JP3760493B2 - Solid silica derivative and method for producing the same - Google Patents

Solid silica derivative and method for producing the same Download PDF

Info

Publication number
JP3760493B2
JP3760493B2 JP35202695A JP35202695A JP3760493B2 JP 3760493 B2 JP3760493 B2 JP 3760493B2 JP 35202695 A JP35202695 A JP 35202695A JP 35202695 A JP35202695 A JP 35202695A JP 3760493 B2 JP3760493 B2 JP 3760493B2
Authority
JP
Japan
Prior art keywords
hydrogen
silica derivative
same
containing silica
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35202695A
Other languages
Japanese (ja)
Other versions
JPH09142825A (en
Inventor
芳範 山田
勝可 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP35202695A priority Critical patent/JP3760493B2/en
Priority to US08/710,419 priority patent/US5985229A/en
Priority to DE1996138998 priority patent/DE19638998B4/en
Publication of JPH09142825A publication Critical patent/JPH09142825A/en
Application granted granted Critical
Publication of JP3760493B2 publication Critical patent/JP3760493B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、一部の珪素が化学的に水素と結合しているシリカ、即ち無定形二酸化珪素に関し、さらに詳しくは、還元剤やヒドロシリル化反応等化学的に有用な反応に利用できるSi−H結合を持ち、工業的に便利な固体状の新規なシリカ誘導体およびその製造方法に関する。
【0002】
【従来の技術】
一般的にシリカと総称される固体状の無定形二酸化硅素は、シリカガラス、吸湿剤としてのシリカゲル、または化学的に不活性で高温に耐えることから触媒担体等として、或いはシリコーンゴム等の充填材として多量に使用されている。しかし、従来のシリカの利用法は、上記のように触媒担体や吸湿剤、樹脂の充填材等物理的方法に限られている。
【0003】
一方、その目的に応じシリカ表面に様々な化学修飾を施す工夫が、なされてきた。例えば表面に存在するOH基に二重結合を有する化合物を付加させて、樹脂との相溶性に優れたシリカを製造することが行われている。しかし、シリカまたはその誘導体自体が化学反応をするということは知られておらず、勿論、反応性の水素基を含有するシリカ誘導体は公知ではなく、実用化されたこともなかった。
【0004】
この理由の一つとしては、従来の一般的なシリカの製造方法を応用しただけでは、反応性のSi−H基を有するシリカ誘導体ができないことが挙げられる。
シリカの製造方法としては、例えば特公昭61ー56255号に記載のように、テトラアルコキシシランまたは該アルコキシシランのアルコキシ基の一部をアルキル基としたアルキルアルコキシシラン等のSi−H結合を有しない加水分解性シランを、加水分解縮合する方法が一般的である。
【0005】
さらにこれらシランは、加水分解縮合反応が遅いため、シリカを製造するに当たり塩基性触媒を用いた過激な反応条件を採用している。そのため、例えばSi−Hのような反応性の基を持ったアルコキシシランを前記加水分解性シランに添加したとしても、加水分解の際に、この反応性基は容易に副反応を起こして不活性な水酸基に変わってしまうため、生成したシリカにSi−H結合を残すことはできなかった。
【0006】
【発明が解決しようとする課題】
本発明はかかる現状に鑑み、表面を化学修飾したものではなく、それ自体に反応性のSi−H結合を持ち、還元やヒドロシリル化反応等の化学反応に利用できる固体状シリカ誘導体およびその製造方法を提供せんとするものである。
【0007】
【課題を解決するための手段】
本発明者は上記の問題に対して鋭意検討した結果、一般式H−Si(OR)3 (但し、Rは炭素数1〜4のアルキル基で複数のRは同じでも違っていてもよい。)で表されるトリアルコキシシランを、pH3以上10.5以下で、当該トリアルコキシシランの全アルコキシ基に対して当量モル以上2倍モル以下の水により且つ温度範囲0℃〜30℃にて加水分解縮合させることにより、一般式Hn SiO(4-n)/2 (但し、nは0より大きく2より小さい実数である。)で表されるSi−H結合を有する固体状シリカ誘導体(以下「水素含有シリカ誘導体」と称する。)を製造することができることを見出した。
【0008】
【発明の実施の形態】
この発明において、原料となるトリアルコキシシランH−Si(OR)3 のRの具体例としては、メチル、エチル、プロピル、イソプロピル、n−ブチル、i−ブチルまたはt−ブチルのアルキル基が挙げられる。
該トリアルコキシシランの複数のRは、同じでも違っていてもよく、また異種のRを持つトリアルコキシシランの混合物も使用できる。
【0009】
Rの炭素数は、少ないほど加水分解反応が起き易く、加水分解・縮合反応が早く進むので、メチルまたはエチルが好ましい。いずれのRの場合でも、加水分解反応に伴って副生するROH(アルコール)は蒸留等の方法で容易に分離回収し、再利用することができる。このためには、Rは同じ種類である方が、得られるアルコールの分離が不要となり経済的である。
【0010】
本発明では、原料としてトリアルコキシシランH−Si(OR)3 のみを用いることが好ましいが、一般式Hm −Si(OR’)4-m (但し、R’は炭素数1〜4のアルキル基で複数のR’は、同じでも違っていてもよい。mは0または2。)で表されるジアルコキシシランまたはテトラアルコキシシランを併用することができる。
しかし、ジアルコキシシランは安定性が悪く、また価格も高いので多量に用いるのは不経済であり、またテトラアルコキシシランは反応性が低いので、トリアルコキシシランとの併用が多量の場合は、テトラアルコキシシランのみが未反応で残る恐れがあるので、その配合量は、原料となる全アルコキシシランのうちの50重量%未満とすることが好ましい。
【0011】
テトラアルコキシシランまたはジアルコキシシランのR’の具体例としては、メチル、エチル、プロピル、イソプロピル、n−ブチル、i−ブチルまたはt−ブチルのアルキル基が挙げられる。複数のR’は同じでも違っていてもよく、また異種のR’を持つアルコキシシランの混合物も使用することができる。
【0012】
R’の炭素数は、少ないほど加水分解反応が起き易く、加水分解・縮合反応が早く進むので、メチルまたはエチルが好ましい。いずれのR’の場合でも、加水分解反応に伴って副生するR’OH(アルコール)は蒸留等の方法で容易に分離回収し、再利用することができる。このためには、R’は同じ種類である方が、得られるアルコールの分離が不要となり経済的である。更に、アルコールの再利用については、トリアルコキシシランのRとテトラアルコキシシランまたはジアルコキシシランのR’が一致する方が、同じ理由から好ましい。
【0013】
アルコキシシランの加水分解は、適当な容器にアルコキシシランをいれ、十分撹拌しながらアルコキシシランの加水分解性基に対して当量モルかそれ以上の水を加えることによって行われる。ここで、当量モルとは、トリアルコキシシランを使用するときはトリアルコキシシラン1モルに対して水3/2モルであり、ジアルコキシシランが含まれる場合はジアルコキシシラン1モルに対して1モルの水、テトラアルコキシシランを添加する場合はテトラアルコキシシラン1モルに対して2モルの水が当量モルとなる。
【0014】
原料を構成する各アルコキシシランの割合によって、当量モルとなる水の量を算出することができる。こうして求めた当量モルより少ない水を加えた場合、加水分解されないアルコキシ基が残るため、製造した水素含有シリカ誘導体を水系で使用したときにアルコールが生成したり、水素含有シリカ誘導体の熱安定性が劣る等の問題が起きる恐れがあり、逆にあまり過剰の水を加えると、生成したゲルの乾燥に手間がかかり、副生したアルコールの回収の際にアルコールの純度が下がる恐れがある。好ましい水の量は、当量モル〜その2倍量、さらに好ましくは当量モル〜その1.3倍量の範囲である。
【0015】
加水分解により得られる水素含有シリカ誘導体の一般式Hn SiO(4-n)/2 のnは、原料アルコキシシランの内、ジアルコキシシランとテトラアルコキシシランの使用量によって変えることができる。即ち、トリアルコキシシランだけを原料にした場合は、得られる水素含有シリカ誘導体の理論組成はHSiO3/2 になる。
【0016】
原料のトリアルコキシシランにジアルコキシシランを添加するとnは1より大きくなり、テトラアルコキシシランを添加するとnは小さくなる。nは大きくした方が得られる水素含有シリカ誘導体中の水素量が増えるので好ましいが、ジアルコキシシランはトリアルコキシシランに比べて化学的に不安定なため、原料の取り扱い易さやコストの面であまりnを大きくすることは好ましくない。このため好ましいnの範囲は0<n<2、さらに好ましくは0<n≦1.3の範囲である。
また後述のように、加水分解縮合に使用する水のpHや反応温度が高い場合は、Si−H結合が減少し、nが小さくなる。
【0017】
加水分解縮合に使用する水が強いアルカリ性の場合は、Si−Hが水素を発生しながらSi−OHに変わってしまうので、水はpH10.5以下の弱アルカリ〜酸性である必要がある。なお、加水分解の反応温度を高めに設定する等、Si−H結合が不安定になり易い条件の場合には、pHが低い方が好ましく、また酸性があまり強いと反応器の腐食の問題等があるので、好ましいpHの範囲は3〜7である。
【0018】
加水分解縮合に使用する水のpHを10.5以下に調整するためには、酢酸、塩酸、硫酸、炭酸またはパラトルエンスルホン酸等の一般的な酸性物質や、水酸化カリウム、水酸化ナトリウム、水酸化カルシウム、アンモニアまたはエチルアミン等のアルカリ性物質を水に溶解させれば良い。但し、トリアルコキシシランは還元性を持つので、硝酸や重クロム酸等の酸化性の強い物質は好ましくない。
【0019】
酢酸、塩酸または炭酸等の揮発性の酸を使用すると、乾燥工程で水素含有シリカ誘導体中に残留した酸分を揮発させることができ、逆に硫酸やパラトルエンスルホン酸等の不揮発性の酸を用いると回収アルコールへの酸の混入を防ぐことができる。この中では、酸化性、腐食性がなく、容易に水素含有シリカ誘導体中から揮発して除去できるという理由で炭酸、すなわち炭酸ガスの使用が好ましい。より具体的には、加水分解縮合に使用する水の置かれた雰囲気中の炭酸ガスの分圧を制御することにより容易に好みのpHの酸性の水を得ることができる。
【0020】
またアルカリ性物質の好ましい種類は、同様の理由でアンモニアである。例えば市販の25%アンモニア水を希釈することにより容易に好みのpHのアルカリ性の水を得ることができる。pHの測定方法としては、ガラス電極によるpHメーターや、より簡便にはpH試験紙等の一般的な方法が使用できる。
【0021】
アルコキシシランの加水分解は発熱反応であるので、反応に伴って反応液の温度が上昇するが、あまり温度が高くなると部分的に縮合が進んだり、副生したアルコールとアルコキシシランのSi−Hが反応して水素を発生したりするので、好ましい反応温度の範囲は0℃〜50℃、さらに好ましくは0℃〜30℃である。また、水の加え方は、急激に加えると反応液中のごく一部で急激に発熱し、ゲル化が進んだりするので、徐々に加えるのがよい。具体的には、加えるべき水の全量を、10分〜10時間の間に、より好ましくは30分から5時間の間に徐々に均等に加えるのが良い。
【0022】
アルコキシシランの加水分解によって副生アルコールを含んだ透明なゲルが生成し、このゲルを乾燥することにより固体状の水素含有シリカ誘導体を得る事ができる。なお、本発明の水素含有シリカ誘導体は固体状、通常の条件では非晶質であり、低分子のモノマーやポリマーとは異なるものである。
【0023】
乾燥は自然乾燥、熱風乾燥、キルンドライ等一般的な方法が使用できるが、例えばロータリーエバポレーターのような密閉系で乾燥を行い、発生したアルコール蒸気を液化回収することにより副生アルコールを再利用する方法が経済的で好ましい。
加熱乾燥する場合は、あまり高い温度では水素含有シリカ誘導体のSi−H結合が切れる恐れがあるので、乾燥温度は320℃以下が好ましく、さらに好ましくは0℃〜250℃である。
【0024】
加水分解縮合により生成したゲルは、乾燥によって含まれるアルコールが抜けて行くのにつれて、若干の硬化収縮を起こし、最後には透明なブロック状〜粒状の固体になる。完全にゲル化する前の反応液を型枠に入れておいた場合は、型枠通りの形状の水素含有シリカ誘導体を作ることができ、薄膜状に保持しておいた場合はフィルム状で、紙や繊維等に含浸しておいた場合は含浸したままの形で得ることができる。また他の物体の表面にコーティングして硬化させれば水素含有シリカ誘導体の皮膜を形成することも可能である。水素含有シリカ誘導体を、振動粉砕器、ボールミル、冷凍粉砕等の一般的な粉砕方法を用いて粉末状で得ることもできる。
【0025】
得られた水素含有シリカ誘導体に含まれる、Si−Hの量は、例えばCHN元素分析法により定量的に求めることができる。CHN元素分析法では、同時にCの分析も行われるので、水素含有シリカ誘導体に有機物が残留していないことも確かめることができる。またSi−Hの還元反応を利用した酸化還元滴定法、例えば過マンガン酸カリウム水溶液による直接滴定等の方法で求めることもできる。
【0026】
【実施例】
以下、実施例および比較例を掲げて、本発明の水素含有シリカ誘導体とその製造方法をより具体的に説明する。
実施例1
500mlの3口ガラスフラスコにトリエトキシシラン164gを仕込み、室温で撹拌しながら、約1時間かけて蒸留水28gを滴下した。その後フラスコを氷冷したまま撹拌を続けたところ、約1時間後には反応液全体が透明で柔らかいゲル状になった。この反応液ゲルをロータリーエバポレーター用フラスコに入れ、該フラスコをロータリーエバポレーターに装着し、回転しながら80℃の水浴で暖めて200torrで減圧蒸留したところ、約2時間後にはフラスコに白色粉末53gが残った。液化して受器にたまったエタノールは139gだった。
【0027】
得られた白色粉末の赤外吸光分光分析の結果を図1に示す。Si−O−Si結合に基づく1100cm-1の吸収に加えて、Si−H結合に基づく2250cm-1の吸収が大きく現れており、有機基の吸収がないことから、一般式Hn SiO(4-n)/2 で表される水素含有シリカ誘導体ができていることが分かった。
【0028】
またCHN元素分析装置(柳本製作所MT−5型)により、当該水素含有シリカ誘導体に含まれるC、H、Nの各元素含量を測定したところ、C=0%、H=1.90%、N=0%という結果が得られたことから、一般式Hn SiO(4-n)/2 のn=1.0、即ちHSiO3/2 の水素含有シリカ誘導体が得られたことが確認できた。
【0029】
さらにこの水素含有シリカ誘導体粉末を、メノウ乳鉢で良く磨り潰した後、粉末X線回折装置(理学電機(株)製RINT2400V型)の試料ホルダーに詰めて、粉末X線スペクトルを測定した。結果を図2に示す。測定されたスペクトルには明瞭な回折ピークがなかったことから、この試料は非晶質であることが分かった。
【0030】
実施例2
500mlの3口ガラスフラスコにトリエトキシシラン132gとテトラエトキシシラン41.6gとを仕込み、実施例1と同じ方法で蒸留水30gを滴下したところ、白色粉末54.4gと回収エタノール148.4gとを得た。この白色粉末の赤外吸光分光分析の結果は、実施例1と同じでSi−H結合に基づく2250cm-1の吸収が大きく現れていた。CHN元素分析の結果は、C=0%、H=1.47%、N=0%という結果が得られたことから、一般式Hn SiO(4-n)/ 2 のn=0.8、即ちH4/5 SiO8/5 の水素含有シリカ誘導体が得られたことが確認できた。
【0031】
得られた水素含有シリカ誘導体粉末をボールミルで8時間粉砕し、平均粒径0.5μm以下の微粉末にした後、三角フラスコに0.1gとり、硫酸酸性で1/10規定過マンガン酸カリウム標準液により直接酸化還元滴定したところ、過マンガン酸イオンの消色が観察され、滴定量は14.2mlになった。ここからSi−Hの量を求めると水素含有シリカ誘導体100g当たり1.42モルとなり、式Hn SiO(4-n)/2 のnとしては約0.78と計算され、CHN元素分析の結果とほぼ一致した。
【0032】
実施例3
500mlの3口ガラスフラスコにトリエトキシシラン147.6gとジエトキシシラン12gとを仕込み、実施例1と同じ方法で蒸留水30gを滴下したところ、白色粉末52.3gと回収エタノール137.3gとを得た。この白色粉末の赤外吸光分光分析の結果は実施例1と同じでSi−H結合に基づく2250cm-1の吸収が大きく現れていた。また、CHN元素分析の結果は、C=0%、H=2.10%、N=0%という結果が得られたことから、一般式Hn SiO(4-n)/2 のn=1.1、即ちH11/10 SiO31/20 の水素含有シリカ誘導体が得られたことが確認できた。
【0033】
実施例4
加水分解液を蒸留水から、0.01%パラトルエンスルホン酸水溶液に変えた以外は、実施例1と同じ条件で反応を行った。この水溶液のpHは4であった。
その結果、白色粉末53gと回収エタノール139gとを得た。
該白色粉末の赤外吸収分光分析の結果は図1と一致し、CHN元素分析の結果も実施例1と完全に一致したので、実施例1と同じくHSiO3/2 の水素含有シリカ誘導体が得られたことが確認できた。
【0034】
実施例5
500mlの3口ガラスフラスコにトリエトキシシラン164gを仕込み、攪拌しながら、約1時間かけて蒸留水28gを滴下した。滴下終了の30分後、反応液は透明で粘性を帯びた液状であった。この液をスライドグラスの上に28番のバーコーターでコーティングした。その後、このスライドグラスを100℃で8時間乾燥したところ、スライドグラス上に厚さ約1μmの無色透明の膜が形成されていた。この膜の一部を剥して赤外吸光分光分析したところ吸収曲線は実施例1と一致したため、実施例1と同一の水素含有シリカ誘導体が生成したことが確認できた。
【0035】
実施例6
トリメトキシシラン122gに、実施例1と同じ方法で蒸留水28gを滴下したところ、白色粉末53gと回収メタノール97gとを得た。この白色粉末の赤外吸光分光分析の結果は実施例1と一致したため、実施例1と同一の水素含有シリカ誘導体が生成したことが確認できた。
【0036】
実施例7
加水分解液を蒸留水から、0.01%アンモニア水に変えた以外は、実施例1と同じ条件で反応を行った。この水溶液のpHは10.5であった。その結果、白色粉末53gが得られた。
該白色粉末の赤外吸収分光分析の結果は図1と一致し、CHN元素分析の結果も実施例1と完全に一致したので、実施例1と同じくHSiO3/2 の水素含有シリカ誘導体が得られたことが確認できた。
【0037】
実施例8
加水分解液を蒸留水から、0.001%希塩酸に変えた以外は、実施例1と同じ条件で反応を行った。この希塩酸のpHは3.6であった。その結果、白色粉末53gが得られた。
該白色粉末の赤外吸収分光分析の結果は図1と一致し、CHN元素分析の結果も実施例1と完全に一致したので、実施例1と同じくHSiO3/2 の水素含有シリカ誘導体が得られたことが確認できた。
【0038】
比較例1
実施例1と同じ方法で、トリエトキシシラン164gに0.1%アンモニア水28gを滴下したところ、白色粉末60gと回収エタノール132gとを得た。0.1%アンモニア水のpHは11.0であった。この物質の赤外吸光分光分析の結果は図3となり、Si−O−Si結合に基づく1100cm-1の吸収は実施例1と同じだが、Si−H結合に基づく2250cm-1の吸収が無いことから、Si−H結合は無く、一般式SiO2 で表されるシリカが生成していることが分かった。またCHN元素分析の結果もC=0%、H=0%、N=0%となり、Si−H結合が無いことが確認できた。
【0039】
比較例2
トリエトキシシラン164gに対して当量モル未満となる蒸留水9gを滴下した以外は、実施例1と同じ方法で反応させたところ、12時間攪拌を続けても反応液は透明な液状のままで、ゲルは生じなかった。
【0040】
【発明の効果】
本発明の水素含有シリカ誘導体は、シリカそれ自体に反応性のSi−H結合を有しており、還元やヒドロシリル化反応等の化学反応に利用することができ、化学的に有用であり、また本発明の製造方法によれば、特定のアルコキシシランを特定の条件で加水分解縮合することにより、有用な水素含有シリカ誘導体を高収率で容易に得ることができる。
【図面の簡単な説明】
【図1】 本発明の実施例1の白色粉末(水素含有シリカ誘導体粉末)を測定した、赤外吸光スペクトル図である。
【図2】 本発明の実施例1の白色粉末(水素含有シリカ誘導体粉末)を測定した、X線回折スペクトル図である。
【図3】 本発明の比較例1の白色粉末を測定した、赤外吸光スペクトル図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to silica in which a part of silicon is chemically bonded to hydrogen, that is, amorphous silicon dioxide. More specifically, the present invention relates to Si-H that can be used for chemically useful reactions such as reducing agents and hydrosilylation reactions. The present invention relates to a novel solid silica derivative having a bond and industrially convenient, and a method for producing the same.
[0002]
[Prior art]
Solid amorphous silicon dioxide, generally referred to as silica, is silica glass, silica gel as a hygroscopic agent, or a catalyst carrier because it is chemically inert and resistant to high temperatures, or a filler such as silicone rubber Is used in large quantities. However, conventional methods of using silica are limited to physical methods such as a catalyst carrier, a hygroscopic agent, and a resin filler as described above.
[0003]
On the other hand, the device which performs various chemical modification to the silica surface according to the objective has been made | formed. For example, a silica having excellent compatibility with a resin is produced by adding a compound having a double bond to an OH group present on the surface. However, it is not known that silica or its derivative itself undergoes a chemical reaction, and of course, a silica derivative containing a reactive hydrogen group is not known and has never been put into practical use.
[0004]
One reason for this is that a silica derivative having a reactive Si—H group cannot be obtained simply by applying a conventional general silica production method.
As a method for producing silica, for example, as described in JP-B-61-56255, there is no Si-H bond such as tetraalkoxysilane or an alkylalkoxysilane in which a part of the alkoxy group of the alkoxysilane is an alkyl group. A method of hydrolyzing and condensing a hydrolyzable silane is common.
[0005]
Furthermore, since these silanes have a slow hydrolysis-condensation reaction, they employ extreme reaction conditions using a basic catalyst in producing silica. Therefore, even when an alkoxysilane having a reactive group such as Si—H is added to the hydrolyzable silane, the reactive group easily causes a side reaction during the hydrolysis and becomes inactive. Therefore, Si—H bonds could not be left in the produced silica.
[0006]
[Problems to be solved by the invention]
In view of the present situation, the present invention is a solid silica derivative having a reactive Si-H bond in itself and not usable for chemical reaction such as reduction or hydrosilylation reaction, and a method for producing the same. Is intended to provide.
[0007]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the present inventor has a general formula H-Si (OR) 3 (wherein R is an alkyl group having 1 to 4 carbon atoms, and a plurality of R may be the same or different. ) Represented by a water having a pH of 3 or more and 10.5 or less and an equivalent mole or more and a double mole or less of water with respect to all alkoxy groups of the trialkoxysilane in a temperature range of 0 ° C. to 30 ° C. By hydrolytic condensation, a solid silica derivative having a Si—H bond represented by the general formula H n SiO (4-n) / 2 (where n is a real number greater than 0 and less than 2) ( It has been found that it can be produced hereinafter as “hydrogen-containing silica derivative”.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, specific examples of R in the trialkoxysilane H—Si (OR) 3 used as a raw material include an alkyl group of methyl, ethyl, propyl, isopropyl, n-butyl, i-butyl or t-butyl. .
A plurality of Rs in the trialkoxysilane may be the same or different, and a mixture of trialkoxysilanes having different Rs can also be used.
[0009]
The smaller the carbon number of R, the easier the hydrolysis reaction takes place and the faster the hydrolysis / condensation reaction is, so methyl or ethyl is preferred. In any case of R, ROH (alcohol) produced as a by-product in the hydrolysis reaction can be easily separated and recovered by a method such as distillation and reused. For this purpose, it is more economical that the same type of R is not required to separate the alcohol obtained.
[0010]
In the present invention, it is preferable to use only trialkoxysilane H—Si (OR) 3 as a raw material, but general formula H m —Si (OR ′) 4−m (where R ′ is an alkyl having 1 to 4 carbon atoms). A plurality of R ′ in the group may be the same or different. M is 0 or 2.) A dialkoxysilane or a tetraalkoxysilane represented by
However, since dialkoxysilane is poor in stability and expensive, it is uneconomical to use a large amount, and tetraalkoxysilane has low reactivity. Since only alkoxysilane may remain unreacted, the blending amount is preferably less than 50% by weight of the total alkoxysilane used as a raw material.
[0011]
Specific examples of R ′ of tetraalkoxysilane or dialkoxysilane include alkyl groups of methyl, ethyl, propyl, isopropyl, n-butyl, i-butyl or t-butyl. A plurality of R ′ may be the same or different, and a mixture of alkoxysilanes having different R ′ may also be used.
[0012]
The smaller the number of carbons in R ′, the easier the hydrolysis reaction takes place, and the hydrolysis / condensation reaction proceeds faster, so methyl or ethyl is preferred. In any case of R ′, R′OH (alcohol) produced as a by-product in the hydrolysis reaction can be easily separated and recovered by a method such as distillation and reused. For this purpose, it is more economical that R ′ is of the same type, because separation of the alcohol obtained is unnecessary. Furthermore, for the reuse of alcohol, it is preferable for R for trialkoxysilane and R ′ of tetraalkoxysilane or dialkoxysilane to match for the same reason.
[0013]
Hydrolysis of the alkoxysilane is carried out by placing the alkoxysilane in a suitable container and adding an equivalent mole or more of water to the hydrolyzable group of the alkoxysilane with sufficient stirring. Here, the equivalent mole is 3/2 mole of water with respect to 1 mole of trialkoxysilane when using trialkoxysilane, and 1 mole with respect to 1 mole of dialkoxysilane when dialkoxysilane is contained. When water and tetraalkoxysilane are added, 2 mol of water is equivalent to 1 mol of tetraalkoxysilane.
[0014]
The amount of water to be equivalent moles can be calculated by the ratio of each alkoxysilane constituting the raw material. When water less than the equivalent mole thus obtained is added, an alkoxy group that is not hydrolyzed remains, so that alcohol is produced when the produced hydrogen-containing silica derivative is used in an aqueous system, or the thermal stability of the hydrogen-containing silica derivative is reduced. There is a possibility that problems such as inferiority may occur, and conversely, if too much water is added, it takes time to dry the generated gel, and the purity of the alcohol may be lowered when recovering the by-produced alcohol. The amount of water is preferably in the range of equivalent mole to twice that amount, more preferably equivalent mole to 1.3 times that amount.
[0015]
N in the general formula H n SiO (4-n) / 2 of the hydrogen-containing silica derivative obtained by hydrolysis can be changed depending on the amount of dialkoxysilane and tetraalkoxysilane used in the raw material alkoxysilane. That is, when only trialkoxysilane is used as a raw material, the theoretical composition of the obtained hydrogen-containing silica derivative is HSiO 3/2 .
[0016]
When dialkoxysilane is added to the starting trialkoxysilane, n becomes larger than 1, and when tetraalkoxysilane is added, n becomes smaller. Although n is preferable because the amount of hydrogen in the obtained hydrogen-containing silica derivative is increased, dialkoxysilane is chemically unstable compared to trialkoxysilane, so that it is not easy in handling raw materials and costs. It is not preferable to increase n. Therefore, a preferable range of n is 0 <n <2, more preferably 0 <n ≦ 1.3.
As will be described later, when the pH and reaction temperature of water used for hydrolysis condensation are high, the Si—H bond decreases and n decreases.
[0017]
When water used for hydrolysis condensation is strongly alkaline, Si—H is changed to Si—OH while generating hydrogen, so that the water needs to be weakly alkaline to acidic with a pH of 10.5 or less. In the case where the Si-H bond is likely to be unstable, such as when the hydrolysis reaction temperature is set high, a lower pH is preferable, and if the acidity is too strong, problems such as corrosion of the reactor, etc. Therefore, the preferred pH range is 3-7.
[0018]
In order to adjust the pH of water used for hydrolysis condensation to 10.5 or less, general acidic substances such as acetic acid, hydrochloric acid, sulfuric acid, carbonic acid or paratoluenesulfonic acid, potassium hydroxide, sodium hydroxide, An alkaline substance such as calcium hydroxide, ammonia or ethylamine may be dissolved in water. However, since trialkoxysilane has reducibility, highly oxidizable substances such as nitric acid and dichromic acid are not preferred.
[0019]
When a volatile acid such as acetic acid, hydrochloric acid, or carbonic acid is used, the acid content remaining in the hydrogen-containing silica derivative can be volatilized in the drying step, and conversely, a non-volatile acid such as sulfuric acid or paratoluenesulfonic acid can be When used, it is possible to prevent acid from being mixed into the recovered alcohol. Among these, the use of carbonic acid, that is, carbon dioxide gas is preferable because it is not oxidizing and corrosive and can be easily volatilized and removed from the hydrogen-containing silica derivative. More specifically, acidic water having a desired pH can be easily obtained by controlling the partial pressure of carbon dioxide gas in the atmosphere in which water used for hydrolysis condensation is placed.
[0020]
A preferred type of alkaline substance is ammonia for the same reason. For example, alkaline water having a desired pH can be easily obtained by diluting commercially available 25% aqueous ammonia. As a pH measurement method, a general method such as a pH meter using a glass electrode or, more simply, a pH test paper can be used.
[0021]
Since the hydrolysis of alkoxysilane is an exothermic reaction, the temperature of the reaction liquid rises with the reaction, but when the temperature becomes too high, condensation partially proceeds, or by-produced alcohol and Si—H of alkoxysilane are formed. Since it reacts and generate | occur | produces hydrogen, the range of preferable reaction temperature is 0 to 50 degreeC, More preferably, it is 0 to 30 degreeC. Moreover, when adding water rapidly, since it will generate heat | fever rapidly and a gelatinization will advance rapidly in a very small part in a reaction liquid, it is good to add gradually. Specifically, the total amount of water to be added should be gradually and evenly added within 10 minutes to 10 hours, more preferably between 30 minutes and 5 hours.
[0022]
A transparent gel containing a by-product alcohol is generated by hydrolysis of alkoxysilane, and a solid hydrogen-containing silica derivative can be obtained by drying the gel. The hydrogen-containing silica derivative of the present invention is solid, amorphous under normal conditions, and is different from low-molecular monomers and polymers.
[0023]
For drying, general methods such as natural drying, hot-air drying, kiln drying, etc. can be used. For example, drying is performed in a closed system such as a rotary evaporator, and by-product alcohol is reused by liquefying and recovering the generated alcohol vapor. Is economical and preferred.
When drying by heating, the Si-H bond of the hydrogen-containing silica derivative may be broken at a too high temperature, so the drying temperature is preferably 320 ° C or lower, more preferably 0 ° C to 250 ° C.
[0024]
The gel produced by the hydrolytic condensation undergoes some curing shrinkage as the alcohol contained by drying is removed, and finally becomes a transparent block to granular solid. If the reaction solution before completely gelled is placed in a mold, a hydrogen-containing silica derivative having the shape as the mold can be made, and if kept in a thin film form, If paper or fiber is impregnated, it can be obtained as it is impregnated. It is also possible to form a film of a hydrogen-containing silica derivative by coating the surface of another object and curing it. The hydrogen-containing silica derivative can also be obtained in a powder form using a general pulverization method such as a vibration pulverizer, a ball mill, or a freeze pulverization.
[0025]
The amount of Si—H contained in the obtained hydrogen-containing silica derivative can be quantitatively determined, for example, by CHN elemental analysis. In the CHN elemental analysis method, C is also analyzed at the same time, so it can be confirmed that no organic matter remains in the hydrogen-containing silica derivative. It can also be determined by a redox titration method using a Si—H reduction reaction, for example, a direct titration method using an aqueous potassium permanganate solution.
[0026]
【Example】
Hereinafter, the hydrogen-containing silica derivative of the present invention and the production method thereof will be described more specifically with reference to examples and comparative examples.
Example 1
In a 500 ml three-necked glass flask, 164 g of triethoxysilane was charged, and 28 g of distilled water was added dropwise over about 1 hour while stirring at room temperature. Stirring was then continued while the flask was ice-cooled, and after about 1 hour, the entire reaction solution became a transparent and soft gel. This reaction solution gel was put into a rotary evaporator flask, and the flask was mounted on a rotary evaporator, heated in an 80 ° C. water bath while rotating and distilled under reduced pressure at 200 torr. After about 2 hours, 53 g of white powder remained in the flask. It was. The amount of ethanol that was liquefied and accumulated in the receiver was 139 g.
[0027]
The result of infrared absorption spectroscopy analysis of the obtained white powder is shown in FIG. In addition to the absorption of 1100 cm -1 based on the bond of SiO-Si, and appeared largely absorbed in 2250 cm -1 based on Si-H bonds, since there is no absorption of organic group of the general formula H n SiO (4 It was found that a hydrogen-containing silica derivative represented by -n) / 2 was formed.
[0028]
Moreover, when each element content of C, H, and N contained in the hydrogen-containing silica derivative was measured with a CHN element analyzer (Yanamoto Seisakusho MT-5 type), C = 0%, H = 1.90%, N Since the result of 0% was obtained, it was confirmed that n = 1.0 of the general formula H n SiO (4-n) / 2 , that is, a hydrogen-containing silica derivative of HSiO 3/2 was obtained. .
[0029]
Further, this hydrogen-containing silica derivative powder was thoroughly ground in an agate mortar, and then packed in a sample holder of a powder X-ray diffractometer (RINT2400V type, manufactured by Rigaku Corporation), and a powder X-ray spectrum was measured. The results are shown in FIG. The sample was found to be amorphous because there was no clear diffraction peak in the measured spectrum.
[0030]
Example 2
A 500 ml three-necked glass flask was charged with 132 g of triethoxysilane and 41.6 g of tetraethoxysilane, and 30 g of distilled water was added dropwise in the same manner as in Example 1. As a result, 54.4 g of white powder and 148.4 g of recovered ethanol were obtained. Obtained. The result of infrared absorption spectroscopic analysis of this white powder was the same as in Example 1, and a large absorption at 2250 cm −1 based on the Si—H bond appeared. As a result of CHN elemental analysis, C = 0%, H = 1.47%, and N = 0% were obtained. Therefore, n = 0.8 in the general formula H n SiO (4-n) / 2 That is, it was confirmed that a hydrogen-containing silica derivative of H 4/5 SiO 8/5 was obtained.
[0031]
The obtained hydrogen-containing silica derivative powder was pulverized with a ball mill for 8 hours to make a fine powder having an average particle size of 0.5 μm or less, then 0.1 g was taken in an Erlenmeyer flask, and 1/10 N potassium permanganate standard with sulfuric acid acidity. When direct oxidation-reduction titration was performed with the liquid, decolorization of permanganate ions was observed, and the titration amount was 14.2 ml. From this, the amount of Si—H is calculated to be 1.42 mol per 100 g of the hydrogen-containing silica derivative, and n of the formula H n SiO (4-n) / 2 is calculated to be about 0.78. Almost matched.
[0032]
Example 3
A 500 ml three-necked glass flask was charged with 147.6 g of triethoxysilane and 12 g of diethoxysilane, and 30 g of distilled water was added dropwise in the same manner as in Example 1. As a result, 52.3 g of white powder and 137.3 g of recovered ethanol were obtained. Obtained. The result of infrared absorption spectroscopic analysis of this white powder was the same as in Example 1, and a large absorption at 2250 cm −1 based on the Si—H bond appeared. Further, the results of CHN elemental analysis showed that C = 0%, H = 2.10%, and N = 0%, so that n = 1 of the general formula H n SiO (4-n) / 2 1. That is, it was confirmed that a hydrogen-containing silica derivative of H 11/10 SiO 31/20 was obtained.
[0033]
Example 4
The reaction was carried out under the same conditions as in Example 1 except that the hydrolyzate was changed from distilled water to a 0.01% paratoluenesulfonic acid aqueous solution. The pH of this aqueous solution was 4.
As a result, 53 g of white powder and 139 g of recovered ethanol were obtained.
The results of infrared absorption spectroscopic analysis of the white powder were the same as those in FIG. 1, and the results of CHN elemental analysis were also completely consistent with those in Example 1, so that a hydrogen-containing silica derivative of HSiO 3/2 was obtained as in Example 1. I was able to confirm.
[0034]
Example 5
In a 500 ml three-necked glass flask, 164 g of triethoxysilane was charged, and 28 g of distilled water was added dropwise over about 1 hour while stirring. Thirty minutes after the completion of the dropping, the reaction solution was transparent and viscous. This solution was coated on a slide glass with a No. 28 bar coater. Thereafter, when this slide glass was dried at 100 ° C. for 8 hours, a colorless and transparent film having a thickness of about 1 μm was formed on the slide glass. When a part of this film was peeled off and infrared absorption spectroscopic analysis was performed, the absorption curve was the same as that in Example 1. Thus, it was confirmed that the same hydrogen-containing silica derivative as in Example 1 was produced.
[0035]
Example 6
When 28 g of distilled water was added dropwise to 122 g of trimethoxysilane in the same manner as in Example 1, 53 g of white powder and 97 g of recovered methanol were obtained. Since the result of infrared absorption spectroscopy analysis of this white powder coincided with Example 1, it was confirmed that the same hydrogen-containing silica derivative as Example 1 was produced.
[0036]
Example 7
The reaction was performed under the same conditions as in Example 1 except that the hydrolyzate was changed from distilled water to 0.01% ammonia water. The pH of this aqueous solution was 10.5. As a result, 53 g of white powder was obtained.
The results of infrared absorption spectroscopic analysis of the white powder were the same as those in FIG. 1, and the results of CHN elemental analysis were also completely consistent with those in Example 1, so that a hydrogen-containing silica derivative of HSiO 3/2 was obtained as in Example 1. I was able to confirm.
[0037]
Example 8
The reaction was performed under the same conditions as in Example 1 except that the hydrolyzate was changed from distilled water to 0.001% dilute hydrochloric acid. The pH of this diluted hydrochloric acid was 3.6. As a result, 53 g of white powder was obtained.
The results of infrared absorption spectroscopic analysis of the white powder were the same as those in FIG. 1, and the results of CHN elemental analysis were also completely consistent with those in Example 1, so that a hydrogen-containing silica derivative of HSiO 3/2 was obtained as in Example 1. I was able to confirm.
[0038]
Comparative Example 1
In the same manner as in Example 1, when 28 g of 0.1% aqueous ammonia was added dropwise to 164 g of triethoxysilane, 60 g of white powder and 132 g of recovered ethanol were obtained. The pH of 0.1% aqueous ammonia was 11.0. The result of infrared spectroscopic analysis of this substance is shown in FIG. 3. The absorption at 1100 cm −1 based on the Si—O—Si bond is the same as in Example 1, but there is no absorption at 2250 cm −1 based on the Si—H bond. From this, it was found that there was no Si—H bond, and silica represented by the general formula SiO 2 was formed. The results of CHN elemental analysis were also C = 0%, H = 0%, N = 0%, and it was confirmed that there was no Si—H bond.
[0039]
Comparative Example 2
Except for dropping 9 g of distilled water that is less than an equivalent mole with respect to 164 g of triethoxysilane, the reaction was carried out in the same manner as in Example 1. As a result, the reaction solution remained transparent even when stirring was continued for 12 hours. No gel was produced.
[0040]
【The invention's effect】
The hydrogen-containing silica derivative of the present invention has a reactive Si—H bond in the silica itself, and can be used for chemical reactions such as reduction and hydrosilylation reactions, and is chemically useful. According to the production method of the present invention, a useful hydrogen-containing silica derivative can be easily obtained in high yield by hydrolytic condensation of a specific alkoxysilane under specific conditions.
[Brief description of the drawings]
FIG. 1 is an infrared absorption spectrum diagram obtained by measuring a white powder (hydrogen-containing silica derivative powder) of Example 1 of the present invention.
FIG. 2 is an X-ray diffraction spectrum diagram obtained by measuring the white powder (hydrogen-containing silica derivative powder) of Example 1 of the present invention.
FIG. 3 is an infrared absorption spectrum obtained by measuring the white powder of Comparative Example 1 of the present invention.

Claims (1)

一般式H−Si(OR)3 (但し、Rは炭素数1〜4のアルキル基で複数のRは同じでも違っていてもよい。)で表されるトリアルコキシシランを、pH3以上10.5以下で、当該トリアルコキシシランの全アルコキシ基に対して当量モル以上2倍モル以下の水により且つ温度範囲0℃〜30℃にて加水分解縮合させることを特徴とする、一般式H n SiO (4-n)/2 (但し、nは0より大きく2より小さい実数。)で表されるSi−H結合を有する固体状シリカ誘導体の製造方法。A trialkoxysilane represented by the general formula H-Si (OR) 3 (wherein R is an alkyl group having 1 to 4 carbon atoms, and a plurality of Rs may be the same or different) is used. hereinafter, characterized in that hydrolytic condensation at and the temperature range 0 ° C. to 30 ° C. the equivalent mole or more 2 moles or less of water relative to the total alkoxy groups of the trialkoxysilane of the general formula H n SiO ( 4-n) / 2 (however, n is a real number greater than 0 and less than 2) A method for producing a solid silica derivative having a Si—H bond represented by
JP35202695A 1995-09-21 1995-12-27 Solid silica derivative and method for producing the same Expired - Fee Related JP3760493B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP35202695A JP3760493B2 (en) 1995-09-21 1995-12-27 Solid silica derivative and method for producing the same
US08/710,419 US5985229A (en) 1995-09-21 1996-09-17 Solid silica derivative and process for producing the same
DE1996138998 DE19638998B4 (en) 1995-09-21 1996-09-23 Process for the preparation of a solid silica derivative

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-267800 1995-09-21
JP26780095 1995-09-21
JP35202695A JP3760493B2 (en) 1995-09-21 1995-12-27 Solid silica derivative and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09142825A JPH09142825A (en) 1997-06-03
JP3760493B2 true JP3760493B2 (en) 2006-03-29

Family

ID=26548038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35202695A Expired - Fee Related JP3760493B2 (en) 1995-09-21 1995-12-27 Solid silica derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP3760493B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542209B2 (en) * 1998-12-16 2010-09-08 日揮株式会社 Method for producing polycrystalline silicon and method for producing high-purity silica
EP1275680B1 (en) * 2000-03-31 2013-07-17 Hitachi Chemical Co., Ltd. Process for producing novel silicone polymer, silicone polymer produced by the process, thermosetting resin composition, resin film, metal foil with insulating material, insulating film with metal foil on each side, metal-clad laminate, multilayered metal-clad laminate, and multilayered printed circuit board
JP4872180B2 (en) * 2001-09-25 2012-02-08 日立化成工業株式会社 Semiconductor mounting substrate and semiconductor package
FR2928144B1 (en) * 2008-02-28 2011-09-16 Centre Nat Rech Scient MATERIALS FOR THE SOLID / LIQUID EXTRACTION OF HEAVY METAL CATIONS BASED ON SUPPORTED N-FUNCTIONALIZED POLYAZACYCLOALCANES

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2035367A1 (en) * 1990-02-22 1991-08-23 Ronald H. Baney Precursor polymer for ceramic coatings
TW257785B (en) * 1993-05-17 1995-09-21 Dow Corning
JP3694900B2 (en) * 1993-05-31 2005-09-14 東ソー株式会社 Method for producing silica-based coating
US5441765A (en) * 1993-09-22 1995-08-15 Dow Corning Corporation Method of forming Si-O containing coatings

Also Published As

Publication number Publication date
JPH09142825A (en) 1997-06-03

Similar Documents

Publication Publication Date Title
US5985229A (en) Solid silica derivative and process for producing the same
US4528390A (en) Preparation of polymethylsilsesquioxane
JP4828032B2 (en) Hydrophobic silica powder and method for producing the same
JP5650786B2 (en) Method for preparing hydrophobic silica
JP4032503B2 (en) Method for producing hydrophobic organosilica sol
CN102307952B (en) Solvent-free Water-soluable silane-modified silicates
EP0564108B1 (en) Process for forming siloxane bonds
JPH0618879B2 (en) Polyorganosilsesquioxane fine particles
JP3760498B2 (en) Si-H bond-containing silica derivative fine particles and method for producing the same
JP3760493B2 (en) Solid silica derivative and method for producing the same
JPH0633335B2 (en) Method for producing organopolysiloxane
JPH07103238B2 (en) Method for producing polyorganosilsesquioxane fine particles
TWI234787B (en) Silica-based coating film on substrate and coating solution therefor
JPH10298289A (en) Production of siloxane polymer
JPH0633334B2 (en) Method for producing silicone powder
JP4793524B2 (en) Tetraalkoxysilane condensate and method for producing the same
US20100113812A1 (en) Process for preparing organic silane compounds having beta-cyano ester group
JP6480004B2 (en) Process for producing a powdered solid from an alkali salt of silanol
JPH11340220A (en) Coating liquid for forming silica film and its manufacture
JP4147705B2 (en) Hydrosilyl group-containing polysilsesquioxane compound and method for producing the same
JPS5964671A (en) Formation of inorganic coating film
Iida et al. Tributylstannylated silicic acid as precursor of organofunctionalized silica gel
JP2008239634A (en) Organic silicon resin having alcoholic hydroxy group, and method for producing the same
JP3662391B2 (en) Liquid crystal display
JPS60118716A (en) Production of organic silicon condensation product

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees