JP3760498B2 - Si-H bond-containing silica derivative fine particles and method for producing the same - Google Patents

Si-H bond-containing silica derivative fine particles and method for producing the same Download PDF

Info

Publication number
JP3760498B2
JP3760498B2 JP02991896A JP2991896A JP3760498B2 JP 3760498 B2 JP3760498 B2 JP 3760498B2 JP 02991896 A JP02991896 A JP 02991896A JP 2991896 A JP2991896 A JP 2991896A JP 3760498 B2 JP3760498 B2 JP 3760498B2
Authority
JP
Japan
Prior art keywords
reaction
trialkoxysilane
bond
water
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02991896A
Other languages
Japanese (ja)
Other versions
JPH09202612A (en
Inventor
芳範 山田
勝可 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP02991896A priority Critical patent/JP3760498B2/en
Priority to US08/710,419 priority patent/US5985229A/en
Priority to DE1996138998 priority patent/DE19638998B4/en
Publication of JPH09202612A publication Critical patent/JPH09202612A/en
Application granted granted Critical
Publication of JP3760498B2 publication Critical patent/JP3760498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、一部の珪素が化学的に水素と結合しているシリカの微粒子に関し、さらに詳しくは、還元剤やヒドロシリル化反応等化学的に有用な反応に利用できる、Si−H結合を含み、球状で均一な粒径分布を持つため、工業的に便利なSi−H結合含有シリカ誘導体微粒子とその製造方法に関する。
【0002】
【従来の技術】
一般式SiO2 で表される総称シリカのうち、微粒子状のものは、ホワイトカーボンと呼ばれるゴムの充填剤や、液体の増粘剤、粉体の固結防止剤、または特殊な例として液晶画面のスペーサー等、工業的に幅広く用いられている。このうち、ゴムの充填剤等の用途には、珪酸ソーダを硫酸等の酸で中和する方法で製造される安価な微粒子シリカが用いられ、高品質が求められる用途には、例えば特開昭62ー52119に開示されている、アルコール類を反応溶媒として水とアンモニアの混合物でテトラエトキシシランを加水分解する方法により得られる単分散の粒径分布を持つ微粒子シリカが用いられている。しかし、これらの微粒子シリカは、もっぱら粘度、強度または硬度といったような物理的な効果を利用するものであって、微粒子シリカ自体が化学的な作用を持つものではなかった。
【0003】
一方、一般式SiHx で表される水素化シリコン微粒子を、コーティング剤等に分散させると、水素の還元性によって優れた防錆効果が現れることが特開昭56-145111 に開示されている。しかし、水素化シリコンは、高価な上不安定で取扱いの難しいモノシランガスやその塩化物を原料にして、気相熱分解反応で製造するのが一般的であるため、製造コストが高くなるという問題がある。その上、水素化シリコンと化学構造が類似しているモノシランガスが自然発火性であることからもわかるように、水素化シリコンはそれ自体が化学的に不安定で燃焼性が高いために取扱いが困難であり、実用化はされていない。
【0004】
【発明が解決しようとする課題】
本発明者はかかる現状に鑑み、微粒子シリカそれ自体に反応性のSi−H結合を持たせることにより、安価に製造でき化学的に安定であるという微粒子シリカの特長と、水素化シリコンのような防錆性およびSi−H結合の反応性による還元性を有し、かつSi−H結合に特有のヒドロシリル化反応を応用して表面に機能性基を化学結合させることができるという特長とを併せ持つ、Si−H結合含有シリカ誘導体微粒子およびその製造方法を提供せんとするものである。
【0005】
【課題を解決するための手段】
本発明者は上記の問題に関して鋭意検討した結果、一般式HSi(OR)3 〔ただし、Rは炭素数1〜4のアルキル基で複数のRは同じでも違っていてもよい。〕で表されるトリアルコキシシランを、該トリアルコキシシランおよび水を溶解し、容量でトリアルコキシシランの3倍〜30倍の反応溶媒中、pHが5.5以上10.5以下で当該トリアルコキシシランの全アルコキシ基に対して当量モル以上の水により、且つ温度範囲0〜30℃にて加水分解縮合させ、その際、反応溶媒、水と反応溶媒の混合液、またはトリアルコキシシランの反応溶媒溶液を、予め反応器に仕込み、そこへ水の残部と反応溶媒の混合液並びにトリアルコキシシランの残部の反応溶媒溶液を、徐々に混合することにより、一般式Hn SiO(4-n)/2 〔ただし、nは0より大きく2より小さい実数である。〕で表される組成を有し、一次粒子が球状であるSi−H結合含有シリカ誘導体微粒子を製造することができることを見出した。
【0006】
【発明の実施の形態】
本発明において、原料となるトリアルコキシシランHSi(OR)3 のRの具体例としては、メチル、エチル、プロピル、イソプロピル、n−ブチル、i−ブチルまたはt−ブチルのアルキル基が挙げられる。トリアルコキシシランの複数のRは同じでも違っていてもよく、また異種のRを持つトリアルコキシシランの混合物も使用できる。
【0007】
Rの炭素数は、少ないほど加水分解反応が起き易く、加水分解・縮合反応が早く進むので、メチルまたはエチルが好ましい。いずれのRの場合でも、加水分解反応に伴って副生するROH(アルコール)は蒸留等の方法で容易に分離回収し、再利用することができる。このためには、Rは同じ種類である方が、得られるアルコールの分離が不要となり経済的である。
【0008】
本発明では、原料としてトリアルコキシシランH−Si(OR)3 のみを用いることが好ましいが、一般式Hm −Si(OR’)4-m (但し、R’は炭素数1〜4のアルキル基で複数のR’は、同じでも違っていてもよい。mは0または2。)で表されるジアルコキシシランまたはテトラアルコキシシランを併用することができる。しかし、ジアルコキシシランは安定性が悪く、また価格も高いので多量に用いるのは不経済であり、またテトラアルコキシシランは反応性が低いので、トリアルコキシシランとの併用が多量の場合は、テトラアルコキシシランのみが未反応で残る恐れがあるので、その配合量は、原料となる全アルコキシシランのうちの50重量%未満とすることが好ましい。
【0009】
テトラアルコキシシランまたはジアルコキシシランのR’の具体例としては、メチル、エチル、プロピル、イソプロピル、n−ブチル、i−ブチルまたはt−ブチルのアルキル基が挙げられる。複数のR’は同じでも違っていてもよく、また異種のR’を持つアルコキシシランの混合物も使用することができる。
【0010】
R’の炭素数は、少ないほど加水分解反応が起き易く、加水分解・縮合反応が早く進むので、メチルまたはエチルが好ましい。いずれのR’の場合でも、加水分解反応に伴って副生するR’OH(アルコール)は蒸留等の方法で容易に分離回収し、再利用することができる。このためには、R’は同じ種類である方が、得られるアルコールの分離が不要となり経済的である。更に、アルコールの再利用については、トリアルコキシシランのRとテトラアルコキシシランまたはジアルコキシシランのR’が一致する方が、同じ理由から好ましい。
【0011】
トリアルコキシシランの加水分解縮合反応にはpHが5.5以上10.5以下の水を用いる。好ましくはpH=6.5以上10.5以下である。従来技術で、例えば特開昭62ー52119に開示されている方法では、テトラアルコキシシランを加水分解する際、反応液中のアンモニア濃度を1.0〜10モル/リットルとしているが、この場合の反応液のpH値は最低でも11.6以上になる。本発明のトリアルコキシランの加水分解縮合反応時のpH値が10.5を超えると、Si−H結合は速やかに加水分解されて水素ガスを遊離し、SiOHに変化してしまうためにSi−H結合含有シリカ誘導体を得ることはできなくなる。
【0012】
一方、強い酸性の雰囲気で当該トリアルコキシシランを加水分解すると、Si−H結合は安定に残るが、加水分解した反応液は全体がゲル状になってしまい、そのまま乾燥した場合、塊状のガラス様固体になってしまう。この塊状固体を粉砕したり、またはゲルに撹拌力を加えながら乾燥する方法を取れば、目視では粉末状のSi−H結合含有シリカ誘導体微粒子を得ることはできるが、不定形で粒径も一定しないため樹脂や溶剤に混合して使用するときに、沈降物ができ易い等の問題がある。
【0013】
一方、一般的に球状で粒径の揃った粒子は、樹脂や塗料等の他の物質に混ぜて、充填材や粘度調節剤として使用されるときに、流動性が良く、長期保存しても固化し難く、また顔料として用いるときに光の反射特性が一定している等の特長を有することから、多くの工業用途で重用されている。また粒径があまり細かすぎると微粒子どうしが凝集し易く、一方粗い場合は化学反応に利用できる粒子の表面積が小さくなってしまうので、好ましい粒径の範囲は0.05〜1μmである。
【0014】
加水分解縮合に用いる水のpHを5.5以上10.5以下の間で制御するためには、塩酸、硫酸、酢酸或いは炭酸等の酸性物質か、または水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、アンモニア或いはエチルアミン等のアルカリ性物質を適量水に溶解すれば良い。但し、トリアルコキシシランは還元性を持つので、硝酸や重クロム酸等の酸化力の強い物質は好ましくない。酸性物質で好ましいものとしては、酸化性や腐食性がなく、微粒子の製造後は容易に揮発して除去できるという理由で炭酸ガスが挙げられる。より具体的には、加水分解に使用する水の置かれた雰囲気中の炭酸ガスの分圧を制御することにより、容易に好みのpHの酸性の水を得ることができる。
【0015】
また、アルカリ性物質で好ましいものとしては、同様な理由でアンモニアが挙げられる。この場合は、例えば市販の25%アンモニア水を希釈することにより容易に好みのpHのアルカリ性の水を得ることができる。pHの測定方法としてはガラス電極によるpHメーターや、より簡便にはpH試験紙等の一般的な方法が使用できる。
【0016】
トリアルコキシシランの加水分解縮合に用いる水は、pHが5.5以上10.5以下の間であれば、全量が同一のpH値である必要はなく、例えば、加水分解縮合反応の初期には比較的pH値が高めの水を加えて微粒子の生成を早め、後半に比較的pH値の低い水を加えることにより、Si−H基をより安定化させ、続く分離・乾燥工程でのSi−H基の減少を防止する方法も好ましく用いられる。
【0017】
加水分解縮合に使用する水の量は、全アルコキシ基に対する当量モル以上であればよい。ここで、当量モルとは、トリアルコキシシランを使用するときはトリアルコキシシラン1モルに対して水3/2モルであり、ジアルコキシシランが含まれる場合はジアルコキシシラン1モルに対して1モルの水、テトラアルコキシシランを添加する場合はテトラアルコキシシラン1モルに対して2モルの水が当量モルとなる。
【0018】
該当量モルの水によって、加水分解縮合を完結させることができるが、当量モルに近い量では縮合反応終了時の水濃度が著しく低くなることによって反応速度が低くなり、またあまり過剰に加えると、反応終了後のアルコール回収で過剰の水分を分離するための無駄が多くなるので、使用するアルコキシシランの当量モルの合計1モルに対して5〜100モル加えるのが好ましく、より好ましくは10〜60モルである。
【0019】
また当量モルより少ない水を加えた場合、加水分解されないアルコキシ基が残るため、製造したSi−H結合含有シリカ誘導体を水系で使用したときに、アルコールが生成したり、該シリカ誘導体の熱安定性が劣る等の問題が起こる恐れがあり好ましくない。
【0020】
加水分解により得られる水素含有シリカ誘導体の一般式Hn SiO(4-n)/2 のnは、原料アルコキシシランの内、ジアルコキシシランとテトラアルコキシシランの使用量によって変えることができる。即ち、トリアルコキシシランだけを原料にした場合は、得られる水素含有シリカ誘導体の理論組成はHSiO3/2 になる。
【0021】
原料のトリアルコキシシランにジアルコキシシランを添加するとnは1より大きくなり、テトラアルコキシシランを添加するとnは小さくなる。nは大きくした方が得られる水素含有シリカ誘導体中の水素量が増えるので好ましいが、ジアルコキシシランはトリアルコキシシランに比べて化学的に不安定なため、原料の取り扱い易さやコストの面であまりnを大きくすることは好ましくない。このため好ましいnの範囲は0<n<2、さらに好ましくは0<n≦1.3の範囲であり、特に好ましいのは0.7≦n≦1.0の範囲である。
また後述のように、加水分解縮合に使用する水のpHや反応温度が高い場合は、Si−H結合が減少し、nが小さくなる。
【0022】
反応溶媒としては、当該トリアルコキシシランと加水分解に用いる水の両方を、好ましいpH領域であるpHが5.5以上10.5以下において溶解することができるものが望ましく、安価で扱い易いことからメタノール、エタノール、イソプロパノール、ブタノール、エチレングリコールまたはプロピレングリコール等のアルコール類が好適である。また、当該アルコキシシランのアルコキシ基と同一の基からなるアルコールを反応溶媒に用いると、反応終了後、当該トリアルコキシシランの加水分解縮合によって生じた副生アルコールと反応溶媒とを同時に回収再生できるのでコスト的に好ましい。
【0023】
反応溶媒の使用量は、あまり少ないと、生成した粒子が十分縮合硬化しないうちに凝集してしまい、粒径の一定しない凝集体の形で硬化してしまう恐れがあり、一方あまり反応溶媒を過剰に用いてはコスト高になるため、容量でトリアルコキシシランの3倍〜30倍が好ましく、さらに好ましくは5倍〜20倍である。
【0024】
トリアルコキシシランの加水分解縮合反応の方法としては、反応溶媒にトリアルコキシシランを溶解しておき、撹拌しながら水を滴下する方法、或いはその逆に、反応溶媒に水を溶解し、撹拌しておいてトリアルコキシシランを滴下する方法、滴下する水またはトリアルコキシシランを反応溶媒に溶解させておく方法等、様々な方法があり、いずれの方法でもSi−H結合含有シリカ誘導体微粒子を得ることができる。
【0025】
中でも、反応溶媒、水と反応溶媒の混合液またはトリアルコキシシランの反応溶媒溶液を、予め反応器に仕込み、そこへ水の残部と反応溶媒の混合液並びにトリアルコキシシランの残部の反応溶媒溶液を、徐々に混合、具体的には同時に滴下すると、反応器内の未反応のトリアルコキシシランと水の濃度の変動が少なくなるため、極めて均一な粒径の粒子が生成するので好ましい。
【0026】
トリアルコキシシランの加水分解は発熱反応であるので、この反応に伴って反応液の温度が上昇するが、あまり温度が高くなると部分的に縮合が進んだり、副生したアルコールとアルコキシシランのSi−H基が反応して水素を発生したりするので、好ましい反応温度の範囲は0℃〜50℃、さらに好ましくは0℃〜30℃である。反応温度は、得られる微粒子の粒径分布に大きく影響するので、反応温度を制御する事によって微粒子の粒径分布を制御することができる。
【0027】
いずれの方法でトリアルコキシシランの加水分解を行う場合でも、アルコキシシランと水をあまり急激に混合すると反応液中のごく一部で急激に発熱し、ゲル化が進んだりするので、なるべく反応液の組成が均一になるように徐々に混合するのがよい。
具体的な反応時間は、反応器の形状や攪拌方法等によって大きく異なるため、限定することは困難であるが、一般的に回分式の反応器の場合は、反応熱を除去するためにあまり短時間での反応は困難が伴い、またあまり長時間では経済的でないため、通常原料の大部分の混合が10分〜10時間の間に終わることが好ましい。連続式の場合はこの限りではなく、原料の供給量や反応時間が充分に制御されていれば混合器での滞留時間はごく短時間でよい。
【0028】
混合が終わってからも生成した微粒子内での縮合反応を完結させるために、しばらくの間反応液を撹拌し続けることが好ましいが、混合が終わった後すぐ微粒子を取り出したり、或いは混合と分離とを同時に行う連続式の反応も可能である。撹拌速度も微粒子の粒径分布に影響するが、反応液が均一に混合されるような常識的な撹拌の範囲であれば、Si−H結合含有シリカ誘導体微粒子を得ることには問題はない。
【0029】
トリアルコキシシランの加水分解によって反応液中に生成したSi−H結合含有シリカ誘導体微粒子は、遠心分離、濾過、蒸留等の一般的な工業的な固液分離方法で反応液から分離することができる。分離された微粒子の一次粒子は通常0.1μm〜100μmの粒径を持つが、反応条件によってはこの粒径を持った一次粒子が凝集して粒径が数ミリ以上に達する巨大な2次粒子を形成することもあるが、超音波分散、ボールミル、振動ミルまたは冷凍粉砕等の一般的な粉砕方法で容易に一次粒子に解砕できる。微粒子を分離除去した反応液は、濾過、蒸留等の方法で再生され、適当なpHに調製されて再び使用することができる。
【0030】
こうして得られたSi−H結合含有シリカ誘導体微粒子の粒径分布は、適当な溶媒に分散させてレーザー回折式や沈降式等の粒径分布測定装置で粒径分布を測定することができる。また、化学的にSi−H結合が含有されていることは赤外線吸光分光測定で、Si−H結合固有の波長に赤外線吸収が現れることにより確認できる。Si−H結合の量を定量するためには、アルカリ分解滴定法や酸化還元滴定法の他に、CHN元素分析法を用いることもできる。
【0031】
【実施例】
以下、実施例および比較例を掲げてこの発明のSi−H結合含有シリカ誘導体微粒子とその製造法をより具体的に説明する。
【0032】
実施例1
容量1リットルのガラス製3口セパラブルフラスコにエタノール84gと0.001重量%のアンモニア水48gとを仕込んだ。0.001重量%のアンモニア水のpHを測定したところ、9.7であった。この混合液を、メカニカルスターラーにより300rpm で撹拌しておく。反応器の温度は室温とし、ここで、A液としてエタノール320gと0.01重量%のアンモニア水360gとの混合液、B液としてエタノール320gとトリエトキシシラン200gとの溶液を用意した。0.01重量%のアンモニア水のpHを測定したところ10.3であった。そして、A液を毎分8g、B液を毎分4gの割合でセパラブルフラスコの中の反応液に滴下したところ、滴下開始5分後から、反応液が白濁を始めた。滴下液はA液の方が早く無くなったが、そのままB液の滴下を続け、滴下液が無くなってからも引き続き3時間撹拌を続け反応を終了した。反応液中に生成した微粒子の粒子径をレーザー回折式粒径分布計で測定したところ、平均粒径は1.3μmだった。
【0033】
反応終了後、反応液をロータリーエバポレーターのフラスコに入れ、フラスコを50℃のウオーターバスに浸し、回転させながら60mmHgの減圧で溶媒を蒸留除去したところ、約3時間後にはフラスコの中にさらさらした白い粉が残った。この粉末を電子顕微鏡で観察したところ、粒子は直径0.4μmのほぼ均一な粒径を持った真球状の形状をしており、ごく一部に数個の粒子の凝集した2次粒子が見られた。赤外吸光分光測定では図1に示すようにSi−O−Si結合に基づく1100cm-1の吸収に加えて、Si−H結合に基づく2250cm-1の吸収が大きく現れており、有機基の吸収は無いことから一般式Hn SiO(4-n)/2 で表されるSiH結合含有シリカ誘導体微粒子ができていることが示された。また、CHN元素分析装置による測定の結果はC=0%,H=1.9%,N=0%だったので、できたのは一般式HSiO3/2 で表されるSi−H結合含有シリカ誘導体微粒子であることが確かめられた。こうして得られたSi−H結合含有シリカ誘導体微粒子の重量は、63.1gあり、HSiO3/2 として原料のトリエトキシシランから収率を計算すると97.6%になった。
【0034】
比較例1
容量1リットルのガラス製3口セパラブルフラスコにエタノール84gと0.1重量%のアンモニア水48gとを仕込み、メカニカルスターラーにより、300rpm で撹拌しておく。0.1重量%のアンモニア水のpHを測定したところ11.8だった。反応器の温度は室温とし、ここで、A液としてエタノール320gと0.1重量%のアンモニア水360gとの混合液、B液としてエタノール320gとトリエトキシシラン200gとの溶液を用意し、A液を毎分8g、B液を毎分4gの割合でセパラブルフラスコの中の反応液に滴下したところ、滴下開始直後から、反応液が白濁を始めた。滴下液はA液の方が早く無くなったが、そのままB液の滴下を続け、滴下液が無くなってからも3時間撹拌を続け反応を終了した。
【0035】
反応終了後、実施例1と同じ方法で溶媒を除き、白色粉末が得られた。この粒子を電子顕微鏡で観察したところ、粒径が0.2μm程度の球状の微粒子が多数凝集した形状をしていた。赤外吸光分光測定では図2に示すようにSi−H結合に基づく2250cm-1の吸収がほとんど無いことからSi−H結合は無くなっており、また、CHN元素分析装置による測定の結果もC=0%,H=0%,N=0%だったので、得られた微粒子は一般式SiO2 で表されるシリカになっていることを示した。得られた微粒子の重量は71.7gであり、SiO2 として収率を計算すると98.0%であった。
【0036】
比較例2
容量1リットルのガラス製3口セパラブルフラスコにエタノール84gと0.001重量%の希塩酸48gとを仕込んだ。0.001重量%の希塩酸のpHは3.6であった。この混合液をメカニカルスターラーにより、300rpm で撹拌しておく。反応器の温度は室温とし、ここで、A液としてエタノール320gと蒸留水360gとの混合液、B液としてエタノール320gとトリエトキシシラン200gとの溶液を用意し、A液を毎分8g、B液を毎分4gの割合でセパラブルフラスコの中の反応液に滴下したところ、両方の滴下液が無くなっても反応液に白濁は生じず、その後約1時間反応液の撹拌を続けたところ、反応液全体がゲル化したので反応を終了した。
【0037】
反応終了後、反応液ゲルを取り出してロータリーエバポレーターのフラスコに入れ、実施例1と同じ方法で溶媒を除いたところ、目視では白色のさらさらした粉が得られた。電子顕微鏡で観察したところ、長径で数μm〜数mmの大きさをもつ針状や塊状等不定形で大きさもまちまちな粒子ができていた。
この粒子の赤外吸光分光測定結果は図1とほとんど一致し、Si−O−Si結合に基づく1100cmー1の吸収に加えて、Si−H結合に基づく2250cm-1の吸収が大きく表れており、有機基の吸収はなかった事から一般式Hn SiO(4-n)/2 で表されるSiH結合含有シリカ誘導体ができていることを示した。また、CHN元素分析装置による測定の結果はC=0%,H=1.9%,N=0%だったので、できたのは一般式HSiO3/2 で表されるSiH結合含有シリカ誘導体であることが確かめられた。得られたSi−H結合含有シリカ誘導体の重量は63.3gであり、収率は98%だった。
【0038】
実施例2
容量1リットルのガラス製3口セパラブルフラスコに、イソプロパノール84gと蒸留水48gとを仕込み、メカニカルスターラーにより300rpm で撹拌しておく。反応器の温度は室温とし、ここで、A液としてイソプロパノール320gと0.01重量%のアンモニア水360gとの混合液、B液としてイソプロパノール320gとトリエトキシシラン200gとの溶液を用意し、A液を毎分8g、B液を毎分4gの割合でセパラブルフラスコの中の反応液に滴下したところ、滴下開始5分後から、反応液が白濁を始めた。滴下液はA液の方が早く無くなったが、そのままB液の滴下を続け、滴下液が無くなってからも引き続き3時間撹拌を続け反応を終了した。反応終了後の反応液中の微粒子の粒径をレーザー回折式粒径分布計で測定したところ、平均粒径は0.7μmだった。
【0039】
反応終了後の反応液を遠心分離器にかけて上澄みを除いた後、真空乾燥器に入れて減圧下60℃で4時間真空乾燥したところ、白くてさらさらした粉末を得た。該粉末を電子顕微鏡で観察したところ、粒子は直径0.6μmのほぼ均一な粒径を持った真球状の形状をしており、ごく一部に数個の微粒子の凝集した2次粒子が見られた。赤外吸光分光測定の結果は図1とほぼ一致してSi−O−Si結合に基づく1100cmー1の吸収に加えて、Si−H結合に基づく2250cm-1の吸収が大きく表れており、有機基の吸収はない事から一般式Hn SiO(4-n)/2 で表されるSiH結合含有シリカ誘導体微粒子ができていることを示した。また、CHN元素分析装置による測定の結果はC=0%,H=1.9%,N=0%だったので、できたのは一般式HSiO3/2 で表されるSiH結合含有シリカ誘導体微粒子であることが確かめられた。こうして得られたSiH含有シリカ誘導体微粒子の重量は、63.4gあり、HSiO3/2 として原料のトリエトキシシランから収率を計算すると98.1%になった。
【0040】
実施例3
容量1リットルのガラス製3口セパラブルフラスコにメタノール84gと0.001重量%のアンモニア水48gとを仕込み、メカニカルスターラーにより、300rpm で撹拌しておく。反応器をウォーターバスに着けて内温を10℃に制御し、ここで、A液としてメタノール320gと0.01重量%のアンモニア水360gとの混合液、B液としてメタノール320gとトリメトキシシラン200gとの溶液を用意し、A液を毎分8g、B液を毎分4gの割合でセパラブルフラスコの中の反応液に滴下したところ、滴下開始5分後から、反応液が白濁を始めた。滴下液はA液の方が早く無くなったが、そのままB液の滴下を続け、滴下液が無くなってからも引き続き3時間反応液の撹拌を続け反応を終了した。
【0041】
反応終了後、実施例1と同じ方法で溶媒を除き、白色粉末を得た。この粉末を電子顕微鏡で観察したところ、粒子は直径0.3μmのほぼ均一な粒径を持った真球状の形状をしており、ごく一部に数個の粒子の凝集した2次粒子が見られた。赤外吸光分光測定の結果は図1と一致してSi−O−Si結合に基づく1100cm-1の吸収に加えて、Si−H結合に基づく2250cm-1の吸収が大きく表れており、有機基の吸収はないことから一般式Hn SiO(4-n)/2 で表されるSi−H結合含有シリカ誘導体微粒子ができていることを示した。また、CHN元素分析装置による測定の結果はC=0%,H=1.9%,N=0%だったので、できたのは一般式HSiO3/2 で表されるSi−H結合含有シリカ誘導体微粒子であることが確かめられた。こうして得られたSi−H結合含有シリカ誘導体微粒子の重量は、63.1gあり、HSiO3/2 として原料のトリエトキシシランから収率を計算すると97.6%になった。
【0042】
【発明の効果】
本発明によれば、トリアルコキシシランを特定の条件で加水分解縮合する事により、それ自体に反応性のSi−H結合を持つSi−H結合含有シリカ誘導体微粒子を得ることができる。この微粒子は球形で均一な粒径分布を持ち、Si−H結合は還元やヒドロシリル化反応等の化学反応に利用することができるので、工業的に有用である。
【図面の簡単な説明】
【図1】 本発明の実施例1の白色粉末(Si−H結合含有シリカ誘導体微粒子)を測定した赤外吸光スペクトル図である。
【図2】 本発明の比較例1の白色粉末を測定した赤外吸光スペクトル図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to silica fine particles in which a part of silicon is chemically bonded to hydrogen, and more specifically, includes Si-H bonds that can be used for chemically useful reactions such as reducing agents and hydrosilylation reactions. The present invention relates to an Si-H bond-containing silica derivative fine particle which is industrially convenient because it has a spherical and uniform particle size distribution and a method for producing the same.
[0002]
[Prior art]
Of the generic name silica represented by the general formula SiO 2 , those in the form of fine particles are rubber fillers called white carbon, liquid thickeners, powder anti-caking agents, or liquid crystal screens as special examples. Are widely used industrially. Of these, inexpensive fine particle silica produced by a method of neutralizing sodium silicate with an acid such as sulfuric acid is used for rubber fillers, etc. Fine particle silica having a monodispersed particle size distribution obtained by a method of hydrolyzing tetraethoxysilane with a mixture of water and ammonia using alcohols as a reaction solvent as disclosed in 62-52119 is used. However, these fine particle silicas exclusively utilize physical effects such as viscosity, strength or hardness, and the fine particle silica itself has no chemical action.
[0003]
On the other hand, when silicon hydride fine particles represented by the general formula SiH x are dispersed in a coating agent or the like, it is disclosed in JP-A-56-145111 that an excellent rust-preventing effect is exhibited due to hydrogen reducibility. However, silicon hydride is generally manufactured by vapor phase pyrolysis reaction using monosilane gas or its chloride, which is expensive, unstable and difficult to handle, as a raw material. is there. Moreover, as can be seen from the fact that monosilane gas, which has a chemical structure similar to that of silicon hydride, is pyrophoric, silicon hydride itself is chemically unstable and difficult to handle. It has not been put into practical use.
[0004]
[Problems to be solved by the invention]
In view of the present situation, the present inventor has features of fine particle silica that can be produced at low cost and chemically stable by providing reactive Si—H bonds in the fine particle silica itself, and such as silicon hydride. It has both rust prevention and reducibility due to the reactivity of the Si-H bond, and also has the feature that a functional group can be chemically bonded to the surface by applying a hydrosilylation reaction unique to the Si-H bond. An Si—H bond-containing silica derivative fine particle and a method for producing the same are provided.
[0005]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the present inventor has a general formula HSi (OR) 3 [wherein R is an alkyl group having 1 to 4 carbon atoms, and a plurality of R may be the same or different. The trialkoxysilane is dissolved in the trialkoxysilane and water, and the pH is 5.5 to 10.5 in a reaction solvent 3 to 30 times the trialkoxysilane by volume. Hydrolysis condensation with water of an equivalent mole or more with respect to all alkoxy groups of silane at a temperature range of 0 to 30 ° C. At that time, reaction solvent, mixed liquid of water and reaction solvent, or reaction solvent of trialkoxysilane the solution was charged in advance reactor, the reaction solvent solution of the mixture as well as the remainder of the trialkoxysilane to it with the remainder of the water-reactive solvent, Rukoto be mixed gradually, the general formula Hn SiO (4-n) / 2 [where n is a real number greater than 0 and less than 2. It has been found that Si-H bond-containing silica derivative fine particles having a composition represented by formula ( II ) and spherical primary particles can be produced.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, specific examples of R of trialkoxysilane HSi (OR) 3 as a raw material include methyl, ethyl, propyl, isopropyl, n-butyl, i-butyl or t-butyl alkyl groups. A plurality of Rs in the trialkoxysilane may be the same or different, and a mixture of trialkoxysilanes having different Rs can also be used.
[0007]
The smaller the carbon number of R, the easier the hydrolysis reaction takes place and the faster the hydrolysis / condensation reaction is, so methyl or ethyl is preferred. In any case of R, ROH (alcohol) produced as a by-product in the hydrolysis reaction can be easily separated and recovered by a method such as distillation and reused. For this purpose, it is more economical that the same type of R is not required to separate the alcohol obtained.
[0008]
In the present invention, it is preferable to use only trialkoxysilane H—Si (OR) 3 as a raw material, but general formula H m —Si (OR ′) 4−m (where R ′ is an alkyl having 1 to 4 carbon atoms). A plurality of R ′ in the group may be the same or different. M is 0 or 2.) A dialkoxysilane or a tetraalkoxysilane represented by However, since dialkoxysilane is poor in stability and expensive, it is uneconomical to use a large amount, and tetraalkoxysilane has low reactivity. Since only alkoxysilane may remain unreacted, the blending amount is preferably less than 50% by weight of the total alkoxysilane used as a raw material.
[0009]
Specific examples of R ′ of tetraalkoxysilane or dialkoxysilane include alkyl groups of methyl, ethyl, propyl, isopropyl, n-butyl, i-butyl or t-butyl. A plurality of R ′ may be the same or different, and a mixture of alkoxysilanes having different R ′ may also be used.
[0010]
The smaller the number of carbons in R ′, the easier the hydrolysis reaction takes place, and the hydrolysis / condensation reaction proceeds faster, so methyl or ethyl is preferred. In any case of R ′, R′OH (alcohol) produced as a by-product in the hydrolysis reaction can be easily separated and recovered by a method such as distillation and reused. For this purpose, it is more economical that R ′ is of the same type, because separation of the alcohol obtained is unnecessary. Furthermore, for the reuse of alcohol, it is preferable for R for trialkoxysilane and R ′ of tetraalkoxysilane or dialkoxysilane to match for the same reason.
[0011]
Water having a pH of 5.5 or more and 10.5 or less is used for the hydrolysis and condensation reaction of trialkoxysilane. Preferably, it is pH = 6.5 or more and 10.5 or less. In the prior art, for example, in the method disclosed in JP-A-62-52119, when the tetraalkoxysilane is hydrolyzed, the ammonia concentration in the reaction solution is set to 1.0 to 10 mol / liter. The pH value of the reaction solution is at least 11.6 or more. When the pH value during the hydrolysis-condensation reaction of the trialkoxylane of the present invention exceeds 10.5, the Si—H bond is rapidly hydrolyzed to release hydrogen gas and change to SiOH, so that Si— An H bond-containing silica derivative cannot be obtained.
[0012]
On the other hand, when the trialkoxysilane is hydrolyzed in a strong acidic atmosphere, the Si—H bond remains stable, but the hydrolyzed reaction solution becomes a gel-like whole, and when dried as it is, a lump-like glass like It becomes solid. If this bulk solid is pulverized or dried while applying a stirring force to the gel, powdery Si-H bond-containing silica derivative fine particles can be obtained with the naked eye, but the particle size is indefinite and constant. Therefore, there is a problem that a precipitate is easily formed when the resin is mixed with a resin or a solvent.
[0013]
On the other hand, generally spherical particles with a uniform particle size are mixed with other substances such as resins and paints and have good fluidity when used as fillers and viscosity modifiers. It is difficult to solidify and has features such as constant light reflection characteristics when used as a pigment, and is therefore used extensively in many industrial applications. On the other hand, if the particle size is too fine, the fine particles are likely to aggregate, whereas if the particle size is coarse, the surface area of the particles that can be used for the chemical reaction becomes small, so the preferred particle size range is 0.05 to 1 μm.
[0014]
In order to control the pH of the water used for the hydrolysis condensation between 5.5 and 10.5, an acidic substance such as hydrochloric acid, sulfuric acid, acetic acid or carbonic acid, or potassium hydroxide, sodium hydroxide, hydroxide An appropriate amount of an alkaline substance such as calcium, ammonia or ethylamine may be dissolved in water. However, since trialkoxysilane has reducibility, substances having strong oxidizing power such as nitric acid and dichromic acid are not preferable. A preferable acidic substance is carbon dioxide gas because it is not oxidizing or corrosive and can be easily volatilized and removed after the production of fine particles. More specifically, acidic water having a desired pH can be easily obtained by controlling the partial pressure of carbon dioxide in the atmosphere in which water used for hydrolysis is placed.
[0015]
Moreover, ammonia is mentioned as a preferable thing with an alkaline substance for the same reason. In this case, alkaline water having a desired pH can be easily obtained, for example, by diluting commercially available 25% aqueous ammonia. As a pH measurement method, a general method such as a pH meter using a glass electrode or, more simply, a pH test paper can be used.
[0016]
The water used for trialkoxysilane hydrolysis condensation does not need to have the same pH value as long as the pH is between 5.5 and 10.5. For example, at the beginning of the hydrolysis condensation reaction, By adding water having a relatively high pH value to accelerate generation of fine particles, and adding water having a relatively low pH value in the latter half, the Si-H group is further stabilized, and Si-- in the subsequent separation / drying step A method for preventing the decrease of the H group is also preferably used.
[0017]
The amount of water used for the hydrolysis condensation may be equal to or more than the equivalent mole relative to all alkoxy groups. Here, the equivalent mole is 3/2 mole of water with respect to 1 mole of trialkoxysilane when using trialkoxysilane, and 1 mole with respect to 1 mole of dialkoxysilane when dialkoxysilane is contained. When water and tetraalkoxysilane are added, 2 mol of water is equivalent to 1 mol of tetraalkoxysilane.
[0018]
Hydrolysis condensation can be completed with the corresponding amount of water, but if the amount is close to the equivalent mole, the water concentration at the end of the condensation reaction is significantly reduced, and the reaction rate is lowered. Since there is a lot of waste for separating excess water in alcohol recovery after the completion of the reaction, it is preferable to add 5 to 100 moles, more preferably 10 to 60 moles per 1 mole in total of equivalent moles of alkoxysilane to be used. Is a mole.
[0019]
In addition, when less than an equivalent mole of water is added, an alkoxy group that is not hydrolyzed remains, so that when the produced Si-H bond-containing silica derivative is used in an aqueous system, an alcohol is generated or the thermal stability of the silica derivative. May cause problems such as inferiority.
[0020]
N in the general formula H n SiO (4-n) / 2 of the hydrogen-containing silica derivative obtained by hydrolysis can be changed depending on the amount of dialkoxysilane and tetraalkoxysilane used in the raw material alkoxysilane. That is, when only trialkoxysilane is used as a raw material, the theoretical composition of the obtained hydrogen-containing silica derivative is HSiO 3/2 .
[0021]
When dialkoxysilane is added to the starting trialkoxysilane, n becomes larger than 1, and when tetraalkoxysilane is added, n becomes smaller. Although n is preferable because the amount of hydrogen in the obtained hydrogen-containing silica derivative is increased, dialkoxysilane is chemically unstable compared to trialkoxysilane, so that it is not easy in handling raw materials and costs. It is not preferable to increase n. Therefore, a preferable range of n is 0 <n <2, more preferably 0 <n ≦ 1.3, and particularly preferably 0.7 ≦ n ≦ 1.0.
As will be described later, when the pH and reaction temperature of water used for hydrolysis condensation are high, the Si—H bond decreases and n decreases.
[0022]
As the reaction solvent, a solvent capable of dissolving both the trialkoxysilane and the water used for hydrolysis at a pH of 5.5 to 10.5, which is a preferable pH range, is desirable, because it is inexpensive and easy to handle. Alcohols such as methanol, ethanol, isopropanol, butanol, ethylene glycol or propylene glycol are preferred. In addition, when an alcohol having the same group as the alkoxy group of the alkoxysilane is used as the reaction solvent, the by-product alcohol and the reaction solvent generated by hydrolysis and condensation of the trialkoxysilane can be simultaneously recovered and regenerated after the reaction is completed. It is preferable in terms of cost.
[0023]
If the amount of the reaction solvent used is too small, the generated particles may agglomerate before they are sufficiently condensed and cured, and may harden in the form of an aggregate with a non-constant particle size. In order to increase the cost, the volume is preferably 3 to 30 times that of trialkoxysilane, more preferably 5 to 20 times.
[0024]
The trialkoxysilane hydrolysis-condensation reaction may be carried out by dissolving trialkoxysilane in a reaction solvent and dropping water while stirring, or conversely, dissolving water in the reaction solvent and stirring. There are various methods such as a method of dropping trialkoxysilane, a method of dissolving dropped water or trialkoxysilane in a reaction solvent, and any method can obtain Si-H bond-containing silica derivative fine particles. it can.
[0025]
Among them, a reaction solvent, a mixed solution of water and a reaction solvent or a reaction solvent solution of trialkoxysilane is charged in a reactor in advance, and a remaining solution of water and a reaction solvent and a remaining reaction solvent solution of trialkoxysilane are added thereto. Gradually mixing, specifically dropping simultaneously, is preferable because fluctuations in the concentration of unreacted trialkoxysilane and water in the reactor are reduced, so that particles having an extremely uniform particle size are generated.
[0026]
Since the hydrolysis of trialkoxysilane is an exothermic reaction, the temperature of the reaction solution rises with this reaction. However, when the temperature becomes too high, condensation partially proceeds or the by-produced alcohol and Si— Since the H group reacts to generate hydrogen, the preferable reaction temperature range is 0 ° C. to 50 ° C., more preferably 0 ° C. to 30 ° C. Since the reaction temperature greatly affects the particle size distribution of the resulting fine particles, the particle size distribution of the fine particles can be controlled by controlling the reaction temperature.
[0027]
Even when trialkoxysilane is hydrolyzed by either method, if alkoxysilane and water are mixed too rapidly, a very small portion of the reaction solution will generate heat and gelation will proceed. It is good to mix gradually so that a composition may become uniform.
The specific reaction time varies greatly depending on the shape of the reactor, the stirring method, etc., and it is difficult to limit the reaction time. However, in the case of a batch-type reactor, it is generally too short to remove the heat of reaction. Since the reaction in time is difficult, and it is not economical in a long time, it is usually preferable that most of the raw materials are mixed within 10 minutes to 10 hours. In the case of the continuous type, this is not limited to this, and the residence time in the mixer may be very short as long as the supply amount of raw materials and the reaction time are sufficiently controlled.
[0028]
In order to complete the condensation reaction in the generated fine particles even after the mixing is completed, it is preferable to continue stirring the reaction solution for a while. However, the fine particles may be taken out immediately after mixing, or mixing and separation. It is also possible to carry out a continuous reaction simultaneously. Although the stirring speed also affects the particle size distribution of the fine particles, there is no problem in obtaining Si-H bond-containing silica derivative fine particles as long as it is within a common-sense stirring range in which the reaction solution is uniformly mixed.
[0029]
The Si-H bond-containing silica derivative fine particles produced in the reaction solution by hydrolysis of trialkoxysilane can be separated from the reaction solution by a general industrial solid-liquid separation method such as centrifugation, filtration, distillation and the like. . The primary particles of the separated fine particles usually have a particle size of 0.1 μm to 100 μm, but depending on the reaction conditions, the primary particles having this particle size agglomerate and reach a particle size of several millimeters or more. May be easily pulverized into primary particles by a general pulverization method such as ultrasonic dispersion, ball mill, vibration mill, or freeze pulverization. The reaction solution from which the fine particles have been separated and removed is regenerated by a method such as filtration and distillation, adjusted to an appropriate pH, and can be used again.
[0030]
The particle size distribution of the Si-H bond-containing silica derivative fine particles thus obtained can be dispersed in an appropriate solvent and measured with a particle size distribution measuring apparatus such as a laser diffraction type or a precipitation type. In addition, the chemical inclusion of Si—H bonds can be confirmed by infrared absorption spectroscopy, and the fact that infrared absorption appears at wavelengths inherent to Si—H bonds. In order to quantify the amount of Si—H bonds, a CHN elemental analysis method can be used in addition to the alkali decomposition titration method and the oxidation-reduction titration method.
[0031]
【Example】
Hereinafter, the Si-H bond-containing silica derivative fine particles of the present invention and the production method thereof will be described more specifically with reference to Examples and Comparative Examples.
[0032]
Example 1
84 g of ethanol and 48 g of 0.001 wt% ammonia water were charged in a 1-liter glass 3-neck separable flask. The pH of 0.001 wt% aqueous ammonia was measured and found to be 9.7. This mixed solution is stirred at 300 rpm with a mechanical stirrer. The temperature of the reactor was set to room temperature. Here, a liquid mixture of 320 g of ethanol and 360 g of 0.01 wt% ammonia water was prepared as liquid A, and a solution of 320 g of ethanol and 200 g of triethoxysilane was prepared as liquid B. The pH of 0.01% by weight aqueous ammonia was measured and found to be 10.3. And when A liquid was dripped at the rate of 8g / min and B liquid at the rate of 4g / min to the reaction liquid in a separable flask, the reaction liquid began to become cloudy 5 minutes after the dripping start. The liquid A disappeared earlier in the liquid A, but the liquid B was continuously added as it was, and even after the liquid dropped, the stirring was continued for 3 hours to complete the reaction. When the particle size of the fine particles produced in the reaction solution was measured with a laser diffraction particle size distribution meter, the average particle size was 1.3 μm.
[0033]
After completion of the reaction, the reaction solution was put into a rotary evaporator flask, and the flask was immersed in a 50 ° C. water bath, and the solvent was distilled off under reduced pressure of 60 mmHg while rotating. The powder remained. When this powder was observed with an electron microscope, the particles had a true spherical shape with a substantially uniform particle diameter of 0.4 μm, and secondary particles in which several particles were aggregated were observed in a very small part. It was. In the infrared absorption spectroscopic measurement, as shown in FIG. 1, in addition to the absorption of 1100 cm −1 based on the Si—O—Si bond, the absorption of 2250 cm −1 based on the Si—H bond appears greatly. Thus, it was shown that SiH bond-containing silica derivative fine particles represented by the general formula H n SiO (4-n) / 2 were formed. In addition, the results of measurement by the CHN elemental analyzer were C = 0%, H = 1.9%, and N = 0%, so that it was possible to contain a Si—H bond represented by the general formula HSiO 3/2 It was confirmed to be silica derivative fine particles. The weight of the Si-H bond-containing silica derivative fine particles thus obtained was 63.1 g, and the yield calculated from the raw material triethoxysilane as HSiO 3/2 was 97.6%.
[0034]
Comparative Example 1
A glass 3-neck separable flask having a capacity of 1 liter is charged with 84 g of ethanol and 48 g of 0.1 wt% ammonia water and stirred at 300 rpm with a mechanical stirrer. The pH of 0.1% by weight aqueous ammonia was measured and found to be 11.8. The temperature of the reactor was set to room temperature, where a liquid mixture of 320 g of ethanol and 360 g of 0.1% by weight ammonia water was prepared as liquid A, and a solution of 320 g of ethanol and 200 g of triethoxysilane was prepared as liquid B. Was added dropwise to the reaction liquid in the separable flask at a rate of 8 g / min and the liquid B at a rate of 4 g / min. The liquid A disappeared earlier in the liquid A, but the liquid B continued to be dropped as it was, and even after the liquid dropped, the stirring was continued for 3 hours to complete the reaction.
[0035]
After completion of the reaction, the solvent was removed by the same method as in Example 1 to obtain a white powder. When the particles were observed with an electron microscope, a large number of spherical fine particles having a particle size of about 0.2 μm were aggregated. In the infrared absorption spectroscopic measurement, as shown in FIG. 2, since there is almost no absorption of 2250 cm −1 based on the Si—H bond, the Si—H bond is lost, and the measurement result by the CHN elemental analyzer is also C = Since 0%, H = 0%, and N = 0%, it was shown that the obtained fine particles were silica represented by the general formula SiO 2 . The weight of the fine particles obtained was 71.7 g, and the yield calculated as SiO 2 was 98.0%.
[0036]
Comparative Example 2
84 g of ethanol and 48 g of 0.001 wt% dilute hydrochloric acid were charged into a 1-liter glass 3-neck separable flask. The pH of 0.001 wt% dilute hydrochloric acid was 3.6. The mixture is stirred at 300 rpm with a mechanical stirrer. The temperature of the reactor is set to room temperature, where a liquid mixture of 320 g of ethanol and 360 g of distilled water is prepared as a liquid A, and a solution of 320 g of ethanol and 200 g of triethoxysilane is prepared as a liquid B. When the liquid was dropped into the reaction liquid in the separable flask at a rate of 4 g / min, the reaction liquid did not become cloudy even if both of the liquid drops disappeared, and then the reaction liquid was continuously stirred for about 1 hour. Since the whole reaction solution was gelled, the reaction was terminated.
[0037]
After completion of the reaction, the reaction solution gel was taken out and placed in a rotary evaporator flask. When the solvent was removed by the same method as in Example 1, a white free-flowing powder was obtained visually. When observed with an electron microscope, particles having an irregular shape such as needles or lumps having a major axis of several μm to several mm and various sizes were formed.
The results of infrared absorption spectroscopy measurement of these particles are almost the same as those in FIG. 1, and in addition to the absorption at 1100 cm -1 based on the Si-O-Si bond, the absorption at 2250 cm- 1 based on the Si-H bond appears greatly. From the fact that no organic group was absorbed, it was shown that a SiH bond-containing silica derivative represented by the general formula H n SiO (4-n) / 2 was formed. Further, the results of measurement by the CHN elemental analyzer were C = 0%, H = 1.9%, and N = 0%, so that the SiH bond-containing silica derivative represented by the general formula HSiO 3/2 was obtained. It was confirmed that. The weight of the obtained Si-H bond-containing silica derivative was 63.3 g, and the yield was 98%.
[0038]
Example 2
A glass 3-neck separable flask having a capacity of 1 liter is charged with 84 g of isopropanol and 48 g of distilled water and stirred at 300 rpm with a mechanical stirrer. The temperature of the reactor is set to room temperature, where a liquid mixture of 320 g of isopropanol and 360 g of 0.01 wt% ammonia water is prepared as liquid A, and a solution of 320 g of isopropanol and 200 g of triethoxysilane is prepared as liquid B. Was added dropwise to the reaction solution in the separable flask at a rate of 8 g / min and B solution at a rate of 4 g / min, and the reaction solution started to become cloudy after 5 minutes from the start of the addition. The liquid A disappeared earlier in the liquid A, but the liquid B was continuously added as it was, and even after the liquid dropped, the stirring was continued for 3 hours to complete the reaction. When the particle size of the fine particles in the reaction solution after completion of the reaction was measured with a laser diffraction particle size distribution meter, the average particle size was 0.7 μm.
[0039]
The reaction solution after completion of the reaction was centrifuged to remove the supernatant, and then placed in a vacuum dryer and vacuum dried at 60 ° C. under reduced pressure for 4 hours to obtain a white and free-flowing powder. When the powder was observed with an electron microscope, the particles had a true spherical shape with a substantially uniform particle diameter of 0.6 μm, and secondary particles in which a few fine particles were aggregated were observed in a very small part. It was. Infrared absorption spectroscopy results of the measurements are substantially coincides with Figure 1 in addition to the absorption of 1100cm-1 based on Si-O-Si bonds, the absorption of 2250 cm -1 based on Si-H bonds have appeared large, organic Since there was no group absorption, it was shown that SiH bond-containing silica derivative fine particles represented by the general formula H n SiO (4-n) / 2 were formed. Further, the results of measurement by the CHN elemental analyzer were C = 0%, H = 1.9%, and N = 0%, so that the SiH bond-containing silica derivative represented by the general formula HSiO 3/2 was obtained. It was confirmed to be fine particles. The weight of the SiH-containing silica derivative fine particles thus obtained was 63.4 g, and the yield calculated from the raw material triethoxysilane as HSiO 3/2 was 98.1%.
[0040]
Example 3
A glass 3-neck separable flask having a capacity of 1 liter is charged with 84 g of methanol and 48 g of 0.001 wt% ammonia water and stirred at 300 rpm with a mechanical stirrer. The reactor was attached to a water bath, and the internal temperature was controlled at 10 ° C. Here, a liquid mixture of 320 g of methanol and 360 g of 0.01% by weight ammonia water as liquid A, 320 g of methanol and 200 g of trimethoxysilane as liquid B The solution A was added to the reaction solution in the separable flask at a rate of 8 g / min and the solution B at a rate of 4 g / min, and the reaction solution started to become cloudy 5 minutes after the start of the addition. . The liquid A disappeared earlier in the liquid A, but the liquid B continued to be dropped as it was, and the reaction liquid was continuously stirred for 3 hours after the liquid drop disappeared to complete the reaction.
[0041]
After completion of the reaction, the solvent was removed by the same method as in Example 1 to obtain a white powder. When this powder was observed with an electron microscope, the particles had a true spherical shape with a substantially uniform particle diameter of 0.3 μm, and secondary particles with several particles agglomerated in a small portion were observed. It was. The results of the infrared absorption spectroscopic measurement are in agreement with FIG. 1 and the absorption at 2250 cm −1 based on the Si—H bond is greatly shown in addition to the absorption at 1100 cm −1 based on the Si—O—Si bond. This indicates that Si-H bond-containing silica derivative fine particles represented by the general formula H n SiO (4-n) / 2 are formed. In addition, the results of measurement by the CHN elemental analyzer were C = 0%, H = 1.9%, and N = 0%, so that it was possible to contain a Si—H bond represented by the general formula HSiO 3/2 It was confirmed to be silica derivative fine particles. The weight of the Si-H bond-containing silica derivative fine particles thus obtained was 63.1 g, and the yield calculated from the raw material triethoxysilane as HSiO 3/2 was 97.6%.
[0042]
【The invention's effect】
According to the present invention, Si-H bond-containing silica derivative fine particles having a reactive Si-H bond per se can be obtained by hydrolytic condensation of trialkoxysilane under specific conditions. These fine particles are spherical and have a uniform particle size distribution, and the Si—H bond can be used for chemical reactions such as reduction and hydrosilylation reactions, and thus is industrially useful.
[Brief description of the drawings]
1 is an infrared absorption spectrum diagram obtained by measuring a white powder (Si—H bond-containing silica derivative fine particles) of Example 1 of the present invention. FIG.
FIG. 2 is an infrared absorption spectrum obtained by measuring the white powder of Comparative Example 1 of the present invention.

Claims (2)

一般式HSi(OR)3 〔ただし、Rは炭素数1〜4のアルキル基で複数のRは同じでも違っていてもよい。〕で表されるトリアルコキシシランを、該トリアルコキシシランおよび水を溶解し、容量でトリアルコキシシランの3倍〜30倍の反応溶媒中、pHが5.5以上10.5以下で当該トリアルコキシシランの全アルコキシ基に対して当量モル以上の水により、且つ温度範囲0〜30℃にて加水分解縮合させ、その際、反応溶媒、水と反応溶媒の混合液、またはトリアルコキシシランの反応溶媒溶液を、予め反応器に仕込み、そこへ水の残部と反応溶媒の混合液並びにトリアルコキシシランの残部の反応溶媒溶液を、徐々に混合することを特徴とする、一般式H n SiO (4-n)/2 〔ただし、nは0より大きく2より小さい実数である。〕で表される組成を有し、一次粒子が球状であるSi−H結合含有シリカ誘導体微粒子の製造方法。General formula HSi (OR) 3 [wherein R is an alkyl group having 1 to 4 carbon atoms, and a plurality of R may be the same or different. The trialkoxysilane is dissolved in the trialkoxysilane and water, and the pH is 5.5 to 10.5 in a reaction solvent 3 to 30 times the trialkoxysilane by volume. Hydrolysis condensation with water of an equivalent mole or more with respect to all alkoxy groups of silane and in a temperature range of 0 to 30 ° C. At that time, a reaction solvent, a mixed solution of water and a reaction solvent, or a reaction solvent of trialkoxysilane the solution was charged in advance reactor, the mixture and the reaction solvent solution of the remainder of the trialkoxysilane to it with the remainder of the water-reactive solvent, characterized that you mixing slowly, the general formula H n SiO (4 -n) / 2 [where n is a real number greater than 0 and less than 2. ] The manufacturing method of the Si-H bond containing silica derivative microparticles | fine- particles which have the composition represented by these, and whose primary particle is spherical . 一次粒子が粒径0.05μm〜1μmの球状である請求項1記載のSi−H結合含有シリカ誘導体微粒子の製造方法。Si-H bond-containing silica derivative production method of the fine particles of the primary particles according to claim 1, which is a spherical particle size 0.05 to 1 m.
JP02991896A 1995-09-21 1996-01-24 Si-H bond-containing silica derivative fine particles and method for producing the same Expired - Fee Related JP3760498B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP02991896A JP3760498B2 (en) 1996-01-24 1996-01-24 Si-H bond-containing silica derivative fine particles and method for producing the same
US08/710,419 US5985229A (en) 1995-09-21 1996-09-17 Solid silica derivative and process for producing the same
DE1996138998 DE19638998B4 (en) 1995-09-21 1996-09-23 Process for the preparation of a solid silica derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02991896A JP3760498B2 (en) 1996-01-24 1996-01-24 Si-H bond-containing silica derivative fine particles and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09202612A JPH09202612A (en) 1997-08-05
JP3760498B2 true JP3760498B2 (en) 2006-03-29

Family

ID=12289387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02991896A Expired - Fee Related JP3760498B2 (en) 1995-09-21 1996-01-24 Si-H bond-containing silica derivative fine particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP3760498B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840456B1 (en) * 2000-03-31 2008-06-20 히다치 가세고교 가부시끼가이샤 Thermosetting Resin Composition, Resin Film, Metal Foil with Insulating Material, Insulating Film with Metal Foil on Each Side, Metal-Clad Laminate, Multilayered Metal-Clad Laminate, and Multilayered Printed Circuit Board
JP4872180B2 (en) * 2001-09-25 2012-02-08 日立化成工業株式会社 Semiconductor mounting substrate and semiconductor package
CN101014534B (en) * 2004-09-01 2011-05-18 株式会社大阪钛技术 SiO deposition material, Si powder for SiO raw material, and method for producing SiO
JP5477192B2 (en) * 2010-06-23 2014-04-23 富士ゼロックス株式会社 Method for producing silica particles
JP5477193B2 (en) * 2010-06-24 2014-04-23 富士ゼロックス株式会社 Silica particles and method for producing the same
JP5488255B2 (en) * 2010-06-25 2014-05-14 富士ゼロックス株式会社 Silica particles and method for producing the same
JP5741005B2 (en) 2011-01-20 2015-07-01 富士ゼロックス株式会社 Resin particles and method for producing the same
JP5724401B2 (en) 2011-01-19 2015-05-27 富士ゼロックス株式会社 Resin particles and method for producing the same
JP5831378B2 (en) 2011-12-01 2015-12-09 富士ゼロックス株式会社 Silica composite particles and method for producing the same
JP6261005B2 (en) * 2012-11-30 2018-01-17 国立大学法人京都大学 Macroporous monolith and method for producing the same
JP5915555B2 (en) 2013-01-28 2016-05-11 富士ゼロックス株式会社 Silica composite particles and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2035367A1 (en) * 1990-02-22 1991-08-23 Ronald H. Baney Precursor polymer for ceramic coatings
JP3694900B2 (en) * 1993-05-31 2005-09-14 東ソー株式会社 Method for producing silica-based coating

Also Published As

Publication number Publication date
JPH09202612A (en) 1997-08-05

Similar Documents

Publication Publication Date Title
US5985229A (en) Solid silica derivative and process for producing the same
JP5488255B2 (en) Silica particles and method for producing the same
JP5477192B2 (en) Method for producing silica particles
EP1657283B1 (en) Process for producing hydrophobic silica powder
US7186440B2 (en) Process for producing hydrophobic silica powder
JP4828032B2 (en) Hydrophobic silica powder and method for producing the same
JP3760498B2 (en) Si-H bond-containing silica derivative fine particles and method for producing the same
JP5477193B2 (en) Silica particles and method for producing the same
JP5644789B2 (en) Powder composition
JPWO2015107961A1 (en) Hydrophobized spherical polyalkylsilsesquioxane fine particles, toner external additive, electrophotographic dry toner, and method for producing hydrophobic spherical polyalkylsilsesquioxane fine particles
JP5267758B2 (en) Method for producing hydrophobic silica powder
CN115298137B (en) Method for producing surface-treated silica powder
JP4888633B2 (en) Method for producing hydrophobic silica powder
Lazareva et al. Synthesis of high-purity silica nanoparticles by sol-gel method
JPWO2021215285A5 (en)
JPH1045914A (en) Production of spherical polyorganosilsesquioxane powder
CN1608032A (en) Inorganic oxide
CN111801369A (en) Polysiloxane powder without pungent smell during heating and preparation method thereof
JP5974986B2 (en) Silica-attached silicon particles and sintered mixed raw material, and method for producing silica-attached silicon particles and hydrophobic spherical silica fine particles
JPS63295637A (en) Spherical polymethylsilsequioxane powder and its production
KR20210025518A (en) Spherical polymethylsilsesquioxane particles
JP3760493B2 (en) Solid silica derivative and method for producing the same
JP2010516857A (en) Method for preparing a novel silsesquioxane filler
JP6007867B2 (en) Grinding aid for non-aqueous electrolyte secondary battery active material and grinding method
JP2023110669A (en) Method for adjusting particle diameter of silica particles and method for producing silica particles

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees