JPH0488023A - Production of spherical fine silicone particle - Google Patents

Production of spherical fine silicone particle

Info

Publication number
JPH0488023A
JPH0488023A JP20294590A JP20294590A JPH0488023A JP H0488023 A JPH0488023 A JP H0488023A JP 20294590 A JP20294590 A JP 20294590A JP 20294590 A JP20294590 A JP 20294590A JP H0488023 A JPH0488023 A JP H0488023A
Authority
JP
Japan
Prior art keywords
alkali
methyltrialkoxysilane
water
fine particles
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20294590A
Other languages
Japanese (ja)
Other versions
JPH0588889B2 (en
Inventor
Tetsuya Watanabe
哲也 渡辺
Hideyuki Aizawa
相澤 秀行
Yoshiyuki Nagai
永井 喜行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP20294590A priority Critical patent/JPH0488023A/en
Publication of JPH0488023A publication Critical patent/JPH0488023A/en
Publication of JPH0588889B2 publication Critical patent/JPH0588889B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject fine particles, having an extremely narrow particle size distribution, excellent in water repellency, heat resistance and slippery characteristics and useful as cosmetics, etc., by stirring a methyltrialkoxysilane, etc., and water, preparing a homogeneous solution and then adding an alkali thereto. CONSTITUTION:A methyltrialkoxysilane (e.g. methyltrimethoxysilane) or a partially hydrolyzed condensate thereof or both are hydrolyzed and condensed to produce spherical fine silicone particles (preferably having <=1.1 ratio of the major axis to the minor axis, 0.1-20mum average particle diameter and <=20% coefficient of variation). In the process, the methyltrialkoxysilane or the partially hydrolyzed condensate thereof or both are previously stirred with water to afford a homogeneous solution and an alkali such as caustic alkali is then added to advance hydrolysis and condensation. Thereby, the objective fine particles are obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は球状シリコーン微粒子の製造法、すなわち形状
が球状であり、その粒度分布が極めて狭いポリメチルシ
ルセスキオキサン微粒子の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing spherical silicone fine particles, that is, a method for producing polymethylsilsesquioxane fine particles having a spherical shape and an extremely narrow particle size distribution.

〈従来の技術〉 形状が球状であることを特徴としたポリメチルシルセス
キオキサンの製造法としては、メチルトリアルコキシシ
ランおよび/またはその部分加水分解縮合物とアンモニ
アおよび/またはアミンの水溶液との2層を形成しつつ
、その界面で加水分解・縮合させる方法(特開昭637
7940号公報)がある。
<Prior art> A method for producing polymethylsilsesquioxane, which is characterized by its spherical shape, involves combining methyltrialkoxysilane and/or its partially hydrolyzed condensate with an aqueous solution of ammonia and/or amine. A method of forming two layers and conducting hydrolysis and condensation at the interface (Japanese Patent Application Laid-open No. 637
No. 7940).

〈発明が解決しようとする課題〉 前記の特開昭63−77940号公報による方法におい
ては、撹拌速度の制御が重要であり、特別な撹拌設備が
必要なこと、界面での反応であり、アルカリとの接触機
会が非常に少ないために反応速度が極端に制限されるこ
と、また、アルカリとして、アンモニアあるいはアミン
類を用いるためにアルカリ強度に限界があり、製造する
球状微粒子の粒子径を高範囲(たとえば、0.1〜20
ILIn)に制御することが難しいことなどの課題が残
されている。
<Problems to be Solved by the Invention> In the method disclosed in JP-A No. 63-77940, it is important to control the stirring speed, special stirring equipment is required, the reaction occurs at the interface, and alkali The reaction rate is extremely limited because there are very few opportunities for contact with the alkali, and since ammonia or amines are used as the alkali, there is a limit to the strength of the alkali. (For example, 0.1 to 20
Problems remain, such as the difficulty of controlling ILIn).

本発明の目的は形状が球状であり、その粒度分布が極め
て狭いポリメチルシルセスキオキサン微粒子を製造する
にあたり、特別な装置を必要とせず、操作が簡単で、し
たがって安価な工業的製造に適した、しかも、粒径を高
範囲にわたって自由に制御できる製造法を提供するもの
である。
The purpose of the present invention is to produce polymethylsilsesquioxane fine particles that are spherical in shape and have an extremely narrow particle size distribution, which does not require special equipment, is easy to operate, and is therefore suitable for inexpensive industrial production. Furthermore, the present invention provides a manufacturing method that allows the particle size to be freely controlled over a wide range.

〈課題を解決するための手段〉 すなわち、本発明は、メチルトリアルコジキシランおよ
び/またはその部分加水分解縮合物を加水分解・縮合さ
せ、球状シリコーン微粒子を製造するにあたり、あらか
じめメチルトリアルコキシ シランおよび/またはその
部分加水分解縮合物と水とを撹拌し、均一溶液とした後
、アルカリを添加することを特徴とする球状シリコーン
微粒子の製造法であり、また、メチルトリアルコジキシ
ランおよび/またはその部分加水分解縮合物と水とを撹
拌し、均一溶液とした後、アルカリを添加、撹拌し、ア
ルカリを均一に混合した後、撹拌を停止し、静置下に加
水分解・縮合を進行させることを特徴とする球状シリコ
ーン微粒子の製造法である。
<Means for Solving the Problems> That is, the present invention provides a method for producing spherical silicone fine particles by hydrolyzing and condensing methyltrialkoxysilane and/or its partially hydrolyzed condensate. methyltrialcodixylan and/or its partially hydrated The decomposition condensation product and water are stirred to form a homogeneous solution, then an alkali is added and stirred, and after the alkali is mixed uniformly, the stirring is stopped and the hydrolysis/condensation is allowed to proceed while standing still. This is a method for producing spherical silicone particles.

本発明における原料のメチルトリアルコキシシランとし
ては、アルコキシ部分が炭素数1乃至4のアルキルのも
のが好適に用いられ、たとえばメチルトリメトキシシラ
ン、メチルジメトキシエトキシシラン、メチルトリエト
キシシラン、メチルトリプロポキシシラン、メチルトリ
ブトキシシラン、メチルメトキシジブトキシシランなど
が例示される。
As the raw material methyltrialkoxysilane in the present invention, those in which the alkoxy moiety is alkyl having 1 to 4 carbon atoms are preferably used, such as methyltrimethoxysilane, methyldimethoxyethoxysilane, methyltriethoxysilane, and methyltripropoxysilane. , methyltributoxysilane, methylmethoxydibutoxysilane and the like.

また、部分加水分解縮合物とは、前記のメチルトリアル
コキシシランのアルコキシ基の1部が加水分解、縮合さ
れたものでありそれ自身が液状でありメチルトリアルコ
キシシラン、水、有機溶剤またはこれらの混合液に可溶
性のものである。
In addition, the partial hydrolyzed condensate is a product obtained by hydrolyzing and condensing a part of the alkoxy group of the above-mentioned methyltrialkoxysilane, and is itself liquid, and is not mixed with methyltrialkoxysilane, water, an organic solvent, or any of these. It is soluble in the mixture.

これらメチルトリアルコキシシランやその部分加水分解
縮合物は、それぞれ単独であるいは混合物で用いてもよ
く、あるいはメチルトリアルコキシシランをあらかじめ
水または有機溶剤または水と有機溶剤の混合液などと単
に混合させたもの、あるいは溶解し均一溶液としたもの
などを用いることができる。
These methyltrialkoxysilanes and their partially hydrolyzed condensates may be used alone or in mixtures, or methyltrialkoxysilanes may be simply mixed in advance with water, an organic solvent, or a mixture of water and an organic solvent. It is possible to use a material that is dissolved into a homogeneous solution.

これらのメチルトリアルコキシシランのうち、入手が容
易なメチルトリメトキシシランが最も好ましく用いられ
る。
Among these methyltrialkoxysilanes, methyltrimethoxysilane, which is easily available, is most preferably used.

メチルトリアルコキシシランは一般にメチルトリクロル
シランから製造され、通常いくらかの塩素が残存してい
る。しかし、本発明の目的に対し残存塩素は何らさまた
げになるものではす<、残存量の多少にかかわらず通常
に用いることが可能である。しかし、アルカリの必要量
を考慮すれば、アルカリを消費する塩素が少ない方が好
ましいことはいうまでもない。
Methyltrialkoxysilane is generally made from methyltrichlorosilane and usually has some residual chlorine. However, residual chlorine does not interfere with the purpose of the present invention, and it can be used normally regardless of the amount of residual chlorine. However, when considering the required amount of alkali, it goes without saying that it is preferable to use less chlorine, which consumes alkali.

本発明においては、メチルトリアルコキシシランおよび
/またはその部分加水分解縮合物と水とをあらかじめ均
一化させることが重要である。
In the present invention, it is important to homogenize methyltrialkoxysilane and/or its partially hydrolyzed condensate and water in advance.

メチルトリアルコキシシランは元来、加水分解速度は極
めて遅く、容易に水と均一な溶液を形成しない。しかし
、一般には酸またはアルカリが微量に含まれているため
に、あらためて何も添加しなくても比較的短時間に容易
に均一化される場合もある。また、加水分解速度、すな
わち均一化する速度を調整するために新たに触媒を添加
することもできる。
Methyltrialkoxysilane originally has an extremely slow hydrolysis rate and does not easily form a homogeneous solution with water. However, since it generally contains a small amount of acid or alkali, it may be easily homogenized in a relatively short time without adding anything. Moreover, a catalyst can be newly added in order to adjust the hydrolysis rate, that is, the rate of uniformization.

ここで用いられる触媒とは、一般に加水分解・縮合触媒
として広く用いられる酸、塩基およびチタン、スズなど
の有機金属化合物から自由に選ぶことができるが、好ま
しくは酸あるいは塩基である。ただし、縮合触媒の存在
下においては、注意しないとゲル化が進行し、不溶物が
生成しやすくなる。このために、溶解条件(触媒の添加
量、温度、時間)の設定に注意しなければならない。
The catalyst used here can be freely selected from acids, bases, and organometallic compounds such as titanium and tin, which are generally widely used as hydrolysis/condensation catalysts, but preferably acids or bases. However, in the presence of a condensation catalyst, gelation will proceed if care is not taken, and insoluble matters will easily form. For this reason, care must be taken in setting the dissolution conditions (amount of catalyst added, temperature, time).

極微量の酸、あるいはアルカリが存在する通常のメチル
トリアルコキシシランにおいては、温度、時間、そして
撹拌条件などを幅広く選択できる。しかし、この場合も
時間をかけ過ぎれば高粘度オイルやグリース状物が生成
する可能性もあり、通常は10〜15℃の時は20時間
以内、70〜80℃の時は4〜5時間以内が適当な条件
として用いられる。
For ordinary methyltrialkoxysilane in which a very small amount of acid or alkali is present, temperature, time, stirring conditions, etc. can be selected from a wide range. However, in this case as well, if you take too long, there is a possibility that a highly viscous oil or grease-like substance will be formed, so it is usually within 20 hours when the temperature is 10 to 15 degrees Celsius, and within 4 to 5 hours when the temperature is 70 to 80 degrees Celsius. is used as an appropriate condition.

水に対するメチルトリアルコキシシランおよび/または
その部分加水分解縮合物の添加量についても、本発明の
目的に対しては広い範囲から選ぶことができるが、好ま
しくは水1重量部に対し0.01〜1重量部が用いられ
る。
The amount of methyltrialkoxysilane and/or its partially hydrolyzed condensate added to water can also be selected from a wide range for the purpose of the present invention, but preferably 0.01 to 1 part by weight of water. 1 part by weight is used.

また、均一化する際、水単独あるいは水と有機溶剤との
混合液を用いることができる。その有機溶剤としては、
たとえば低級アルコール類、ケトン類、エーテル類、エ
ステル類など水によく溶解するものなら使用可能である
。有機溶剤の濃度も特に限定されないが通常30%以下
が好ましい。
Further, when homogenizing, water alone or a mixture of water and an organic solvent can be used. The organic solvent is
For example, lower alcohols, ketones, ethers, esters, and other substances that dissolve well in water can be used. The concentration of the organic solvent is also not particularly limited, but is usually preferably 30% or less.

本発明においては、上述のごとく均一化した後、アルカ
リを添加し、加水分解・縮合を進行させ、球状シリコー
ン微粒子を生成させるのであるが、ここで用いられるア
ルカリとしては、その水溶液がアルカリ性を示すもので
あればいずれも使用可能である。一般的には周期律表I
a、IIa族金属の水酸化物、酸化物、炭酸塩、有機窒
素化合物、アンモニアなどが挙げられる。
In the present invention, after homogenization as described above, an alkali is added to proceed with hydrolysis and condensation to produce spherical silicone fine particles. Any of these can be used. In general, the periodic table I
Examples include hydroxides, oxides, carbonates, organic nitrogen compounds, and ammonia of group a and IIa metals.

特に好ましくは苛性ソーダ、苛性カリなどの周期律表I
a族金属水酸化物やエヂレンジアミン、ジエチルアミン
、トリエチルアミンなどの有機窒素化合物、そしてアン
モニアが用いられる。
Particularly preferably caustic soda, caustic potash, etc. I of the periodic table
Group A metal hydroxides, organic nitrogen compounds such as ethylene diamine, diethylamine, triethylamine, and ammonia are used.

これらのアルカリは単独で用いても、2種以上を混合し
てもよいし、これらの水溶液あるいは水に可溶性の有機
溶剤、たとえば低級アルコール類、ケトン類、エーテル
類などの混合溶液であっても使用可能である。
These alkalis may be used alone or in combination of two or more, or may be a mixed solution of these aqueous solutions or water-soluble organic solvents such as lower alcohols, ketones, and ethers. Available for use.

本発明において、アルカリ添加量についても特に限定さ
れるものではない。しかし、アルカリ量、すなわちpH
は生成する球状シリコーン微粒子の粒子径に大きな影響
を与える。小さい粒子を得ようとすればpHを高く、大
きい粒子を得ようとすればpHを低くすることで粒子径
の制御が可能となる。したがって、目的とする粒子径に
適したpHを選択すればよい。一般的にはpHが8から
14の間で選ばれる。
In the present invention, the amount of alkali added is not particularly limited either. However, the amount of alkali, that is, the pH
has a large effect on the particle size of the spherical silicone particles produced. The particle size can be controlled by increasing the pH if small particles are to be obtained, and by decreasing the pH if large particles are to be obtained. Therefore, a pH suitable for the target particle size may be selected. Generally, the pH is selected between 8 and 14.

アルカリを添加するときまた添加後はアルカリを均一混
合するために当然ながら撹拌を行う。
When adding the alkali, and after addition, stirring is of course performed to uniformly mix the alkali.

本発明の方法において、アルカリを添加し、撹拌混合後
、撹拌を続けてもよいが、アルカリが均一に混合された
後撹拌を停止し、静置下に加水分解、縮合を進行させる
ことが生成粒子の粒度分布を狭くし、粒子間の凝集を抑
えることに大きな効果がある。
In the method of the present invention, after adding the alkali and stirring and mixing, stirring may be continued, but it is preferable to stop stirring after the alkali is mixed uniformly and allow hydrolysis and condensation to proceed while standing still. It is highly effective in narrowing the particle size distribution and suppressing aggregation between particles.

ただし、静置して加水分解、縮合を進行させた場合、必
然的に生成粒子は沈降し、反応器底部に堆積する。しか
し、粒子の生成が終わった後、通常の撹拌で再スラリー
が可能であり何ら支障はない。
However, if the mixture is allowed to stand still for hydrolysis and condensation to proceed, the produced particles will inevitably settle and accumulate at the bottom of the reactor. However, after the generation of particles is finished, re-slurry can be done by normal stirring and there is no problem.

本発明の方法において実施する温度についても特に限定
するものではない。水の凝固点であるO′Cから常圧の
沸点である100℃の範囲から選ぶことができる。また
必要に応じて加圧下に1.00℃以上で反応させてもよ
い。一般的には15℃から80℃がよく用いられる。さ
らに、最初は低温(たとえば10〜15℃)からスター
トシ、徐々に昇温(たとえば80℃)することも可能で
ある。
There are no particular limitations on the temperature at which the method of the present invention is carried out. It can be selected from the range from O'C, which is the freezing point of water, to 100°C, which is the boiling point at normal pressure. Further, the reaction may be carried out at 1.00° C. or higher under pressure if necessary. Generally, a temperature of 15°C to 80°C is often used. Furthermore, it is also possible to start from a low temperature (for example, 10 to 15°C) and then gradually raise the temperature (for example, to 80°C).

微粒子化に要する時間は温度との関係もあり、−概に限
定することはできないが、一般的には均一化、アルカリ
添加、静置の合計時間は0.5〜10時間程度である。
The time required for atomization is also related to temperature and cannot be generally limited, but generally the total time for homogenization, alkali addition, and standing is about 0.5 to 10 hours.

このようにして製造した真球状シリコーン微粒子は、こ
の後濾過分離・水洗浄あるいは有機溶剤洗浄するか、酸
性物質を添加して中和後、同様に濾過分離、水洗、ある
いは有機溶剤洗浄して乾燥し、場合によって解砕し微粒
子を得ることができる。
The spherical silicone particles produced in this way are then separated by filtration and washed with water or an organic solvent, or neutralized by adding an acidic substance, separated by filtration, washed with water, or washed with an organic solvent, and then dried. However, if necessary, it can be crushed to obtain fine particles.

得られた粒子は長径と短径の比が1.1−以下、粒子径
は0.1〜20μs、変動係数は20%以下であり、し
かも粒子間の凝集の少ない球状シリコーン微粒子である
The obtained particles are spherical silicone fine particles having a ratio of major axis to minor axis of 1.1 or less, a particle diameter of 0.1 to 20 μs, and a coefficient of variation of 20% or less, and with little aggregation between particles.

〈実施例〉 以下、本発明の内容を実施例で説明する。<Example> Hereinafter, the content of the present invention will be explained using examples.

実施例における生成粒子の評価は、走査型電子顕微鏡写
真から粒子50個以上を計測し、平均粒子径(D)〔μ
s〕、長径/短径比、変動係数〔粒径標準偏差σ/平均
粒子径DX100(%)〕を算出した。収率は(メチル
シルセスキオキサン/メチルトリアルコキシシラン)〔
モル%〕で示した。
The evaluation of the produced particles in the examples was carried out by measuring 50 or more particles from scanning electron micrographs and determining the average particle diameter (D) [μ
s], the length/breadth ratio, and the coefficient of variation [particle diameter standard deviation σ/average particle diameter DX100 (%)] were calculated. The yield is (methylsilsesquioxane/methyltrialkoxysilane) [
% by mole].

実施例1 1!四つ日丸底フラスコに撹拌機、温度計、滴下ロート
を取付け、フラスコに水600gを入れ20 Orpm
で撹拌しつつ、オイルノくスにて昇温した。50℃に到
達したところで、メチルトリメトキシシラン(Cf20
.511℃1mを含む)200gを加え、約15分後に
は発熱により55℃まで上昇し、この時点で反応系内は
均一透明溶液となった。メチルトリメトキシシランを添
加してから30分後に、N/1ONaOH水溶液17 
mlを加え、200 +pmで1分間撹拌した後、撹拌
を停止した。50〜55℃に保ち、静置を始めてから2
5分後に反応系内は急に白濁し、微粒子の生成が始まっ
た。4時間後、大部分沈降した微粒子を撹拌により再ス
ラリー化後、1%酢酸水1 mlを添加、中和し、濾過
・水洗・メタノール洗浄を行い、最後に150℃、2時
間オーブンにて乾燥し、白色粉末95gを得た(収率9
7モル%)。走査型電子顕微鏡にて粒径を測定した結果
、平均粒径5.2 IIJIIz長径/短径の比1.0
3、変動係数6.5%の凝集のない球状シリコーン微粒
子であった。
Example 1 1! Attach a stirrer, a thermometer, and a dropping funnel to a round-bottomed flask, and add 600 g of water to the flask at 20 Orpm.
The temperature was raised using an oil stove while stirring. When the temperature reached 50°C, methyltrimethoxysilane (Cf20
.. After about 15 minutes, the temperature rose to 55°C due to heat generation, and at this point the reaction system became a homogeneous and transparent solution. 30 minutes after adding methyltrimethoxysilane, add N/1ONaOH aqueous solution 17
ml and stirred for 1 minute at 200+pm, then stirring was stopped. Keep it at 50-55℃, and after starting to stand still, 2
After 5 minutes, the inside of the reaction system suddenly became cloudy and the generation of fine particles started. After 4 hours, most of the settled particles were reslurried by stirring, neutralized by adding 1 ml of 1% acetic acid water, filtered, washed with water, and washed with methanol, and finally dried in an oven at 150°C for 2 hours. 95 g of white powder was obtained (yield: 9
7 mol%). As a result of measuring the particle size with a scanning electron microscope, the average particle size was 5.2, and the ratio of major axis to minor axis was 1.0.
3. Spherical silicone fine particles without aggregation with a coefficient of variation of 6.5%.

実施例2 11!、四つ日丸底フラスコに撹拌機、温度計、滴下ロ
ートを取付け、フラスコに水600gを入れ、2001
11mで撹拌しつつ、オイルバスにて昇温した。50℃
到達後、メチルトリメトキシシラン(CI20.5 p
pm ) 40 g加えた。10分後には均一透明溶液
に変化した。メチルトリメトキシシランを添加し、30
分経過後、200rpmで撹拌された均一溶液中に10
重量%苛性ソーダ水溶液21gを全量−括添加した。4
〜5秒で反応系内は白濁した。温度50〜55℃、撹拌
20 Orpmで1時間処理後、10重量%酢酸31.
5gを添加し中和した。濾過、水洗、メタノール洗浄を
行い、150℃、2時間オーブンにて乾燥し、15.0
gの白色粉末を得た(収率76モル%)。
Example 2 11! , Attach a stirrer, a thermometer, and a dropping funnel to a Yotsuka round-bottomed flask, and put 600 g of water into the flask.
The temperature was raised in an oil bath while stirring at 11 m. 50℃
After that, methyltrimethoxysilane (CI20.5 p
pm) 40 g was added. After 10 minutes, the solution turned into a homogeneous transparent solution. Add methyltrimethoxysilane, 30
After 10 minutes, 10
21 g of a wt % aqueous solution of caustic soda was added in its entirety. 4
The inside of the reaction system became cloudy in ~5 seconds. After treatment for 1 hour at a temperature of 50 to 55°C and stirring at 20 Orpm, 10% by weight acetic acid was added to 31.
5g was added to neutralize. Filtered, washed with water, washed with methanol, and dried in an oven at 150°C for 2 hours.
g of white powder was obtained (yield 76 mol%).

この粉末を走査型電子顕微鏡で観察した結果、平均粒子
径0.5μs、長径/短径比1.05、変動係数15%
の真球状シリコーン微粒子であった。
As a result of observing this powder with a scanning electron microscope, the average particle diameter was 0.5 μs, the major axis/minor axis ratio was 1.05, and the coefficient of variation was 15%.
The particles were perfectly spherical silicone particles.

粒子の凝集は5〜10個凝集しているものが少量見受け
られた程度であった。
The amount of agglomeration of particles was such that a small number of 5 to 10 particles were observed.

実施例3 塩素含有量0.6重量%のメチルトリメトキシシラン4
0g、10%苛性ソーダ水溶液23.7gを用いたこと
以外はすべて実施例2と同様に実施した。
Example 3 Methyltrimethoxysilane 4 with chlorine content of 0.6% by weight
The same procedure as in Example 2 was carried out except that 23.7 g of a 10% caustic soda aqueous solution was used.

塩酸がメチルトリメトキシシランを加水分解、縮合触媒
として作用し、添加後4分という短時間で均一透明液と
なったこと以外は、実施例2と同様に実施できた。
The same procedure as in Example 2 was carried out, except that hydrochloric acid acted as a catalyst for hydrolysis and condensation of methyltrimethoxysilane, and a homogeneous transparent liquid was obtained in a short time of 4 minutes after addition.

得られた乾燥粉末は14.8g(収率75モル%)。走
査型電子顕微鏡で観察した結果、平均粒子径0.55μ
、長径/短径比1.03、変動係数17%の真球状シリ
コーン微粒子であった。
The obtained dry powder was 14.8 g (yield: 75 mol%). As a result of observation with a scanning electron microscope, the average particle size was 0.55μ
, a true spherical silicone fine particle with a major axis/minor axis ratio of 1.03 and a coefficient of variation of 17%.

実施例4 アルカリとして20重量%エチレンジアミンのメタノー
ル溶液を30g用いたこと以外は、すべて実施例2と同
様に行った。
Example 4 Everything was carried out in the same manner as in Example 2, except that 30 g of a 20% by weight methanol solution of ethylenediamine was used as the alkali.

得られた乾燥粉末は17.6g(収率89モル%)。平
均粒子径0.9LLII+、長径/短径比1.03、変
動係数9%の真球状シリコーン微粒子であった。
The obtained dry powder was 17.6 g (yield: 89 mol%). They were truly spherical silicone fine particles with an average particle diameter of 0.9LLII+, a length/breadth ratio of 1.03, and a coefficient of variation of 9%.

比較例1 実施例1と同様の装置を使用し、フラスコに水600g
を入れ、200 +pmで撹拌しツツ、オイルバスにて
昇温した。50℃到達後、メチルトリメトキシシラン(
020,5ppm含有)200g加えた。10分後には
まだ完全に均一化されず、エマルジョン状態であった。
Comparative Example 1 Using the same apparatus as in Example 1, 600 g of water was added to the flask.
The mixture was stirred at 200 pm and then heated in an oil bath. After reaching 50℃, methyltrimethoxysilane (
020.5 ppm) was added. After 10 minutes, it was still not completely homogenized and remained in an emulsion state.

この中にN/ 10 N a OH1,7mlを加え2
0 Orpmで1分間撹拌した後、撹拌を停止し、静置
した。反応系内のエマルジョンは静置により上層と下層
の2層に分離した。
Add 1.7 ml of N/10 Na OH to this and add 2
After stirring at 0 Orpm for 1 minute, stirring was stopped and the mixture was allowed to stand still. The emulsion in the reaction system was separated into two layers, an upper layer and a lower layer, by standing still.

約20分後に下層は白濁が始めり、2層分離していた界
面付近は内壁に粘調なオイル状ゲル化物の付着が認めら
れ、最終的に塊状ゲル化物となった。4時間後に撹拌し
、再スラリー化を行うとともに、内壁や撹拌棒に付着し
た生成物をかき取り、実施例1を同様に後処理を行い、
90g(収率91モル%)の白色粉末を得た。
After about 20 minutes, the lower layer began to become cloudy, and near the interface where the two layers had been separated, a viscous oil-like gelled substance was observed adhering to the inner wall, and finally became a lumpy gelled substance. After 4 hours, stir to reslurry, scrape off the product adhering to the inner wall and stirring rod, and perform post-treatment in the same manner as in Example 1.
90 g (yield: 91 mol%) of white powder was obtained.

2〜4μの球状粒子と、不定形塊状物の混合粉末であっ
た。また、N/1ONaOHを添加後4時間200 +
pmで撹拌を続けても同様の結果であった。
It was a mixed powder of spherical particles of 2 to 4 microns and irregularly shaped lumps. In addition, 200 + for 4 hours after adding N/1ONaOH
Similar results were obtained even if stirring was continued at pm.

〈発明の効果〉 本発明の方法により、長径と短径の比が1.1以下、平
均粒子径が0.1〜201m、変動係数が20%以下で
あり、粒子の凝集が少ない球状シリコーン微粒子の製造
が可能になった。
<Effects of the Invention> The method of the present invention produces spherical silicone fine particles with a ratio of major axis to minor axis of 1.1 or less, an average particle diameter of 0.1 to 201 m, a coefficient of variation of 20% or less, and less particle aggregation. became possible to manufacture.

また、本発明によって得られる微粒子は化粧品、塗料、
接着剤などに添加し、はっ水性、耐熱性、滑り特性など
の向上に効果があり、さらに、樹脂の中に添加して硬化
や熱による収縮、膨張によって生じる応力の緩和剤、吸
収剤などとして有効に利用することができる。また、表
面に染料、紫外線吸収剤などを吸着、結合したり、金属
をメツキすることなどによって新たな機能を付与して利
用することができる。
In addition, the fine particles obtained by the present invention can be used in cosmetics, paints,
When added to adhesives, etc., it is effective in improving water repellency, heat resistance, and sliding properties, etc. Furthermore, when added to resins, it is used as a stress reliever and absorbent that occurs due to curing, shrinkage, and expansion due to heat. It can be effectively used as In addition, new functions can be added and used by adsorbing and bonding dyes, ultraviolet absorbers, etc. to the surface, or plating metal.

Claims (2)

【特許請求の範囲】[Claims] (1)メチルトリアルコキシシランおよび/またはその
部分加水分解縮合物を加水分解・縮合させ、球状シリコ
ーン微粒子を製造するにあたり、あらかじめメチルトリ
アルコキシシランおよび/またはその部分加水分解縮合
物と水とを撹拌し、均一溶液とした後、アルカリを添加
することを特徴とする球状シリコーン微粒子の製造法。
(1) Before hydrolyzing and condensing methyltrialkoxysilane and/or its partially hydrolyzed condensate to produce spherical silicone fine particles, methyltrialkoxysilane and/or its partially hydrolyzed condensate and water are stirred in advance. A method for producing spherical silicone fine particles, which comprises adding an alkali after forming a homogeneous solution.
(2)メチルトリアルコキシシランおよび/またはその
部分加水分解縮合物を加水分解・縮合させ、球状シリコ
ーン微粒子を製造するにあたり、あらかじめメチルトリ
アルコキシシランおよび/またはその部分加水分解縮合
物と水とを撹拌し、均一溶液とした後、アルカリを添加
、撹拌し、アルカリを均一に混合した後、撹拌を停止し
、静置下に加水分解・縮合を進行させることを特徴とす
る球状シリコーン微粒子の製造法。
(2) Before hydrolyzing and condensing methyltrialkoxysilane and/or its partially hydrolyzed condensate to produce spherical silicone fine particles, methyltrialkoxysilane and/or its partially hydrolyzed condensate and water are stirred in advance. A method for producing spherical silicone fine particles, which is characterized in that after forming a homogeneous solution, adding and stirring an alkali, and after uniformly mixing the alkali, stirring is stopped and hydrolysis and condensation are allowed to proceed while standing still. .
JP20294590A 1990-07-30 1990-07-30 Production of spherical fine silicone particle Granted JPH0488023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20294590A JPH0488023A (en) 1990-07-30 1990-07-30 Production of spherical fine silicone particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20294590A JPH0488023A (en) 1990-07-30 1990-07-30 Production of spherical fine silicone particle

Publications (2)

Publication Number Publication Date
JPH0488023A true JPH0488023A (en) 1992-03-19
JPH0588889B2 JPH0588889B2 (en) 1993-12-24

Family

ID=16465767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20294590A Granted JPH0488023A (en) 1990-07-30 1990-07-30 Production of spherical fine silicone particle

Country Status (1)

Country Link
JP (1) JPH0488023A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178357A (en) * 1998-12-14 2000-06-27 Ge Toshiba Silicones Co Ltd Production of fine silicone particle
JP2000186148A (en) * 1998-12-21 2000-07-04 Ge Toshiba Silicones Co Ltd Production of spherical polymethylsilsesquioxane particle
JP2003002973A (en) * 2001-04-18 2003-01-08 Ge Toshiba Silicones Co Ltd Method for producing fine spherical silicone particle
JP2003183395A (en) * 2001-12-21 2003-07-03 Ge Toshiba Silicones Co Ltd Method for producing spherical silicone fine particle
JP2003335860A (en) * 2002-05-20 2003-11-28 Ge Toshiba Silicones Co Ltd Spherical polymethylphenylsilsesquioxane fine particle and manufacturing method therefor
JP2004099630A (en) * 2002-09-04 2004-04-02 Nitto Denko Corp Method for producing polysilsesquioxane fine particle and polysilsesquioxane fine particle obtained by the producing method
WO2004076533A1 (en) * 2003-02-27 2004-09-10 Ube Nitto Kasei Co., Ltd. Method for producing polyorganosiloxane particles and for producing silica particles
JP2004339297A (en) * 2003-05-14 2004-12-02 Ube Nitto Kasei Co Ltd Method for producing polyorganosiloxane particle and method for producing silica particle
JP2008088430A (en) * 2006-09-08 2008-04-17 Ube Nitto Kasei Co Ltd Production method for polyorganosiloxane particle, and production method for silica particle
JP2008127564A (en) * 2006-11-23 2008-06-05 Cheil Industries Inc Silicon-based fine particle, method for producing it and thermoplastic resin composition containing fine particle
WO2010092890A1 (en) * 2009-02-10 2010-08-19 綜研化学株式会社 Coated particles and manufacturing method thereof
JP5061334B2 (en) * 2004-12-27 2012-10-31 小西化学工業株式会社 Polysilsesquioxane fine particle organic solvent dispersion and production method thereof, and polysilsesquioxane fine particle aqueous dispersion and production method thereof
EP2639258A1 (en) 2012-03-13 2013-09-18 Shin-Etsu Chemical Co., Ltd. Curable Silicone Resin Composition and Optoelectronic Device
WO2014050255A1 (en) 2012-09-27 2014-04-03 信越化学工業株式会社 Silicone mist suppressing agent
WO2014106768A1 (en) 2013-01-03 2014-07-10 Shin-Etsu Chemical Co., Ltd. Hydrophilized silicone particles and making method
US8822593B2 (en) 2012-06-22 2014-09-02 Shin-Etsu Chemical Co., Ltd. Curable resin composition, hardened material thereof, and optical semiconductor apparatus
WO2015097675A2 (en) 2013-12-23 2015-07-02 Ticona Gmbh Tribologically modified ultrahigh molecular weight polyethylene
US9105821B2 (en) 2012-12-21 2015-08-11 Shin-Etsu Chemical Co., Ltd. Curable silicone resin composition, cured product thereof and photosemiconductor apparatus
JP2017071740A (en) * 2015-10-09 2017-04-13 信越化学工業株式会社 Manufacturing method of spherical polyorganosilsesquioxane particle
WO2018059670A1 (en) 2016-09-27 2018-04-05 Wacker Chemie Ag Process for producing spherical polysilsesquioxane particles
WO2018135435A1 (en) 2017-01-17 2018-07-26 株式会社アマデラスホールディングス Polyolefin rubber composition
WO2018149475A1 (en) 2017-02-14 2018-08-23 Wacker Chemie Ag Method for producing spherical polysilsesquioxane particles
US10196577B2 (en) 2015-09-30 2019-02-05 Celanese Sales Germany Gmbh Low friction squeak free assembly
WO2019086094A1 (en) 2017-10-30 2019-05-09 Wacker Chemie Ag Method for producing spherical polysilsesquioxane particles
US10662293B2 (en) 2016-10-06 2020-05-26 Wacker Chemie Ag Method for producing spherical polysilsesquioxane particles
JP2020132778A (en) * 2019-02-21 2020-08-31 株式会社日本触媒 Production method of polymethylsilsesquioxane particles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217039A (en) * 1988-02-26 1989-08-30 Toshiba Silicone Co Ltd Fine polyorganosilsesquioxane particle and production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217039A (en) * 1988-02-26 1989-08-30 Toshiba Silicone Co Ltd Fine polyorganosilsesquioxane particle and production thereof

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178357A (en) * 1998-12-14 2000-06-27 Ge Toshiba Silicones Co Ltd Production of fine silicone particle
JP2000186148A (en) * 1998-12-21 2000-07-04 Ge Toshiba Silicones Co Ltd Production of spherical polymethylsilsesquioxane particle
JP2003002973A (en) * 2001-04-18 2003-01-08 Ge Toshiba Silicones Co Ltd Method for producing fine spherical silicone particle
JP2003183395A (en) * 2001-12-21 2003-07-03 Ge Toshiba Silicones Co Ltd Method for producing spherical silicone fine particle
JP2003335860A (en) * 2002-05-20 2003-11-28 Ge Toshiba Silicones Co Ltd Spherical polymethylphenylsilsesquioxane fine particle and manufacturing method therefor
JP2004099630A (en) * 2002-09-04 2004-04-02 Nitto Denko Corp Method for producing polysilsesquioxane fine particle and polysilsesquioxane fine particle obtained by the producing method
US7476706B2 (en) 2003-02-27 2009-01-13 Ube Nitto Kasei Co., Ltd. Method for producing polyorganosiloxane particles and for producing silica particles
WO2004076533A1 (en) * 2003-02-27 2004-09-10 Ube Nitto Kasei Co., Ltd. Method for producing polyorganosiloxane particles and for producing silica particles
JP2004339297A (en) * 2003-05-14 2004-12-02 Ube Nitto Kasei Co Ltd Method for producing polyorganosiloxane particle and method for producing silica particle
JP5061334B2 (en) * 2004-12-27 2012-10-31 小西化学工業株式会社 Polysilsesquioxane fine particle organic solvent dispersion and production method thereof, and polysilsesquioxane fine particle aqueous dispersion and production method thereof
JP2008088430A (en) * 2006-09-08 2008-04-17 Ube Nitto Kasei Co Ltd Production method for polyorganosiloxane particle, and production method for silica particle
JP2008127564A (en) * 2006-11-23 2008-06-05 Cheil Industries Inc Silicon-based fine particle, method for producing it and thermoplastic resin composition containing fine particle
WO2010092890A1 (en) * 2009-02-10 2010-08-19 綜研化学株式会社 Coated particles and manufacturing method thereof
JPWO2010092890A1 (en) * 2009-02-10 2012-08-16 綜研化学株式会社 Coated particles and method for producing the same
EP2639258A1 (en) 2012-03-13 2013-09-18 Shin-Etsu Chemical Co., Ltd. Curable Silicone Resin Composition and Optoelectronic Device
US8822593B2 (en) 2012-06-22 2014-09-02 Shin-Etsu Chemical Co., Ltd. Curable resin composition, hardened material thereof, and optical semiconductor apparatus
WO2014050255A1 (en) 2012-09-27 2014-04-03 信越化学工業株式会社 Silicone mist suppressing agent
US9105821B2 (en) 2012-12-21 2015-08-11 Shin-Etsu Chemical Co., Ltd. Curable silicone resin composition, cured product thereof and photosemiconductor apparatus
WO2014106768A1 (en) 2013-01-03 2014-07-10 Shin-Etsu Chemical Co., Ltd. Hydrophilized silicone particles and making method
US9434819B2 (en) 2013-01-03 2016-09-06 Shin-Etsu Chemical Co., Ltd. Hydrophilized silicone particles and making method
WO2015097675A2 (en) 2013-12-23 2015-07-02 Ticona Gmbh Tribologically modified ultrahigh molecular weight polyethylene
US10196577B2 (en) 2015-09-30 2019-02-05 Celanese Sales Germany Gmbh Low friction squeak free assembly
JP2017071740A (en) * 2015-10-09 2017-04-13 信越化学工業株式会社 Manufacturing method of spherical polyorganosilsesquioxane particle
US10662292B2 (en) 2016-09-27 2020-05-26 Wacker Chemie Ag Process for producing spherical polysilsesquioxane particles
WO2018059670A1 (en) 2016-09-27 2018-04-05 Wacker Chemie Ag Process for producing spherical polysilsesquioxane particles
KR20180087364A (en) * 2016-09-27 2018-08-01 와커 헤미 아게 Process for producing spherical polysilsesquioxane particles
JP2018538420A (en) * 2016-09-27 2018-12-27 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Method for producing spherical polysilsesquioxane particles
US10662293B2 (en) 2016-10-06 2020-05-26 Wacker Chemie Ag Method for producing spherical polysilsesquioxane particles
WO2018135435A1 (en) 2017-01-17 2018-07-26 株式会社アマデラスホールディングス Polyolefin rubber composition
WO2018149475A1 (en) 2017-02-14 2018-08-23 Wacker Chemie Ag Method for producing spherical polysilsesquioxane particles
WO2019086094A1 (en) 2017-10-30 2019-05-09 Wacker Chemie Ag Method for producing spherical polysilsesquioxane particles
JP2020132778A (en) * 2019-02-21 2020-08-31 株式会社日本触媒 Production method of polymethylsilsesquioxane particles

Also Published As

Publication number Publication date
JPH0588889B2 (en) 1993-12-24

Similar Documents

Publication Publication Date Title
JPH0488023A (en) Production of spherical fine silicone particle
US8748552B2 (en) Polyalkylsilsesquioxane particulates and a preparation method thereof
JP2009091466A (en) Spherical core-shell composite particulates and their production method
EP0391447B1 (en) Method for production of inorganic oxide particles
JPH06248081A (en) Production of spherical silicone fine particle
JP6439712B2 (en) Method for producing spherical polymethylphenylsilsesquioxane particles
JP6933976B2 (en) Silica-based particle dispersion and its manufacturing method
JPH1045914A (en) Production of spherical polyorganosilsesquioxane powder
JP2002047348A (en) Method of manufacturing spherical silicone resin fine particle
JP4040362B2 (en) Method for producing spherical polymethylphenylsilsesquioxane fine particles
JPH0488022A (en) Production of spherical fine silicone particle
Pietras et al. New approach to preparation of gelatine/SiO2 hybrid systems by the sol-gel process
JP4804641B2 (en) Method for producing spherical silicone fine particles
JP2718431B2 (en) Silica organosol and method for producing the same
JPH0649209A (en) Production of spherical silicone fine particle
JPS63295637A (en) Spherical polymethylsilsequioxane powder and its production
JP2580315B2 (en) Method for producing polymethylsilsesquioxane powder
JP5153163B2 (en) Method for producing spherical polyorganosilsesquioxane fine particles
JP3189979B2 (en) Method for producing spherical or fibrous organic silicon oxide powder
KR20220113441A (en) Fine Aqueous Particle Stabilized Pickering Emulsion and Particles Prepared Therefrom
Arjasa et al. Facile one pot synthesis of highly monodisperse silica nanoparticles in water based medium
TWI386439B (en) Silicone particle, method for preparing the same and coating composition using the same
JPH08337413A (en) Silica particles and their production
JP3632749B2 (en) Method for producing spherical silicone resin fine particles
JP3605389B2 (en) Method for producing polyorganosilsesquioxane fine particles