전압은 70V라고 가정할 때 B 영역에서는 먼저 어드레스 전극 X1에 인가되는 데이터 펄스에 의해 스캔 전극(Y)과 어드레스 전극 X1 사이의 전압차이가 70V가 되고, 전술한 데이터 펄스의 인가 이후 Δt만큼의 시간이 흐른 후에 스캔 전극(Y)에 인가되는 스캔 펄스에 의해 스캔 전극(Y)과 어드레스 전극(X1~Xn) 사이의 전압차이가 170V로 상승한다. 이에 따라, 스캔 전극(Y)과 어드레스 전극 X1 사이의 전압차이가 어드레스 방전 개시 전압이 되어 스캔 전극(Y)과 어드레스 전극 X1 사이에 어드레스 방전이 발생한다.
여기 도 7a 내지 도 7e에서는 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스의 인가시점간의 시간 차이 또는 이 때 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스 간의 인가시점의 차이를 Δt의 개념으로 설명하였다. 여기서 전술한 Δt에 대해 살펴보면, 예를 들어, 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점을 ts라하고, 스캔 펄스의 인가시점 ts와 가장 근접한 데이터 펄스 간의 인가시점간의 시간차를 Δt라 하고, 스캔 펄스의 인가시점 ts와 그 다음 근접한 데이터 펄스 간의 인가시점의 차이를 2배의 Δt, 즉 2Δt라 한다. 이러한 Δt는 일정하게 유지된다. 즉, 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스의 인가시점을 각각 서로 다르게 하면서 각각의 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스간의 인가시점간의 차이는 각각 서로 동일하다. 여기서는, 하나의 서브필드 내에서 각각의 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스간의 인가시점간의 차이는 각각 서로 동일하게 하면서 스캔 펄스의 인가시점과 스캔 펄스의 인가시점과 가장 근접한 데 이터 펄스의 인가시점 간의 차이를 동일하게 할 수도 있고, 아니면 서로 다르게 할 수도 있다. 예를 들면, 하나의 서브필드에서 각각의 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스간의 인가시점간의 차이는 각각 서로 동일하게 하면서 어느 하나의 어드레스 기간에서는 스캔 펄스의 인가시점 ts와 가장 근접한 데이터 펄스 간의 인가시점간의 시간차를 Δt라 하면, 동일한 서브필드에서 다른 어드레스 기간에서는 스캔 펄스의 인가시점 ts와 가장 근접한 데이터 펄스 간의 인가시점간의 시간차를 2Δt로 한다. 여기서 스캔 펄스의 인가시점 ts와 가장 근접한 데이터 펄스 간의 인가시점간의 시간차는 한정된 어드레스 기간의 시간을 고려할 때 10나노초(ns)이상이고 1000나노초(ns)이하로 설정되는 것이 바람직하다. 또한, 플라즈마 디스플레이 패널의 구동에 따른 어느 하나의 스캔 펄스의 펄스폭의 관점에서 고려하면 Δt는 소정 스캔 펄스폭의 1/100배 이상 1배 이하의 범위 내에서 설정되는 것이 바람직하다. 예를 들어, 어느 하나의 스캔 펄스의 펄스폭이 1㎲(마이크로초)라고 가정하면, 인가시점간의 시간차는 전술한 바와 같은 1㎲(마이크로초)의 1/100배, 즉 10나노초(ns)이상이고, 또한 1㎲(마이크로초)의 1배, 즉 1000나노초(ns)이하이다.
또한, 이렇게 스캔 펄스의 인가시점과 데이터 펄스의 인가시점을 서로 다르게 하면서, 데이터 펄스 간의 인가시점 간의 시간차를 각각 다르게 할 수도 있다. 즉, 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스의 인가시점을 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 다르게 하면서, 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스 간의 인가시점을 각각 서로 다르게 설정한다. 예를 들어, 스캔 전극 (Y)에 인가되는 스캔 펄스의 인가시점을 ts라하고, 스캔 펄스의 인가시점 ts와 가장 근접한 데이터 펄스 간의 인가시점간의 시간차를 Δt라 하면, 스캔 펄스의 인가시점 ts와 그 다음 근접한 데이터 펄스 간의 인가시점의 차이를 3Δt로 할 수도 있다. 예컨대, 스캔 전극(Y)에 스캔 펄스가 인가되는 시점이 0나노초라고 하면, 어드레스 전극 X1에 10나노초(ns)의 시점에서 데이터 펄스가 인가된다. 이에 따라 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 어드레스 전극 X1에 인가되는 데이터 펄스의 인가시점간의 시간차는 10나노초(ns)이다. 그리고 그 다음 어드레스 전극인 X2에는 20나노초(ns)의 시점에서 데이터 펄스가 인가되어, 전술한 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 어드레스 전극 X2에 인가되는 데이터 펄스의 인가시점간의 시간차는 20나노초(ns)이고 이에 따라, 어드레스 전극 X1에 인가되는 데이터 펄스의 인가시점과 어드레스 전극 X2에 인가되는 데이터 펄스의 인가시점간의 시간차는 10나노초(ns)이다. 그리고 그 다음 어드레스 전극인 X3에는 40나노초(ns)의 시점에서 데이터 펄스가 인가되어 전술한 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 어드레스 전극 X3에 인가되는 데이터 펄스의 인가시점간의 시간차는 40나노초(ns)이고, 이에 따라 어드레스 전극 X2에 인가되는 데이터 펄스의 인가시점과 어드레스 전극 X3에 인가되는 데이터 펄스의 인가시점간의 시간차는 20나노초(ns)이다. 즉, 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스의 인가시점을 서로 다르게 하면서 각각의 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스간의 인가시점간의 차이를 각각 서로 다르게 설정할 수도 있다.
여기서 각 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스의 인가시점간의 시간차 Δt는 10나노초(ns)이상이고 1000나노초(ns)이하로 설정되는 것이 바람직하다. 또한, 플라즈마 디스플레이 패널의 구동에 따른 어느 하나의 스캔 펄스의 펄스폭의 관점에서 고려하면 Δt는 소정 스캔 펄스폭의 1/100배 이상 1배 이하의 범위 내에서 설정되는 것이 바람직하다. 이와 같이 어드레스 기간에서 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스의 인가시점을 상이하게 하면 어드레스 전극(X1~Xn)으로 인가되는 데이터 펄스의 각 인가시점에서 패널의 정전용량을 통한 커플링을 감소시켜 스캔 전극 및 서스테인 전극으로 인가되는 파형의 노이즈를 감소시킨다. 이러한 노이즈 감소를 살펴보면 다음 도 9a 내지 도 9b와 같다.
도 9a 내지 도 9b는 본 발명의 제 1 실시예에 따른 구동파형에 의해 감소되는 노이즈를 설명하기 위한 도면이다.
도 9a를 살펴보면, 도 6에 비해 스캔 전극과 서스테인 전극에 인가되는 파형의 노이즈가 상당부분 감소되었다. 이러한 노이즈를 도 9b에 보다 상세히 나타내었다. 이러한 노이즈가 감소된 이유는 모든 어드레스 전극(X1~Xn)에 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 동일한 시점에서 데이터 펄스를 인가하지 않고, 각각의 어드레스 전극(X1~Xn)에 스캔 펄스의 인가시점과 각각 다른 시점에서 데이터 펄스를 인가하여 각 시점에서 패널의 정전용량(Capacitance)을 통한 커플링(Coupling)을 감소시킴으로써, 데이터 펄스가 급상승하는 시점에서는 스캔 전극과 서스테인 전극에 인가되는 파형에 발생되는 상승노이즈를 감소시키고, 데이터 펄스가 급하강하는 시점에서는 스캔 전극과 서스테인 전극에 인가되는 파형에 발생되는 하강노이즈를 감소시키기 때문이다. 또한, 이에 따라 어드레스 기간에서 일어나는 어드레스 방전을 안정하게 하여 플라즈마 디스플레이 패널의 구동효율의 감소를 억제한다. 또한, 프레임의 서브필드 중 상대적으로 어드레스 기간이 짧은 초기 서브필드에서는 스캔 펄스의 펄스폭을 이후의 다른 서브필드의 스캔 펄스의 폭 보다 크게 하여 어드레스 지터 특성의 악화를 방지한다. 결국 플라즈마 디스플레이 패널의 어드레스 방전을 안정시킴으로써, 하나의 구동부로 패널 전체를 스캐닝(Scanning)하는 싱글 스캔(Single Scan) 방식을 적용 가능케 한다.
한편, 이상에서는 모든 어드레스 전극(X1~Xn)에는 스캔 전극에 인가되는 스캔 펄스의 인가시점과 서로 다른 시점에서 데이터 펄스가 인가되는 것이지만, 이와는 다르게 어드레스 전극(X1~Xn)들에 인가되는 데이터 펄스 중 적어도 어느 하나는 어드레스 전극(X1~Xn) 중에서 적어도 둘 이상 (n-1)개 이하의 어드레스 전극과 동일한 시점에 인가되도록 하는 것도 가능하다. 이러한 방법을 살펴보면 다음 제 2 실시예와 같다.
<제 2 실시예>
도 10은 본 발명의 제 2 실시예에 따른 플라즈마 디스플레이 패널의 구동방법을 설명하기 위해 어드레스 전극(X1~Xn)들을 4개의 어드레스 전극군으로 나눈 것을 설명하기 위한 도면이다.
도 10에 도시된 바와 같이, 플라즈마 디스플레이 패널(100)의 어드레스(X1~Xn)전극들을, 예컨대 Xa전극군(Xa1 ~ Xa(n)/4)(101), Xb전극군(Xb(n+1)/4 ~ Xb(2n)/4)(102), Xc전극군(Xc(2n+1)/4 ~ Xc(3n)/4)(103) 및 Xd전극군(Xd(3n+1)/4 ~ Xd(n))(104)으로 구분하고, 이렇게 구분한 각 어드레스 전극군 중 적어도 어느 하나의 어드레스 전극군에는 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 상이한 시점에서 데이터 펄스를 인가한다. 즉, Xa전극군(101)에 속한 전극들(Xa1 ~ Xa(n)/4) 모두에는 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 서로 다른 시점에서 데이터 펄스를 인가하되, 전술한 Xa전극군(101)에 속한 전극들(Xa1 ~ Xa(n)/4)에 인가되는 데이터 펄스의 인가시점은 모두 동일하게 한다. 또한, 나머지 다른 전극군들(102, 103, 104)에 속한 전극들에는 Xa전극군(101)에 속한 전극들(Xa1 ~ Xa(n)/4)의 데이터 펄스의 인가시점과 다른 시점에서 데이터 펄스를 인가하고, 이때의 다른 어드레스 전극군들(102, 103, 104)에 속한 전극들에 인가되는 데이터 펄스의 인가시점은 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 동일하거나 또는 상이할 수 있다.
한편, 도 10에서는 각 어드레스 전극군(101, 102, 103, 104)에 포함된 어드레스 전극의 개수를 동일하게 하였지만, 각 어드레스 전극군(101, 102, 103, 104)에 포함되는 어드레스 전극의 개수를 서로 상이하게 설정하는 것도 가능하다. 그리고 어드레스 전극군의 개수도 조절 가능하다. 또한, 본 발명의 제 2 실시예에 따른 어드레스 전극군의 개수는 최소 2개 이상부터 최대 어드레스 전극의 총 개수보다 작은 범위, 즉 2≤N≤(n-1)개 사이에서 설정될 수 있다. 여기서 도 10에는 도면작성과 설명의 편의상 데이터 드라이버IC, 스캔 드라이버 IC 및 서스테인 보드가 각각 패널(100)과 소정의 거리로 이격된 상태로 패널(100)의 어드레스 전극, 스캔 전극, 서스테인 전극들과 연결된 구조가 도시되어 있지만, 데이터 드라이버IC, 스캔 드라이버 IC 및 서스테인 보드는 패널(100)과 결합된 구조로 이루어질 수도 있다.
이러한 4개의 어드레스 전극군으로 나누어진 플라즈마 디스플레이 패널에 어드레스 기간에 펄스가 인가되는 일례를 살펴보면 다음 도 11a 내지 도 11c와 같다.
도 11a 내지 도 11c는 본 발명의 제 2 실시예에 따른 플라즈마 디스플레이 패널의 구동방법의 구동파형을 설명하기 위한 도면이다.
도 11a 내지 도 11c에 도시된 바와 같이, 본 발명의 제 2 실시예에 따른 구동파형은 복수의 어드레스 전극(X1~Xn)을 도 10의 경우와 같이, 복수의 어드레스 전극군(Xa전극군, Xb전극군, Xc전극군 및 Xd전극군)으로 나누고, 서브필드의 어드레스 기간에서 복수의 어드레스 전극군 중에서 적어도 하나 이상의 어드레스 전극군 의 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스의 인가시점은 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 서로 다르고, 도 11a 내지 도 11c에는 나타나 있지 않지만 프레임의 서브필드 중에서 임의의 서브필드, 바람직하게는 최초 서브필드부터 소정 개수의 서브필드까지의 어드레스 기간에서 스캔 전극에 인가되는 스캔 펄스의 폭은 이후의 다른 서브필드의 어드레스 기간에서 스캔 전극에 인가되는 스캔 펄스의 폭보다 더 크다. 여기서 어드레스 기간에서 스캔 펄스의 폭을 다른 스캔 펄스의 폭 보다 크게 하는 초기의 서브필드는 제 1 실시예에서와 같이 어드레스 방전의 지터(Jitter)특성을 보존할 수 있는 서브필드이다. 예컨대, 도 11a에 나타난 바와 같이 본 발명의 구동방법에 따른 구동파형은 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점을 ts라 가정할 때 어드레스 전극(X1~Xn)을 포함하는 어드레스 전극군들의 배치 순서에 맞추어 Xa전극군에 포함된 어드레스 전극들((Xa1 ~ Xa(n)/4)에는 스캔 전극(Y)에 스캔 펄스가 인가되는 시점 보다 2Δt만큼 앞선 시점 즉, 시점 ts-2Δt에서 데이터 펄스가 인가된다. 또한, Xb전극군에 포함된 어드레스 전극들(Xb(n+1)/4 ~ Xb(2n)/4)에는 스캔 전극(Y)에 스캔 펄스가 인가되는 시점 보다 Δt만큼 앞선 시점 즉, 시점 ts-Δt에서 데이터 펄스가 인가된다. 이러한 방법으로, Xc전극군에 포함된 어드레스 전극들(Xc(2n+1)/4 ~ Xc(3n)/4)에는 시점 ts+Δt에서 데이터 펄스가 인가되고, Xd전극군에 포함된 어드레스 전극들(Xd(3n+1)/4 ~ Xd(n))에는 시점 ts+2Δt에서 데이터 펄스가 인가된다. 즉, 도 11a와 같이 어드레스 전극(X1~Xn)을 포함하는 각각의 Xa, Xb, Xc, Xd전극군에 인가되는 데이터 펄스는 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점의 이전 또는 이후에 인가된다. 이러한 도 11a의 파형이 인가되는 경우에도 소정 개수의 초기 서브필드에서 어드레스 기간에 스캔 전극으로 인가되는 스캔 펄스의 펄스폭은 이후의 다른 서브필드에서 어드레스 기간에 스캔 전극으로 인가되는 스캔 펄스의 펄스폭보다 큰 것은 당연하다. 이러한 도 11a와는 다르게 복수의 어드레스 전극군들 중에서 적어도 어느 하나 이상의 어드레스 전극군의 어드레스 전극에 인가되는 데이터 펄스의 인가시점을 스캔 펄스의 인가시점보다 늦도록 설정할 수도 있는데, 이러한 구동파형을 살펴보면 도 11b와 같다.
도11b를 살펴보면, 도 11a와는 다르게 본 발명의 구동파형은 어드레스 전극(X1~Xn)을 포함하는 복수의 어드레스 전극군(Xa, Xb, Xc, Xd)에 인가되는 데이터 펄스의 인가시점이 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 다르고, 또한 모든 데이터 펄스의 인가시점은 전술한 스캔 펄스의 인가시점보다 늦다. 또한, 이러한 도 11b의 파형이 인가되는 경우에도 소정 개수의 초기 서브필드에서 어드레스 기간에 스캔 전극으로 인가되는 스캔 펄스의 펄스폭은 이후의 다른 서브필드에서 어드레스 기간에 스캔 전극으로 인가되는 스캔 펄스의 펄스폭보다 큰 것은 당연하다. 여기 도 11b에서는 각각의 어드레스 전극군에 포함된 어드레스 전극에 인가되는 모든 데이터 펄스의 인가시점을 스캔 펄스의 인가시점보다 늦게 설정하였지만, 복수의 어드레스 전극군 중에서 단 하나의 어드레스 전극군의 어드레스 전극에 인가되는 데이터 펄스의 인가시점만을 전술한 스캔 펄스의 인가시점보다 늦게 설정할 수도 있으며, 이러한 스캔 펄스의 인가시점보다 늦게 데이터 펄스가 인가되는 어드레스 전극군의 개수는 변경 가능한 것이다. 예컨대, 도 11b에 나타난 바와 같이 본 발명의 구동방법에 따른 구동파형은 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점을 ts라 가정할 때 어드레스 전극(X1~Xn)을 포함하는 어드레스 전극군의 배치 순서에 맞추어 Xa전극군에 포함된 어드레스 전극들에는 스캔 전극(Y)에 스캔 펄스가 인가되는 시점 보다 Δt만큼 늦은 시점 즉, 시점 ts+Δt에서 데이터 펄스가 인가된다. 또한, Xb전극군에 포함된 어드레스 전극들에는 스캔 전극(Y)에 스캔 펄스가 인가되는 시점 보다 2Δt만큼 늦은 시점 즉, 시점 ts+2Δt에서 데이터 펄스가 인가된다. 이러한 방법으로, Xc전극군에 포함된 어드레스 전극들에는 시점 ts+3Δt에서 데이터 펄스가 인가되고, Xd전극에는 시점 ts+4Δt에서 데이터 펄스가 인가된다. 즉, 도 11b와 같이 어드레스 전극(X1~Xn)을 포함하는 어드레스 전극군들에 인가되는 데이터 펄스는 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점의 이후에 인가된다. 이러한 도 11b와는 다르게 어드레스 전극(X1~Xn)을 포함하는 어드레스 전극군들에 인가되는 데이터 펄스의 인가시점을 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 다르게 설정하되, 데이터 펄스의 인가시점을 스캔 펄스의 인가시점보다 앞서도록 설정할 수도 있는데, 이러한 구동파형을 살펴보면 도 11c와 같다.
도 11c를 살펴보면, 도 11a 또는 도 11b와는 다르게 본 발명의 구동파형은 어드레스 전극(X1~Xn)을 포함하는 어드레스 전극군들에 인가되는 데이터 펄스의 인가시점이 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 다르고, 또한 모든 데 이터 펄스의 인가시점은 전술한 스캔 펄스의 인가시점보다 앞선다. 또한 이러한 도 11c의 파형이 인가되는 경우에도 소정 개수의 초기 서브필드에서 어드레스 기간에 스캔 전극으로 인가되는 스캔 펄스의 펄스폭은 이후의 다른 서브필드에서 어드레스 기간에 스캔 전극으로 인가되는 스캔 펄스의 펄스폭보다 큰 것은 당연하다. 여기 도 11c에서는 모든 데이터 펄스의 인가시점을 스캔 펄스의 인가시점보다 앞서도록 설정하였지만, 복수의 어드레스 전극군들 중에서 하나의 전극군에 포함된 어드레스 전극에 인가되는 데이터 펄스의 인가시점만을 전술한 스캔 펄스의 인가시점보다 앞서도록 설정할 수도 있으며, 이러한 스캔 펄스의 인가시점보다 앞서서 데이터 펄스가 인가되는 어드레스 전극군의 개수는 변경 가능한 것이다. 예컨대, 도 11c에 나타난 바와 같이 본 발명의 구동방법에 따른 구동파형은 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점을 ts라 가정할 때 어드레스 전극(X1~Xn)을 포함하는 어드레스 전극군의 배치 순서에 맞추어 Xa전극군에 포함된 어드레스 전극에는 스캔 전극(Y)에 스캔 펄스가 인가되는 시점 보다 Δt만큼 앞선 시점 즉, 시점 ts-Δt에서 데이터 펄스가 인가된다. 또한, Xb전극군에 포함된 어드레스 전극에는 스캔 전극(Y)에 스캔 펄스가 인가되는 시점 보다 2Δt만큼 앞선 시점 즉, 시점 ts-2Δt에서 데이터 펄스가 인가된다. 이러한 방법으로, Xc전극군에 포함된 어드레스 전극에는 시점 ts-3Δt에서 데이터 펄스가 인가되고, Xd전극군에 포함된 어드레스 전극에는 시점 ts-(n-1)Δt에서 데이터 펄스가 인가된다. 즉, 도 11c와 같이 어드레스 전극(X1~Xn)을 포함하는 전극군들에 인가되는 데이터 펄스는 스캔 전극(Y)에 인가되는 스캔 펄 스의 인가시점의 이전에 인가된다.
여기 도 11a 내지 도 11c에서는 전술한 바와 같이, 초기 서브필드에서는 스캔 펄스의 폭을 다른 서브필드에서의 스캔 펄스의 폭보다 더 크게 설정하면서 동시에 모든 서브필드에서 적어도 어느 하나의 어드레스 기간에서는 적어도 어느 하나의 어드레스 전극군으로 인가되는 데이터 펄스의 인가시점과 스캔 펄스의 인가시점은 서로 다르다. 여기서, 이러한 데이터 펄스와 스캔 펄스간의 인가시점을 달리하는 경우를 살펴보면, 예를 들어, 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점을 ts라하고, 스캔 펄스의 인가시점 ts와 가장 근접한 데이터 펄스 간의 인가시점간의 시간차를 Δt라 하고, 스캔 펄스의 인가시점 ts와 그 다음 근접한 데이터 펄스 간의 인가시점의 차이를 2Δt라 한다. 이러한 Δt는 일정하게 유지된다. 즉, 복수의 어드레스 전극군 중 적어도 어느 하나의 어드레스 전극군에서는 어드레스 전극에 인가되는 데이터 펄스의 인가시점을 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 서로 다르게 하면서 복수의 어드레스 전극군에 포함된 각각의 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스간의 인가시점간의 차이는 각각 서로 동일하게 한다. 이와는 다르게, 복수의 어드레스 전극군 중 적어도 어느 하나의 전극군에서 어드레스 전극에 인가되는 데이터 펄스의 인가시점을 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 서로 다르게 하면서 복수의 어드레스 전극군별로 각각의 어드레스 전극군에 인가되는 데이터 펄스간의 인가시점간의 차이는 각각 서로 다르게 할 수도 있다. 즉, 스캔 펄스의 인가시점 ts와 가장 근접한 데이터 펄스 간의 인가시 점간의 시간차를 Δt라 하면, 스캔 펄스의 인가시점 ts와 그 다음 근접한 데이터 펄스 간의 인가시점의 차이를 3Δt로 할 수도 있다. 예컨대, 스캔 전극(Y)에 스캔 펄스가 인가되는 시점이 0나노초라고 하면, Xa전극군에 포함된 어드레스 전극들에 10나노초(ns)의 시점에서 데이터 펄스가 인가된다. 이에 따라 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 Xa전극군에 인가되는 데이터 펄스의 인가시점간의 시간차는 10나노초(ns)이다. 그리고 그 다음 어드레스 전극군인 Xb전극군에 포함된 어드레스 전극들에는 20나노초(ns)의 시점에서 데이터 펄스가 인가되어, 전술한 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 Xb전극군에 인가되는 데이터 펄스의 인가시점간의 시간차는 20나노초(ns)이고 이에 따라, Xa전극군에 인가되는 데이터 펄스의 인가시점과 Xb전극군에 인가되는 데이터 펄스의 인가시점간의 시간차는 10나노초(ns)이다. 그리고 그 다음 어드레스 전극군인 Xc전극군에 포함된 어드레스 전극들에는 40나노초(ns)의 시점에서 데이터 펄스가 인가되어 전술한 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 Xc전극군에 인가되는 데이터 펄스의 인가시점간의 시간차는 40나노초(ns)이고, 이에 따라 Xb전극군에 인가되는 데이터 펄스의 인가시점과 Xc전극군에 인가되는 데이터 펄스의 인가시점간의 시간차는 20나노초(ns)이다. 즉, 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 각 어드레스 전극군에 인가되는 데이터 펄스의 인가시점을 서로 다르게 하면서 각각의 어드레스 전극군에 인가되는 데이터 펄스간의 인가시점간의 차이를 각각 서로 다르게 설정할 수도 있다.
여기서 전술한 복수의 어드레스 전극군에 따른 데이터 펄스간의 인가시점의 차이는 한정된 어드레스 기간의 시간을 고려할 때 10나노초(ns)이상이고 1000나노초(ns)이하로 설정되는 것이 바람직하다. 또한, 플라즈마 디스플레이 패널의 구동에 따른 어느 하나의 스캔 펄스의 펄스폭의 관점에서 고려하면 Δt는 소정 스캔 펄스폭의 1/100배 이상 1배 이하의 범위 내에서 설정되는 것이 바람직하다.
또한, 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점을 ts라할 때, 복수의 어드레스 전극군에 인가되는 데이터 펄스의 인가시점간의 관계와는 상관없이, 스캔 펄스의 인가시점 ts와 그 ts에 가장 근접한 데이터 펄스의 인가시점 간의 차이는 하나의 서브필드 내에서 각각 동일할 수도 있고, 서로 다를 수도 있다. 이러한 스캔 펄스의 인가시점과, 스캔 펄스의 인가시점과 가장 근접한 데이터 펄스의 인가시점 간의 차이는 전술한 바와 같이, 한정된 어드레스 기간의 시간을 고려할 때 10나노초(ns)이상이고 1000나노초(ns)이하로 설정되는 것이 바람직하다. 또한, 플라즈마 디스플레이 패널의 구동에 따른 어느 하나의 스캔 펄스의 펄스폭의 관점에서 고려하면 Δt는 소정 스캔 펄스폭의 1/100배 이상 1배 이하의 범위 내에서 설정되는 것이 바람직하다.
이와 같이 어드레스 기간에서 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 각 어드레스 전극군에 인가되는 데이터 펄스의 인가시점을 상이하게 하면 도 9a 내지 도 9b와 같이 어드레스 전극(X1~Xn)을 포함하는 각 어드레스 전극군으로 인가되는 데이터 펄스의 각 인가시점에서 패널의 정전용량을 통한 커플링을 감소시켜 스캔 전극 및 서스테인 전극으로 인가되는 파형의 노이즈를 감소시킨다. 이에 따라 어드레스 기간에서 일어나는 어드레스 방전을 안정하게 하여 플라즈마 디스플레이 패널의 구동효율의 감소를 억제한다. 또한, 프레임의 서브필드 중 상대적으로 어드레스 기간이 짧은 초기 서브필드에서는 스캔 펄스의 펄스폭을 이후의 다른 서브필드의 스캔 펄스의 폭 보다 크게 하여 어드레스 지터의 악화를 방지한다. 결국 플라즈마 디스플레이 패널의 어드레스 방전을 안정시킴으로써, 하나의 구동부로 패널 전체를 스캐닝(Scanning)하는 싱글 스캔(Single Scan) 방식을 적용 가능케 한다.
한편, 이상에서는 하나의 서브필드 내에서 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 데이터 펄스의 인가시점간의 시간차에 대해서만 도시하고 설명하였지만, 이와는 다르게 하나의 프레임을 기준으로 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 어드레스 전극(X1~Xn) 또는 어드레스 전극군(Xa, Xb, Xc, Xd)에 인가되는 데이터 펄스의 인가시점을 서로 다르게 하면서 각각의 서브필드별로 어드레스 전극에 인가되는 데이터 펄스 간의 인가시점의 차이를 서로 다르게 설정할 수도 있는데, 이러한 구동파형을 살펴보면 다음 제 3 실시예와 같다.
<제 3 실시예>
도 12는 본 발명의 제 3 실시예에 따른 플라즈마 디스플레이 패널의 구동방법의 구동파형을 설명하기 위한 도면이다.
도 12에 도시된 바와 같이, 본 발명의 플라즈마 디스플레이 패널의 구동방법의 제 3 실시예에 따른 구동파형은 동일한 서브필드에서는 어드레스 전극에 인가되 는 데이터 펄스의 인가시점 간의 시간차이는 모두 동일하고, 각각의 서브필드에서 적어도 어느 하나의 어드레스 기간에서는 스캔 전극에 인가되는 스캔 펄스의 인가시점과 어드레스 전극에 인가되는 데이터 펄스의 인가시점은 서로 다르고, 한 프레임 내의 서브필드 중 적어도 어느 하나의 서브필드에서는 어드레스 기간에서 어드레스 전극에 인가되는 데이터 펄스 간의 인가시점간의 시간차이는 다른 서브필드에서의 상기 어드레스 기간에서 어드레스 전극에 인가되는 데이터 펄스 간의 인가시점 간의 시간차이와 서로 다르다. 또한, 프레임의 서브필드 중에서 임의의 서브필드, 바람직하게는 최초 서브필드부터 소정 개수의 서브필드까지의 어드레스 기간에서 스캔 전극에 인가되는 스캔 펄스의 폭은 이후의 다른 서브필드의 어드레스 기간에서 스캔 전극에 인가되는 스캔 펄스의 폭보다 더 크다. 여기서 어드레스 기간에서 스캔 펄스의 폭을 다른 스캔 펄스의 폭 보다 크게 하는 초기의 서브필드는 제 1 실시예에서와 같이 어드레스 방전의 지터(Jitter)특성을 보존할 수 있는 서브필드이다. 여기서 스캔 펄스의 인가시점과 데이터 펄스의 인가시점을 서로 다르게 하는 일례를 살펴보면, 예를 들어 하나의 프레임에서 제 1 서브필드에서는 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스의 인가시점을 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 서로 다르게 하면서, 어드레스 전극에 인가되는 데이터 펄스 간의 인가시점 간의 시간차이는 Δt로 설정한다. 또한, 제 2 서브필드에서는 제 1 서브필드와 마찬가지로 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스의 인가시점을 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 서로 다르게 하면서, 어드레스 전 극에 인가되는 데이터 펄스 간의 인가시점 간의 시간차이는 2Δt로 설정한다. 이와 같은 방법으로 어드레스 전극에 인가되는 데이터 펄스 간의 인가시점 간의 시간차이를 3Δt, 4Δt 등으로 하나의 프레임에 포함된 각각의 서브필드별로 서로 다르게 할 수 있다.
또는 본 발명의 제 3 실시예에 따른 구동파형에서는 적어도 하나의 서브필드에서는 데이터 펄스의 인가시점과 스캔 펄스의 인가시점을 서로 다르게 하면서 각각의 서브필드별로 데이터 펄스의 인가시점을 스캔 펄스의 인가시점의 전후로 서로 다르게 설정할 수도 있다. 예를 들면, 제 1 서브필드에서는 데이터 펄스의 인가시점을 스캔 펄스의 인가시점의 전과 후로 설정하고, 제 2 서브필드에서는 데이터 펄스의 인가시점을 모두 스캔 펄스의 인가시점의 이전으로 설정하고, 제 3 서브필드에서는 데이터 펄스의 인가시점을 모두 스캔 펄스의 인가시점의 이후로 설정할 수도 있다.
이러한 본 발명의 제 3 실시예에 따른 구동파형을 도 12의 F, G, H 영역을 이용하여 좀 더 상세히 살펴보면 다음 도 13a 내지 도 13c와 같다.
도 13a 내지 도 13c는 도 12에 도시된 본 발명의 제 3 실시예에 따른 플라즈마 디스플레이 패널의 구동방법의 구동파형을 좀 더 상세히 설명하기 위한 도면이다.
먼저 13a를 살펴보면, 본 발명의 구동방법에 따른 구동파형은 예를 들어, 제 1 서브필드에서는 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점을 ts라 가정할 때 도 12의 F영역에서는 어드레스 전극(X1~Xn)의 배치 순서에 맞추어 어드레스 전극 X1에는 스캔 전극(Y)에 스캔 펄스가 인가되는 시점 보다 2Δt만큼 앞선 시점 즉, 시점 ts-2Δt에서 데이터 펄스가 인가된다. 또한, 어드레스 전극 X2에는 스캔 전극(Y)에 스캔 펄스가 인가되는 시점 보다 Δt만큼 앞선 시점 즉, 시점 ts-Δt에서 데이터 펄스가 인가된다. 이러한 방법으로, X(n-1)전극에는 시점 ts+Δt에서 데이터 펄스가 인가되고, Xn전극에는 시점 ts+2Δt에서 데이터 펄스가 인가된다. 즉, 도 7a와 같이 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스는 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점의 이전 또는 이후에 인가된다.
도 13b를 살펴보면, 도 13a와는 다르게 본 발명의 구동파형은 도 12의 G영역에서는 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스의 인가시점이 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 다르고, 또한 모든 데이터 펄스의 인가시점은 전술한 스캔 펄스의 인가시점보다 늦다. 여기 도 13b에서는 모든 데이터 펄스의 인가시점을 스캔 펄스의 인가시점보다 늦게 설정하였지만, 하나의 데이터 펄스의 인가시점만을 전술한 스캔 펄스의 인가시점보다 늦게 설정할 수도 있으며, 이러한 스캔 펄스의 인가시점보다 늦게 인가되는 데이터 펄스의 개수는 변경 가능한 것이다. 예컨대, 도 13b에 나타난 바와 같이 본 발명의 구동방법에 따른 구동파형은 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점을 ts라 가정할 때 어드레스 전극(X1~Xn)의 배치 순서에 맞추어 어드레스 전극 X1에는 스캔 전극(Y)에 스캔 펄스가 인가되는 시점 보다 Δt만큼 늦은 시점 즉, 시점 ts+Δt에서 데이터 펄스가 인가된다. 또한, 어드레스 전극 X2에는 스캔 전극(Y)에 스캔 펄스가 인가되는 시점 보다 2Δt만큼 늦은 시점 즉, 시점 ts+2Δt에서 데이터 펄스가 인가된다. 이러한 방법으로, X3전극에는 시점 ts+3Δt에서 데이터 펄스가 인가되고, Xn전극에는 시점 ts+(n-1)Δt에서 데이터 펄스가 인가된다.
도 13c를 살펴보면, 도 13a 또는 도 13b와는 다르게 본 발명의 구동파형은 도 12의 H영역에서는 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스의 인가시점이 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 다르고, 또한 모든 데이터 펄스의 인가시점은 전술한 스캔 펄스의 인가시점보다 앞선다. 여기 도 13c에서는 모든 데이터 펄스의 인가시점을 스캔 펄스의 인가시점보다 앞서도록 설정하였지만, 하나의 데이터 펄스의 인가시점만을 전술한 스캔 펄스의 인가시점보다 앞서도록 설정할 수도 있으며, 이러한 스캔 펄스의 인가시점보다 앞서서 인가되는 데이터 펄스의 개수는 변경 가능한 것이다. 예컨대, 도 13c에 나타난 바와 같이 본 발명의 구동방법에 따른 구동파형은 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점을 ts라 가정할 때 어드레스 전극(X1~Xn)의 배치 순서에 맞추어 어드레스 전극 X1에는 스캔 전극(Y)에 스캔 펄스가 인가되는 시점 보다 Δt만큼 앞선 시점 즉, 시점 ts-Δt에서 데이터 펄스가 인가된다. 또한, 어드레스 전극 X2에는 스캔 전극(Y)에 스캔 펄스가 인가되는 시점 보다 2Δt만큼 앞선 시점 즉, 시점 ts-2Δt에서 데이터 펄스가 인가된다. 이러한 방법으로, X3전극에는 시점 ts-3Δt에서 데이터 펄스가 인가되고, Xn전 극에는 시점 ts-(n-1)Δt에서 데이터 펄스가 인가된다. 즉, 도 7c와 같이 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스는 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점의 이전에 인가된다.
이러한 도 13a는 도 7a, 도 13b는 도 7b, 도 13c는 도 7c의 구동파형과 동일하다. 따라서 중복되는 더 이상의 설명은 생략한다.
이와 같이 각 서브필드별로 어드레스 기간에서 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점과 어드레스 전극(X1~Xn)에 인가되는 데이터 펄스의 인가시점을 상이하게 하면 어드레스 전극(X1~Xn)으로 인가되는 데이터 펄스의 각 인가시점에서 패널의 정전용량을 통한 커플링을 감소시켜 스캔 전극 및 서스테인 전극으로 인가되는 파형의 노이즈를 감소시킨다.
이에 따라 어드레스 기간에서 일어나는 어드레스 방전을 안정하게 하여 플라즈마 디스플레이 패널의 구동효율의 감소를 억제한다. 또한, 프레임의 서브필드 중 상대적으로 어드레스 기간이 짧은 초기 서브필드에서는 스캔 펄스의 펄스폭을 이후의 다른 서브필드의 스캔 펄스의 폭 보다 크게 하여 어드레스 지터의 악화를 방지한다. 결국 플라즈마 디스플레이 패널의 어드레스 방전을 안정시킴으로써, 하나의 구동부로 패널 전체를 스캐닝(Scanning)하는 싱글 스캔(Single Scan) 방식을 적용 가능케 한다.
이상에서 설명한 제 1, 2, 3 실시예에서는 스캔 펄스의 폭의 조절하는 것을 하나의 프레임에서 서브필드별로 스캔 펄스의 펄스폭을 서로 다르게 하는 경우만으 로 도시하고 설명하였다. 그러나 이와는 다르게, 프레임에 포함된 소정의 서브필드 내에서 스캔 전극(Y1~Ym)(m은 양의 정수)에 인가되는 스캔 펄스의 폭을 각각의 스캔 전극별로 다르게 설정할 수도 있다. 이러한 경우를 살펴보면 다음 제 4 실시예와 같다.
<제 4 실시예>
도 14는 본 발명의 제 4 실시예에 따른 플라즈마 디스플레이 패널의 구동방법의 구동파형을 설명하기 위한 도면이다.
도 14를 살펴보면, 본 발명의 제 4 실시예에 따른 구동파형은 프레임의 서브필드 중 임의의 서브필드의 어드레스 기간에서 복수의 스캔 전극(Y1~Ym) 중 적어도 어느 하나의 스캔 전극에 인가되는 스캔 펄스의 폭은 다른 스캔 전극으로 인가되는 스캔 펄스의 폭 보다 더 크다. 또한, 어드레스 기간에서 전술한 스캔 펄스의 인가시점과 데이터 펄스의 인가시점은 서로 다르다. 여기 도 14의 제 4 실시예에서 전술한 스캔 펄스의 인가시점과 데이터 펄스의 인가시점을 다르게 설정하는 방법은 전술한 제 1 실시예 또는 제 2 실시예 또는 제 3 실시예와 동일하여 중복되는 설명은 생략한다. 따라서, 이하에서는 스캔 펄스의 인가시점과 데이터 펄스의 인가시점을 서로 다르게 하는 방법에 대해서는 언급하지 않고, 하나의 서브필드 내에서 각각의 스캔 전극별로 인가되는 스캔 펄스의 폭을 다르게 설정하는 방법을 설명한다.
이러한, 본 발명의 제 4 실시예에 따른 구동파형은 전술한 바와 같이, 프레 임의 서브필드 중 임의의 서브필드의 어드레스 기간에서 복수의 스캔 전극(Y1~Ym) 중 적어도 어느 하나의 스캔 전극에 인가되는 스캔 펄스의 폭은 다른 스캔 전극으로 인가되는 스캔 펄스의 폭 보다 더 크게 설정하는데, 보다 바람직하게는 앞쪽스캔전극, 예컨대 최초 스캔 전극(Y1)부터 소정 개수의 스캔 전극(Ya)(a는 ma미만의 양의 정수)까지의 스캔 전극에 인가되는 스캔 펄스의 폭을 뒤쪽스캔전극, 예컨대 Y1스캔 전극부터 Ya스캔 전극까지의 스캔 전극을 제외한 나머지 스캔 전극에 인가되는 스캔 펄스의 폭보다 더 크게 설정한다. 여기서 하나의 서브필드의 어드레스 기간에서 앞쪽스캔전극(Y1~Ya)에 인가되는 스캔 펄스의 폭을 뒤쪽스캔전극(Y(a+1)~Ym)에 인가되는 스캔 펄스의 폭 보다 크게 하는 이유는 스캔 전극(Y1~Ym)에 인가되는 스캔 펄스는 Y1스캔 전극부터 시작하여 Ya스캔전극까지 순차적으로 인가되기 때문에 하나의 서브필드의 어드레스 기간에서도 상대적으로 먼저 인가되는 스캔 펄스의 폭을 증가시키는 것이 지터특성의 향상에 더욱 유리하기 때문이다. 이러한 스캔 전극(Y1~Ym)들 중에서 상대적으로 큰 펄스폭을 갖는 스캔 펄스를 인가할 소정의 스캔 전극을 선택하는 기준은 상대적으로 큰 펄스폭의 스캔 펄스를 인가하여 어드레스 방전의 지터(Jitter)특성을 보존할 수 있는가하는 것이다. 결과적으로, 어드레스 방전의 지터(Jitter)특성을 보존하기 위해 스캔 펄스의 인가순서에 따라 복수의 스캔 전극(Y1~Ym) 중에서 스캔 펄스의 인가순서가 빠른 소정 개수의 스캔 전극(Y1~Ya)에 인가되는 스캔 펄스의 폭을 다른 스캔 펄스의 폭 보다 더 크게 설정한다.
더욱 바람직하게는 도 14와 같이 프레임의 서브필드 중 임의의 서브필드의 어드레스 기간에서 각각의 스캔 전극(Y1~Ym)에 인가되는 스캔 펄스의 폭은 Y1스캔 전극에서 Ym스캔 전극으로 갈수록 점차 감소하도록 한다. 즉, 각각의 스캔 전극(Y1~Ym)별로 각각 스캔 펄스의 폭을 다르게 설정하되, 스캔 전극(Y1~Ym) 중에서 스캔 펄스의 인가시점이 빠른 스캔 전극일수록 큰 펄스폭을 갖는 스캔 펄스가 인가되도록 설정한다. 예컨대 Y1스캔 전극에 인가되는 스캔 펄스의 펄스폭은 W1, Y2 스캔 전극에 인가되는 스캔 펄스의 펄스폭은 W2, Y3스캔 전극에 인가되는 스캔 펄스의 펄스폭은 W3, Y4스캔 전극에 인가되는 스캔 펄스의 펄스폭은 W4, 이러한 방식으로 Ym스캔 전극에 인가되는 스캔 펄스의 펄스폭은 Wm이라고 가정하면, 각각의 펄스폭간의에는 Wm<W4<W3<W2<W1의 관계가 성립한다. 여기서, 이러한 스캔 펄스 간의 스캔 펄스의 폭의 차이는 1배 이상 3배 이하인 것이 바람직하다. 예를 들면, 전술한 스캔 펄스들 중에서 가장 큰 폭의 스캔 펄스의 펄스폭(W1)은 가장 작은 폭의 스캔 펄스의 펄스폭(Wm)의 1배 이상 3배 이상, 즉 Wm<W1<3Wm이다. 이렇게 스캔 펄스폭의 크기를 설정하는 이유는, 스캔 펄스와 데이터 펄스간의 Duration Time과, 어드레스 방전의 지터(Jitter)특성을 고려해야 하기 때문이다.
여기서, 전술한 바와 같이 Y1스캔 전극에서 Ym스캔 전극으로 갈수록 점차 감소하는 스캔 펄스의 펄스폭의 감소량, 즉 (W1-W2), (W2-W3) 등은 일정하게 유지되거 나 각각 서로 다를 수도 있다. 그러나 용이한 제어를 위해서는 이러한 스캔 펄스폭의 감소량은 일정하게 유지되는 것이 바람직하다.
이후의 다른 특성들은 전술한 제 1 실시예 또는 제 2 실시예 또는 제 3 실시예와 동일하여 중복되는 설명은 생략한다.
이상에서 보는 바와 같이, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 데이터 펄스의 인가시점과 스캔 펄스의 인가시점을 달리하는 일례를 들면, 이상에서는 모든 어드레스 전극(X1~Xn)에 스캔 펄스가 인가되는 시점과 다른 시점에서 데이터 펄스를 인가하거나, 모든 어드레스 전극을 배치 순서에 따라 동일한 어드레스 전극의 개수를 가지는 4개의 전극군으로 나누고 각 전극군 별로 스캔 펄스가 인가되는 시점과 서로 다른 시점에서 데이터 펄스를 인가하는 방법만을 도시하고 설명하였지만, 이와는 다르게 모든 어드레스 전극(X1~Xn) 중에서 홀수번째 어드레스 전극들을 하나의 전극군으로 설정하고, 짝수번째 어드레스 전극들을 다른 하나의 전극군으로 설정하여 동일한 전극군내의 모든 어드레스 전극에는 동일한 시점에서 데이터 펄스를 인가하고, 각각의 전극군의 데이터 펄스 인가시점을 스캔 펄스가 인가되는 시점과 서로 다르게 설정하는 방법도 가능하다.
또한, 적어도 하나 이상이 서로 다른 어드레스 전극의 개수를 가지는 복수의 전극군으로 어드레스 전극들(X1~Xn)을 구분하여 각 전극군별로 스캔 펄스의 인가시 점과 서로 다른 시점에서 데이터 펄스가 인가되도록 하는 방법도 가능하다. 예를 들면, 스캔 전극(Y)에 인가되는 스캔 펄스의 인가시점을 ts라고 가정할 때 어드레스 X1전극에는 시점 ts+Δt에서 데이터 펄스를 인가하고, 어드레스 전극 X2~X10 전극에는 ts+3Δt에서 데이터 펄스를 인가하고, 어드레스 전극 X11~Xn전극에는 ts+4Δt에서 데이터 펄스를 인가하는 등 본 발명의 플라즈마 디스플레이 패널의 구동 방법은 다양하게 변형가능하다.
이와 같이, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 전술한 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
이상에서 상세히 설명한 바와 같이, 본 발명은 어드레스 기간에서 어드레스 전극에 인가되는 데이터 펄스의 인가시점과 스캔 펄스의 폭을 조절하여, 스캔 전극 및 서스테인 전극에 인가되는 파형의 노이즈를 감소시키고, 어드레스 지터(Jitter) 특성의 악화를 방지하여 어드레스 방전을 안정시킴으로써, 패널의 구동을 안정시켜 구동효율을 높인다.

Claims (36)

  1. 리셋 기간, 어드레스 기간 및 서스테인 기간에 어드레스 전극(X1~Xn)(n은 양의 정수), 스캔 전극 및 서스테인 전극에 소정의 펄스가 인가되는 적어도 하나 이상의 서브필드의 조합에 의하여 소정의 개수의 프레임으로 이루어지는 화상을 표현하는 플라즈마 디스플레이 패널의 구동 방법에 있어서,
    상기 어드레스 전극을 복수의 전극군으로 나누고, 상기 프레임의 모든 서브필드에서는 상기 어드레스 기간에서 적어도 하나 이상의 상기 어드레스 전극군에 인가되는 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점과 서로 다르고,
    상기 프레임의 서브필드 중 임의의 서브필드의 어드레스 기간에서 인가되는 스캔 펄스의 폭은 다른 서브필드의 어드레스 기간에서 인가되는 스캔 펄스의 폭 보다 더 큰 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  2. 제 1 항에 있어서,
    상기 프레임의 서브필드 중 임의의 서브필드는 제 1 서브필드로부터 제 3 서브필드까지인 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 프레임의 서브필드 중 임의의 서브필드의 어드레스 기간에서 인가되는 스캔 펄스의 폭은 다른 서브필드의 어드레스 기간에서 인가되는 스캔 펄스의 폭의 1배 이상 3배 이하인 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  4. 제 1 항에 있어서,
    상기 어드레스 기간에 적어도 하나 이상의 상기 어드레스 전극군에 인가되는 상기 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점보다 앞서는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  5. 제 4 항에 있어서,
    상기 어드레스 기간에 모든 상기 어드레스 전극군에 인가되는 상기 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점보다 앞서는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  6. 제 1 항에 있어서,
    상기 어드레스 기간에 적어도 하나 이상의 상기 어드레스 전극군에 인가되는 상기 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점보다 늦는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  7. 제 6 항에 있어서,
    상기 어드레스 기간에 모든 상기 어드레스 전극군에 인가되는 상기 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점보다 늦는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  8. 제 1 항에 있어서,
    상기 어드레스 전극군의 개수는 2개 이상이고, 상기 어드레스 전극의 총 개수이하인 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  9. 제 8 항에 있어서,
    상기 어드레스 전극군은 1개 이상의 상기 어드레스 전극을 포함하는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  10. 제 9 항에 있어서,
    상기 어드레스 전극군은 모두 동일한 개수의 상기 어드레스 전극을 포함하거나 하나 이상에서 상이한 개수의 상기 어드레스 전극을 포함하는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  11. 제 1 항, 제 4 항 내지 제 7 항 중 어느 하나의 항에 있어서,
    상기 어드레스 전극군에 포함된 모든 어드레스 전극에는 동일한 시점에 데이터 펄스가 인가되는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  12. 제 1 항, 제 4 항 내지 제 7 항 중 어느 하나의 항에 있어서,
    상기 서브필드 내에서 상기 스캔 펄스의 인가시점과 상기 스캔 펄스의 인가시점과 가장 근접한 데이터 펄스의 인가시점 간의 차이는 동일한 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  13. 제 12 항에 있어서,
    상기 서브필드 내에서 상기 스캔 펄스의 인가시점과 상기 스캔 펄스의 인가시점과 가장 근접한 데이터 펄스의 인가시점 간의 차이는 10ns 이상 1000ns 이하인 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  14. 제 12 항에 있어서,
    상기 서브필드 내에서 상기 스캔 펄스의 인가시점과 상기 스캔 펄스의 인가시점과 가장 근접한 데이터 펄스의 인가시점 간의 차이는 소정 스캔 펄스폭의 1/100배 이상 1배 이하의 범위 내의 값을 갖는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  15. 제 1 항, 제 4 항 내지 제 7 항 중 어느 하나의 항에 있어서,
    상이한 두 개 이상의 상기 전극군 중 상이한 시점에 인가되는 두 개의 상기 데이터 펄스의 인가 시점 간의 차이는 동일한 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  16. 제 15 항에 있어서,
    상이한 두 개 이상의 전극군 중 상이한 시점에 인가되는 두 개의 상기 데이터 펄스 간의 인가 시점의 차이는 10ns 이상 1000ns 이하인 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  17. 제 15 항에 있어서,
    상이한 두 개 이상의 전극군 중 상이한 시점에 인가되는 두 개의 상기 데이터 펄스 간의 인가 시점의 차이는 소정 스캔 펄스폭의 1/100배 이상 1배 이하의 범위 내의 값을 갖는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  18. 리셋 기간, 어드레스 기간 및 서스테인 기간에 어드레스 전극(X1~Xn)(n은 양의 정수), 스캔 전극(Y1~Ym)(m은 양의 정수) 및 서스테인 전극에 소정의 펄스가 인가되는 적어도 하나 이상의 서브필드의 조합에 의하여 소정의 개수의 프레임으로 이루어지는 화상을 표현하는 플라즈마 디스플레이 패널의 구동 방법에 있어서,
    상기 어드레스 전극을 복수의 전극군으로 나누고, 상기 프레임의 모든 서브필드에서는 상기 어드레스 기간에서 적어도 하나 이상의 상기 어드레스 전극군에 인가되는 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점과 서로 다르고,
    상기 프레임의 서브필드 중 임의의 서브필드의 어드레스 기간에서 복수의 상기 스캔 전극(Y1~Ym) 중 적어도 어느 하나의 스캔 전극에 인가되는 스캔 펄스의 폭은 다른 스캔 전극으로 인가되는 스캔 펄스의 폭 보다 더 큰 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  19. 제 18 항에 있어서,
    상기 프레임의 서브필드 중 임의의 서브필드의 어드레스 기간에서 상기 스캔 펄스의 인가순서에 따라 복수의 상기 스캔 전극(Y1~Ym) 중 상기 스캔 펄스의 인가순서가 빠른 소정 개수의 상기 스캔 전극(Y1~Ya)(a는 m미만의 양의정수)에 인가되는 스캔 펄스의 폭은 다른 스캔 펄스의 폭 보다 더 큰 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  20. 제 18 항에 있어서,
    상기 프레임의 서브필드 중 임의의 서브필드의 어드레스 기간에서 각각의 상기 스캔 전극(Y1~Ym)에 인가되는 상기 스캔 펄스의 폭은 상기 Y1스캔 전극에서 Ym스캔 전극으로 갈수록 점차 감소하는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  21. 제 20 항에 있어서,
    상기 Y1스캔 전극에서 Yn스캔 전극으로 갈수록 점차 감소하는 스캔 펄스의 폭의 감소량은 일정하게 유지되는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  22. 제 18 항 또는 제 19 항에 있어서,
    상기 스캔 펄스 중 상대적으로 더 큰 펄스폭을 갖는 스캔 펄스의 폭은 상대적으로 더 작은 펄스폭을 갖는 스캔 펄스의 폭의 1배 이상 3배 이하인 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  23. 제 18 항에 있어서,
    상기 어드레스 기간에 적어도 하나 이상의 상기 어드레스 전극군에 인가되는 상기 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점보다 앞서는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  24. 제 23 항에 있어서,
    상기 어드레스 기간에 모든 상기 어드레스 전극군에 인가되는 상기 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점보다 앞서는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  25. 제 18 항에 있어서,
    상기 어드레스 기간에 적어도 하나 이상의 상기 어드레스 전극군에 인가되는 상기 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점보다 늦는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  26. 제 25 항에 있어서,
    상기 어드레스 기간에 모든 상기 어드레스 전극군에 인가되는 상기 데이터 펄스의 인가시점은 상기 스캔 전극에 인가되는 스캔 펄스의 인가시점보다 늦는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  27. 제 18 항, 제 23 항 내지 제 26 항 중 어느 하나의 항에 있어서,
    상기 어드레스 전극군의 개수는 2개 이상이고, 상기 어드레스 전극의 총 개수이하인 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  28. 제 27 항에 있어서,
    상기 어드레스 전극군은 1개 이상의 상기 어드레스 전극을 포함하는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  29. 제 28 항에 있어서,
    상기 어드레스 전극군은 모두 동일한 개수의 상기 어드레스 전극을 포함하거나 하나 이상에서 상이한 개수의 상기 어드레스 전극을 포함하는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  30. 제 18 항, 제 23 항 내지 제 26 항 중 어느 하나의 항에 있어서,
    상기 어드레스 전극군에 포함된 모든 어드레스 전극에는 상기 데이터 펄스를 동일한 시점에 인가하는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  31. 제 18 항, 제 23 항 내지 제 26 항 중 어느 하나의 항에 있어서,
    상기 서브필드 내에서 상기 스캔 펄스의 인가시점과 상기 스캔 펄스의 인가시점과 가장 근접한 데이터 펄스의 인가시점 간의 차이는 동일하거나 상이한 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  32. 제 31 항에 있어서,
    상기 서브필드 내에서 상기 스캔 펄스의 인가시점과 상기 스캔 펄스의 인가시점과 가장 근접한 데이터 펄스의 인가시점 간의 차이는 10ns 이상 1000ns 이하인 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  33. 제 31 항에 있어서,
    상기 서브필드 내에서 상기 스캔 펄스의 인가시점과 상기 스캔 펄스의 인가시점과 가장 근접한 데이터 펄스의 인가시점 간의 차이는 소정 스캔 펄스폭의 1/100배 이상 1배 이하의 범위 내의 값을 갖는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  34. 제 18 항, 제 23 항 내지 제 26 항 중 어느 하나의 항에 있어서,
    상이한 두 개 이상의 상기 전극군 중 상이한 시점에 인가되는 두 개의 상기 데이터 펄스의 인가 시점 간의 차이는 동일하거나 상이한 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  35. 제 34 항에 있어서,
    상이한 두 개 이상의 전극군 중 상이한 시점에 인가되는 두 개의 상기 데이터 펄스 간의 인가 시점의 차이는 10ns 이상 1000ns 이하인 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
  36. 제 34 항에 있어서,
    상이한 두 개 이상의 전극군 중 상이한 시점에 인가되는 두 개의 상기 데이터 펄스 간의 인가 시점의 차이는 소정 스캔 펄스폭의 1/100배 이상 1배 이하의 범위 내의 값을 갖는 것을 특징으로 하는 플라즈마 디스플레이 패널의 구동방법.
KR1020040093725A 2004-11-16 2004-11-16 플라즈마 디스플레이 패널의 구동방법 KR100774908B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020040093725A KR100774908B1 (ko) 2004-11-16 2004-11-16 플라즈마 디스플레이 패널의 구동방법
TW094120763A TWI280542B (en) 2004-11-16 2005-06-22 Plasma display apparatus and method of driving the same
US11/157,976 US7868849B2 (en) 2004-11-16 2005-06-22 Plasma display apparatus and method of driving the same
JP2005192910A JP4112576B2 (ja) 2004-11-16 2005-06-30 プラズマディスプレイ装置およびその駆動方法
CNB2005100823279A CN100426349C (zh) 2004-11-16 2005-06-30 等离子显示装置及其驱动方法
EP05254144A EP1657704A3 (en) 2004-11-16 2005-06-30 Plasma display scanning method and a plasma display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040093725A KR100774908B1 (ko) 2004-11-16 2004-11-16 플라즈마 디스플레이 패널의 구동방법

Publications (2)

Publication Number Publication Date
KR20060054882A KR20060054882A (ko) 2006-05-23
KR100774908B1 true KR100774908B1 (ko) 2007-11-09

Family

ID=35929692

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040093725A KR100774908B1 (ko) 2004-11-16 2004-11-16 플라즈마 디스플레이 패널의 구동방법

Country Status (6)

Country Link
US (1) US7868849B2 (ko)
EP (1) EP1657704A3 (ko)
JP (1) JP4112576B2 (ko)
KR (1) KR100774908B1 (ko)
CN (1) CN100426349C (ko)
TW (1) TWI280542B (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100774875B1 (ko) * 2004-11-16 2007-11-08 엘지전자 주식회사 플라즈마 디스플레이 패널의 구동방법
TWI319558B (en) * 2004-11-19 2010-01-11 Lg Electronics Inc Plasma display device and method for driving the same
EP1667097A3 (en) * 2004-12-01 2008-01-23 LG Electronics, Inc. Plasma display apparatus and driving method thereof
KR20070087706A (ko) 2005-05-10 2007-08-29 엘지전자 주식회사 플라즈마 디스플레이 장치 및 그의 구동 방법
KR100811527B1 (ko) * 2005-10-04 2008-03-10 엘지전자 주식회사 플라즈마 디스플레이 장치 및 플라즈마 디스플레이 장치의구동 방법
EP2054912A4 (en) * 2007-03-02 2011-01-19 Lg Electronics Inc PLASMA DISPLAY BOARD AND MANUFACTURING AND OPERATING METHOD
KR100862570B1 (ko) * 2007-03-07 2008-10-09 엘지전자 주식회사 플라즈마 디스플레이 장치
KR100862569B1 (ko) * 2007-03-07 2008-10-09 엘지전자 주식회사 플라즈마 디스플레이 장치
CN109545125B (zh) * 2017-09-21 2023-11-14 富满微电子集团股份有限公司 采用脉冲宽度补偿算法的脉冲调制控制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08305319A (ja) * 1995-04-28 1996-11-22 Nec Corp プラズマディスプレイパネルの駆動方法
JPH1091117A (ja) 1996-09-13 1998-04-10 Pioneer Electron Corp プラズマディスプレイパネルの駆動方法
JP2000242227A (ja) 1998-12-25 2000-09-08 Pioneer Electronic Corp プラズマディスプレイパネルの駆動方法
KR20010046334A (ko) 1999-11-11 2001-06-15 김영남 플라즈마 디스플레이 패널 구동방법
JP2001272948A (ja) 2000-03-23 2001-10-05 Nec Corp プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2950270B2 (ja) 1997-01-10 1999-09-20 日本電気株式会社 交流放電メモリ型プラズマディスプレイパネルの駆動方法
EP1020838A1 (en) * 1998-12-25 2000-07-19 Pioneer Corporation Method for driving a plasma display panel
JP3576036B2 (ja) * 1999-01-22 2004-10-13 パイオニア株式会社 プラズマディスプレイパネルの駆動方法
JP3353822B2 (ja) * 1999-04-07 2002-12-03 日本電気株式会社 プラズマディスプレイパネルの駆動方法及び駆動装置
JP2002093136A (ja) 2000-09-04 2002-03-29 Internatl Business Mach Corp <Ibm> 携帯電子機器、ディスク・ドライブ装置、装着体およびコンピュータ装置の筐体
CN1157705C (zh) * 2001-02-02 2004-07-14 友达光电股份有限公司 等离子体显示面板的驱动方法及其电路
KR100447117B1 (ko) * 2001-05-24 2004-09-04 엘지전자 주식회사 평판 디스플레이 패널
TW530283B (en) * 2001-08-31 2003-05-01 Au Optronics Corp Plasma display driving apparatus and method
EP1365382A1 (en) 2002-05-22 2003-11-26 Thomson Licensing S.A. Method of driving a plasma display panel
JP2006064827A (ja) 2004-08-25 2006-03-09 Fujitsu Hitachi Plasma Display Ltd プラズマディスプレイ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08305319A (ja) * 1995-04-28 1996-11-22 Nec Corp プラズマディスプレイパネルの駆動方法
JPH1091117A (ja) 1996-09-13 1998-04-10 Pioneer Electron Corp プラズマディスプレイパネルの駆動方法
JP2000242227A (ja) 1998-12-25 2000-09-08 Pioneer Electronic Corp プラズマディスプレイパネルの駆動方法
KR20010046334A (ko) 1999-11-11 2001-06-15 김영남 플라즈마 디스플레이 패널 구동방법
JP2001272948A (ja) 2000-03-23 2001-10-05 Nec Corp プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置

Also Published As

Publication number Publication date
TW200617851A (en) 2006-06-01
US7868849B2 (en) 2011-01-11
US20060103593A1 (en) 2006-05-18
EP1657704A3 (en) 2006-06-28
CN100426349C (zh) 2008-10-15
KR20060054882A (ko) 2006-05-23
JP2006146149A (ja) 2006-06-08
EP1657704A2 (en) 2006-05-17
JP4112576B2 (ja) 2008-07-02
CN1776780A (zh) 2006-05-24
TWI280542B (en) 2007-05-01

Similar Documents

Publication Publication Date Title
US7564429B2 (en) Plasma display apparatus and driving method thereof
US20060232507A1 (en) Plasma display apparatus and method of driving the same
JP4373371B2 (ja) プラズマディスプレイ装置およびその駆動方法
JP4112576B2 (ja) プラズマディスプレイ装置およびその駆動方法
US20070103390A1 (en) Plasma display apparatus and driving method thereof
KR100774875B1 (ko) 플라즈마 디스플레이 패널의 구동방법
KR100820632B1 (ko) 플라즈마 디스플레이 패널 구동 방법
US20060256042A1 (en) Plasma display apparatus and driving method thereof
KR100726640B1 (ko) 플라즈마 디스플레이 장치 및 그의 구동 방법
KR100793101B1 (ko) 플라즈마 디스플레이 장치
KR100603662B1 (ko) 플라즈마 디스플레이 패널의 구동장치 및 방법
KR100705285B1 (ko) 플라즈마 디스플레이 장치 및 그의 구동 방법
KR100761166B1 (ko) 플라즈마 디스플레이 장치 및 그의 구동 방법
KR100774877B1 (ko) 플라즈마 디스플레이 패널 및 그의 구동방법
KR100800435B1 (ko) 플라즈마 디스플레이 패널의 구동방법
KR100726956B1 (ko) 플라즈마 디스플레이 패널의 구동방법
KR100747270B1 (ko) 플라즈마 디스플레이 장치 및 그의 구동방법
KR100579328B1 (ko) 플라즈마 디스플레이 패널의 구동방법
KR100579934B1 (ko) 플라즈마 디스플레이 패널의 구동방법
KR100602276B1 (ko) 플라즈마 디스플레이 패널의 구동장치 및 방법
KR20060086775A (ko) 플라즈마 디스플레이 패널의 구동방법
KR20060081613A (ko) 플라즈마 디스플레이 패널의 구동장치 및 방법
KR20060065381A (ko) 플라즈마 디스플레이 패널의 구동방법
KR20060081614A (ko) 플라즈마 디스플레이 패널의 구동장치 및 방법
KR20070087729A (ko) 플라즈마 디스플레이 장치 및 그의 구동 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20121026

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131024

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee