JP2000178357A - Production of fine silicone particle - Google Patents

Production of fine silicone particle

Info

Publication number
JP2000178357A
JP2000178357A JP10375323A JP37532398A JP2000178357A JP 2000178357 A JP2000178357 A JP 2000178357A JP 10375323 A JP10375323 A JP 10375323A JP 37532398 A JP37532398 A JP 37532398A JP 2000178357 A JP2000178357 A JP 2000178357A
Authority
JP
Japan
Prior art keywords
water
fine particles
solution
methyltrialkoxysilane
electric conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10375323A
Other languages
Japanese (ja)
Other versions
JP3970453B2 (en
Inventor
Yukinobu Harada
幸伸 原田
Akira Takagi
明 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Japan LLC
Original Assignee
GE Toshiba Silicones Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Toshiba Silicones Co Ltd filed Critical GE Toshiba Silicones Co Ltd
Priority to JP37532398A priority Critical patent/JP3970453B2/en
Publication of JP2000178357A publication Critical patent/JP2000178357A/en
Application granted granted Critical
Publication of JP3970453B2 publication Critical patent/JP3970453B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce fine silicone particles while enabling the average particle size to be controlled accurately and efficiently in a specified range by hydrolyzing a methyltrialkoxysilane in acidic water preadjusted to a specified electric conductivity by the addition of an acid catalyst and dropping the resultant hydrolyzate into an aqueous alkali solution to polycondense the hydrolyzate. SOLUTION: A methyltrialkoxysilane: CH3Si(OR)3 [wherein R is a (substituted) alkyl] is hydrolyzed in acidic water preadjusted to an electric conductivity of 0.5-200 mS/m, and the resultant water-alcohol solution of CH3 Si(OH)3 and/or a partial condensate thereof is dropped into an aqueous alkali solution and thus is polycondensed, giving fine silicone particles having an average particle size controlled in the range of 0.1-1 μm. An aqueous inorganic acid solution prepared by dissolving an inorganic acid, which acts as a catalyst, in an excess amount of water is used as the acid catalyst. Water added to the acid catalyst is preferably ion-exchange water having an electric conductivity of 0.1 mS/m or lower. The amount of water is preferably 2-10 mol per mol of the methyltrialkoxysilane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はシリコーン微粒子の
製造方法に関し、さらに詳しくは、粒子の形状が球形
で、その粒子径が揃っており、しかも0.1μmから1
μmの範囲において平均粒子径を精密に制御可能なシリ
コーン微粒子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing silicone microparticles, and more particularly, to a method for producing silicone microparticles, which has a spherical shape, a uniform particle size, and a particle size of 0.1 μm to 1
The present invention relates to a method for producing silicone fine particles capable of precisely controlling the average particle diameter in the range of μm.

【0002】[0002]

【従来の技術】従来から、シリコーン微粒子の製造方法
としては、次のような方法が知られている。
2. Description of the Related Art Conventionally, the following methods have been known as methods for producing silicone fine particles.

【0003】特開昭60−13813号公報には、メチ
ルトリアルコキシシランおよび/またはその部分加水分
解縮合物を、該メチルトリアルコキシシランおよび/ま
たはその部分加水分解縮合物中に存在する塩素原子を中
和するのに十分な量に、さらに触媒としての必要量を加
えたアンモニアまたはアミンの水溶液中で加水分解・縮
合させ、これによって自由流動性に優れたポリメチルシ
ルセスキオキサン粉末が得られることが開示されてい
る。
JP-A-60-13813 discloses that methyltrialkoxysilane and / or a partially hydrolyzed condensate thereof is converted to a chlorine atom present in the methyltrialkoxysilane and / or a partially hydrolyzed condensate thereof. Hydrolysis / condensation in an aqueous solution of ammonia or amine to which an amount sufficient for neutralization is further added with a necessary amount as a catalyst, whereby a polymethylsilsesquioxane powder having excellent free-flow properties is obtained. It is disclosed.

【0004】また、特開昭63−77940号公報に
は、真球状のシリコーン微粒子の製造方法として、メチ
ル卜リアルコキシシランおよび/またはその部分加水分
解縮合物またはメチルトリアルコキシシランおよび/ま
たはその部分加水分解縮合物と有機溶剤との混合液を上
層にし、アンモニアおよび/またはアミンと有機溶剤と
の混合液を下層にして、これらの界面でメチル卜リアル
コキシシランおよび/またはその部分加水分解縮合物を
加水分解・縮合させて粒子の形状がそれぞれ独立した真
球状であって、粒度分布が平均粒子径の±30%の範囲
であるポリメチルシルセスキオキサン粉末の製造方法が
開示されている。
Japanese Unexamined Patent Publication (Kokai) No. 63-77940 discloses a method for producing spherical silicone fine particles, which includes methyltrialkoxysilane and / or a partially hydrolyzed condensate thereof or methyltrialkoxysilane and / or a part thereof. The mixed solution of the hydrolysis condensate and the organic solvent is placed in the upper layer, and the mixed solution of ammonia and / or the amine and the organic solvent is placed in the lower layer, and methyltrialkoxysilane and / or its partial hydrolysis condensate Are hydrolyzed and condensed to produce polymethylsilsesquioxane powders having a true spherical shape in which the shape of each particle is independent and a particle size distribution in the range of ± 30% of the average particle size.

【0005】さらに、特開昭63−295637号公報
には、メチルトリアルコキシシランおよび/またはその
部分加水分解縮合物の使用量を、水の重量の1/10以
下とすること、特に、アンモニアおよび/またはアミン
の濃度を0.01〜5重量%とすることにより、平均粒
子径が0.05〜0.8μmの球状シリコーン粉末を得
る製造方法が開示されている。
Further, Japanese Patent Application Laid-Open No. Sho 63-295637 discloses that the amount of methyltrialkoxysilane and / or its partially hydrolyzed condensate is reduced to 1/10 or less of the weight of water, A method for producing a spherical silicone powder having an average particle diameter of 0.05 to 0.8 μm by adjusting the concentration of an amine to 0.01 to 5% by weight is disclosed.

【0006】このような方法で得られたシリコーン粉末
は、撥水性の付与、滑り性の付与などの目的のために、
塗料、プラスチック、ゴム、化粧品、紙などに改質用添
加剤として使用される。
[0006] The silicone powder obtained by such a method is used for the purpose of imparting water repellency, imparting lubricity and the like.
Used as a modifying additive in paints, plastics, rubber, cosmetics, paper, etc.

【0007】しかし、特開昭60−13813号公報に
よる製造方法においては、球状のシリコーン微粒子は得
られない。また特開昭63−77940号公報に記載の
方法では、0.1〜1.0μmの粒径範囲の球形のシリ
コーン微粒子は得られない。ところで、ビデオテープ用
プラスチックフィルムの滑り性付与の目的で使用される
シリコーン微粒子には、平均粒子径が0.1〜1.0μ
mで、製造単位ごとの平均粒子径のばらつき(標準偏
差)が±0.05μmという極めて狭いばらつき範囲の
なかでの制御を要求されている。
However, spherical silicone fine particles cannot be obtained by the production method disclosed in Japanese Patent Application Laid-Open No. 60-13813. Further, according to the method described in JP-A-63-77940, spherical silicone fine particles having a particle size range of 0.1 to 1.0 μm cannot be obtained. By the way, the average particle diameter of the silicone fine particles used for the purpose of imparting the slipperiness of the plastic film for video tapes is 0.1 to 1.0 μm.
m, control is required within a very narrow range of variation of the average particle diameter (standard deviation) of ± 0.05 μm for each production unit.

【0008】しかしながら、特開昭63−295637
号公報記載の製造方法では、このような狭いばらつき範
囲のなかでの制御ができず、また大量の水を使用するな
ど装置効率が不十分であるという問題があった。
However, Japanese Patent Application Laid-Open No. 63-295637
However, the manufacturing method described in Japanese Patent Application Laid-Open No. H10-209400 has a problem in that control cannot be performed within such a narrow range of variation, and the efficiency of the apparatus is insufficient, such as using a large amount of water.

【0009】[0009]

【発明が解決しようとする課題】本発明は、かかる従来
の問題を解消すべくなされたもので、0.1μmから1
μmの範囲内で、平均粒子径を精密に、かつ効率よく制
御可能なシリコーン微粒子の製造方法を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a conventional problem.
An object of the present invention is to provide a method for producing silicone fine particles capable of precisely and efficiently controlling the average particle diameter within the range of μm.

【0010】[0010]

【課題を解決するための手段】本発明のシリコーン微粒
子の製造方法は、(A)一般式: CH3 Si(OR)3 ……(I) (式中、Rは置換または非置換のアルキル基を表す)で
表されるメチルトリアルコキシシランを、酸触媒の添加
により0.5〜200mS/mの電気伝導度に調整した
酸性水中で加水分解して、ー般式: CH3 Si(OH)3 ……(II) で表されるメチルシラントリオールおよび/またはその
部分縮合物の水/アルコール溶液を得る工程と、(B)
前記メチルシラントリオールおよび/またはその部分縮
合物の水/アルコール溶液をアルカリ水溶液に滴下し重
縮合反応を行わせてシリコーン微粒子を含む懸濁液を得
る工程とを含むことを特徴としている。
Means for Solving the Problems The process for producing silicone microparticles of the present invention comprises: (A) a general formula: CH 3 Si (OR) 3 (I) wherein R is a substituted or unsubstituted alkyl group; Is hydrolyzed in acidic water adjusted to an electric conductivity of 0.5 to 200 mS / m by adding an acid catalyst to obtain a general formula: CH 3 Si (OH) ( 3 ) obtaining a water / alcohol solution of methylsilanetriol and / or a partial condensate thereof represented by (II);
A step of dropping a water / alcohol solution of the methylsilanetriol and / or a partial condensate thereof into an aqueous alkali solution and performing a polycondensation reaction to obtain a suspension containing silicone fine particles.

【0011】本発明の製造方法により得られるシリコー
ン微粒子は球形で、しかも平均粒子径が0.1μmから
1μmの範囲において極めて粒径が揃い、さらに製造単
位ごとの平均粒子径のばらつき(標準偏差)は±0.0
5μmという極めて狭いばらつき範囲に制御されたもの
となっている。
The silicone fine particles obtained by the production method of the present invention are spherical and have extremely uniform particle diameters in the range of 0.1 μm to 1 μm in average particle diameter, and furthermore, variation (standard deviation) of average particle diameter in each production unit. Is ± 0.0
The variation is controlled to an extremely narrow range of 5 μm.

【0012】本発明の製造方法は、次の2つの工程から
構成される。
The manufacturing method of the present invention comprises the following two steps.

【0013】本発明の製造方法の第一工程((A)の工
程)は、前記一般式(I)で表されるメチルトリアルコ
キシシランを、酸触媒の存在下に加水分解して、前記一
般式(II)で表されるメチルシラントリオールおよび/
またはその部分縮合物を得る工程である。
In the first step (step (A)) of the production method of the present invention, the methyltrialkoxysilane represented by the general formula (I) is hydrolyzed in the presence of an acid catalyst, and Methylsilanetriol represented by the formula (II) and / or
Or a step of obtaining a partial condensate thereof.

【0014】第一工程におけるメチルトリアルコキシシ
ランとしては、例えば公知の方法によりメチルトリクロ
ロシランを適当なアルコールでアルコキシ化したものを
使用し得る。すなわち、一般式(I)におけるRとして
は、メチル基、エチル基、プロピル基、ブチル基などの
アルキル基、および2−メトキシエチル基、2−エトキ
シエチル基、2−プロポキシエチル基、2−ブトキシエ
チル基などの置換アルキル基が例示される。
As the methyltrialkoxysilane in the first step, for example, a compound obtained by alkoxylating methyltrichlorosilane with a suitable alcohol by a known method can be used. That is, R in the general formula (I) represents an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a 2-methoxyethyl group, a 2-ethoxyethyl group, a 2-propoxyethyl group, a 2-butoxy group. A substituted alkyl group such as an ethyl group is exemplified.

【0015】これらの中でも、反応速度の点からメチル
基、エチル基および2−メトキシエチル基が好ましく、
特にメチル基が好ましい。
Of these, a methyl group, an ethyl group and a 2-methoxyethyl group are preferred from the viewpoint of the reaction rate.
Particularly, a methyl group is preferable.

【0016】第一工程の加水分解反応に際しては、過剰
の水に触媒となる無機酸を溶解させた無機酸水溶液が用
いられる。このように酸触媒として無機酸を用いる目的
は、加水分解反応を制御して、得られるメチルシラント
リオールおよび/またはその部分縮合物の分子量を制御
するためである。
In the hydrolysis reaction in the first step, an aqueous solution of an inorganic acid in which an inorganic acid serving as a catalyst is dissolved in excess water is used. The purpose of using an inorganic acid as an acid catalyst in this way is to control the hydrolysis reaction to control the molecular weight of the obtained methylsilanetriol and / or its partial condensate.

【0017】酸触媒として有機酸を用いると効率よく加
水分解反応を制御することが困難になる。
When an organic acid is used as the acid catalyst, it becomes difficult to efficiently control the hydrolysis reaction.

【0018】本発明において酸触媒として用いられる無
機酸としては、塩酸、フッ化水素酸などの水素酸や硫
酸、硝酸などのオキソ酸を例示することができるが、入
手および取り扱いの容易さから塩酸が好ましい。
The inorganic acid used as an acid catalyst in the present invention may be exemplified by a hydrogen acid such as hydrochloric acid and hydrofluoric acid, and an oxo acid such as sulfuric acid and nitric acid. Is preferred.

【0019】酸触媒の使用量は、メチルトリアルコキシ
シランを加水分解する場合に用いる水溶液の電気伝導度
を0.1〜200mS/m、好ましくは0.5〜100
mS/mの範囲とする量である。
The amount of the acid catalyst used is such that the electric conductivity of the aqueous solution used for hydrolyzing the methyltrialkoxysilane is 0.1 to 200 mS / m, preferably 0.5 to 100 mS / m.
The amount is in the range of mS / m.

【0020】酸触媒を添加した水の電気伝導度が0.1
mS/m未満の場合、十分に加水分解が進行せず、また
200mS/mを超える場合、粒子径のばらつきを極め
て狭いばらつき範囲に制御することが困難になる。
The electric conductivity of the water to which the acid catalyst is added is 0.1
When it is less than mS / m, hydrolysis does not proceed sufficiently, and when it exceeds 200 mS / m, it becomes difficult to control the variation in particle diameter to an extremely narrow range.

【0021】なお、第一工程において酸触媒の添加され
る水(酸触媒添加前の水)としては電気伝導度0.1m
S/m以下のイオン交換水が好ましく、さらに0.05
mS/m以下のイオン交換水であることがより好まし
い。
The water to which the acid catalyst is added in the first step (water before the addition of the acid catalyst) is 0.1 m in electric conductivity.
S / m or less of ion-exchanged water is preferable,
It is more preferable that the ion-exchanged water is at most mS / m.

【0022】第一工程の加水分解に用いる水の量は、メ
チルトリアルコキシシラン1モルに対して2〜10モル
が好ましい。水の量が2モル未満の場合には加水分解が
十分に進行せず、10モルを超える場合にはメチルシラ
ントリオールおよび/またはその部分縮合物が不安定に
なり析出しやすくなる。
The amount of water used in the hydrolysis in the first step is preferably 2 to 10 mol per 1 mol of methyltrialkoxysilane. When the amount of water is less than 2 mol, hydrolysis does not proceed sufficiently, and when it exceeds 10 mol, methylsilanetriol and / or its partial condensate becomes unstable and tends to precipitate.

【0023】加水分解時の温度は、最終的なシリコーン
微粒子の平均粒径およびその標準偏差を精密に制御する
ためには10〜60℃の範囲内とし、この範囲で反応を
行うことが好ましい。第一工程の加水分解反応は、1〜
10時間混合液の撹拌を続けることにより行われる。
The temperature at the time of the hydrolysis is preferably in the range of 10 to 60 ° C. in order to precisely control the final average particle size of the silicone fine particles and its standard deviation, and the reaction is preferably performed in this range. The hydrolysis reaction of the first step is 1 to
This is done by continuing to stir the mixture for 10 hours.

【0024】本発明の製造方法の第二工程((B)の工
程)は、第一工程で得られた、または、さらに水で希釈
して得られたメチルシラントリオールおよび/またはそ
の部分縮合物をアルカリ水溶液に滴下して重縮合反応に
よりシリコーン微粒子を含む懸濁液を得る工程である。
In the second step (step (B)) of the production method of the present invention, methylsilanetriol and / or a partial condensate thereof obtained in the first step or obtained by further diluting with water Is added to an aqueous alkali solution to obtain a suspension containing silicone fine particles by a polycondensation reaction.

【0025】粒子径を制御するために有機溶剤を加える
必要はない。
It is not necessary to add an organic solvent to control the particle size.

【0026】第二工程に使用されるアルカリは、その水
溶液が塩基性を表すものであればよく、このアルカリは
第一工程で用いられた無機酸の中和剤として、さらに第
二工程の重縮合反応の触媒として作用する。
The alkali used in the second step may be any one as long as its aqueous solution shows basicity. This alkali is used as a neutralizing agent for the inorganic acid used in the first step, and is used as a neutralizer in the second step. Acts as a catalyst for the condensation reaction.

【0027】このようなアルカリとしては、水酸化リチ
ウム、水酸化ナトリウム、水酸化カリウムのような金属
水酸化物あるいはアンモニアまたはモノメチルアミン、
ジメチルアミンのようなアミン類を例示することができ
る。これらのなかでも、シリコーン微粒子の用途を制限
するような微量の不純物を残さないことからアンモニア
またはモノメチルアミン、ジメチルアミンのようなアミ
ン類が好ましく、さらに除去が容易なことからアンモニ
アが特に好ましい。アルカリの使用量は、無機酸を中和
し、なおかつ重縮合反応の触媒として有効に作用する量
であり、例えばアルカリとしてアンモニアを用いた揚合
には第一工程および第二工程で用いる全ての水100重
量部に対して0.05重量部以上(NH3 として)を用
いる。
Examples of the alkali include metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, ammonia and monomethylamine,
Amines such as dimethylamine can be exemplified. Among these, ammonia or amines such as monomethylamine and dimethylamine are preferable because they do not leave trace amounts of impurities that limit the use of silicone fine particles, and ammonia is particularly preferable because it is easily removed. The amount of the alkali used is an amount that neutralizes the inorganic acid and effectively acts as a catalyst for the polycondensation reaction.For example, in the case of using ammonia as the alkali, all the amounts used in the first step and the second step are used. 0.05 parts by weight or more (as NH 3 ) is used per 100 parts by weight of water.

【0028】なお、アルカリの必要な添加量は、アルカ
リごとに解離度が異なるが、実験的に容易に求めること
ができる。
The required amount of alkali to be added can be easily determined experimentally, although the degree of dissociation differs for each alkali.

【0029】第二工程の重縮合反応は、アルカリ水溶液
を反応容器に仕込んで、この反応容器内を十分に撹拌し
ながら第一工程で得られたメチルシラントリオールおよ
び/またはその部分縮合物(以下、「シラノ一ル溶液」
という)を滴下して前記アルカリ溶液と接触させること
により行われる。
In the polycondensation reaction of the second step, an aqueous alkali solution is charged into a reaction vessel, and the methylsilanetriol obtained in the first step and / or a partial condensate thereof (hereinafter, referred to as the first step) are stirred while sufficiently stirring the inside of the reaction vessel. , "Silanol solution"
) Is dropped and brought into contact with the alkaline solution.

【0030】シラノ一ル溶液の滴下速度は全量を5分以
上かけて滴下する程度が好ましく、特に、10〜240
分かけて滴下する程度が一層好ましい。なお、基本的
に、第一工程で調整した加水分解物が多くなれば、第二
工程工程のスケールも大きくなるので単位時間あたりの
滴下割合が同じであれば滴下時間が反応スケールにより
大きく変化することはない。第二工程における撹拌は、
シラノール溶液の滴下中は勿論、滴下後も2〜10時間
程度続けることが望ましい。
The dropping rate of the silanol solution is preferably such that the whole amount is dropped over 5 minutes or more, and particularly preferably 10 to 240.
It is more preferable to drop the solution over a period of minutes. In addition, basically, if the amount of the hydrolyzate adjusted in the first step increases, the scale in the second step also increases, so that the dropping time varies greatly depending on the reaction scale if the dropping rate per unit time is the same. Never. The stirring in the second step is
It is desirable to continue for about 2 to 10 hours after the addition of the silanol solution, as well as during the addition.

【0031】このようにして重縮合反応を行うことによ
りシリコーン微粒子を含む懸濁液を得ることができる。
さらに必要に応じて、脱水、乾燥、解砕を行い、シリコ
ーン微粒子を得ることができる。
By performing the polycondensation reaction in this manner, a suspension containing silicone fine particles can be obtained.
Further, if necessary, dehydration, drying, and crushing can be performed to obtain silicone fine particles.

【0032】[0032]

【発明の効果】本発明の製造方法によれば、従来の製造
方法では困難であった平均粒子径が0.1μmから1μ
mの範囲において、平均粒子径を精密に制御されたシリ
コーン微粒子を収率および装置効率よく得ることができ
る。
According to the production method of the present invention, the average particle diameter is 0.1 μm to 1 μm, which has been difficult with the conventional production method.
Within the range of m, silicone fine particles whose average particle diameter is precisely controlled can be obtained with high yield and high device efficiency.

【0033】本発明の製造方法により得られたシリコー
ン微粒子は、塗料、プラスチック、ゴム、紙などの表面
改質剤として有用である。
The silicone fine particles obtained by the production method of the present invention are useful as a surface modifier for paints, plastics, rubbers, papers and the like.

【0034】特にビデオテープやビデオプリンターテー
プに用いられるプラスチックフイルムの滑り性付与剤、
耐熱性付与剤として好適している。
[0034] Particularly, a plastic film slipperiness imparting agent used for video tapes and video printer tapes,
It is suitable as a heat resistance imparting agent.

【0035】[0035]

【実施例】以下、本発明を実施例および比較例により、
更に詳しく説明する。これらの例において部は重量部を
表す。本発明は、これらの実施例によって限定されるも
のではない。
The present invention will now be described by way of Examples and Comparative Examples.
This will be described in more detail. In these examples, parts represent parts by weight. The present invention is not limited by these examples.

【0036】[実施例1]第1工程 温度計、還流器および撹拌機を備えた反応容器に、電気
伝導度計(東亜電波工業(株)製 CM‐11P)を用
いて測定した電気伝導度が0.136mS/mの蒸留水
1242部を仕込み、塩酸水溶液を添加して混合溶液の
電気伝導度を9.96mS/mとした。
Example 1 First Step In a reaction vessel equipped with a thermometer, a reflux condenser and a stirrer, an electric conductivity measured by using an electric conductivity meter (CM-11P manufactured by Toa Denpa Kogyo KK). Was charged with 1242 parts of distilled water having a concentration of 0.136 mS / m, and an aqueous solution of hydrochloric acid was added to adjust the electric conductivity of the mixed solution to 9.96 mS / m.

【0037】この溶液を23℃で撹拌しつつ、メチルト
リメトキシシラン1360部を添加したところ、加水分
解が進行し、約5分間で温度が50℃まで上昇し、透明
な反応液が得られた。ついで、撹拌を3時間継続したの
ち、ろ過を行いシラノ一ル溶液を得た。
While stirring this solution at 23 ° C., 1360 parts of methyltrimethoxysilane was added. Hydrolysis proceeded, and the temperature rose to 50 ° C. in about 5 minutes to obtain a transparent reaction solution. . Then, after stirring was continued for 3 hours, filtration was performed to obtain a silanol solution.

【0038】この加水分解反応により得られたシラノ一
ル溶液中のメチルシラントリオールおよび/またはその
部分縮合物の平均分子量を、THF(テトラヒドロフラ
ン)を展開溶媒として用いたGPC(ゲルパーミエーシ
ョンクロマトグラフ)により測定した。GPCの測定は
昭和電工製GPCsystem−11を使用した。測定
された平均分子量は430であった。
The average molecular weight of methylsilanetriol and / or its partial condensate in the silanol solution obtained by this hydrolysis reaction was determined by using GPC (gel permeation chromatography) using THF (tetrahydrofuran) as a developing solvent. Was measured by GPC was measured using GPC system-11 manufactured by Showa Denko. The measured average molecular weight was 430.

【0039】第2工程 温度計、還流器および撹拌機を備えた反応容器に、水3
875部と25%アンモニア水溶液23部を仕込んだ。
Second Step Water 3 was placed in a reaction vessel equipped with a thermometer, a reflux condenser and a stirrer.
875 parts and 23 parts of a 25% aqueous ammonia solution were charged.

【0040】これを24℃で撹拌しながら第1工程で得
られたシラノ一ル溶液1000部を約10分かけて滴下
した。
While stirring the mixture at 24 ° C., 1000 parts of the silanol solution obtained in the first step was added dropwise over about 10 minutes.

【0041】滴下終了後、6時間撹拌を続けた。撹拌中
にポリメチルシルセスキオキサン微粒子が析出して、反
応液は乳白色のディスパージョンに変わった。
After completion of the dropwise addition, stirring was continued for 6 hours. During the stirring, fine particles of polymethylsilsesquioxane were precipitated, and the reaction solution turned into a milky white dispersion.

【0042】これを遠心分離器にかけて微粒子を沈降さ
せたのち取り出し、200℃の乾燥機で24時間乾燥さ
せて白色の微粒子を得た。
This was set in a centrifugal separator to settle the fine particles, taken out, and dried in a drier at 200 ° C. for 24 hours to obtain white fine particles.

【0043】この微粒子を電子顕微鏡で観察したとこ
ろ、粒子形状は真球状であり、平均粒子径は0.68μ
m、標準偏差は0.09μmであった。
Observation of these fine particles with an electron microscope revealed that the particles had a true spherical shape and an average particle size of 0.68 μm.
m, and the standard deviation was 0.09 μm.

【0044】この微粒子を磁性るつぼに入れ空気中で9
00℃に加熱して熱分解させたところ、残量は89.1
%であった。これはポリメチルシルセスキオキサンが酸
化熱分解して二酸化ケイ素になる理論量89.6%に近
い値である。また、この熱分解物をR線分析した結果、
非晶質シリカであることが確認された。このことから得
られた白色微粒子がポリメチルシルセスキオキサンであ
ることが確認された。 [実施例2〜6]実施例1と同様にして、表1に示した
条件でポリメチルシルセスキオキサン微粒子を得た。結
果を表2に示す。
The fine particles are placed in a magnetic crucible and placed in air for 9 hours.
When heated to 00 ° C. for pyrolysis, the remaining amount was 89.1.
%Met. This is a value close to the theoretical amount of 89.6%, in which polymethylsilsesquioxane is oxidized and thermally decomposed into silicon dioxide. Also, as a result of R-ray analysis of this pyrolyzate,
It was confirmed to be amorphous silica. This confirmed that the obtained white fine particles were polymethylsilsesquioxane. Examples 2 to 6 In the same manner as in Example 1, polymethylsilsesquioxane fine particles were obtained under the conditions shown in Table 1. Table 2 shows the results.

【0045】[0045]

【表1】 [実施例7〜9]第1工程において用いた反応容器より
保温性に優れた反応容器を用いたほかは実施例1〜6と
同様にしてポリメチルシルセスキオキサン微粒子を得
た。得られた微粒子の平均粒子径および標準偏差は表3
に表すとおりであった。
[Table 1] [Examples 7 to 9] Polymethylsilsesquioxane fine particles were obtained in the same manner as in Examples 1 to 6, except that a reaction vessel having better heat retention than the reaction vessel used in the first step was used. Table 3 shows the average particle size and standard deviation of the obtained fine particles.
As shown in FIG.

【0046】また実施例7〜9で得られた微粒子を走査
型電子顕微鏡によって撮影した像を図1〜図3に示す。
FIGS. 1 to 3 show images of the fine particles obtained in Examples 7 to 9 taken by a scanning electron microscope.

【0047】[0047]

【表2】 [Table 2]

【表3】 [比較例1]温度計、還流器および撹拌機を備えた反応
容器に、電気伝導度0.168mS/mの蒸留水124
2部を仕込み、塩酸水溶液を添加して混合溶液の電気伝
導度を2030mS/mとした。これを25℃で撹拌し
つつ、メチルトリメトキシシラン1360部を添加した
ところ、加水分解が進行し、3分間で温度が61℃まで
上昇し、透明な反応液が得られた。ついで、撹拌を数時
間継続したところ溶液が白濁し、撹拌を停止すると反応
液は2層に分離した。この下層を分液して分析したとこ
ろ、分子量増大により析出したメチルシラントリオール
および/またはその部分縮合物がその主成分であること
が分かった。
[Table 3] Comparative Example 1 Distilled water 124 having an electrical conductivity of 0.168 mS / m was placed in a reaction vessel equipped with a thermometer, a reflux condenser, and a stirrer.
Two parts were charged, and an aqueous solution of hydrochloric acid was added to adjust the electric conductivity of the mixed solution to 2030 mS / m. While stirring at 25 ° C., 1360 parts of methyltrimethoxysilane was added. Hydrolysis proceeded, and the temperature rose to 61 ° C. in 3 minutes to obtain a transparent reaction solution. Then, when stirring was continued for several hours, the solution became cloudy, and when the stirring was stopped, the reaction solution was separated into two layers. When the lower layer was separated and analyzed, it was found that methylsilanetriol precipitated due to an increase in molecular weight and / or a partial condensate thereof was the main component.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、実施例7のポリメチルシルセスキオキサン
微粒子の粒子構造を示す写真である。
FIG. 1 is a photograph showing the particle structure of polymethylsilsesquioxane fine particles of Example 7.

【図2】は、実施例8のポリメチルシルセスキオキサン
微粒子の粒子構造を示す写真である。
FIG. 2 is a photograph showing the particle structure of polymethylsilsesquioxane fine particles of Example 8.

【図3】は、実施例9のボリメチルシルセスキオキサン
微粒子の粒子構造を示す写真である。
FIG. 3 is a photograph showing the particle structure of polymethylsilsesquioxane fine particles of Example 9.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 (A)一般式: CH3 Si(OR)3 ……(I) (式中、Rは置換または非置換のアルキル基を表す)で
表されるメチルトリアルコキシシランを、酸触媒の添加
により0.5〜200mS/mの電気伝導度に調整した
酸性水中で加水分解して、ー般式: CH3 Si(OH)3 ……(II) で表されるメチルシラントリオールおよび/またはその
部分縮合物の水/アルコール溶液を得る工程と、 (B)前記メチルシラントリオールおよび/またはその
部分縮合物の水/アルコール溶液をアルカリ水溶液に滴
下し重縮合反応を行わせてシリコーン微粒子を含む懸濁
液を得る工程とを含むことを特徴とするシリコーン微粒
子の製造方法。
(A) a methyltrialkoxysilane represented by the general formula: CH 3 Si (OR) 3 (I) wherein R represents a substituted or unsubstituted alkyl group; Hydrolysis in acidic water adjusted to an electric conductivity of 0.5 to 200 mS / m by addition of a catalyst yields methylsilanetriol represented by the general formula: CH 3 Si (OH) 3 (II) and And / or a step of obtaining a water / alcohol solution of the partial condensate thereof; and (B) dropping the water / alcohol solution of the methylsilanetriol and / or the partial condensate thereof into an aqueous alkali solution to carry out a polycondensation reaction to carry out polycondensation. Obtaining a suspension containing: a method for producing silicone fine particles.
【請求項2】 (A)の工程に使用する酸触媒が、無機
酸であることを特徴とする請求項1記載のシリコーン微
粒子の製造方法。
2. The method according to claim 1, wherein the acid catalyst used in the step (A) is an inorganic acid.
【請求項3】 (A)の工程で生成されたメチルシラン
トリオールおよび/またはその部分縮合物の平均分子量
が100〜1000の範囲であることを特徴とする請求
項1又は2に記載のシリコーン微粒子の製造方法。
3. The silicone fine particles according to claim 1, wherein the average molecular weight of methylsilanetriol and / or a partial condensate thereof produced in the step (A) is in the range of 100 to 1,000. Manufacturing method.
【請求項4】 (A)の工程で酸触媒の添加される水が
電気伝導度0.5mS/m以下のイオン交換水である請
求項1乃至3のいずれか1項記載のシリコーン微粒子の
製造方法。
4. The production of silicone fine particles according to claim 1, wherein the water to which the acid catalyst is added in the step (A) is ion-exchanged water having an electric conductivity of 0.5 mS / m or less. Method.
【請求項5】 (A)の工程で用いられる水の量は、メ
チルトリアルコキシシラン1モルに対して2〜10モル
の範囲である請求項1乃至4のいずれか1項記載のシリ
コーン微粒子の製造方法。
5. The silicone fine particles according to claim 1, wherein the amount of water used in the step (A) is in the range of 2 to 10 mol per 1 mol of methyltrialkoxysilane. Production method.
JP37532398A 1998-12-14 1998-12-14 Method for producing silicone fine particles Expired - Lifetime JP3970453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37532398A JP3970453B2 (en) 1998-12-14 1998-12-14 Method for producing silicone fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37532398A JP3970453B2 (en) 1998-12-14 1998-12-14 Method for producing silicone fine particles

Publications (2)

Publication Number Publication Date
JP2000178357A true JP2000178357A (en) 2000-06-27
JP3970453B2 JP3970453B2 (en) 2007-09-05

Family

ID=18505332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37532398A Expired - Lifetime JP3970453B2 (en) 1998-12-14 1998-12-14 Method for producing silicone fine particles

Country Status (1)

Country Link
JP (1) JP3970453B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186148A (en) * 1998-12-21 2000-07-04 Ge Toshiba Silicones Co Ltd Production of spherical polymethylsilsesquioxane particle
JP2003002973A (en) * 2001-04-18 2003-01-08 Ge Toshiba Silicones Co Ltd Method for producing fine spherical silicone particle
JP2003183395A (en) * 2001-12-21 2003-07-03 Ge Toshiba Silicones Co Ltd Method for producing spherical silicone fine particle

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472300A (en) * 1977-11-21 1979-06-09 Shin Etsu Chem Co Ltd Preparation of polymethylsilsesquioxane
JPS6013813A (en) * 1983-07-05 1985-01-24 Toshiba Silicone Co Ltd Preparation of polymethylsilsesquioxane
JPS6377940A (en) * 1986-09-19 1988-04-08 Toshiba Silicone Co Ltd Perfectly spherical polymethylsilsesquioxane powder and production thereof
JPS63295637A (en) * 1987-05-28 1988-12-02 Toshiba Silicone Co Ltd Spherical polymethylsilsequioxane powder and its production
JPH02209927A (en) * 1989-02-09 1990-08-21 Shin Etsu Chem Co Ltd Production of polymethylsilsesquioxane powder
JPH03244636A (en) * 1990-02-22 1991-10-31 Shin Etsu Chem Co Ltd Production of powdered silicone and powdered silicone
JPH0488022A (en) * 1990-07-30 1992-03-19 Toray Ind Inc Production of spherical fine silicone particle
JPH0488023A (en) * 1990-07-30 1992-03-19 Toray Ind Inc Production of spherical fine silicone particle
JPH0525279A (en) * 1991-07-24 1993-02-02 Pola Chem Ind Inc Preparation of spherical or fibrous organopolysiloxane powder
JPH05140314A (en) * 1991-11-18 1993-06-08 Shin Etsu Chem Co Ltd Production of spherical silicone resin fine particle
JPH0649209A (en) * 1992-07-31 1994-02-22 Toray Ind Inc Production of spherical silicone fine particle
JPH0665378A (en) * 1992-08-21 1994-03-08 Pola Chem Ind Inc Production of fibrous or spherical organosilicon oxide
JPH06248081A (en) * 1993-02-26 1994-09-06 Toray Ind Inc Production of spherical silicone fine particle
JPH06263875A (en) * 1993-09-27 1994-09-20 Toshiba Silicone Co Ltd Production of fine polyorganosililsequioxane particle
JPH1045914A (en) * 1996-08-01 1998-02-17 Toshiba Silicone Co Ltd Production of spherical polyorganosilsesquioxane powder
JPH11286551A (en) * 1998-01-30 1999-10-19 Eastman Kodak Co Production of polyalkylsilsesquioxaine particle

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5472300A (en) * 1977-11-21 1979-06-09 Shin Etsu Chem Co Ltd Preparation of polymethylsilsesquioxane
JPS6013813A (en) * 1983-07-05 1985-01-24 Toshiba Silicone Co Ltd Preparation of polymethylsilsesquioxane
JPS6377940A (en) * 1986-09-19 1988-04-08 Toshiba Silicone Co Ltd Perfectly spherical polymethylsilsesquioxane powder and production thereof
JPS63295637A (en) * 1987-05-28 1988-12-02 Toshiba Silicone Co Ltd Spherical polymethylsilsequioxane powder and its production
JPH02209927A (en) * 1989-02-09 1990-08-21 Shin Etsu Chem Co Ltd Production of polymethylsilsesquioxane powder
JPH03244636A (en) * 1990-02-22 1991-10-31 Shin Etsu Chem Co Ltd Production of powdered silicone and powdered silicone
JPH0488022A (en) * 1990-07-30 1992-03-19 Toray Ind Inc Production of spherical fine silicone particle
JPH0488023A (en) * 1990-07-30 1992-03-19 Toray Ind Inc Production of spherical fine silicone particle
JPH0525279A (en) * 1991-07-24 1993-02-02 Pola Chem Ind Inc Preparation of spherical or fibrous organopolysiloxane powder
JPH05140314A (en) * 1991-11-18 1993-06-08 Shin Etsu Chem Co Ltd Production of spherical silicone resin fine particle
JPH0649209A (en) * 1992-07-31 1994-02-22 Toray Ind Inc Production of spherical silicone fine particle
JPH0665378A (en) * 1992-08-21 1994-03-08 Pola Chem Ind Inc Production of fibrous or spherical organosilicon oxide
JPH06248081A (en) * 1993-02-26 1994-09-06 Toray Ind Inc Production of spherical silicone fine particle
JPH06263875A (en) * 1993-09-27 1994-09-20 Toshiba Silicone Co Ltd Production of fine polyorganosililsequioxane particle
JPH1045914A (en) * 1996-08-01 1998-02-17 Toshiba Silicone Co Ltd Production of spherical polyorganosilsesquioxane powder
JPH11286551A (en) * 1998-01-30 1999-10-19 Eastman Kodak Co Production of polyalkylsilsesquioxaine particle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186148A (en) * 1998-12-21 2000-07-04 Ge Toshiba Silicones Co Ltd Production of spherical polymethylsilsesquioxane particle
JP2003002973A (en) * 2001-04-18 2003-01-08 Ge Toshiba Silicones Co Ltd Method for producing fine spherical silicone particle
JP2003183395A (en) * 2001-12-21 2003-07-03 Ge Toshiba Silicones Co Ltd Method for producing spherical silicone fine particle

Also Published As

Publication number Publication date
JP3970453B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
JP3970449B2 (en) Method for producing spherical polymethylsilsesquioxane fine particles
JP2001192452A (en) Spherical silicone fine particle and mete{od for producing the same
KR930006260B1 (en) Polyorganosilsesquioxane fines particles and process for producing them
JP4707791B2 (en) Water-based composition of aminofunctional silicon compound, process for its preparation and use thereof
WO2015107961A1 (en) Hydrophobized spherical poly (alkyl silsesquioxane) microparticles, external additive for toner, dry electrophotography toner, and method for manufacturing hydrophobized spherical poly (alkyl silsesquioxane) microparticles
JP4577755B2 (en) Process for producing modified colloidal silica
JP2013256676A (en) Polyalkylsilsesquioxane particle
JPH06263875A (en) Production of fine polyorganosililsequioxane particle
JPH0470335B2 (en)
JP2009091466A (en) Spherical core-shell composite particulates and their production method
JP4040362B2 (en) Method for producing spherical polymethylphenylsilsesquioxane fine particles
JPH1045914A (en) Production of spherical polyorganosilsesquioxane powder
JP3970453B2 (en) Method for producing silicone fine particles
JPH10251516A (en) Silane oligomer composition
JP2003183396A (en) Method for producing spherical silicone fine particle
JP3760498B2 (en) Si-H bond-containing silica derivative fine particles and method for producing the same
CN106589384B (en) Preparation method of particle-size-controllable modified polysiloxane microspheres
JP2003002973A (en) Method for producing fine spherical silicone particle
US6399733B1 (en) Process for preparing a highly pure silicone ladder polymer
KR100692612B1 (en) Producing method of spherical silicone fine particles
CN112004860B (en) Spherical polymethylsilsesquioxane particles
JP4804641B2 (en) Method for producing spherical silicone fine particles
JPH0633334B2 (en) Method for producing silicone powder
JP5153163B2 (en) Method for producing spherical polyorganosilsesquioxane fine particles
JP2003183395A (en) Method for producing spherical silicone fine particle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term