KR100756676B1 - Silicone bead, method for preparing the same, and thermoplastic resin composition using the same - Google Patents

Silicone bead, method for preparing the same, and thermoplastic resin composition using the same Download PDF

Info

Publication number
KR100756676B1
KR100756676B1 KR1020060116549A KR20060116549A KR100756676B1 KR 100756676 B1 KR100756676 B1 KR 100756676B1 KR 1020060116549 A KR1020060116549 A KR 1020060116549A KR 20060116549 A KR20060116549 A KR 20060116549A KR 100756676 B1 KR100756676 B1 KR 100756676B1
Authority
KR
South Korea
Prior art keywords
fine particles
polyorganosilsesquioxane
mixed
resins
group
Prior art date
Application number
KR1020060116549A
Other languages
Korean (ko)
Inventor
이한수
김주성
박진규
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Priority to KR1020060116549A priority Critical patent/KR100756676B1/en
Application granted granted Critical
Publication of KR100756676B1 publication Critical patent/KR100756676B1/en
Priority to TW096139803A priority patent/TWI352710B/en
Priority to US11/923,859 priority patent/US7897714B2/en
Priority to JP2007288642A priority patent/JP5410671B2/en
Priority to DE102007055631.6A priority patent/DE102007055631B4/en
Priority to CN2007101948054A priority patent/CN101186699B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/32Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

A method for preparing a polyorganosilsesquioxane fine particle, the polyorganosilsesquioxane fine particle prepared by the method, a thermoplastic resin composition containing the particle, and a diffusion plate for an LCD TV containing the particle are provided to use the polyorganosilsesquioxane fine particle as a diffusing agent for improving brightness and light resistance. A method for preparing a polyorganosilsesquioxane fine particle comprises the steps of mixing an organochlorosilane and an organotrialkoxysilane so as to make the concentration of organochlorosilane be 100-2,000 ppm; mixing the obtained one with water to prepare a transparent sol; and maintaining the pH of the sol to be 8-11. Preferably the organochlorosilane is represented by R1Si(OR2)_(3-x) Clx and the organotrialkoxysilane is represented by R1Si(OR2)3, wherein R1 is a C1-C6 alkyl group, a vinyl group or an aryl group; R2 is a C1-C5 alkyl group; and x is 1-3.

Description

실리콘계 미립자, 그 제조 방법, 및 그 미립자가 함유된 열가소성 수지 조성물{Silicone Bead, Method for Preparing the Same, and Thermoplastic Resin Composition Using the Same}Silicon-based fine particles, a method for producing the same, and a thermoplastic resin composition containing the particles {Silicone Bead, Method for Preparing the Same, and Thermoplastic Resin Composition Using the Same}

발명의 분야Field of invention

본 발명은 실리콘계 미립자의 제조방법에 관한 것이다. 보다 구체적으로, 본 발명은 폴리오가노실세스퀴옥산 미립자를 제조하는 새로운 방법, 그 방법에 의하여 제조된 실리콘계 미립자, 및 이 미립자를 적용한 열가소성 수지 조성물에 관한 것이다. The present invention relates to a method for producing silicon-based fine particles. More specifically, the present invention relates to a novel method for producing polyorganosilsesquioxane fine particles, silicon-based fine particles produced by the method, and a thermoplastic resin composition to which the fine particles are applied.

발명의 배경Background of the Invention

실리카, 폴리오가노실세스퀴옥산 미립자와 같은 실리콘계 미립자는 다양한 산업적 목적으로 널리 사용된다. 이중에서 폴리오가노실세스퀴옥산 미립자는 각종 고분자 물질이나 유기용매와의 상용성이 우수하여 다양한 수지 또는 코팅액의 첨가 제로 널리 사용되고 있다. 폴리오가노실세스키옥산 미립자는 굴절률이 낮고 수지와의 상용성이 우수하기 때문에, 최근에는 LCD-TV 등에 사용되는 확산판의 확산제로 각광을 받고 있다. 이러한 실리콘계 미립자는 일반적인 졸-겔 법에 의해 쉽게 제조 가능하지만, 고가의 단량체 원료를 사용해야 하며 미립자를 제조하는 공정시간당 수율이 낮기 때문에 제조단가가 높다는 단점을 갖고 있다. Silicon-based fine particles such as silica and polyorganosilsesquioxane fine particles are widely used for various industrial purposes. Among them, the polyorganosilsesquioxane fine particles are widely used as additives for various resins or coating liquids due to their excellent compatibility with various polymer materials and organic solvents. Since polyorgano silsesquioxane microparticles | fine-particles are low in refractive index and excellent in compatibility with resin, they have attracted the spotlight recently as the diffusing agent of the diffusion plate used for LCD-TV. Such silicon-based fine particles can be easily manufactured by a general sol-gel method, but have a disadvantage in that expensive monomer raw materials are used and manufacturing costs are high because the yield per process time for producing the fine particles is low.

일본특허 제1,095,382호에서는 0.1∼5 %의 염소를 포함한 메틸트리알콕시실란을 이용하여 가수분해반응과 축합반응을 진행시킴으로써 폴리오가노실세스퀴옥산 미립자를 얻을 수 있는 방법을 개시하고 있으나, 고농도의 염소를 사용하기 때문에 반응속도 조절이 용이하지 않고, 염산 발생으로 인한 반응기의 부식 문제가 심화되는 등의 문제로 인하여 실제 생산공정에 적용하기는 어렵다. Japanese Patent No. 1,095,382 discloses a method for obtaining polyorganosilsesquioxane fine particles by carrying out a hydrolysis reaction and a condensation reaction using methyltrialkoxysilane containing 0.1 to 5% chlorine. Since it is not easy to control the reaction rate, due to problems such as intensified corrosion of the reactor due to hydrochloric acid is difficult to apply to the actual production process.

일본공개특허 제1998-045914호 및 제2000-186148호에서는 염소 성분이 없는 메틸트리알콕시실란과 물의 혼합물에 유기산 또는 무기산을 촉매로 사용하여 가수분해 반응을 진행시키고 알칼리 수용액으로 축합반응을 진행함으로써 폴리오가노실세스퀴옥산 미립자를 얻는 방법을 개시하고 있다. 그러나 이를 위하여 별도의 정제과정을 필요로 하는 고순도의 메틸트리알콕시실란을 사용하고 별도의 가수분해반응 촉매를 첨가해야 하므로 제조단가가 높아지는 문제점이 있다. In Japanese Patent Laid-Open Nos. 1998-045914 and 2000-186148, a hydrolysis reaction is carried out using a mixture of methyltrialkoxysilane and water free of chlorine and an organic or inorganic acid as a catalyst and a condensation reaction with an aqueous alkali solution. Disclosed is a method of obtaining fine silsesquioxane microparticles. However, there is a problem in that the manufacturing cost increases because high-purity methyltrialkoxysilane which requires a separate purification process and a separate hydrolysis catalyst must be added for this purpose.

이에 본 발명자들은 일반적으로 오가노알콕시실란 제조시 부산물로 발생하는 알콕시기가 염소기에 의해 전체 또는 부분 치환된 오가노알콕시실란을 가수분해반응 촉매로 소량 사용하고, 오가노트리알콕시실란과 물의 혼합물을 고효율의 혼합기를 사용하여 공정조건을 조절함으로써 반응속도를 조절하여 단시간 내에 투명한 졸 을 제조하고, 이로부터 폴리오가노실세스퀴옥산 미립자를 간편하고 저렴하게 제조할 수 있는 새로운 방법을 개발하기에 이르렀다. 또한 이로부터 얻어지는 2.5∼3.5 ㎛의 크기를 갖는 폴리오가노실세스퀴옥산 미립자는 확산제로 사용시 우수한 휘도 및 내광 특성을 발현할 수 있다는 것도 밝혀냈다. Accordingly, the present inventors generally use a small amount of an organoalkoxysilane in which the alkoxy group generated as a by-product in the preparation of the organoalkoxysilane is completely or partially substituted by the chlorine group as a hydrolysis reaction catalyst, and a mixture of the organotrialkoxysilane and water is highly efficient. By controlling the process conditions by using a mixer of the reaction rate was controlled to prepare a transparent sol in a short time, from this it was developed a new method for producing a simple and inexpensive polyorgano silsesquioxane fine particles. It was also found that the polyorganosilsesquioxane fine particles having a size of 2.5 to 3.5 μm obtained therefrom can exhibit excellent luminance and light resistance properties when used as a diffusing agent.

본 발명의 목적은 오가노트리알콕시실란과 물의 혼합물을 고효율의 혼합기를 사용하여 반응속도를 조절하여 단시간 내에 투명한 졸을 제조함으로써 폴리오가노실세스퀴옥산 미립자를 간편하고 저렴하게 제조할 수 있는 방법을 제공하기 위한 것이다. SUMMARY OF THE INVENTION An object of the present invention is to prepare a method for preparing polyorganosilsesquioxane fine particles easily and inexpensively by preparing a transparent sol within a short time by controlling a reaction rate of a mixture of organotrialkoxysilane and water using a high efficiency mixer. It is to provide.

본 발명의 다른 목적은 확산제로 사용시 우수한 휘도 및 내광 특성을 발현하는 폴리오가노실세스퀴옥산 미립자를 제공하기 위한 것이다. Another object of the present invention is to provide polyorganosilsesquioxane microparticles which exhibit excellent luminance and light resistance when used as a diffusing agent.

본 발명의 또 다른 목적은 본 발명의 폴리오가노실세스퀴옥산 미립자를 함유하는 열가소성 수지 조성물을 제공하기 위한 것이다. Still another object of the present invention is to provide a thermoplastic resin composition containing the polyorganosilsesquioxane fine particles of the present invention.

본 발명의 또 다른 목적은 상기 열가소성 수지 조성물을 이용하여 휘도 및 내광특성이 우수한 LCD-TV용 확산판을 제공하기 위한 것이다. Still another object of the present invention is to provide a diffusion plate for LCD-TV having excellent brightness and light resistance using the thermoplastic resin composition.

본 발명의 상기 및 기타의 목적들은 모두 하기에 설명되는 본 발명에 의해서 달성될 수 있다.Both the above and other objects of the present invention can be achieved by the present invention described below.

발명의 요약Summary of the Invention

본 발명의 실리콘계 미립자 제조 방법은 알콕시기가 염소기에 의하여 전체 또는 부분적으로 치환된 오가노클로로실란을 100∼2,000 ppm의 농도가 되도록 오가노트리알콕시실란에 혼합하고, 이 혼합물과 물을 고효율의 혼합기로 혼합시킴으로써 단시간 내에 투명한 졸을 얻고, 그리고 pH를 8∼11로 유지시키는 단계를 포함하는 것을 특징으로 하는 폴리오가노실세스퀴옥산 미립자의 제조방법이다. In the method for producing silicon-based fine particles of the present invention, the organotrialkoxysilane in which the alkoxy group is wholly or partially substituted by the chlorine group is mixed with the organotrialkoxysilane so as to have a concentration of 100 to 2,000 ppm, and the mixture and water are mixed with a high efficiency mixer. A method for producing polyorganosilsesquioxane microparticles, comprising the steps of obtaining a transparent sol in a short time by mixing and maintaining the pH at 8-11.

또한 이 때 얻어지는 미립자 중 평균입경 2.5∼3.5 ㎛에 해당하는 미립자는 확산제로 사용시 휘도 및 내광특성이 우수하게 발현되는 것을 특징으로 한다.Further, among the fine particles obtained at this time, the fine particles having an average particle diameter of 2.5 to 3.5 μm are characterized by excellent luminance and light resistance characteristics when used as a diffusing agent.

발명의 구체예에 대한 상세한 설명Detailed Description of the Invention

본 발명의 실리콘계 미립자는 알콕시기가 염소기에 의하여 전체 또는 부분적으로 치환된 오가노클로로실란을 100∼2,000 ppm의 농도가 되도록 오가노트리알콕시실란에 혼합하고, 이 혼합물과 물을 혼합시켜 투명한 졸을 얻고, 그리고 pH를 8∼11로 유지시키는 단계에 의하여 제조되는 폴리오가노실세스퀴옥산 미립자이다.The silicone fine particles of the present invention are mixed with an organotrialkoxysilane such that the alkoxy group is entirely or partially substituted by a chlorine group to a concentration of 100 to 2,000 ppm, and the mixture and water are mixed to obtain a transparent sol. And it is a microorgano silsesquioxane microparticles | fine-particles manufactured by the step of maintaining pH at 8-11.

본 발명에서 사용되는 오가노트리알콕시실란은 하기식 (1)과 같이 표시된다: The organotrialkoxysilane used in the present invention is represented by the following formula (1):

R1Si(OR2)3 (1)R 1 Si (OR 2 ) 3 (1)

상기식에서 R1은 탄소수 1∼6의 알킬기, 비닐기, 또는 아릴기, R2는 탄소수 1∼5의 알킬기를 나타낸다. R1은 메틸기, 에틸기, 페닐기인 것이 바람직하며, R2는 메틸기, 에틸기, 프로필기, 부틸기인 것이 바람직하다. 특히 R1, R2가 메틸기인 것이 공업적인 측면에서 가장 바람직하다.In the formula, R 1 represents an alkyl group having 1 to 6 carbon atoms, a vinyl group, or an aryl group, and R 2 represents an alkyl group having 1 to 5 carbon atoms. It is preferable that R <1> is a methyl group, an ethyl group, and a phenyl group, and it is preferable that R <2> is a methyl group, an ethyl group, a propyl group, and a butyl group. In particular, it is most preferable from an industrial point of view that R 1 and R 2 are methyl groups.

상기식 (1)의 오가노트리알콕시실란은 전체 반응액에 대하여 5∼50 중량%를 사용하는 것이 바람직하며, 반응수율과 평균입경 조절을 위하여 10∼30 중량%를 사용하는 것이 더욱 바람직하다.The organotrialkoxysilane of Formula (1) is preferably used in an amount of 5 to 50% by weight based on the total reaction solution, and more preferably in an amount of 10 to 30% by weight for controlling the reaction yield and the average particle size.

알콕시기가 염소기에 의하여 전체 또는 부분 치환된 오가노클로로실란은 하기식 (2)와 같이 표시된다:The organochlorosilane in which the alkoxy group is wholly or partially substituted by the chlorine group is represented by the following formula (2):

R1Si(OR2)3-xClx (2)R 1 Si (OR 2 ) 3-x C lx (2)

상기식에서 R1은 탄소수 1∼6의 알킬기, 비닐기, 또는 아릴기, R2는 탄소수 1∼5의 알킬기를 나타내며, x는 1∼3의 범위를 갖는다. R1은 메틸기, 에틸기, 페닐기인 것이 바람직하며, R2는 메틸기, 에틸기, 프로필기, 부틸기인 것이 바람직하다. 특히 R1, R2가 메틸기인 것이 공업적인 측면에서 가장 바람직하다. 또한 알콕시기가 모두 염소기에 의하여 치환된 형태인 오가노트리클로로실란인 것이 가장 바람직하 다.In formula, R <1> represents a C1-C6 alkyl group, a vinyl group, or an aryl group, R <2> represents a C1-C5 alkyl group, and x has a range of 1-3. It is preferable that R <1> is a methyl group, an ethyl group, and a phenyl group, and it is preferable that R <2> is a methyl group, an ethyl group, a propyl group, and a butyl group. In particular, it is most preferable from an industrial point of view that R 1 and R 2 are methyl groups. In addition, it is most preferable that all the alkoxy groups are organotrichlorosilane substituted by the chlorine group.

상기식 (2)의 알콕시기가 염소기에 의하여 전체 또는 부분 치환된 오가노클로로실란은 상기식 (1)의 오가노트리알콕시실란에 100∼2,000 ppm 함량으로 혼합되는 것이 바람직하다. 100 ppm 미만의 함량에서는 강한 혼합조건에서도 가수분해반응이 충분히 진행되지 않아 원하는 입경의 미립자를 얻기가 어려우며, 2,000 ppm 이상의 함량에서는 가수분해반응의 속도 조절이 어려워져 원하는 입경의 미립자를 얻기가 어렵거나, 전체적인 겔화 반응이 진행되어 미립자 형태의 생성물을 얻을 수가 없게 된다. 또한 과도한 염소함량으로 인한 불순물 세정 및 반응기 부식 등에 대한 문제가 발생하게 된다.The organochlorosilane in which the alkoxy group of the said Formula (2) is wholly or partially substituted by the chlorine group is mixed with the organotrialkoxysilane of the said Formula (1) in 100-2,000 ppm content. If the content is less than 100 ppm, the hydrolysis reaction does not proceed sufficiently under strong mixing conditions, making it difficult to obtain fine particles having a desired particle size, and the content of 2,000 ppm or more difficult to control the rate of hydrolysis reaction, making it difficult to obtain fine particles having a desired particle size. As a result, the entire gelation reaction proceeds, making it impossible to obtain a particulate product. In addition, problems such as impurity cleaning and reactor corrosion due to excessive chlorine content will occur.

상기식 (2)로 표현되는 알콕시기가 염소기에 의하여 전체 또는 부분 치환된 오가노클로로실란과 상기식 (1)의 오가노트리알콕시실란의 혼합물을 고효율의 혼합기를 이용하여 물과 혼합시킴으로써 투명한 졸을 제조하게 된다. 투명한 졸을 제조하는 단계에서 혼합 효율이 매우 중요하다. 특히 100∼2,000 ppm의 소량의 알콕시기가 염소기에 의하여 치환된 오가노클로로실란을 사용하는 경우에 가수분해반응의 속도가 현저히 저하되게 되므로, 고효율의 혼합기를 이용하여 혼합함으로써 오가노트리알콕시실란과 물의 반응계면적을 충분히 넓게 유지하여야 한다.A transparent sol is obtained by mixing a mixture of an organochlorosilane in which the alkoxy group represented by the formula (2) is wholly or partially substituted with a chlorine group with the organotrialkoxysilane of the formula (1) with water using a high efficiency mixer. To manufacture. The mixing efficiency is very important in preparing a transparent sol. In particular, in the case of using an organochlorosilane in which a small amount of alkoxy group of 100 to 2,000 ppm is substituted by a chlorine group, the rate of hydrolysis reaction is remarkably reduced, so that the organotrialkoxysilane and water are mixed by using a high efficiency mixer. The reaction area should be kept large enough.

일반적인 혼합기의 형태로는 앵커, 파우들러, 패들, 프로펠러, 리본 타입 형태의 임펠러를 많이 이용한다. 이러한 일반적인 형태의 혼합기를 사용하게 되면, 혼합 효율의 저하로 인하여 가수반응을 위한 반응촉매의 사용량 증가, 반응온도 상 승 및 반응시간 연장 등이 필요하므로, 공정비용 상승, 불순물 문제 등의 여러 가지 문제를 야기하게 된다. 또한 교반속도를 매우 높여야 하므로 실제 양산화시 많은 어려움을 야기하게 된다. 교반속도의 증가는 소요 동력의 상승을 통한 공정비용 상승 및 과도한 볼텍스 생성에 따른 거품 발생과 입경 분포 조절의 어려움을 야기한다.A common type of mixer uses anchors, piddlers, paddles, propellers, ribbon type impellers. When using this type of mixer, it is necessary to increase the amount of reaction catalyst used for the hydrolysis reaction, increase the reaction temperature, and extend the reaction time due to the decrease in the mixing efficiency. Will cause. In addition, the stirring speed must be very high, which causes a lot of difficulties in actual mass production. Increasing the stirring speed causes difficulty in controlling bubble generation and particle size distribution due to an increase in process cost and excessive vortex generation.

이에 고효율의 혼합기를 사용하여 투명한 졸을 제조하는 것이 바람직하며, 고효율의 혼합기로는 호모믹서, 호모게이나져, 마이크로플루이다이져와 같은 고속 유화/분산장비를 사용하거나 평판형의 임펠러와 방해판을 조합한 형태의 교반장비를 사용하는 것이 바람직하다. 호모믹서, 호모게나이져, 마이크로플루이다이져 등의 장비는 높은 전단력, 충격력, 공동현상(Cavitation)시 발생하는 충격파 등을 이용하여 고효율의 혼합 내지 액체-액체 혼합을 단시간 내에 가능하게 한다. 호모믹서는 5,000 rpm 이상의 운전 조건을 사용하는 것이 더욱 바람직하며, 호모게나이져나 마이크로플로이다이져는 5,000 psi 이상의 운전 조건을 사용하는 것이 더욱 바람직하다. 평판형의 임펠러와 방해판을 조합하여 사용하는 경우는 효율적인 혼합을 저속의 교반조건에서도 가능하게 한다. 평판형의 임펠러는 반응기 지름의 50% 이상의 폭을 갖는 것이 바람직하며, 교반축 방향으로 평행한 구멍을 갖는 것이 더욱 바람직하다. Therefore, it is preferable to manufacture a transparent sol using a high efficiency mixer. The high efficiency mixer may be a high speed emulsifier / dispersion equipment such as a homomixer, a homogenizer, a microfluidizer, or a flat impeller and a baffle plate. It is preferable to use a stirring device in the form of a combination. Equipment such as homomixers, homogenizers and microfluidizers enable high efficiency mixing or liquid-liquid mixing in a short time by using high shear force, impact force, shock waves generated during cavitation, and the like. It is more preferable to use an operating condition of 5,000 rpm or more, and it is more preferable to use an operating condition of 5,000 psi or more of a homogenizer or a microfloodizer. The combination of a flat impeller and a baffle plate enables efficient mixing even at low speed stirring conditions. The flat impeller preferably has a width of 50% or more of the diameter of the reactor, and more preferably has a hole parallel to the stirring axis direction.

상기 고효율의 혼합기를 사용하여 투명한 졸을 제조한 후, pH를 8∼11로 조절함으로써 폴리오가노실세스퀴옥산 미립자를 얻게 된다. pH 8 이하에서는 미립자의 형성에 시간이 매우 많이 소요되거나 미립자가 형성되기 어려우며, pH 11 이상 에서는 미립자 형성후 다시 용해되는 문제가 발생한다. pH를 9∼10으로 조절하는 것이 더욱 바람직하다. pH를 8∼11로 조절하기 위해서는 일반적인 염기성의 수용액을 사용하며, 알칼리 금속이나 알칼리 토금속, 수소탄산, 암모니아 등의 수용액을 사용하는 것이 바람직하다. After preparing a transparent sol using the said highly efficient mixer, the polyorgano silsesquioxane microparticles | fine-particles are obtained by adjusting pH to 8-11. When the pH is less than 8, the formation of the microparticles takes a very long time or is difficult to form the microparticles, and when the pH is 11 or higher, a problem of dissolving again after the formation of the microparticles occurs. More preferably, the pH is adjusted to 9-10. In order to adjust pH to 8-11, general basic aqueous solution is used, and it is preferable to use aqueous solutions, such as alkali metal, alkaline-earth metal, hydrogen carbonate, and ammonia.

이후 여과 및 수세, 건조 등을 통하여 최종의 미립자를 얻게 된다. 건조시 스프레이 드라이어나 스핀 플레쉬 드라이어 등을 이용하는 것이 입자간 뭉침을 방지함으로써 별도의 해쇄 공정없이 간단하게 분체 상태의 미립자를 얻을 수 있으므로 바람직하다.Thereafter, the final fine particles are obtained through filtration, washing with water and drying. It is preferable to use a spray dryer or a spin flash dryer for drying because it prevents agglomeration between particles and thus can easily obtain fine particles in a powder state without a separate disintegration step.

상기의 제조방법을 통하여 0.1∼10 ㎛ 크기의 폴리오가노실세스퀴옥산 미립자를 얻을 수 있으며, 이렇게 얻어진 폴리오가노실세스퀴옥산 미립자는 염화비닐계 수지, 스티렌계 수지, 스티렌-아크릴로니트릴계 수지, 아크릴계 수지, 아크릴-스티렌계 수지, 에스테르계 수지, ABS계 수지 및 폴리카보네이트 수지 등의 열가소성 수지와 블렌드되어 확산판에 적용될 수 있다. The polyorganosilsesquioxane fine particles having a size of 0.1 to 10 μm can be obtained through the above-described manufacturing method. The polyorganosilsesquioxane fine particles thus obtained may be vinyl chloride-based resin, styrene-based resin, or styrene-acrylonitrile-based resin. , And may be blended with thermoplastic resins such as acrylic resins, acrylic-styrene resins, ester resins, ABS resins, and polycarbonate resins to be applied to the diffusion plate.

즉, 상기 폴리오가노실세스퀴옥산 미립자를 폴리스티렌, 폴리메틸메타크릴레이트, 폴리(메틸메타크릴레이트-스티렌) 공중합체, 폴리카보네이트 등의 열가소성 수지에 첨가시, 투과율을 떨어뜨리게 되어 LCD-TV에 사용되는 확산판의 확산제로 사용 가능한 것이다. That is, when the polyorganosilsesquioxane fine particles are added to thermoplastic resins such as polystyrene, polymethyl methacrylate, poly (methyl methacrylate-styrene) copolymer, polycarbonate, and the like, the transmittance is lowered. It can be used as a diffusion agent of the diffusion plate used.

상기의 제조방법을 통하여 얻어지는 폴리오가노실세스퀴옥산 미립자 중, 2.5∼3.5 ㎛의 평균입경을 갖는 폴리오가노실세스퀴옥산 미립자를 확산제로 사용시 투과율, 헤이즈, 휘도, 내광성 등의 확산판 특성이 가장 우수하게 발현된다. 상기 2.5∼3.5 ㎛의 입자크기를 갖는 폴리오가노실세스퀴옥산 미립자는 상기 열가소성 수지에 0.1∼10 중량부 첨가하는 것이 바람직하며, 0.1∼2 중량부를 첨가하는 것이 가장 바람직하다.Among the polyorganosilsesquioxane fine particles obtained through the above production method, when using polyorganosilsesquioxane fine particles having an average particle diameter of 2.5 to 3.5 μm as a diffusion agent, the characteristics of diffusion plate such as transmittance, haze, brightness, light resistance, etc. It is expressed well. The polyorganosilsesquioxane fine particles having a particle size of 2.5 to 3.5 μm are preferably added in an amount of 0.1 to 10 parts by weight, and most preferably 0.1 to 2 parts by weight.

본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이고 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.The invention can be better understood by the following examples, which are intended for the purpose of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims.

실시예 1Example 1

메틸트리메톡시실란에 메틸트리클로로실란을 500 ppm의 농도가 되도록 혼합한 후, 이 혼합액 200 g을 이온교환수 1,800 g과 혼합하였다. 이후, 호모믹서를 이용하여 10,000 rpm에서 1분간 고속혼합하고, 암모니아수를 가하여 pH를 9.7로 조정한 후 4시간 동안 유지시켰다. 이후 여과 및 수세하고 스프레이 드라이어를 이용하여 건조시킴으로써 백색의 미분을 회수하였다. After methyltrichlorosilane was mixed with methyltrichlorosilane to a concentration of 500 ppm, 200 g of this mixed solution was mixed with 1,800 g of ion-exchanged water. Then, using a homomixer for 1 minute high speed mixing at 10,000 rpm, ammonia water was added to adjust the pH to 9.7 and maintained for 4 hours. Thereafter, white fine powder was recovered by filtration, washing with water and drying with a spray dryer.

실시예 2Example 2

메틸트리메톡시실란에 메틸트리클로로실란을 500 ppm의 농도가 되도록 혼합한 후, 이 혼합액 280 g을 이온교환수 1,720 g과 혼합하였다. 이후, 호모믹서를 이용하여 10,000 rpm에서 1분간 고속혼합하고, 암모니아수를 가하여 pH를 9.6으로 조정한 후 4시간 동안 유지시켰다. 이후 여과 및 수세하고 스프레이 드라이어를 이용 하여 건조시킴으로써 백색의 미분을 회수하였다. After methyltrichlorosilane was mixed with methyltrichlorosilane to a concentration of 500 ppm, 280 g of this mixed solution was mixed with 1,720 g of ion-exchanged water. Then, using a homomixer at high speed mixing at 10,000 rpm for 1 minute, and ammonia water was added to adjust the pH to 9.6 and maintained for 4 hours. Thereafter, white fine powder was recovered by filtration, washing with water and drying with a spray dryer.

실시예 3Example 3

메틸트리메톡시실란에 메틸트리클로로실란을 500 ppm의 농도가 되도록 혼합한 후, 이 혼합액 400 g을 이온교환수 1,600 g과 혼합하였다. 이후, 호모믹서를 이용하여 10,000 rpm에서 1분간 고속혼합하고, 암모니아수를 가하여 pH를 9.6으로 조정한 후 4시간 동안 유지시켰다. 이후 여과 및 수세하고 스프레이 드라이어를 이용하여 건조시킴으로써 백색의 미분을 회수하였다. After methyltrichlorosilane was mixed with methyltrichlorosilane to a concentration of 500 ppm, 400 g of the mixed solution was mixed with 1,600 g of ion-exchanged water. Then, using a homomixer at high speed mixing at 10,000 rpm for 1 minute, and ammonia water was added to adjust the pH to 9.6 and maintained for 4 hours. Thereafter, white fine powder was recovered by filtration, washing with water and drying with a spray dryer.

실시예 4Example 4

메틸트리메톡시실란에 메틸트리클로로실란을 500 ppm의 농도가 되도록 혼합한 후, 이 혼합액 200 g을 이온교환수 1,800 g과 혼합하였다. 이후, 마이크로플루이다이져를 이용하여 10,000 psi에서 1회 처리하고, 암모니아수를 가하여 pH를 9.7로 조정한 후 4시간 동안 유지시켰다. 이후 여과 및 수세하고 스프레이 드라이어를 이용하여 건조시킴으로써 백색의 미분을 회수하였다. After methyltrichlorosilane was mixed with methyltrichlorosilane to a concentration of 500 ppm, 200 g of this mixed solution was mixed with 1,800 g of ion-exchanged water. Thereafter, the microfluidizer was treated once at 10,000 psi, and the pH was adjusted to 9.7 by adding ammonia water and maintained for 4 hours. Thereafter, white fine powder was recovered by filtration, washing with water and drying with a spray dryer.

실시예 5Example 5

메틸트리메톡시실란에 메틸트리클로로실란을 500 ppm의 농도가 되도록 혼합한 후, 이 혼합액 200 g을 이온교환수 1,800 g과 혼합하였다. 이후, 호모믹서를 이용하여 10,000 rpm에서 1분간 고속혼합 처리하고 연속적으로 마이크로플루이다이져 를 이용하여 10,000 psi에서 1회 처리하였다. 이후, 암모니아수를 가하여 pH를 9.7로 조정한 후 4시간 동안 유지시켰다. 이후 여과 및 수세하고 스프레이 드라이어를 이용하여 건조시킴으로써 백색의 미분을 회수하였다. After methyltrichlorosilane was mixed with methyltrichlorosilane to a concentration of 500 ppm, 200 g of this mixed solution was mixed with 1,800 g of ion-exchanged water. Thereafter, a high speed mixing treatment was performed at 10,000 rpm for 1 minute using a homomixer, and the treatment was performed once at 10,000 psi using a microfluidizer. Then, the pH was adjusted to 9.7 by adding ammonia water, and then maintained for 4 hours. Thereafter, white fine powder was recovered by filtration, washing with water and drying with a spray dryer.

실시예 6Example 6

메틸트리메톡시실란에 메틸트리클로로실란을 500 ppm의 농도가 되도록 혼합한 후, 이 혼합액 280 g을 이온교환수 1,720 g과 혼합하였다. 이후, 방해판이 장착된 유리반응기에 혼합액을 투입하고 반응기 내경의 60% 길이의 폭을 갖는 평판형 임펠러를 이용하여 70 rpm에서 30분간 혼합처리하였다. 이후, 암모니아수를 가하여 pH를 9.5로 조정한 후 4시간 동안 유지시켰다. 이후 여과 및 수세하고 스프레이 드라이어를 이용하여 건조시킴으로써 백색의 미분을 회수하였다. After methyltrichlorosilane was mixed with methyltrichlorosilane to a concentration of 500 ppm, 280 g of this mixed solution was mixed with 1,720 g of ion-exchanged water. Thereafter, the mixed solution was added to a glass reactor equipped with a baffle plate and mixed for 30 minutes at 70 rpm using a plate-type impeller having a width of 60% of the inner diameter of the reactor. Then, the pH was adjusted to 9.5 by adding ammonia water, and then maintained for 4 hours. Thereafter, white fine powder was recovered by filtration, washing with water and drying with a spray dryer.

실시예 7Example 7

메틸트리메톡시실란에 메틸트리클로로실란을 500 ppm의 농도가 되도록 혼합한 후, 이 혼합액 280 g을 이온교환수 1,720 g과 혼합하였다. 이후, 방해판이 장착된 유리반응기에 혼합액을 투입하고 반응기 내경의 60% 길이의 폭을 갖는 평판형 임펠러를 이용하여 90 rpm에서 90분간 혼합처리하였다. 이후, 암모니아수를 가하여 pH를 9.1로 조정한 후 4시간 동안 유지시켰다. 이후 여과 및 수세하고 스프레이 드라이어를 이용하여 건조시킴으로써 백색의 미분을 회수하였다. After methyltrichlorosilane was mixed with methyltrichlorosilane to a concentration of 500 ppm, 280 g of this mixed solution was mixed with 1,720 g of ion-exchanged water. Thereafter, the mixed solution was added to a glass reactor equipped with a baffle plate and mixed for 90 minutes at 90 rpm using a plate-type impeller having a width of 60% of the inner diameter of the reactor. Then, the pH was adjusted to 9.1 by adding ammonia water, and then maintained for 4 hours. Thereafter, white fine powder was recovered by filtration, washing with water and drying with a spray dryer.

비교예 1Comparative Example 1

메틸트리메톡시실란에 메틸트리클로로실란을 500 ppm의 농도가 되도록 혼합한 후, 이 혼합액 280 g을 이온교환수 1,720 g과 혼합하였다. 이후, 유리반응기에 혼합액을 투입하고 일반적인 앵커 형태의 임펠러를 이용하여 70 rpm에서 30분간 혼합처리하였다. 이후, 암모니아수를 가하여 pH를 9.4로 조정한 후 4시간 동안 상온에서 유지시켰다. 이후 여과 및 수세하고 스프레이 드라이어를 이용하여 건조시킴으로써 백색의 미분을 회수하였다. After methyltrichlorosilane was mixed with methyltrichlorosilane to a concentration of 500 ppm, 280 g of this mixed solution was mixed with 1,720 g of ion-exchanged water. Thereafter, the mixed solution was added to the glass reactor and mixed for 30 minutes at 70 rpm using a general anchor impeller. Then, the pH was adjusted to 9.4 by adding ammonia water and then maintained at room temperature for 4 hours. Thereafter, white fine powder was recovered by filtration, washing with water and drying with a spray dryer.

비교예 2Comparative Example 2

메틸트리메톡시실란에 메틸트리클로로실란을 500 ppm의 농도가 되도록 혼합한 후, 이 혼합액 280 g을 이온교환수 1,720 g과 혼합하였다. 이후, 유리반응기에 혼합액을 투입하고 일반적인 앵커 형태의 임펠러를 이용하여 150 rpm에서 150분간 혼합처리하였다. 이후, 암모니아수를 가하여 pH를 9.3으로 조정한 후 4시간 동안 유지시켰다. 이후 여과 및 수세하고 스프레이 드라이어를 이용하여 건조시킴으로써 백색의 미분을 회수하였다. After methyltrichlorosilane was mixed with methyltrichlorosilane to a concentration of 500 ppm, 280 g of this mixed solution was mixed with 1,720 g of ion-exchanged water. Thereafter, the mixed solution was added to the glass reactor and mixed for 150 minutes at 150 rpm using an impeller of a general anchor type. Then, the pH was adjusted to 9.3 by adding ammonia water and maintained for 4 hours. Thereafter, white fine powder was recovered by filtration, washing with water and drying with a spray dryer.

비교예 3Comparative Example 3

메틸트리메톡시실란에 메틸트리클로로실란을 50 ppm의 농도가 되도록 혼합한 후, 이 혼합액 280 g을 이온교환수 1,720 g과 혼합하였다. 이후, 유리반응기에 혼합액을 투입하고 일반적인 앵커 형태의 임펠러를 이용하여 70 rpm에서 30분간 혼합 처리하였다. 이후, 암모니아수를 가하여 pH를 9.3으로 조정한 후 4시간 동안 유지시켰다. 이후 여과 및 수세하고 스프레이 드라이어를 이용하여 건조시킴으로써 백색의 미분을 회수하였다. After methyltrichlorosilane was mixed with methyltrichlorosilane to a concentration of 50 ppm, 280 g of the mixed solution was mixed with 1,720 g of ion-exchanged water. Then, the mixed solution was added to the glass reactor, and the mixture was treated for 30 minutes at 70 rpm using an impeller of a general anchor type. Then, the pH was adjusted to 9.3 by adding ammonia water and maintained for 4 hours. Thereafter, white fine powder was recovered by filtration, washing with water and drying with a spray dryer.

비교예 4Comparative Example 4

메틸트리메톡시실란에 메틸트리클로로실란을 6,000 ppm의 농도가 되도록 혼합한 후, 이 혼합액 280 g을 이온교환수 1,720 g과 혼합하였다. 이후, 유리반응기에 혼합액을 투입하고 일반적인 앵커 형태의 임펠러를 이용하여 70 rpm에서 30분간 혼합처리하였다. 이후, 암모니아수를 가하여 pH를 9.4로 조정한 후 4시간 동안 유지시켰다. 이후 여과 및 수세하고 스프레이 드라이어를 이용하여 건조시킴으로써 백색의 미분을 회수하였다. After methyltrichlorosilane was mixed with methyltrichlorosilane to a concentration of 6,000 ppm, 280 g of the mixed solution was mixed with 1,720 g of ion-exchanged water. Thereafter, the mixed solution was added to the glass reactor and mixed for 30 minutes at 70 rpm using a general anchor impeller. Then, the pH was adjusted to 9.4 by addition of ammonia water and maintained for 4 hours. Thereafter, white fine powder was recovered by filtration, washing with water and drying with a spray dryer.

비교예 5Comparative Example 5

메틸트리메톡시실란에 메틸트리클로로실란을 50 ppm의 농도가 되도록 혼합한 후, 이 혼합액 280 g을 이온교환수 1,720 g과 혼합하였다. 이후, 방해판이 장착된 유리반응기에 혼합액을 투입하고 반응기 내경의 60% 길이의 폭을 갖는 평판형 임펠러를 이용하여 70 rpm에서 30분간 혼합처리하였다. 이후, 암모니아수를 가하여 pH를 9.5로 조정한 후 4시간 동안 유지시켰다. 이후 여과 및 수세하고 스프레이 드라이어를 이용하여 건조시킴으로써 백색의 미분을 회수하였다. After methyltrichlorosilane was mixed with methyltrichlorosilane to a concentration of 50 ppm, 280 g of the mixed solution was mixed with 1,720 g of ion-exchanged water. Thereafter, the mixed solution was added to a glass reactor equipped with a baffle plate and mixed for 30 minutes at 70 rpm using a plate-type impeller having a width of 60% of the inner diameter of the reactor. Then, the pH was adjusted to 9.5 by adding ammonia water, and then maintained for 4 hours. Thereafter, white fine powder was recovered by filtration, washing with water and drying with a spray dryer.

비교예 6Comparative Example 6

메틸트리메톡시실란에 메틸트리클로로실란을 6,000 ppm의 농도가 되도록 혼합한 후, 이 혼합액 280 g을 이온교환수 1,720 g과 혼합하였다. 이후, 방해판이 장착된 유리반응기에 혼합액을 투입하고 반응기 내경의 60% 길이의 폭을 갖는 평판형 임펠러를 이용하여 70 rpm에서 30분간 혼합처리한 결과, 반응액 전체가 점성이 높은 겔 형태로 변화하여 미립자를 얻을 수 없었다.After methyltrichlorosilane was mixed with methyltrichlorosilane to a concentration of 6,000 ppm, 280 g of the mixed solution was mixed with 1,720 g of ion-exchanged water. Thereafter, the mixed solution was added to a glass reactor equipped with a baffle plate and mixed for 30 minutes at 70 rpm using a plate-type impeller having a width of 60% of the inner diameter of the reactor. To obtain fine particles.

상기의 과정을 거쳐 얻어진 미립자들은 아래와 같은 방법들을 통하여 물성을 평가하여 표 1에 나타내었다.The fine particles obtained through the above process are shown in Table 1 by evaluating the physical properties through the following method.

(1) 평균입경 및 단분산도: 회수된 미립자를 물에 재분산시킨 후, 1 ㎛ 이상의 입경영역은 Beckman Coulter Multisizer를 사용하여 분석하였으며, 1 ㎛ 이하의 입경영역은 Malvern size analyzer를 사용하여 분석하였다. 단분산도는 표준편차를 평균입경으로 나누어 정의한 C.V. 값에 의해 표현하였다.(1) Average particle size and monodispersity: After redispersing the recovered fine particles in water, the particle size area over 1 μm was analyzed using Beckman Coulter Multisizer, and the particle size area under 1 μm was analyzed using Malvern size analyzer. It was. Monodispersity is defined by dividing the standard deviation by the mean particle diameter. Expressed by value.

(2) 확산효율: 폴리스티렌 수지 100 중량부에 Rohm & Hass 사의 EXL-5136 1 중량부와, 상기 실시예 및 비교예에서 회수된 미립자 1중량부를 φ=45mm인 이축 압출기를 사용하여 혼합함으로써 펠렛을 제조하고, 10 oz 사출기에서 성형온도 210 ℃ 에서 두께 1.5 mm의 평판 시편을 제조하였다. 제조된 평판 시편을 이용하여 투과율, 헤이즈를 평가하였다.(2) Diffusion Efficiency: Pellets were mixed by mixing 100 parts by weight of polystyrene resin with 1 part by weight of EXL-5136 by Rohm & Hass, and 1 part by weight of the fine particles recovered in the examples and comparative examples using a twin screw extruder having a diameter of 45 mm. A flat specimen of 1.5 mm thickness was prepared at a molding temperature of 210 ° C. in a 10 oz injection machine. Transmittance and haze were evaluated using the prepared flat specimens.

(3) 휘도 및 내광성: 상기의 방법과 동일하게 제조된 평판 시편을 이용하여 휘도를 평가하였다. 또한 색차계를 이용하여 초기 YI를 측정한 후, 24시간 동안 자외선 조사 후 YI를 측정하여 이 변화값으로부터 △YI를 계산하여 내광성을 평가하였다. (3) Luminance and light resistance: Luminance was evaluated using a flat plate specimen prepared in the same manner as above. In addition, after measuring the initial YI using a color difference meter, YI was measured after ultraviolet irradiation for 24 hours, and ΔYI was calculated from this change value to evaluate light resistance.

Figure 112006086187910-pat00001
Figure 112006086187910-pat00001

상기 표 1의 실시예 1∼7에서 나타난 바와 같이, 메틸트리클로로실란과 메틸트리메톡시실란의 혼합물을 고효율의 혼합기로 혼합한 후 pH 8∼11로 조절하여 폴리오가노실세스퀴옥산 미립자를 제조하는 경우, 공정 조건의 조절에 의해 0.1∼10 ㎛의 미립자를 단시간에 용이하게 제조할 수 있었다. 특히, 평균입경 2.5∼3.5 ㎛의 폴리메틸실세스퀴옥산 미립자를 확산판의 확산제로 사용하는 경우, 확산특성과 휘도 특성이 가장 균형적으로 우수하게 발현되었으며, YI 및 내광특성이 우수함을 실시예 2와 6을 통해서 확인할 수 있었다. As shown in Examples 1 to 7 of Table 1, a mixture of methyltrichlorosilane and methyltrimethoxysilane was mixed with a high efficiency mixer, and then adjusted to pH 8-11 to prepare polyorganosilsesquioxane fine particles. In this case, by controlling the process conditions, fine particles of 0.1 to 10 탆 could be easily produced in a short time. Particularly, when polymethylsilsesquioxane fine particles having an average particle diameter of 2.5 to 3.5 µm were used as the diffusion agent for the diffusion plate, the diffusion characteristics and the luminance characteristics were expressed in the most balanced manner, and the YI and the light resistance characteristics were excellent. Through 2 and 6 it was confirmed.

본 발명은 오가노트리알콕시실란과 물의 혼합물을 고효율의 혼합기를 사용하여 반응속도를 조절하여 단시간 내에 투명한 졸을 제조함으로써 폴리오가노실세스퀴옥산 미립자를 간편하고 저렴하게 제조할 수 있는 방법을 제공하고, 확산제로 사용시 우수한 휘도 및 내광 특성을 발현하는 폴리오가노실세스퀴옥산 미립자를 제공하며, 이 폴리오가노실세스퀴옥산 미립자를 함유하는 열가소성 수지 조성물을 제공하는 발명의 효과를 갖는다. The present invention provides a method for easily and inexpensively preparing polyorganosilsesquioxane fine particles by preparing a transparent sol in a short time by controlling a reaction rate of a mixture of organotrialkoxysilane and water using a high efficiency mixer. The present invention provides polyorganosilsesquioxane microparticles that exhibit excellent brightness and light resistance when used as a diffusing agent, and has the effect of providing a thermoplastic resin composition containing the polyorganosilsesquioxane microparticles.

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (11)

(a) 오가노클로로실란이 100∼2,000 ppm의 농도가 되도록 오가노트리알콕시실란과 혼합하고;(a) mixed with organotrialkoxysilane such that the organochlorosilane is at a concentration of 100-2,000 ppm; (b) 상기 혼합물에 물을 혼합하여 투명한 졸을 얻고; 그리고 (b) mixing water into the mixture to obtain a clear sol; And (c) 상기 혼합액의 pH를 8∼11로 유지시키는;(c) maintaining the pH of the mixed solution at 8-11; 단계를 포함하는 것을 특징으로 하는 폴리오가노실세스퀴옥산 미립자의 제조방법. Method for producing a polyorganosilsesquioxane microparticles comprising the step. 제1항에 있어서, 상기 오가노트리알콕시실란은 하기식 (1)과 같이 표시되는 것을 특징으로 하는 폴리오가노실세스퀴옥산 미립자의 제조방법:The method for producing polyorganosilsesquioxane fine particles according to claim 1, wherein the organotrialkoxysilane is represented by the following formula (1): R1Si(OR2)3 (1)R 1 Si (OR 2 ) 3 (1) 상기식에서 R1은 탄소수 1∼6의 알킬기, 비닐기, 또는 아릴기, R2는 탄소수 1~5의 알킬기를 나타냄.In the formula, R 1 represents an alkyl group having 1 to 6 carbon atoms, a vinyl group, or an aryl group, and R 2 represents an alkyl group having 1 to 5 carbon atoms. 제2항에 있어서, 상기 식 (1)의 오가노트리알콕시실란은 전체 반응액에 대하여 5∼50 중량%를 사용하는 것을 특징으로 하는 폴리오가노실세스퀴옥산 미립자의 제조방법.The method for producing polyorganosilsesquioxane fine particles according to claim 2, wherein the organotrialkoxysilane of the formula (1) is used in an amount of 5 to 50% by weight based on the total reaction solution. 제1항에 있어서, 상기 오가노클로로실란은 하기식 (2)와 같이 표시되는 것을 특징으로 하는 폴리오가노실세스퀴옥산 미립자의 제조방법:The method for preparing polyorganosilsesquioxane fine particles according to claim 1, wherein the organochlorosilane is represented by the following formula (2): R1Si(OR2)3-xClx (2)R 1 Si (OR 2 ) 3-x Cl x (2) 상기식에서 R1은 탄소수 1∼6의 알킬기, 비닐기, 또는 아릴기, R2는 탄소수 1~5의 알킬기를 나타내며, x는 1∼3의 범위임.In formula, R <1> represents a C1-C6 alkyl group, a vinyl group, or an aryl group, R <2> represents a C1-C5 alkyl group, and x is a range of 1-3. 제1항에 있어서, 상기 오가노클로로실란은 오가노트리클로로실란인 것을 특징으로 하는 폴리오가노실세스퀴옥산 미립자의 제조방법.The method for producing polyorganosilsesquioxane fine particles according to claim 1, wherein the organochlorosilane is organotrichlorosilane. 제1항에 있어서, 상기 (c) 단계 후에 상기 반응액을 여과, 수세 및 건조 과 정을 거쳐 평균입경 0.1∼10 ㎛의 미립자를 얻는 것을 특징으로 하는 폴리오가노실세스퀴옥산 미립자의 제조 방법.The method for producing polyorganosilsesquioxane fine particles according to claim 1, wherein after the step (c), the reaction solution is filtered, washed with water and dried to obtain fine particles having an average particle size of 0.1 to 10 µm. 제1항에 있어서, 상기 혼합물과 물의 혼합은 호모믹서, 호모게나이져, 마이크로플루이다이져를 단독 내지는 조합해서 사용하거나, 반응기 지름의 50% 이상의 폭을 갖는 평판형 임펠러 및 반응기 길이 방향의 복수개의 방해판으로 구성된 교반설비를 사용하는 것을 특징으로 하는 폴리오가노실세스퀴옥산 미립자의 제조 방법.The method of claim 1, wherein the mixture is mixed with water by using a homomixer, a homogenizer, a microfluidizer alone or in combination, or a plate-type impeller having a width of 50% or more of a reactor diameter, and a plurality of reactor lengthwise directions. A method for producing polyorganosilsesquioxane fine particles, which comprises using a stirring device composed of a baffle plate. 제1항 내지 제7항의 어느 한 방법에 의하여 제조되고 0.1∼10 ㎛ 크기의 평균입경을 갖는 것을 특징으로 하는 폴리오가노실세스퀴옥산 미립자. Polyorganosilsesquioxane microparticles | fine-particles manufactured by the method of any one of Claims 1-7, and have an average particle diameter of 0.1-10 micrometers. 제8항에 있어서, 상기 미립자가 2.5∼3.5 ㎛ 범위의 평균입경을 갖고 열가소성 수지에 확산제로서 적용시 우수한 휘도 및 내광 특성을 발현하는 것을 특징으로 하는 폴리오가노실세스퀴옥산 미립자.9. The polyorganosilsesquioxane microparticles according to claim 8, wherein the microparticles have an average particle diameter in the range of 2.5 to 3.5 mu m and exhibit excellent brightness and light resistance properties when applied as a diffusion agent to a thermoplastic resin. 염화비닐계 수지, 스티렌계 수지, 스티렌-아크릴로니트릴계 수지, 아크릴계 수지, 아크릴-스티렌계 수지, 에스테르계 수지, ABS계 수지 및 폴리카보네이트 수지로 이루어지는 군으로부터 선택되는 열가소성 수지 및 제8항의 폴리오가노실세스퀴옥산 미립자를 포함하는 것을 특징으로 하는 열가소성 수지 조성물.A thermoplastic resin selected from the group consisting of vinyl chloride resins, styrene resins, styrene-acrylonitrile resins, acrylic resins, acrylic-styrene resins, ester resins, ABS resins, and polycarbonate resins, and the polio of claim 8. A thermoplastic resin composition comprising the organosilsesquioxane fine particles. 열가소성 수지 100 중량부에 대하여, 상기 제9항의 폴리오가노실세스퀴옥산 미립자 0.1∼10 중량부를 포함하는 것을 특징으로 하는 LCD-TV용 확산판.A diffusion plate for an LCD-TV comprising 0.1 to 10 parts by weight of the polyorganosilsesquioxane fine particles according to claim 9 with respect to 100 parts by weight of the thermoplastic resin.
KR1020060116549A 2006-11-23 2006-11-23 Silicone bead, method for preparing the same, and thermoplastic resin composition using the same KR100756676B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020060116549A KR100756676B1 (en) 2006-11-23 2006-11-23 Silicone bead, method for preparing the same, and thermoplastic resin composition using the same
TW096139803A TWI352710B (en) 2006-11-23 2007-10-24 Silicone fine particles, method for preparing the
US11/923,859 US7897714B2 (en) 2006-11-23 2007-10-25 Silicone fine particles, method for preparing the same, and thermoplastic resin composition using the same
JP2007288642A JP5410671B2 (en) 2006-11-23 2007-11-06 Silicon-based fine particles, method for producing the same, and thermoplastic resin composition containing the fine particles
DE102007055631.6A DE102007055631B4 (en) 2006-11-23 2007-11-21 Silicone fine particles, process for producing the same and thermoplastic resin composition using the same
CN2007101948054A CN101186699B (en) 2006-11-23 2007-11-22 Silicone fine particles, method for preparing the same, and thermoplastic resin composition using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060116549A KR100756676B1 (en) 2006-11-23 2006-11-23 Silicone bead, method for preparing the same, and thermoplastic resin composition using the same

Publications (1)

Publication Number Publication Date
KR100756676B1 true KR100756676B1 (en) 2007-09-07

Family

ID=38736942

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060116549A KR100756676B1 (en) 2006-11-23 2006-11-23 Silicone bead, method for preparing the same, and thermoplastic resin composition using the same

Country Status (6)

Country Link
US (1) US7897714B2 (en)
JP (1) JP5410671B2 (en)
KR (1) KR100756676B1 (en)
CN (1) CN101186699B (en)
DE (1) DE102007055631B4 (en)
TW (1) TWI352710B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008058427A1 (en) 2007-11-23 2009-05-28 Cheil Industries, Inc., Gumi Silicone particles having excellent hydrophobic and alkali-resistant properties, processes for their preparation and coating compositions using the same
KR20180090874A (en) * 2016-10-06 2018-08-13 와커 헤미 아게 Process for producing spherical polysilsesquioxane particles

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7192470B2 (en) * 2003-05-27 2007-03-20 Woodholdings Environmental, Inc. Preservative compositions for materials and method of preserving same
ES2313964T3 (en) * 2000-06-06 2009-03-16 Woodholdings Environmental, Inc. CONSERVANT COMPOSITIONS FOR WOOD PRODUCTS.
US7964031B2 (en) * 2000-06-06 2011-06-21 Dow Corning Corporation Compositions for treating materials and methods of treating same
US8721783B2 (en) * 2000-06-06 2014-05-13 Dow Corning Corporation Compositions for treating materials and methods of treating same
CN101438166A (en) * 2006-03-14 2009-05-20 俄勒冈健康科学大学 Methods for producing an immune response to tuberculosis
JP5223382B2 (en) * 2007-03-15 2013-06-26 株式会社リコー Organosilicone fine particles for electrostatic latent image developing toner, toner external additive, electrostatic charge image developing toner, electrostatic charge image developing developer, image forming method, and process cartridge
US20080276970A1 (en) * 2007-05-09 2008-11-13 John Christopher Cameron Apparatus and method for treating materials with compositions
JP5723090B2 (en) * 2009-09-15 2015-05-27 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and molded article comprising the same
WO2012099719A1 (en) 2011-01-18 2012-07-26 Dow Corning Corporation Method for treating substrates with halosilanes
KR102102104B1 (en) * 2012-11-28 2020-04-20 미츠비시 가스 가가쿠 가부시키가이샤 Aromatic polycarbonate resin composition, method for producing same, and molded article formed from aromatic polycarbonate resin composition
CN103724905B (en) * 2013-12-06 2016-03-23 江门市道生工程塑料有限公司 A kind of light diffusion PMMA/ABS alloy material and preparation method thereof
FR3054550B1 (en) 2016-07-29 2020-03-27 Arkema France (METH) ACRYLIC COMPOSITION COMPRISING PARTICLES, PROCESS FOR THE PREPARATION THEREOF AND ITS USE AS A MASTER MIXTURE
FR3054549B1 (en) 2016-07-29 2020-03-27 Arkema France (METH) ACRYLIC COMPOSITION COMPRISING PARTICLES, PROCESS FOR THE PREPARATION THEREOF, USE THEREOF AND OBJECT COMPRISING SAME
CN108368267B (en) 2016-09-27 2020-11-06 瓦克化学股份公司 Method for producing spherical polysilsesquioxane particles
FR3077297B1 (en) 2018-01-31 2020-11-06 Arkema France COMPOSITION OF ACRYLIC POLYMER (METH) CONSISTING OF PARTICLES, ITS PREPARATION PROCESS AND ITS USE AS A MASTER MIXTURE
FR3087776B1 (en) 2018-10-26 2021-07-30 Arkema France POLYMER COMPOSITION COMPRISING PARTICLES AND A COLORANT, ITS PREPARATION PROCESS AND ITS USE
FR3087778B1 (en) 2018-10-26 2021-07-23 Arkema France POLYMER COMPOSITION SUITABLE FOR INJECTION MOLDING CONSISTING OF PARTICLES AND A COLORANT, ITS PREPARATION PROCESS AND ITS USE
FR3087777B1 (en) 2018-10-26 2021-10-01 Arkema France COMPOSITION OF POLYMER INCLUDING COLORANTS, ITS PREPARATION PROCESS, ITS USE AND PURPOSE INCLUDING THE SAME
EP4089132B1 (en) * 2020-05-13 2024-03-27 SHPP Global Technologies B.V. Polycarbonate copolymer and associated film extrusion composition, extruded film, and capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950018200A (en) * 1993-12-28 1995-07-22 카나가와 치히로 Silicon Fine Particles and Manufacturing Method Thereof
KR20000063142A (en) * 2000-02-17 2000-11-06 이응찬 Starting materials for manufacturing polyorganosilsesquioxanes, polyorganosilsesquioxanes and method for manufacturing polyorganosilsesquioxanes
KR20010074514A (en) * 2000-01-13 2001-08-04 추후보정 Spherical silicone fine particles and process for producing the same
KR20010082738A (en) * 2000-02-17 2001-08-30 이응찬 Polyorganosilsesquioxane and process for preparing the same
KR20010082739A (en) * 2000-02-17 2001-08-30 이응찬 Polyorganosilsesquioxane and process for preparing the same

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3624030A (en) * 1969-02-26 1971-11-30 Soc Ind Des Silicones Organosilsesquioxanes
US3666830A (en) * 1971-01-21 1972-05-30 Gen Electric Lead compound catalyzed siloxane resin system
US3839280A (en) * 1971-07-28 1974-10-01 Gen Electric Curable siloxane resin compositions
US3792012A (en) * 1972-03-17 1974-02-12 Gen Electric Silicone resin useful in molding compositions
JPS5472300A (en) * 1977-11-21 1979-06-09 Shin Etsu Chem Co Ltd Preparation of polymethylsilsesquioxane
JPS6013813A (en) * 1983-07-05 1985-01-24 Toshiba Silicone Co Ltd Preparation of polymethylsilsesquioxane
JPS61159427A (en) * 1984-12-29 1986-07-19 Toshiba Silicone Co Ltd Polyorganosiloxane composition for surface treatment
JPS6243424A (en) * 1985-08-20 1987-02-25 Shin Etsu Chem Co Ltd Production of silsesquioxane emulsion
JPS6377940A (en) 1986-09-19 1988-04-08 Toshiba Silicone Co Ltd Perfectly spherical polymethylsilsesquioxane powder and production thereof
JPH0751634B2 (en) * 1986-10-20 1995-06-05 東芝シリコ−ン株式会社 Surface-treated spherical polymethylsilsesquioxane powder
JPH0651614B2 (en) * 1987-05-29 1994-07-06 東芝シリコ−ン株式会社 Makeup cosmetics
JPH0195382A (en) 1987-10-08 1989-04-13 Oki Electric Ind Co Ltd Automatic paper money defraying apparatus
JPH01185367A (en) * 1988-01-18 1989-07-24 Toshiba Silicone Co Ltd Surface-treated polymethylsilsesquioxane powder
JPH0618879B2 (en) 1988-02-26 1994-03-16 東芝シリコーン株式会社 Polyorganosilsesquioxane fine particles
JP2532124B2 (en) * 1988-04-19 1996-09-11 東芝シリコーン株式会社 Marine organism adhesion preventive agent
JP2580315B2 (en) * 1989-02-09 1997-02-12 信越化学工業 株式会社 Method for producing polymethylsilsesquioxane powder
JPH03207743A (en) * 1990-01-09 1991-09-11 Mitsubishi Rayon Co Ltd Methacrylic resin molded material having excellent transmittance and diffusibility of light
JPH0488022A (en) * 1990-07-30 1992-03-19 Toray Ind Inc Production of spherical fine silicone particle
JPH0488023A (en) * 1990-07-30 1992-03-19 Toray Ind Inc Production of spherical fine silicone particle
JPH0649209A (en) * 1992-07-31 1994-02-22 Toray Ind Inc Production of spherical silicone fine particle
JPH0673296A (en) * 1992-08-28 1994-03-15 Asahi Chem Ind Co Ltd Light-diffusing resin composition excellent in optical transmission and its molding
JP3263795B2 (en) * 1992-12-24 2002-03-11 日本ジーイープラスチックス株式会社 Light-diffusing polycarbonate resin composition
US5372879A (en) * 1993-02-22 1994-12-13 Teijin Limited Biaxially oriented polyester film
JP3599358B2 (en) * 1993-08-06 2004-12-08 ジーイー東芝シリコーン株式会社 Composition for coating
US5712072A (en) * 1995-02-28 1998-01-27 Canon Kabusbiki Kaisha Toner for developing electrostatic image
US5622806A (en) * 1995-12-21 1997-04-22 Xerox Corporation Toner aggregation processes
JPH1045914A (en) 1996-08-01 1998-02-17 Toshiba Silicone Co Ltd Production of spherical polyorganosilsesquioxane powder
US5801262A (en) * 1997-06-30 1998-09-01 General Electric Company Process for preparing polysiloxane microspheres with a narrow size distribution
US5936031A (en) * 1998-01-30 1999-08-10 Eastman Kodak Company Preparation of polyalkylsilsesquioxane particles
KR100592008B1 (en) * 1998-08-12 2006-06-21 신에쓰 가가꾸 고교 가부시끼가이샤 Process for preparing organopolysiloxane emulsion
JP2001066701A (en) * 1999-08-25 2001-03-16 Mitsubishi Rayon Co Ltd Optical diffusing sheet and transmission type screen
JP3970449B2 (en) 1998-12-21 2007-09-05 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Method for producing spherical polymethylsilsesquioxane fine particles
JP3717379B2 (en) * 2000-08-02 2005-11-16 信越化学工業株式会社 Method for producing spherical silicone resin fine particles
JP2003066209A (en) * 2001-08-28 2003-03-05 Nitto Denko Corp Light diffusing sheet, optical element and display device
JP4521852B2 (en) * 2001-08-28 2010-08-11 日東電工株式会社 Light diffusing sheet, optical element and display device
CN1230462C (en) * 2002-01-10 2005-12-07 中国石油化工股份有限公司 Prepn of phenyl and methyl sesquisiloxane prepolymer
US6773787B2 (en) * 2002-05-01 2004-08-10 General Electric Company Light diffusing articles and methods to manufacture thereof
TWI338701B (en) * 2002-09-30 2011-03-11 Nippon Steel Chemical Co Cage-type silsesquioxanes resin cotaining functional group and manufacture method thereof
WO2005093521A1 (en) * 2004-03-25 2005-10-06 Canon Kabushiki Kaisha Process for producing toner particle and toner
US7297380B2 (en) * 2005-05-20 2007-11-20 General Electric Company Light-diffusing films, backlight display devices comprising the light-diffusing films, and methods of making the same
US20060270773A1 (en) * 2005-05-26 2006-11-30 Hale Wesley R Polyester-polycarbonate blends for diffuser sheets with improved luminance
US7582214B2 (en) * 2005-06-20 2009-09-01 Mcmaster University Methods for forming macroporous monolithic methylsilsesquioxanes
US20060290253A1 (en) * 2005-06-23 2006-12-28 Fusion Optix, Inc. Enhanced Diffusing Plates, Films and Backlights
US20070286837A1 (en) * 2006-05-17 2007-12-13 Torgerson Peter M Hair care composition comprising an aminosilicone and a high viscosity silicone copolymer emulsion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950018200A (en) * 1993-12-28 1995-07-22 카나가와 치히로 Silicon Fine Particles and Manufacturing Method Thereof
KR20010074514A (en) * 2000-01-13 2001-08-04 추후보정 Spherical silicone fine particles and process for producing the same
KR20000063142A (en) * 2000-02-17 2000-11-06 이응찬 Starting materials for manufacturing polyorganosilsesquioxanes, polyorganosilsesquioxanes and method for manufacturing polyorganosilsesquioxanes
KR20010082738A (en) * 2000-02-17 2001-08-30 이응찬 Polyorganosilsesquioxane and process for preparing the same
KR20010082739A (en) * 2000-02-17 2001-08-30 이응찬 Polyorganosilsesquioxane and process for preparing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008058427A1 (en) 2007-11-23 2009-05-28 Cheil Industries, Inc., Gumi Silicone particles having excellent hydrophobic and alkali-resistant properties, processes for their preparation and coating compositions using the same
KR20180090874A (en) * 2016-10-06 2018-08-13 와커 헤미 아게 Process for producing spherical polysilsesquioxane particles
KR102091457B1 (en) 2016-10-06 2020-03-23 와커 헤미 아게 Method for producing spherical polysilsesquioxane particles

Also Published As

Publication number Publication date
TWI352710B (en) 2011-11-21
JP5410671B2 (en) 2014-02-05
US7897714B2 (en) 2011-03-01
TW200831564A (en) 2008-08-01
US20080124549A1 (en) 2008-05-29
DE102007055631B4 (en) 2016-03-10
DE102007055631A1 (en) 2008-05-29
CN101186699B (en) 2012-11-21
JP2008127564A (en) 2008-06-05
CN101186699A (en) 2008-05-28

Similar Documents

Publication Publication Date Title
KR100756676B1 (en) Silicone bead, method for preparing the same, and thermoplastic resin composition using the same
KR920010084B1 (en) Silica-core silicone-shell particles emulsion containing the same dispersed therein and process for producing the emulsion
CN100381484C (en) Process for preparing core-shell type polysiloxane composite particles
US9051490B2 (en) Method for producing hollow silicone fine particles
JPH04277507A (en) Elastomeric particulate copolymer having core-shell structure and preparation thereof
EP2075277A2 (en) Silicone resin composition
TW201800447A (en) Method for producing spherical polymethylphenylsilsesquioxane particles
JP2008156644A (en) Silicone fine particle which is excellent in brightness and light resistance, method for producing the same, and light diffusion plate using the same
KR20020020259A (en) Water base coating material composition and production process thereof
JP4489381B2 (en) Organosiloxane oligomer and method for producing the same
JP5147095B2 (en) Silica-based filler and transparent resin composition containing the same
KR101226888B1 (en) Silicone Bead with Excellent Hydrophobic and Alkaliproof Properties, Method for Preparing the Same and Coating Composition Using the Same
CN107667142B (en) Light diffusing powder and method of making same
KR101827053B1 (en) Light diffusion particle and light diffusion sheet comprising the same
JP4850893B2 (en) Composition for silicone resin
JP2000226486A (en) Light diffusible acrylic resin composition
EP0651008B1 (en) Heat-curing organopolysiloxane composition
KR100837090B1 (en) Light diffusing particle, method for preparing the same and light-diffusing plate using the same
JPH04110351A (en) Aqueous silicone emulsion composition and production of silicone powder by using same
WO2007061032A1 (en) Deformed silicone particle and process for production thereof
JPH0791461B2 (en) Aqueous silicone emulsion and method for producing the same
JPH08337413A (en) Silica particles and their production
CN105331032A (en) TPE composition and automobile protective film prepared through same
KR20160059244A (en) Resin composition for light diffusion
KR101695512B1 (en) Silicone elastomer particles and method for preparing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130607

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140605

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150825

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160803

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170824

Year of fee payment: 11