JPH0618879B2 - Polyorganosilsesquioxane fine particles - Google Patents

Polyorganosilsesquioxane fine particles

Info

Publication number
JPH0618879B2
JPH0618879B2 JP63042303A JP4230388A JPH0618879B2 JP H0618879 B2 JPH0618879 B2 JP H0618879B2 JP 63042303 A JP63042303 A JP 63042303A JP 4230388 A JP4230388 A JP 4230388A JP H0618879 B2 JPH0618879 B2 JP H0618879B2
Authority
JP
Japan
Prior art keywords
group
fine particles
polyorganosilsesquioxane
reaction
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63042303A
Other languages
Japanese (ja)
Other versions
JPH01217039A (en
Inventor
博 木村
健司 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Japan LLC
Original Assignee
Toshiba Silicone Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Silicone Co Ltd filed Critical Toshiba Silicone Co Ltd
Priority to JP63042303A priority Critical patent/JPH0618879B2/en
Priority to GB8904201A priority patent/GB2216535B/en
Priority to DE3905785A priority patent/DE3905785C2/en
Priority to IT8947687A priority patent/IT1230485B/en
Priority to FR8902442A priority patent/FR2627773B1/en
Priority to KR1019890002525A priority patent/KR930006260B1/en
Publication of JPH01217039A publication Critical patent/JPH01217039A/en
Publication of JPH0618879B2 publication Critical patent/JPH0618879B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes

Description

【発明の詳細な説明】 [発明の技術分野] 本発明はポリオルガノシルセスキオキサン微粒子に関
し、さらに詳しくは、ケイ素原子に結合可能な有機基の
範囲が広く、粒子径が非常に小さく、かつ粒子の形状が
球状で、その粒子径がよく揃ったポリオルガノシルセス
キオキサン微粒子に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to polyorganosilsesquioxane fine particles, and more specifically, it has a wide range of organic groups that can be bonded to silicon atoms, has a very small particle size, and The present invention relates to polyorganosilsesquioxane fine particles having a spherical shape and a uniform particle diameter.

[発明の技術的背景とその問題点] 従来、ポリオルガノシルセスキオキサン粉末を得る方法
として、オルガノトリクロロシラン、オルガノトリアル
コキシシランのような3官能性シランをアルカリの水溶
液中で反応させる方法が知られている。例えば、ベルギ
ー国特許第572,412号公報には、メチルトリクロ
ロシランを噴霧水中で加水分解させるか、または多量の
水中に撹拌しながら滴下して加水分解させ、固体状のポ
リメチルシルセスキオキサンを得る方法が開示されてい
る。
[Technical background of the invention and its problems] Conventionally, as a method of obtaining a polyorganosilsesquioxane powder, a method of reacting a trifunctional silane such as organotrichlorosilane and organotrialkoxysilane in an alkaline aqueous solution has been proposed. Are known. For example, in Belgian Patent No. 572,412, methyltrichlorosilane is hydrolyzed in spray water or is added dropwise to a large amount of water while stirring to hydrolyze the solid polymethylsilsesquioxane. Is disclosed.

しかしこの方法では、加水分解反応時の発熱量が大き
く、多量の塩化水素が副成するので装置が腐食されると
いう問題のほか、生成したポリメチルシルセスキオキサ
ン粉末とともに副成した塩化水素と未加水分解のメチル
トリクロロシランが残ることから、比較的多量の塩素原
子が残存するという問題点がある。
However, in this method, the amount of heat generated during the hydrolysis reaction is large and a large amount of hydrogen chloride is by-produced, so the equipment is corroded, and in addition to the hydrogen chloride by-produced with the polymethylsilsesquioxane powder produced. Since unhydrolyzed methyltrichlorosilane remains, there is a problem that a relatively large amount of chlorine atoms remain.

上記の問題点を解決する方法として、特開昭54−72
300号公報には、塩素量が0.1〜5.0重量%であ
るメチルトリアルコキシシランおよび/またはその部分
加水分解物を、アルカリ土類金属水酸化物またはアルカ
リ金属炭酸塩を含む水溶液中で、加水分解・縮合させる
方法が開示されている。
As a method for solving the above-mentioned problems, JP-A-54-72
No. 300 publication discloses that methyltrialkoxysilane and / or its partial hydrolyzate having a chlorine content of 0.1 to 5.0% by weight in an aqueous solution containing an alkaline earth metal hydroxide or an alkali metal carbonate. Discloses a method of hydrolysis / condensation.

しかし、この方法では生成するポリメチルシルセスキオ
キサン粉末とともにアルカリ土類金属やアルカリ金属が
比較的多量に残存するので各種合成樹脂用充填剤などと
して利用する場合、吸湿しやすいという問題点がある。
またこの方法では、原料のメチルトリアルコキシシラン
および/またはその部分加水分解物の塩素量を予め0.
1〜0.5重量%に調整しなければならないという問題
点もある。
However, in this method, since a relatively large amount of alkaline earth metal and alkali metal remain together with the polymethylsilsesquioxane powder produced, when used as a filler for various synthetic resins, there is a problem that it tends to absorb moisture. .
Further, in this method, the chlorine amount of the raw material methyltrialkoxysilane and / or its partial hydrolyzate is adjusted to 0.
There is also a problem in that it must be adjusted to 1 to 0.5% by weight.

本発明者の一人は、先にメチルトリアルコキシシランお
よび/またはその部分加水分解縮合物を該シランおよび
/またはその部分加水分解縮合物中に存在する塩素原子
を中和するのに十分な量に触媒としての量を加えた量の
アンモニアまたはアミンの水溶液中で加水分解・縮合さ
せることによって、上記の問題点を解決し、自由流動性
に優れたポリメチルシルセスキオキサン粉末を得る技術
を提案している(特開昭60−13813号公報参
照)。
One of the inventors of the present invention has previously prepared methyltrialkoxysilane and / or its partial hydrolysis-condensation product in an amount sufficient to neutralize chlorine atoms present in the silane and / or its partial hydrolysis-condensation product. Proposed a technology to solve the above problems and obtain polymethylsilsesquioxane powder with excellent free-flowing property by hydrolyzing and condensing in an aqueous solution of ammonia or amine with an amount added as a catalyst. (See JP-A-60-13813).

さらに本発明者の一人は、メチルトリアルコキシシラン
および/またはその部分加水分解縮合物またはメチルト
リアルコキシシランおよび/またはその部分加水分解縮
合物と有機溶剤との混合液を上層にし、アンモニアおよ
び/またはアミンと有機溶剤との混合液を下層にして、
これらの界面でメチルトリアルコキシシランおよび/ま
たはその部分加水分解縮合物を加水分解・縮合させて、
粒子の形状が各々独立した真球状であり、粒度分布が平
均粒子径の±30%の範囲であるポリメチルシルセスキ
オキサン粉末を製造し得ることを見出した(特開昭63
−77940号公報参照)。
Further, one of the inventors of the present invention is to provide an upper layer of methyltrialkoxysilane and / or a partial hydrolysis-condensation product thereof or a mixture of methyltrialkoxysilane and / or a partial hydrolysis-condensation product thereof and an organic solvent, and to add ammonia and / or A mixture of amine and organic solvent is the lower layer,
By hydrolyzing and condensing methyltrialkoxysilane and / or its partial hydrolysis-condensation product at these interfaces,
It has been found that a polymethylsilsesquioxane powder in which the shape of each particle is an independent spherical shape and the particle size distribution is within a range of ± 30% of the average particle diameter can be produced (JP-A-63).
-77940).

さらに本発明者らは、上記の反応において、メチルトリ
アルコキシシランおよび/またはその部分加水分解物の
使用量を水の重量の1/10以下とすること、とくにアンモ
ニアおよび/またはアミンの濃度を0.01〜5重量%
とすることにより、平均粒子径が0.05〜0.8μm
の球状ポリメチルシルセスキオキサン粉末が得られるこ
とを見出した(特開昭63−295637号公報参
照)。
Furthermore, the inventors of the present invention set the amount of methyltrialkoxysilane and / or its partial hydrolyzate to be 1/10 or less of the weight of water in the above reaction, and particularly, the concentration of ammonia and / or amine should be 0. 0.01 to 5% by weight
The average particle size is 0.05 to 0.8 μm
It was found that the spherical polymethylsilsesquioxane powder of No. 6 was obtained (see JP-A-63-295637).

このような方法で得られたポリメチルシルセスキオキサ
ン粉末は、粒子の形状が球状で、粒子径が小さく、疎水
性が高く、凝集性が小さく、比重が小さいという特徴を
もつうえに、粒子径の揃ったものが得られるという利点
がある。それゆえ、塗料、プラスチック、ゴム、化粧
品、紙などの改質用添加剤としても用いられている。
The polymethylsilsesquioxane powder obtained by such a method is characterized in that the particle shape is spherical, the particle size is small, the hydrophobicity is high, the cohesiveness is small, and the specific gravity is small. There is an advantage that products with a uniform diameter can be obtained. Therefore, it is also used as an additive for modifying paints, plastics, rubbers, cosmetics, paper and the like.

しかし、このような製造方法において、ケイ素原子に結
合した有機基はメチル基に限定され、メチル基以外の有
機基をもつオルガノトリアルコキシシランから直接ポリ
オルガノシルセスキオキサン粉末を得ようとしても、粒
子径の揃った微粒子を収率よく得ることはできない。そ
のため、屈折率の高い透明プラスチックに添加しても透
明性を保つような、任意の高い屈折率を有するポリオル
ガノシルセスキオキサン粉末を得ようとする場合、また
はフィルムに添加した場合にフィルム面が擦れあっても
傷つかないように硬さを調整したポリオルガノシルセス
キオキサン粉末を得ようとする場合など、分子中のケイ
素原子に結合した有機基の一部または全部としてメチル
基以外の基を導入しようとする試みは成功していなかっ
た。
However, in such a production method, the organic group bonded to the silicon atom is limited to a methyl group, even if it is attempted to directly obtain a polyorganosilsesquioxane powder from an organotrialkoxysilane having an organic group other than a methyl group, Fine particles having a uniform particle size cannot be obtained in good yield. Therefore, when trying to obtain a polyorganosilsesquioxane powder having an arbitrary high refractive index such that the transparency is maintained even when it is added to a transparent plastic having a high refractive index, or when it is added to a film, the film surface When it is desired to obtain a polyorganosilsesquioxane powder whose hardness is adjusted so that it will not be damaged even if it is rubbed, a group other than a methyl group as a part or all of the organic groups bonded to the silicon atom in the molecule, etc. Attempts to introduce the were unsuccessful.

また、ポリメチルシルセスキオキサン微粒子であって
も、その平均粒子径が0.05μm未満の小さなものは
未だ得られていない。
Further, even polymethylsilsesquioxane fine particles having a small average particle diameter of less than 0.05 μm have not yet been obtained.

[発明の目的] 本発明は、ケイ素原子に広範囲の有機基が結合した、球
状で粒子径が揃っており、かつその粒子径がきわめて小
さいものであるポリオルガノシルセスキオキサン微粒子
およびその製造方法を提供することを目的とする。
[Object of the Invention] The present invention is a polyorganosilsesquioxane fine particle in which a wide range of organic groups are bonded to silicon atoms, which are spherical and have a uniform particle diameter and whose particle diameter is extremely small, and a method for producing the same. The purpose is to provide.

[発明の構成] 本発明は、平均粒子径が0.01〜1μmのポリオルガ
ノシルセスキオキサン(ただし、ケイ素原子に結合する
炭化水素基は炭素数2〜6のアルキル基、シクロアルキ
ル基、アラルキル基、アリール基、アルケニル基および
置換アルキル基から選ばれた基、または上記の基とメチ
ル基との組合せである)微粒子に関する。
[Constitution of the Invention] The present invention relates to a polyorganosilsesquioxane having an average particle diameter of 0.01 to 1 μm (however, the hydrocarbon group bonded to a silicon atom is an alkyl group having 2 to 6 carbon atoms, a cycloalkyl group, A group selected from an aralkyl group, an aryl group, an alkenyl group and a substituted alkyl group, or a combination of the above group and a methyl group).

また本発明のポリオルガノシルセスキオキサン微粒子
は、一般式: RSi(OR (I) (式中、Rは炭素数2〜6のアルキル基、シクロアル
キル基、アラルキル基、アリール基、アルケニル基およ
び置換アルキル基から選ばれた基、または上記の基とメ
チル基との組合せであり、Rは置換または非置換のア
ルキル基を表す)で示されるオルガノトリアルコキシシ
ランを有機酸の存在下に加水分解して、一般式: RSi(OH) (II) (式中のRの意味は上記のとおりである) で示されるオルガノシラントリオールまたはその部分縮
合物を得る工程、 ついで、該オルガノシラントリオールまたはその部分縮
合物をアルカリの水溶液または該水溶液と有機溶媒との
混合液中で重縮合反応させる工程、を具備する方法によ
って製造される。
The polyorganosilsesquioxane fine particles of the present invention have the general formula: R 1 Si (OR 2 ) 3 (I) (wherein R 1 is an alkyl group having 2 to 6 carbon atoms, a cycloalkyl group, an aralkyl group, An organotrialkoxysilane represented by a group selected from an aryl group, an alkenyl group and a substituted alkyl group, or a combination of the above group and a methyl group, and R 2 represents a substituted or unsubstituted alkyl group). An organosilanetriol represented by the general formula: R 1 Si (OH) 3 (II) (wherein R 1 is as defined above) or a partial condensate thereof is hydrolyzed in the presence of an acid. A step of obtaining, and then a step of subjecting the organosilanetriol or a partial condensate thereof to a polycondensation reaction in an aqueous solution of an alkali or a mixed solution of the aqueous solution and an organic solvent. It is produced by.

本発明のポリオルガノシルセスキオキサン微粒子は、平
均粒子径が0.01〜1μmである。このポリオルガノ
シルセスキオキサン微粒子は、ケイ素原子に結合する炭
化水素基がメチル基以外のもの、またはメチル基以外の
炭化水素基とメチル基であるものであり、ケイ素原子に
結合する炭化水素基がメチル基のみのものは含まない。
The polyorganosilsesquioxane fine particles of the present invention have an average particle diameter of 0.01 to 1 μm. The polyorganosilsesquioxane fine particles have a hydrocarbon group bonded to a silicon atom other than a methyl group, or a hydrocarbon group other than a methyl group and a methyl group, and a hydrocarbon group bonded to a silicon atom. Does not include methyl groups alone.

本発明のポリオルガノシルセスキオキサン微粒子におい
てケイ素原子に結合する炭化水素基としては、例えば置
換または非置換の1価の炭化水素基を例示することがで
きる。具体的には、メチル基、エチル基、プロピル基、
ブチル基、ヘキシル基のようなアルキル基;シクロヘキ
シル基のようなシクロアルキル基;2−フェニルプロピ
ル基のようなアラルキル基;フェニル基、トリル基のよ
うなアリール基;ビニル基、アリル基のようなアルケニ
ル基;およびクロロメチル基、γ−クロロプロピル基、
γ−メタクリロキシプロピル基、γ−グリシドキシプロ
ピル基、3,4−エポキシシクロヘキシルエチル基、γ
−メルカプトプロピル基、3,3,3−トリフルオロプ
ロピル基のような置換炭化水素基を例示することができ
る。
Examples of the hydrocarbon group bonded to a silicon atom in the polyorganosilsesquioxane fine particles of the present invention include a substituted or unsubstituted monovalent hydrocarbon group. Specifically, a methyl group, an ethyl group, a propyl group,
Alkyl group such as butyl group and hexyl group; cycloalkyl group such as cyclohexyl group; aralkyl group such as 2-phenylpropyl group; aryl group such as phenyl group and tolyl group; vinyl group, allyl group An alkenyl group; and a chloromethyl group, a γ-chloropropyl group,
γ-methacryloxypropyl group, γ-glycidoxypropyl group, 3,4-epoxycyclohexylethyl group, γ
Examples thereof include substituted hydrocarbon groups such as a mercaptopropyl group and a 3,3,3-trifluoropropyl group.

以下において、ポリオルガノシルセスキオキサン微粒子
という場合は、特に断わらない限り、ケイ素原子に結合
する炭化水素基がメチル基以外のもの、メチル基以外の
ものとメチル基であるもの、およびメチル基のみのもの
を言うものとする。
In the following, when referring to polyorganosilsesquioxane fine particles, unless otherwise specified, a hydrocarbon group bonded to a silicon atom is other than a methyl group, a group other than a methyl group and a methyl group, and only a methyl group Shall be said.

本発明の製造方法は、2つの工程から構成される。The manufacturing method of the present invention comprises two steps.

本発明の製造方法の第1工程は、前記一般式(I)で示
されるオルガノトリアルコキシシランを有機酸の存在下
で加水分解して前記一般式(II)で示されるオルガノシ
ラントリオールまたはその部分縮合物を得る工程であ
る。
The first step of the production method of the present invention is to hydrolyze the organotrialkoxysilane represented by the general formula (I) in the presence of an organic acid to produce the organosilanetriol represented by the general formula (II) or a portion thereof. This is a step of obtaining a condensate.

前記一般式(I)中のRの置換または非置換の1価の
炭化水素基としては、上記したようにポリオルガノシル
セスキオキサン微粒子のケイ素原子に結合するものと同
一の1価の炭化水素基を例示することができる。
The substituted or unsubstituted monovalent hydrocarbon group represented by R 1 in the above general formula (I) is the same monovalent hydrocarbon group bonded to the silicon atom of the polyorganosilsesquioxane fine particles as described above. A hydrogen group can be exemplified.

これらの基のうちでも、平均粒子径が非常に小さく、か
つ粒子径の揃った球状のポリオルガノシルセスキオキサ
ン微粒子を得ることができるということからは、メチル
基、エチル基、プロピル基、ブチル基、ペンチル基、ヘ
キシル基、ビニル基またはフェニル基が好ましい。ま
た、化学的に安定で、かつ炭素官能性基により極性など
の特異な性質を生成物に与え、さらに粒子径が小さく、
かつ揃っている球状のポリオルガノシルセスキオキサン
微粒子を得ることができるということからは、γ−クロ
ロプロピル基、γ−メタクリロキシプロピル基、γ−グ
リシドキシプロピル基のような置換プロピル基;および
3,4-エポキシシクロヘキシルエチル基が好ましい。これ
らの基のうち、γ−グリシドキシプロピル基、3,4-エポ
キシシクロヘキシルエチル基のようなエポキシ環含有基
の場合は、加水分解反応の触媒である有機酸や重縮合反
応の触媒であるアルカリにより、一部のエポキシ環が開
環し、とくに後者の触媒としてアンモニアを用いるとき
は、開環反応により窒素含有基が生成するが、それは本
発明の目的を何ら損なうものではない。
Among these groups, the average particle size is very small, and from the fact that it is possible to obtain spherical polyorganosilsesquioxane fine particles having a uniform particle size, methyl group, ethyl group, propyl group, butyl A group, pentyl group, hexyl group, vinyl group or phenyl group is preferred. Further, it is chemically stable, and the carbon functional group imparts unique properties such as polarity to the product, and further, the particle size is small,
From the fact that it is possible to obtain spherical polyorganosilsesquioxane fine particles that are uniform, a substituted propyl group such as γ-chloropropyl group, γ-methacryloxypropyl group, γ-glycidoxypropyl group; and
The 3,4-epoxycyclohexylethyl group is preferred. Among these groups, in the case of an epoxy ring-containing group such as γ-glycidoxypropyl group and 3,4-epoxycyclohexylethyl group, it is an organic acid which is a catalyst for hydrolysis reaction or a catalyst for polycondensation reaction. Alkali opens some epoxy rings, especially when ammonia is used as the catalyst of the latter, the nitrogen-containing group is formed by the ring-opening reaction, but this does not impair the object of the present invention.

前記一般式(I)中のRの置換または非置換のアルキ
ル基としては、メチル基、エチル基、プロピル基、ブチ
ル基などのアルキル基;およびメトキシエチル基、エト
キシエチル基、ブトキシエチル基などの置換アルキル基
を例示することがでる。これらの中でも、反応速度の点
からメチル基、エチル基が好ましく、とくにメチル基が
好ましい。
Examples of the substituted or unsubstituted alkyl group represented by R 2 in the general formula (I) include an alkyl group such as a methyl group, an ethyl group, a propyl group and a butyl group; and a methoxyethyl group, an ethoxyethyl group, a butoxyethyl group and the like. The substituted alkyl group can be exemplified. Among these, a methyl group and an ethyl group are preferable from the viewpoint of reaction rate, and a methyl group is particularly preferable.

かかる前記一般式(I)で示されるオルガノトリアルコ
キシシランとしては、メチルトリメトキシシラン、メチ
ルトリエトキシシラン、メチルトリイソプロポキシシラ
ン、メチルトリス(メトキシエトキシ)シラン、エチル
トリメトキシシラン、ビニルトリメトキシシラン、ビニ
ルトリス(メトキシエトキシ)シラン、フェニルトリメ
トキシシラン、γ−クロロプロピルトリメトキシシラ
ン、γ−メタクリロキシプロピルトリメトキシシラン、
γ−グリシドキシプロピルトリメトキシシラン、3,4-エ
ポキシシクロヘキシルエチルトリメトキシシラン、γ−
メルカプトプロピルトリメトキシシランなどを例示する
ことができ、これらは1種類を用いても2種類以上を併
用しても差し支えない。
Examples of the organotrialkoxysilane represented by the general formula (I) include methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltris (methoxyethoxy) silane, ethyltrimethoxysilane, vinyltrimethoxysilane, Vinyltris (methoxyethoxy) silane, phenyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane,
γ-glycidoxypropyltrimethoxysilane, 3,4-epoxycyclohexylethyltrimethoxysilane, γ-
Examples thereof include mercaptopropyltrimethoxysilane, and these may be used alone or in combination of two or more.

第1工程の加水分解反応は、過剰の水に触媒となる有機
酸を溶解させた水溶液中において、オルガノトリアルコ
キシシランと有機酸とを、撹拌、混合等の方法で接触さ
せることにより行なう。
The hydrolysis reaction in the first step is carried out by bringing the organotrialkoxysilane and the organic acid into contact with each other by a method such as stirring and mixing in an aqueous solution in which an organic acid serving as a catalyst is dissolved in excess water.

このように触媒として有機酸を用いることは反応速度が
速いことと、最終的に得られるポリオルガノシルセスキ
オキサン微粒子の用途を制限するようなイオン性物質な
どの不純物を残さないか、もしくは残しても少量である
点から優れているものである。かかる有機酸としては、
ギ酸、酢酸、プロピオン酸、モノクロロ酢酸、シュウ
酸、クエン酸などを例示することができるが、少量で加
水分解の反応速度を上げ、かつ生成したポリオルガノシ
ラントリオールの部分縮合反応を抑制することからギ酸
および酢酸が好ましい。
Thus, using an organic acid as a catalyst has a high reaction rate, and leaves or does not leave impurities such as ionic substances that limit the use of the finally obtained polyorganosilsesquioxane fine particles. However, it is excellent because it is a small amount. As such an organic acid,
Formic acid, acetic acid, propionic acid, monochloroacetic acid, oxalic acid, citric acid and the like can be exemplified, but they increase the reaction rate of hydrolysis with a small amount and suppress the partial condensation reaction of the produced polyorganosilanetriol. Formic acid and acetic acid are preferred.

有機酸の使用量は、シランおよび有機酸の種類によって
も異なるが、オルガノトリアルコキシシランを加水分解
する場合に用いる水の量100重量部に対して1×10
−3〜1重量部が好ましく、5×10−3〜0.1重量
部がさらに好ましい。1×10−3重量部未満の場合に
は反応が十分に進行せず、1重量部を超える場合には不
純物中の酸基として系中に残存する濃度が高くなるばか
りでなく、生成したオルガノシラントリオールが縮合し
やすくなる。
The amount of the organic acid used varies depending on the types of the silane and the organic acid, but it is 1 × 10 5 relative to 100 parts by weight of water used for hydrolyzing the organotrialkoxysilane.
-3 to 1 part by weight is preferable, and 5 x 10 -3 to 0.1 part by weight is more preferable. When it is less than 1 × 10 −3 parts by weight, the reaction does not proceed sufficiently, and when it exceeds 1 part by weight, not only the concentration of acid groups in the impurities remaining in the system becomes high, but also the formed organo Silanetriol easily condenses.

加水分解反応に用いる水の量は、オルガノトリアルコキ
シシラン1モルに対して2〜10モルが好ましい。水の
量が2モル未満の場合には加水分解反応が十分に進行せ
ず、10モルを超える場合にはオルガノシラントリオー
ルの部分縮合物が析出してしまう。
The amount of water used for the hydrolysis reaction is preferably 2 to 10 mol per 1 mol of organotrialkoxysilane. When the amount of water is less than 2 mol, the hydrolysis reaction does not proceed sufficiently, and when it exceeds 10 mol, a partial condensate of organosilanetriol is precipitated.

加水分解時の温度はとくに制限されず、常温または加熱
状態で行なってもよいが、オルガノシラントリオールを
収率よく得るためには5〜60℃に保持した状態で反応
を行なわせることが好ましい。
The temperature at the time of hydrolysis is not particularly limited, and it may be carried out at room temperature or in a heated state, but in order to obtain the organosilanetriol in good yield, it is preferable to carry out the reaction in a state of being kept at 5 to 60 ° C.

本発明の製造方法の第2工程は、第1工程で得られたオ
ルガノシラントリオールまたはその部分縮合物から重縮
合反応によりポリオルガノシルセスキオキサン微粒子を
得る工程である。この第2工程の反応は、アルカリの水
溶液または該アルカリの水溶液と有機溶媒との混合液中
で行なう。
The second step of the production method of the present invention is a step of obtaining polyorganosilsesquioxane fine particles from the organosilanetriol obtained in the first step or a partial condensate thereof by a polycondensation reaction. The reaction of the second step is carried out in an aqueous solution of alkali or a mixed solution of the aqueous solution of alkali and an organic solvent.

アルカリは、その水溶液が塩基性を示すものであり、第
1工程で用いられた有機酸の中和剤として、また第2工
程の重縮合反応の触媒として作用するものである。かか
るアルカリとしては、水酸化リチウム、水酸化ナトリウ
ム、水酸化カリウムのようなアルカリ金属水酸化物;ア
ンモニア;およびモノメチルアミン、ジメチルアミンの
ような有機アミン類を例示することができる。これらの
なかでも、ポリオルガノシルセスキオキサン微粒子の用
途を制限するような微量の不純物を残さないことからア
ンモニアおよび有機アミン類が好ましく、さらには毒性
が低く、除去が容易なことからアンモニアがとくに好ま
しい。
The alkali is one whose aqueous solution exhibits basicity, and acts as a neutralizing agent for the organic acid used in the first step and as a catalyst for the polycondensation reaction in the second step. Examples of the alkali include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide; ammonia; and organic amines such as monomethylamine and dimethylamine. Among these, ammonia and organic amines are preferable because they do not leave a trace amount of impurities that limit the use of polyorganosilsesquioxane fine particles, and ammonia is particularly preferable because it has low toxicity and is easy to remove. preferable.

アルカリは、取り扱いや反応の制御が容易なことから水
溶液として用いる。
Alkali is used as an aqueous solution because it is easy to handle and control the reaction.

アルカリの使用量は、有機酸を中和し、重縮合反応の触
媒として有効に作用する量であり、例えばアルカリとし
てアンモニアを用いた場合には水または水と有機溶媒と
の混合物100重量部に対して0.05重量部以上を用
いる。
The amount of the alkali used is such an amount that neutralizes the organic acid and effectively acts as a catalyst for the polycondensation reaction. For example, when ammonia is used as the alkali, 100 parts by weight of water or a mixture of water and an organic solvent is added. On the other hand, 0.05 part by weight or more is used.

第2工程においてはアルカリの水溶液とともに有機溶媒
を併用することが、微粒子を得るためには好ましい。
In the second step, it is preferable to use an organic solvent together with an aqueous alkali solution in order to obtain fine particles.

かかる有機溶媒は水可溶性のものが好ましく、メタノー
ル、エタノール、n−プロパノール、イソプロパノー
ル、n−ブタノール、イソブタノール、エチレングリコ
ール、プロピレングリコール、エチレングリコールモノ
エチルエーテル、アセトン、ジエチルエーテル、テトラ
ヒドロフラン、ジアセトンアルコールなどを例示するこ
とができる。
Such an organic solvent is preferably water-soluble, and methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, ethylene glycol, propylene glycol, ethylene glycol monoethyl ether, acetone, diethyl ether, tetrahydrofuran, diacetone alcohol. And the like.

第2工程の重縮合反応は、アルカリの水溶液またはこれ
と有機溶媒との混合液(以下、「アルカリ溶液」とい
う)を反応容器に仕込んだのち、この反応容器内に第1
工程で得られたオルガノシラントリオールまたはその部
分縮合物(以下、「シラノール化合物」という)の水溶
液もしくはこのシラノール化合物の水溶液をさらに水ま
たは上記の有機溶媒で希釈した溶液(以下、「シラノー
ル溶液」という)を添加して前記アルカリ溶液と接触さ
せることにより行なう。
In the polycondensation reaction of the second step, an aqueous alkali solution or a mixed solution of the same and an organic solvent (hereinafter referred to as “alkaline solution”) is charged into a reaction vessel, and then the first reaction vessel is placed in the reaction vessel.
An aqueous solution of the organosilanetriol or its partial condensate obtained in the step (hereinafter referred to as "silanol compound") or a solution obtained by further diluting the aqueous solution of this silanol compound with water or the above organic solvent (hereinafter referred to as "silanol solution"). ) Is added and brought into contact with the alkaline solution.

シラノール溶液の添加方法は特に制限されない。シラノ
ール溶液の添加速度もとくに制限されず、例えば最適の
添加速度はシラノール化合物の種類と、アルカリ溶液中
の有機溶媒の有無、その種類により決定される。例え
ば、シラノール溶液をアルカリの水溶液に添加する場合
には5分以上かけることが好ましく、10〜240分か
けることがさらに好ましい。また、シラノール溶液を有
機溶媒を含むアルカリ溶液中に添加する場合には5分以
内で行なうことが好ましい。
The addition method of the silanol solution is not particularly limited. The addition rate of the silanol solution is not particularly limited, and the optimum addition rate is determined by the type of silanol compound, the presence or absence of an organic solvent in the alkaline solution, and the type thereof. For example, when the silanol solution is added to the alkaline aqueous solution, it is preferable to spend 5 minutes or more, and more preferably 10 to 240 minutes. Further, when the silanol solution is added to the alkaline solution containing the organic solvent, it is preferable that the addition is performed within 5 minutes.

このようにして重縮合反応を行なうことによりポリオル
ガノシルセスキオキサン微粒子を、水または水/有機溶
媒の混合液中にディスパージョンまたはゾルとして得る
ことができる。本発明のポリオルガノシルセスキオキサ
ン微粒子はこのようなディスパージョンまたはゾルの形
で用いることができるが、必要に応じてさらに乾燥、解
砕などの適当な処理を施して微粉体としたものを用いる
こともできる。
By carrying out the polycondensation reaction in this manner, the polyorganosilsesquioxane fine particles can be obtained as a dispersion or sol in water or a mixed liquid of water / organic solvent. The polyorganosilsesquioxane fine particles of the present invention can be used in the form of such a dispersion or sol, but if necessary, further subjected to appropriate treatment such as drying and crushing to obtain a fine powder. It can also be used.

また、このようにして得られる本発明のポリオルガノシ
ルセスキオキサン微粒子は、その比表面積(BET法に
より測定)が100〜1,000m2/g程度のものであ
る。
Further, the polyorganosilsesquioxane fine particles of the present invention thus obtained have a specific surface area (measured by the BET method) of about 100 to 1,000 m 2 / g.

[発明の効果] 本発明の製造方法によれば、従来方法では製造が困難で
あったポリオルガノシルセスキオキサン微粒子(ケイ素
原子に結合する炭化水素基がメチル基のみのものを除
く)を原料組成比どおりの組成で、収率および装置効率
よく得ることができる。
[Effects of the Invention] According to the production method of the present invention, polyorganosilsesquioxane fine particles (excluding those having only a methyl group as a hydrocarbon group bonded to a silicon atom), which has been difficult to produce by a conventional method, are used as raw materials. With the composition according to the composition ratio, the yield and the device efficiency can be obtained efficiently.

本発明のポリオルガノシルセスキオキサン微粒子は、塗
料、プラスチック、ゴム、紙などの充填剤や添加剤とし
て有用である。とくにプラスチックフィルムの滑り性向
上剤、透明プラスチック用充填剤および補強剤として好
適である。
The polyorganosilsesquioxane fine particles of the present invention are useful as fillers and additives for paints, plastics, rubbers, papers and the like. In particular, it is suitable as a slipperiness improving agent for plastic films, a filler for transparent plastics, and a reinforcing agent.

また、本発明によりケイ素原子に各種の炭素官能性有機
基が結合したポリオルガノシルセスキオキサン微粒子の
提供が可能になったが、これらはその炭素官能性を生か
して、プラスチック成形品の表面改質処理などに用いる
ことができる。
Further, according to the present invention, it becomes possible to provide polyorganosilsesquioxane fine particles in which various carbon-functional organic groups are bonded to silicon atoms, but these carbon functionalities are utilized to improve the surface modification of plastic molded articles. It can be used for quality treatment.

[実施例] 以下、本発明を実施例および比較例により、さらに詳し
く説明する。これらの例において部は重量部を表す。
[Examples] Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. In these examples, parts represent parts by weight.

参考例1 第1工程 温度計、還流器および撹拌機を備えた反応容器に水1,
080部を仕込み、酢酸0.2部を添加して均一な溶液
とした。これを30℃で撹拌しつつ、メチルトリメトキ
シシラン1,360部を添加したところ、加水分解反応
が進行し、10分間で温度は60℃に上昇し、透明な反
応液が得られた。ついで、撹拌を4時間継続したのち濾
過を行なってシラノール溶液を得た。
Reference Example 1 First Step Water 1 in a reaction vessel equipped with a thermometer, a reflux condenser and a stirrer
080 parts were charged, and 0.2 part of acetic acid was added to obtain a uniform solution. When this was stirred at 30 ° C. and 1,360 parts of methyltrimethoxysilane was added, the hydrolysis reaction proceeded, the temperature rose to 60 ° C. in 10 minutes, and a transparent reaction liquid was obtained. Then, stirring was continued for 4 hours and then filtration was performed to obtain a silanol solution.

第2工程 温度計、還流器および撹拌機を備えた反応容器に水2,
000部と28%アンモニア水溶液50部をとり、温度
を25℃に設定した。これを撹拌しながら第1工程で得
られたシラノール溶液488部を約10分間かけて滴下
した。滴下終了後、16時間撹拌を続けた。撹拌中にポ
リメチルシルセスキオキサン微粒子が析出して、反応液
は乳白色のディスパージョンに変わった。これを遠心分
離機にかけて微粒子を沈降させたのち取出し、200℃
の乾燥機で24時間乾燥させたところ、131部の白色
微粒子が得られた。これはメチルトリメトキシシランを
基準にした理論収量の98%に相当する。
Second step Water 2 in a reaction vessel equipped with a thermometer, a reflux condenser and a stirrer.
000 parts and 50 parts of 28% aqueous ammonia solution were taken, and the temperature was set to 25 ° C. While stirring this, 488 parts of the silanol solution obtained in the first step was added dropwise over about 10 minutes. After completion of dropping, stirring was continued for 16 hours. During the stirring, polymethylsilsesquioxane fine particles were deposited, and the reaction liquid changed to a milky white dispersion. This is put into a centrifuge to settle the fine particles and then taken out, and the temperature is 200 ° C.
When dried for 24 hours with a dryer of No. 1, 131 parts of white fine particles were obtained. This corresponds to a theoretical yield of 98% based on methyltrimethoxysilane.

この微粒子を電子顕微鏡で観察したところ、ほとんどの
粒子は球状を呈しており、粒子径は最大値が0.3μ
m、最小値は0.05μmであり、平均粒子径は0.1
μmであった。
When these fine particles were observed with an electron microscope, most of the particles were spherical, and the maximum particle size was 0.3 μm.
m, the minimum value is 0.05 μm, and the average particle size is 0.1
was μm.

この微粒子を磁性ルツボに入れ空気中で900℃に加熱
して熱分解させたところ、残量は89.0%であった。
これはポリメチルシルセスキオキサンが酸化熱分解して
二酸化ケイ素になる理論量89.6%に近い値である。
また、この熱分解物をX線分析した結果、非晶質シリカ
であることが確認された。このことから得られた白色微
粒子がポリメチルシルセスキオキサンであることが確認
された。
When the fine particles were placed in a magnetic crucible and heated in air to 900 ° C. for thermal decomposition, the remaining amount was 89.0%.
This is a value close to the theoretical amount of 89.6% when polymethylsilsesquioxane is oxidized and thermally decomposed into silicon dioxide.
As a result of X-ray analysis of this thermal decomposition product, it was confirmed to be amorphous silica. From this, it was confirmed that the white fine particles obtained were polymethylsilsesquioxane.

実施例1〜4 第1表に示す各種のオルガノトリアルコキシシラン、酢
酸および水を用いて、反応温度を30〜40℃に制御
し、反応時間を24時間にしたほかは参考例1と同様の
方法で第1工程を行ないシラノール溶液を得た。このシ
ラノール溶液を第1表に示す量用い、アンモニア水溶液
および水の量と滴下時間を第1表に示すようにしたほか
は参考例1と同様にして、ケイ素原子にメチル基と他の
炭化水素基とが結合したポリオルガノシルセスキオキサ
ン微粒子を得た。得られた微粒子の収率、形状、粒子
径、加熱残分は第1表のとおりである。
Examples 1 to 4 Similar to Reference Example 1 except that the reaction temperature was controlled to 30 to 40 ° C. and the reaction time was set to 24 hours by using various organotrialkoxysilanes, acetic acid and water shown in Table 1. The first step was carried out by the method to obtain a silanol solution. This silanol solution was used in the amounts shown in Table 1, and the amounts of the aqueous ammonia solution and water and the dropping time were changed to those shown in Table 1 in the same manner as in Reference Example 1 except that methyl groups and other hydrocarbons were added to the silicon atom. Polyorganosilsesquioxane fine particles having a group bonded thereto were obtained. The yield, shape, particle size, and heating residue of the obtained fine particles are shown in Table 1.

実施例2で得られた微粒子の赤外分光分析をKBr錠剤
法によって行った。第1図はそのスペクトルである。
1,000〜1,160cm-1のSi−O−Si結合の吸
収、2,960cm-1のC−H結合の吸収、1,265cm
-1および775cm-1のメチル基の吸収のほか、3055
cm-1、1600cm-1、1429cm-1および700cm-1
フェニル基に帰属する吸収が見られる。
Infrared spectroscopic analysis of the fine particles obtained in Example 2 was performed by the KBr tablet method. FIG. 1 shows the spectrum.
The bond of Si-O-Si absorption of 1,000~1,160cm -1, absorption of C-H bonds of 2,960cm -1, 1,265cm
-1 and 775 cm -1 absorption of methyl group, 3055
Absorptions attributable to the phenyl group are observed at cm -1 , 1600 cm -1 , 1429 cm -1 and 700 cm -1 .

実施例5〜8 参考例1と同様にして、第2表に示すような条件でケイ
素原子にメチル基と炭素官能性基が結合したポリオルガ
ノシルセスキオキサン微粒子を得た。各測定結果を第2
表に示す。
Examples 5 to 8 In the same manner as in Reference Example 1, polyorganosilsesquioxane fine particles in which a methyl group and a carbon functional group were bonded to a silicon atom were obtained under the conditions shown in Table 2. Second each measurement result
Shown in the table.

実施例9 温度計、還流器、滴下装置および撹拌機を備えた反応容
器にエタノール900部、水180部および28%アン
モニア水溶液9部をとり、温度を25℃に設定した。つ
いで、撹拌しながら参考例1の第1工程で得られたシラ
ノール溶液540部を約10秒間で添加し、系が均一に
なるようにさらに30秒間撹拌を続行した。その後、撹
拌を止め、静置状態で24時間放置したところ、系は半
透明なゲル状を呈していた。このゲル状物を取出し乾燥
して、ポリメチルシルセスキオキサン微粒子を得た。
Example 9 900 parts of ethanol, 180 parts of water and 9 parts of 28% aqueous ammonia solution were placed in a reaction vessel equipped with a thermometer, a reflux device, a dropping device and a stirrer, and the temperature was set to 25 ° C. Then, 540 parts of the silanol solution obtained in the first step of Reference Example 1 was added with stirring for about 10 seconds, and stirring was continued for another 30 seconds so that the system became uniform. Then, when the stirring was stopped and the system was left standing for 24 hours, the system exhibited a semitransparent gel state. The gel-like substance was taken out and dried to obtain polymethylsilsesquioxane fine particles.

得られた微粒子の粒子径を透過型電子顕微鏡により測定
したところ、最大値は0.04μmであり、最小値は
0.01μmであった。
When the particle size of the obtained fine particles was measured by a transmission electron microscope, the maximum value was 0.04 μm and the minimum value was 0.01 μm.

実施例9で得られた微粒子の赤外分光分析をKBr錠剤
法によって行った。第2図はそのスペクトルである。
1,000〜1,160cm-1のSi−O−Si結合の吸
収、2,960cm-1のC−H結合の吸収、1,265cm
-1および775cm-1のメチル基の吸収が見られる。
Infrared spectroscopic analysis of the fine particles obtained in Example 9 was performed by the KBr tablet method. FIG. 2 shows the spectrum.
The bond of Si-O-Si absorption of 1,000~1,160cm -1, absorption of C-H bonds of 2,960cm -1, 1,265cm
Absorption of methyl groups at -1 and 775 cm -1 is seen.

また実施例9で得られた微粒子を透過型電子顕微鏡によ
って撮影した像を第3図に示す。
An image of the fine particles obtained in Example 9 taken by a transmission electron microscope is shown in FIG.

実施例10〜13 参考例1並びに実施例2および6のそれぞれ第1工程で
得られたシラノール溶液を用い、第3表に示す配合量に
よったほかは実施例9と同様にして有機溶媒を併用する
方法でポリオルガノシルセスキオキサン微粒子を得た。
得られた微粒子の粒子径は第3表に示すとおりであっ
た。
Examples 10 to 13 An organic solvent was prepared in the same manner as in Example 9 except that the silanol solutions obtained in the first step of Reference Example 1 and Examples 2 and 6 were used, and the blending amounts shown in Table 3 were used. Polyorganosilsesquioxane fine particles were obtained by the combined use method.
The particle size of the obtained fine particles was as shown in Table 3.

実施例14〜17 第1工程において酢酸の代わりに第4表に示す有機酸を
用い(実施例14〜16)、またはメチルトリメトキシ
シランの代わりにメチルトリス(メトキシエトキシ)シ
ランを用いた(実施例17)ほかは参考例1と同様にし
てポリメチルシルセスキオキサン微粒子を得た。得られ
た微粒子の収率および形状、粒子径、加熱残分は第4表
のとおりであった。
Examples 14 to 17 Organic acids shown in Table 4 were used in place of acetic acid in the first step (Examples 14 to 16), or methyltris (methoxyethoxy) silane was used in place of methyltrimethoxysilane (Examples). 17) Polymethylsilsesquioxane fine particles were obtained in the same manner as in Reference Example 1 except for the above. The yield and shape of the obtained fine particles, the particle size, and the heating residue are shown in Table 4.

比較例1 シラノール溶液を調製することなく、その代わりにメチ
ルトリメトキシシラン68部とフェニルトリメトキシシ
ラン99部の混合物を滴下したほかは実施例1の第2工
程と同様にしてポリオルガノシルセスキオキサン微粒子
の製造を行なった。この場合にアルコキシシラン混合物
を滴下したのち撹拌を続けると、約10分後に系は乳白
色を呈し、粒子が形成されていることが観察されたが、
一方、反応容器の底部に油状物が沈降した。この油状物
を分液して分析を行なったところ、ほとんどが未反応の
フェニルトリメトキシシランであることが確認された。
生成した白色の粒子は赤外分光分析の結果、ケイ素原子
に結合したフェニル基が僅かに存在するポリメチルフェ
ニルシルセスキオキサンであった。また、沈降したフェ
ニルトリメトキシシランはその後の加水分解反応と縮合
反応の進行によりゲル状の塊を形成した。
Comparative Example 1 Polyorganosilsesquioxy was prepared in the same manner as in the second step of Example 1 except that a silanol solution was not prepared and a mixture of 68 parts of methyltrimethoxysilane and 99 parts of phenyltrimethoxysilane was added dropwise instead. Sun fine particles were manufactured. In this case, when the alkoxysilane mixture was added dropwise and stirring was continued, it was observed that the system became milky white after about 10 minutes and particles were formed.
On the other hand, an oily substance settled at the bottom of the reaction vessel. When this oily substance was separated and analyzed, it was confirmed that most of it was unreacted phenyltrimethoxysilane.
As a result of infrared spectroscopic analysis, the produced white particles were polymethylphenylsilsesquioxane in which phenyl groups bonded to silicon atoms were slightly present. Further, the precipitated phenyltrimethoxysilane formed a gel-like mass due to the progress of the subsequent hydrolysis reaction and condensation reaction.

比較例2 実施例4の第1工程で得られたシラノール溶液の代わり
に、メチルトリメトキシシラン303部、ヘキシルトリ
メトキシシラン20.5部およびフェニルトリメトキシ
シラン40部の混合物を用いたほかは実施例4の第2工
程と同様にして重縮合反応を行った。この場合にアルコ
キシシラン混合物の全量を速やかに添加して、上層にア
ルコキシシラン層、下層にアンモニア水溶液層の2層状
態を保持するようにゆっくりと撹拌した。添加後、約1
0分余りで反応容器の底部にフェニルトリメトキシシラ
ンが沈降し、さらに反応容器の壁面に油状物が確認され
た。この油状物を取出して分析したところ、ヘキシルト
リメトキシシランとその部分加水分解物であることが確
認された。沈降したフェニルトリメトキシシランは時間
の経過とともに加水分解反応および縮合反応の進行によ
りゲル状の塊となり、反応容器の壁面の油状物は弾性の
あるゲル状物に変わった。
Comparative Example 2 Example 2 was repeated except that a mixture of 303 parts of methyltrimethoxysilane, 20.5 parts of hexyltrimethoxysilane and 40 parts of phenyltrimethoxysilane was used in place of the silanol solution obtained in the first step of Example 4. A polycondensation reaction was carried out in the same manner as in the second step of Example 4. In this case, the entire amount of the alkoxysilane mixture was rapidly added, and the mixture was slowly stirred so as to maintain the two-layer state of the upper layer of the alkoxysilane layer and the lower layer of the aqueous ammonia solution layer. About 1 after addition
Phenyltrimethoxysilane was precipitated at the bottom of the reaction vessel in about 0 minutes, and an oily substance was confirmed on the wall surface of the reaction vessel. When this oily substance was taken out and analyzed, it was confirmed to be hexyltrimethoxysilane and its partial hydrolyzate. The precipitated phenyltrimethoxysilane became a gel-like mass due to the progress of the hydrolysis reaction and the condensation reaction over time, and the oily substance on the wall surface of the reaction vessel changed to an elastic gel-like substance.

【図面の簡単な説明】[Brief description of drawings]

第1図は、実施例2のポリオルガノシルセスキオキサン
微粒子のIRスペクトルであり、第2図は実施例9のポ
リオルガノシルセスキオキサン微粒子のIRスペクトル
である。第3図は、実施例9のポリオルガノシルセスキ
オキサン微粒子の粒子構造を示す写真である。
1 is an IR spectrum of the polyorganosilsesquioxane fine particles of Example 2, and FIG. 2 is an IR spectrum of the polyorganosilsesquioxane fine particles of Example 9. FIG. 3 is a photograph showing the particle structure of the polyorganosilsesquioxane fine particles of Example 9.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】平均粒子径が0.01〜1μmであるポリ
オルガノシルセスキオキサン(ただし、ケイ素原子に結
合する炭化水素基は、炭素数2〜6のアルキル基、シク
ロアルキル基、アラルキル基、アリール基、アルケニル
基および置換アルキル基から選ばれた基、または上記の
基とメチル基との組合せである)微粒子。
1. A polyorganosilsesquioxane having an average particle diameter of 0.01 to 1 μm (where the hydrocarbon group bonded to a silicon atom is an alkyl group having 2 to 6 carbon atoms, a cycloalkyl group or an aralkyl group). , A group selected from an aryl group, an alkenyl group and a substituted alkyl group, or a combination of the above group and a methyl group).
【請求項2】ケイ素原子に結合する炭化水素基が炭素数
6以下のアルキル基、ビニル基、フェニル基、置換プロ
ピル基または置換シクロヘキシルエチル基である請求項
1記載のポリオルガノシルセスキオキサン微粒子。
2. The polyorganosilsesquioxane fine particles according to claim 1, wherein the hydrocarbon group bonded to the silicon atom is an alkyl group having 6 or less carbon atoms, a vinyl group, a phenyl group, a substituted propyl group or a substituted cyclohexylethyl group. .
JP63042303A 1988-02-26 1988-02-26 Polyorganosilsesquioxane fine particles Expired - Lifetime JPH0618879B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63042303A JPH0618879B2 (en) 1988-02-26 1988-02-26 Polyorganosilsesquioxane fine particles
GB8904201A GB2216535B (en) 1988-02-26 1989-02-23 "process for producing polyorganosilsesquioxane spherical particles"
DE3905785A DE3905785C2 (en) 1988-02-26 1989-02-24 Process for the production of fine polyorganosilsesquioxane particles
IT8947687A IT1230485B (en) 1988-02-26 1989-02-24 FINE PARTS OF POLYORGANOSILSESQUIOSSANO AND PROCEDURE TO PRODUCE THE SAME
FR8902442A FR2627773B1 (en) 1988-02-26 1989-02-24 FINE POLYORGANOSILSESQUIOXANE PARTICLES AND PROCESS FOR PRODUCING THE SAME
KR1019890002525A KR930006260B1 (en) 1988-02-26 1989-02-27 Polyorganosilsesquioxane fines particles and process for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63042303A JPH0618879B2 (en) 1988-02-26 1988-02-26 Polyorganosilsesquioxane fine particles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23936593A Division JPH07103238B2 (en) 1993-09-27 1993-09-27 Method for producing polyorganosilsesquioxane fine particles

Publications (2)

Publication Number Publication Date
JPH01217039A JPH01217039A (en) 1989-08-30
JPH0618879B2 true JPH0618879B2 (en) 1994-03-16

Family

ID=12632257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63042303A Expired - Lifetime JPH0618879B2 (en) 1988-02-26 1988-02-26 Polyorganosilsesquioxane fine particles

Country Status (6)

Country Link
JP (1) JPH0618879B2 (en)
KR (1) KR930006260B1 (en)
DE (1) DE3905785C2 (en)
FR (1) FR2627773B1 (en)
GB (1) GB2216535B (en)
IT (1) IT1230485B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107961A1 (en) 2014-01-14 2015-07-23 株式会社トクヤマ Hydrophobized spherical poly (alkyl silsesquioxane) microparticles, external additive for toner, dry electrophotography toner, and method for manufacturing hydrophobized spherical poly (alkyl silsesquioxane) microparticles

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2607118B2 (en) * 1988-04-19 1997-05-07 日本化学工業株式会社 Method for producing spherical organosilicic acid and spherical silica powder
CA2004297A1 (en) * 1988-12-02 1990-06-02 Hiroshi Kimura Polyorganosiloxane fine particles
JPH0633337B2 (en) * 1989-04-18 1994-05-02 信越化学工業株式会社 Spherical polyorganosilsesquioxane fine particles and method for producing the same
JPH0699634B2 (en) * 1989-09-28 1994-12-07 信越化学工業株式会社 Thermosetting silicone rubber composition
JPH0633334B2 (en) * 1990-02-22 1994-05-02 信越化学工業株式会社 Method for producing silicone powder
JPH0488023A (en) * 1990-07-30 1992-03-19 Toray Ind Inc Production of spherical fine silicone particle
US5182174A (en) * 1991-05-13 1993-01-26 E. I. Du Pont De Nemours And Company Flexible etch-resistant finishes with siloxane cross-linking
US5488081A (en) * 1993-11-04 1996-01-30 Lord Corporation Highly damped organic elastomer composition
JP3970449B2 (en) * 1998-12-21 2007-09-05 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Method for producing spherical polymethylsilsesquioxane fine particles
JP2003002973A (en) * 2001-04-18 2003-01-08 Ge Toshiba Silicones Co Ltd Method for producing fine spherical silicone particle
JP2003183395A (en) * 2001-12-21 2003-07-03 Ge Toshiba Silicones Co Ltd Method for producing spherical silicone fine particle
JP4040362B2 (en) * 2002-05-20 2008-01-30 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Method for producing spherical polymethylphenylsilsesquioxane fine particles
JP4138409B2 (en) * 2002-09-04 2008-08-27 日東電工株式会社 Method for producing polysilsesquioxane fine particles and polysilsesquioxane fine particles obtained by the production method
WO2006070846A1 (en) * 2004-12-27 2006-07-06 Konishi Chemical Ind. Co., Ltd. Organic-solvent dispersion of fine polysilsesquioxane particle, process for producing the same, aqueous dispersion of fine polysilsesquioxane particle, and process for producing the same
JP4890766B2 (en) * 2005-01-28 2012-03-07 帝人化成株式会社 Light diffusing aromatic polycarbonate resin composition
KR100756676B1 (en) * 2006-11-23 2007-09-07 제일모직주식회사 Silicone bead, method for preparing the same, and thermoplastic resin composition using the same
JP5153163B2 (en) * 2007-02-23 2013-02-27 日興リカ株式会社 Method for producing spherical polyorganosilsesquioxane fine particles
KR101077274B1 (en) 2007-05-28 2011-10-27 코오롱인더스트리 주식회사 Polyalkylsilsesquioxane particulates and a preparation method thereof
US8927636B2 (en) 2009-09-14 2015-01-06 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and molded article
CN103764762A (en) 2011-09-02 2014-04-30 三菱瓦斯化学株式会社 Aromatic polycarbonate resin composition, and molded article comprising same
WO2014084180A1 (en) 2012-11-28 2014-06-05 三菱瓦斯化学株式会社 Aromatic polycarbonate resin composition, method for producing same, and molded article formed from aromatic polycarbonate resin composition
JP6485244B2 (en) * 2015-06-18 2019-03-20 Jnc株式会社 Spherical silicon oxycarbide powder and method for producing the same
KR102245982B1 (en) * 2017-02-14 2021-04-30 와커 헤미 아게 Method for producing spherical polysilsesquioxane particles
WO2020009068A1 (en) 2018-07-03 2020-01-09 株式会社トクヤマ Spherical polymethylsilsesquioxane particles
WO2022043424A1 (en) 2020-08-31 2022-03-03 Covestro Deutschland Ag Hydrolysis-resistant polycarbonate composition
CN117730122A (en) 2021-07-27 2024-03-19 科思创德国股份有限公司 Hydrolysis-resistant polycarbonate compositions
EP4230697A1 (en) 2022-02-16 2023-08-23 Covestro Deutschland AG Hydrolysis-resistant polycarbonate composition
WO2023156339A1 (en) 2022-02-16 2023-08-24 Covestro Deutschland Ag Flame-retardant polycarbonate composition

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE572727A (en) *
BE572412A (en) *
DE883180C (en) * 1950-10-31 1953-07-16 Union Chimique Belge Sa Process for the production of paints from organo-polysiloxanes
DE950462C (en) * 1951-10-31 1956-10-11 Dow Corning Process for the production of silica or siloxanes in powder form
DE1173659B (en) * 1957-10-31 1964-07-09 Bayer Ag Process for the production of uniformly finely divided solid hydrolysis products from liquid silane derivatives
DE1183687B (en) * 1957-10-31 1964-12-17 Bayer Ag Process for the production of uniformly finely divided solid hydrolysis products from liquid silane derivatives
DE1236205B (en) * 1959-01-21 1967-03-09 Gen Electric Process for the preparation of dodecaphenylsilsesquioxane
US3354095A (en) * 1964-07-23 1967-11-21 Owens Illinois Inc Solid, substantially spherical, hard particles and preparation thereof
CH106968D (en) * 1965-01-21 1900-01-01
JPS5212219B1 (en) * 1965-01-21 1977-04-05
US3496126A (en) * 1967-10-10 1970-02-17 Owens Illinois Inc Process for preparing organopolysiloxane beads
DE2357184A1 (en) * 1973-11-16 1975-05-22 Merck Patent Gmbh PROCESS FOR THE PRODUCTION OF ORGANICALLY MODIFIED SILICON DIOXIDES
JPS5212219A (en) * 1975-07-18 1977-01-29 Sony Corp Method of fusing ferrite by glass
JPS5472300A (en) * 1977-11-21 1979-06-09 Shin Etsu Chem Co Ltd Preparation of polymethylsilsesquioxane
US4242250A (en) * 1979-06-25 1980-12-30 Owens-Illinois, Inc. Organopolysiloxane resins formed with catalysts of formic acid and hydrocarbyl substituted ammonium hydroxide
US4483107A (en) * 1980-06-17 1984-11-20 Konishiroku Photo Industry Co., Ltd. Polishing method for electrophotographic photoconductive member
JPS578279A (en) * 1980-06-17 1982-01-16 Konishiroku Photo Ind Co Ltd Abrasive material
FR2523590B1 (en) * 1982-03-16 1984-06-29 Inst Nat Rech Chimique BASIC LIQUID COMPOSITION SUITABLE FOR PRODUCING TRANSPARENT OR VARNISHED COATINGS ON SOLID SURFACES, PROCESS FOR OBTAINING VARNISHES AND VARNISHES THEREFROM
US4424297A (en) * 1982-07-08 1984-01-03 Dow Corning Corporation Colloidal silesquioxanes
JPS6013813A (en) * 1983-07-05 1985-01-24 Toshiba Silicone Co Ltd Preparation of polymethylsilsesquioxane
JPS61243828A (en) * 1985-04-23 1986-10-30 Nippon Soda Co Ltd Powder of organosilicon oxide having organic group and its production
DE3518879A1 (en) * 1985-05-25 1986-11-27 Degussa Ag, 6000 Frankfurt ORGANOPOLYSILOXANES CONTAINING PHENYLENE GROUPS AND METHOD FOR THE PRODUCTION THEREOF
JPS6243424A (en) * 1985-08-20 1987-02-25 Shin Etsu Chem Co Ltd Production of silsesquioxane emulsion
JPS6377940A (en) * 1986-09-19 1988-04-08 Toshiba Silicone Co Ltd Perfectly spherical polymethylsilsesquioxane powder and production thereof
JPS63295637A (en) * 1987-05-28 1988-12-02 Toshiba Silicone Co Ltd Spherical polymethylsilsequioxane powder and its production
JP3026977B2 (en) * 1988-10-03 2000-03-27 ノーリツ鋼機株式会社 Photoconductor sheet conveying device
US5063529A (en) * 1989-12-29 1991-11-05 Texas Instruments Incorporated Method for calibrating a phased array antenna

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107961A1 (en) 2014-01-14 2015-07-23 株式会社トクヤマ Hydrophobized spherical poly (alkyl silsesquioxane) microparticles, external additive for toner, dry electrophotography toner, and method for manufacturing hydrophobized spherical poly (alkyl silsesquioxane) microparticles
CN105849156A (en) * 2014-01-14 2016-08-10 株式会社德山 Hydrophobized spherical poly (alkyl silsesquioxane) microparticles, external additive for toner, dry electrophotography toner, and method for manufacturing hydrophobized spherical poly (alkyl silsesquioxane) microparticles
KR20160105846A (en) * 2014-01-14 2016-09-07 가부시끼가이샤 도꾸야마 Hydrophobized spherical poly (alkyl silsesquioxane) microparticles, external additive for toner, dry electrophotography toner, and method for manufacturing hydrophobized spherical poly (alkyl silsesquioxane) microparticles
US9809682B2 (en) 2014-01-14 2017-11-07 Tokuyama Corporation Hydrophobized spherical polyalkylsilsesquioxane fine particle, external additive for toner, dry toner for electrophotography, and method of manufacturing hydrophobized spherical polyalkylsilsesquioxane fine particle

Also Published As

Publication number Publication date
GB2216535A (en) 1989-10-11
GB2216535B (en) 1992-08-05
IT1230485B (en) 1991-10-24
FR2627773A1 (en) 1989-09-01
FR2627773B1 (en) 1994-02-25
JPH01217039A (en) 1989-08-30
GB8904201D0 (en) 1989-04-05
IT8947687A0 (en) 1989-02-24
DE3905785C2 (en) 1994-06-09
KR930006260B1 (en) 1993-07-09
KR890013091A (en) 1989-09-21
DE3905785A1 (en) 1989-08-31

Similar Documents

Publication Publication Date Title
JPH0618879B2 (en) Polyorganosilsesquioxane fine particles
JPH07103238B2 (en) Method for producing polyorganosilsesquioxane fine particles
JP3474007B2 (en) Method for producing organofunctional organosiloxane containing organic functional groups
EP0373941B1 (en) Surface-modified polymethylsilsesquioxane spherical fine particles and process of preparing the same
JP2001192452A (en) Spherical silicone fine particle and mete{od for producing the same
JPH11323136A (en) Stable composition of water-soluble organosiloxane, its production, and its use
JPH0588907B2 (en)
JP2009513741A (en) Silane formulations with high filler content
WO2003064490A2 (en) Process for the functionalization of polyhedral oligomeric silsesquioxanes
JPS6377940A (en) Perfectly spherical polymethylsilsesquioxane powder and production thereof
JPS63305132A (en) Colloid suspension of organopolysiloxane and manufacture
JPH1045914A (en) Production of spherical polyorganosilsesquioxane powder
JPH10251516A (en) Silane oligomer composition
JPS6144875B2 (en)
JPH0633334B2 (en) Method for producing silicone powder
JPH02150426A (en) Polymethylsilsesquioxane powder having treated surface
JPH0633337B2 (en) Spherical polyorganosilsesquioxane fine particles and method for producing the same
JP2003183396A (en) Method for producing spherical silicone fine particle
JPH11116213A (en) Aluminum nitride powder coated with coating film of silanol group-containing polyorganosiloxane and its production
CA2004297A1 (en) Polyorganosiloxane fine particles
JPS63295637A (en) Spherical polymethylsilsequioxane powder and its production
JP2000302878A (en) Impalpable powder of water-repellent silicone resin
JP3218872B2 (en) Method for producing organosilicon resin
JP3189979B2 (en) Method for producing spherical or fibrous organic silicon oxide powder
JPH0830150B2 (en) Polyorganosilsesquioxane fine particles and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080316

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080316

Year of fee payment: 14

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370