JP2009091466A - Spherical core-shell composite particulates and their production method - Google Patents

Spherical core-shell composite particulates and their production method Download PDF

Info

Publication number
JP2009091466A
JP2009091466A JP2007263500A JP2007263500A JP2009091466A JP 2009091466 A JP2009091466 A JP 2009091466A JP 2007263500 A JP2007263500 A JP 2007263500A JP 2007263500 A JP2007263500 A JP 2007263500A JP 2009091466 A JP2009091466 A JP 2009091466A
Authority
JP
Japan
Prior art keywords
spherical
fine particles
organotrialkoxysilane
core
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007263500A
Other languages
Japanese (ja)
Inventor
Masanori Ishii
正則 石井
Keisuke Shiraishi
圭助 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Rica Corp
Original Assignee
Nikko Rica Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Rica Corp filed Critical Nikko Rica Corp
Priority to JP2007263500A priority Critical patent/JP2009091466A/en
Publication of JP2009091466A publication Critical patent/JP2009091466A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To easily and efficiently produce spherical core-shell composite particulates by using spherical polystyrene particulates as a core particle and coating the same with polyorganosilsesquioxane. <P>SOLUTION: The method of producing the spherical core-shell composite particulates comprises a step of subjecting organotrialkoxysilane to hydrolysis, dehydration and condensation, wherein the spherical polystyrene particulates are added to a reaction system before the organotrialkoxysilane is dehydrated and condensed. The spherical core-shell composite particulates are produced by adding 0.01-0.1 pt.wt. spherical polystyrene particulates per 1 pt.wt. reaction mixture and adding 0.05-0.2 pt.wt. organotrialkoxysilane per 1 pt.wt. reaction mixture so as to precipitate polyorganosilsesquioxane on the surface of the spherical polystyrene particulates. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、球状ポリスチレン微粒子をコアとし、その表面をポリオルガノシルセスキオキサンで被覆してなる球状コア/シェル型複合微粒子および該複合微粒子を簡便かつ効率よく製造する新規な製造方法に関するものである。   The present invention relates to a spherical core / shell type composite fine particle comprising a spherical polystyrene fine particle as a core and the surface thereof coated with polyorganosilsesquioxane, and a novel production method for easily and efficiently producing the composite fine particle. is there.

ポリオルガノシルセスキオキサン微粒子は、各種プラスティック、ゴム等の耐磨耗性、滑り性、光拡散性、ブロッキング防止性等の目的として幅広く利用されている。特に粒子形状が球状で平均粒子径が0.1μm〜20μmのものが好適とされている。
また機能性向上のため、ポリオルガノシルセスキオキサンを含有する複合粒子についても、その製造方法が提案されている。例えば、シリカ、アルミナ等をコア粒子とし分散した系内に、アルコキシシランを添加してポリオルガノシロキサン被覆を形成させ、コア/シェル型複合微粒子を得る方法が開示されている(特許文献1参照)。
また、メチルシルセスキオキサン単位およびフェニルシルセスキオキサン単位からなるコア/シェル型粒子であり、コア部とシェル部の平均屈折率の差が0.02〜0.20であることを特徴とするコア/シェル型複合微粒子を得る方法が開示されている(特許文献2参照)。
特開2000−212442号公報 特開2000−345044号公報
Polyorganosilsesquioxane fine particles are widely used for purposes such as wear resistance, slipperiness, light diffusibility, and antiblocking properties of various plastics and rubbers. Particularly preferred are those having a spherical particle shape and an average particle diameter of 0.1 μm to 20 μm.
In order to improve functionality, a method for producing composite particles containing polyorganosilsesquioxane has also been proposed. For example, a method is disclosed in which core / shell type composite fine particles are obtained by adding an alkoxysilane to a system in which silica, alumina or the like is dispersed as core particles to form a polyorganosiloxane coating (see Patent Document 1). .
Further, it is a core / shell type particle comprising a methyl silsesquioxane unit and a phenyl silsesquioxane unit, and the difference in average refractive index between the core portion and the shell portion is 0.02 to 0.20, A method for obtaining core / shell type composite particles is disclosed (see Patent Document 2).
JP 2000-212442 A JP 2000-345044 A

コア/シェル型複合微粒子の用途としては、例えば構成物質の屈折率差を利用した光学用途があるが、特許文献1による方法において、シリカを用いたものでは十分な屈折率差が得られず、またアルミナに代表される金属酸化物をコアとしたものでは良好な光学特性が得られないという問題がある。また、特許文献2による方法で得たものについては、高い屈折率差が得られるものの、原料であるフェニルシランが高価であり、しかも製造方法も煩雑となるという問題があり、これらに本発明が解決しようとする課題がある。   As an application of the core / shell type composite fine particles, for example, there is an optical application using a difference in refractive index of constituent materials, but in the method according to Patent Document 1, a sufficient difference in refractive index cannot be obtained with silica. Moreover, there is a problem that good optical characteristics cannot be obtained with a metal oxide typified by alumina as a core. Moreover, although the thing obtained by the method by patent document 2 has a high refractive index difference, there exists a problem that the phenylsilane which is a raw material is expensive, and also a manufacturing method becomes complicated, These are the present invention. There is a problem to be solved.

本発明は、上記のごとく実情に鑑み鋭意に検討した結果、完成したものであって、球状ポリスチレン微粒子をコア粒子とし、これをポリオルガノシルセスキオキサンで被覆してなるものであって、特に平均粒子径が0.5〜30μmの球状コア/シェル型複合微粒子であり、コア部とシェル部の平均屈折率の差が0.02〜0.20であることを特徴とする球状コア/シェル型複合微粒子およびその製造方法に係るものであり、これらは下記発明である。   The present invention was completed as a result of intensive studies in view of the actual circumstances as described above, and was completed by using spherical polystyrene fine particles as core particles, which were coated with polyorganosilsesquioxane, Spherical core / shell composite fine particles having an average particle diameter of 0.5 to 30 μm, wherein the difference in average refractive index between the core portion and the shell portion is 0.02 to 0.20 Type composite fine particles and a method for producing the same, and these are the following inventions.

請求項1の発明は、球状ポリスチレン微粒子をコア粒子とし、これをポリオルガノシルセスキオキサンで被覆してなる球状コア/シェル型複合微粒子であって、該球状コア/シェル型複合微粒子における球状ポリスチレン微粒子の割合が5〜50重量%であることを特徴とする球状コア/シェル型複合微粒子である。
請求項2の発明は、オルガノトリアルコキシシランを加水分解、脱水縮合させる工程において、球状ポリスチレン微粒子を該オルガノトリアルコキシシランが脱水縮合する前までに反応系内に添加して、該球状ポリスチレン微粒子表面にポリオルガノシルセスキオキサンを析出させることを特徴とする球状コア/シェル型複合微粒子の製造方法である。
請求項3の発明は、(A)球状ポリスチレン微粒子を水または水と水溶性有機溶剤との混合液に分散させた系内に、撹拌下でオルガノトリアルコキシシランを添加して、オルガノトリアルコキシシランの加水分解物を得る工程、(B)これにアルカリ性物質またはその水溶液を添加して、オルガノトリアルコキシシラン加水分解物を脱水縮合させ、該球状ポリスチレン微粒子表面にポリオルガノシルセスキオキサンとして析出させる工程からなることを特徴とする球状コア/シェル型複合微粒子の製造方法である。
請求項4の発明は、(A)水または水と水溶性有機溶媒との混合液に撹拌下でオルガノトリアルコキシシランを添加して、オルガノトリアルコキシシランの加水分解物を得る工程、(B)これに球状ポリスチレン微粒子を投入してよく分散した後に、アルカリ性物質またはその水溶液を添加して、オルガノトリアルコキシシラン加水分解物を脱水縮合させ、該球状ポリスチレン微粒子表面にポリオルガノシルセスキオキサンとして析出させる工程からなることを特徴とする球状コア/シェル型複合微粒子の製造方法である。
The invention of claim 1 is a spherical core / shell type composite fine particle comprising spherical polystyrene fine particles as core particles and coated with polyorganosilsesquioxane, and the spherical polystyrene in the spherical core / shell type composite fine particles. A spherical core / shell type composite fine particle characterized in that the proportion of fine particles is 5 to 50% by weight.
According to the second aspect of the present invention, in the step of hydrolyzing and dehydrating and condensing the organotrialkoxysilane, the spherical polystyrene fine particles are added to the reaction system before the organotrialkoxysilane is dehydrated and condensed. A method for producing spherical core / shell type composite fine particles characterized in that polyorganosilsesquioxane is precipitated on the surface.
In the invention of claim 3, (A) organotrialkoxysilane is added to a system in which spherical polystyrene fine particles are dispersed in water or a mixture of water and a water-soluble organic solvent with stirring. (B) adding an alkaline substance or an aqueous solution thereof to dehydrate and condense the organotrialkoxysilane hydrolyzate and depositing it on the surface of the spherical polystyrene fine particles as polyorganosilsesquioxane A process for producing spherical core / shell type composite fine particles characterized by comprising steps.
The invention according to claim 4 is a step of (A) adding organotrialkoxysilane to water or a mixture of water and a water-soluble organic solvent under stirring to obtain a hydrolyzate of organotrialkoxysilane, (B) Spherical polystyrene fine particles are put into this and well dispersed, then an alkaline substance or an aqueous solution thereof is added to dehydrate and condense the organotrialkoxysilane hydrolyzate, and deposit on the surface of the spherical polystyrene fine particles as polyorganosilsesquioxane. A method of producing spherical core / shell type composite fine particles characterized by comprising the steps of:

本発明による球状コア/シェル型複合微粒子は、各種プラスティック、各種ゴムおよび化粧品原料等への滑り性、耐摩耗性、ブロッキング防止性、撥水性、光拡散性等付与剤として利用され、特に各種光学材料関係に好適に利用される。
本発明の方法によれば、高屈折率差を有する球状コア/シェル型複合微粒子を工業的に有利な簡便な方法で効率よく製造することができる。
The spherical core / shell type composite fine particles according to the present invention are used as an imparting agent such as slipperiness, abrasion resistance, antiblocking property, water repellency, light diffusibility to various plastics, various rubbers and cosmetic raw materials. It is suitably used for material relations.
According to the method of the present invention, spherical core / shell type composite fine particles having a high refractive index difference can be efficiently produced by a simple industrially advantageous method.

以下に本発明について詳しく説明する。
本発明の球状コア/シェル型複合微粒子は、オルガノトリアルコキシシランを加水分解、脱水縮合させる工程において、球状ポリスチレン微粒子を該オルガノトリアルコキシシランが脱水縮合する前までに反応系内に添加して、該球状ポリスチレン微粒子表面にポリオルガノシルセスキオキサンを析出させることにより容易に得られる。
The present invention is described in detail below.
In the step of hydrolyzing and dehydrating and condensing the organotrialkoxysilane, the spherical core / shell composite fine particles of the present invention are added to the reaction system before the spherical spherical fine particle is dehydrated and condensed. It can be easily obtained by depositing polyorganosilsesquioxane on the surface of the spherical polystyrene fine particles.

本発明に用いられる球状ポリスチレン微粒子は、乾燥した球状ポリスチレン微粒子または予め溶媒分散した球状ポリスチレン微粒子である。   The spherical polystyrene fine particles used in the present invention are dried spherical polystyrene fine particles or spherical polystyrene fine particles dispersed in advance in a solvent.

本発明に使用される球状ポリスチレン微粒子は、一般的な製造方法で得られるものでよく、その平均粒子径および粒度分布についても特に限定されないが、0.1〜25μmで粒子径の揃ったものが好適に使用される。
また、架橋の有無についても特に限定されず、反応母液分散液をそのまま本発明の球状ポリスチレン微粒子分散液として使用することもできる。
さらにまた、該球状ポリスチレン微粒子の形状は、真球状、じゃがいも状、微粒子凝集体状等、外観が略球状となっているものであれば特に限定されない。
The spherical polystyrene fine particles used in the present invention may be obtained by a general production method, and the average particle size and particle size distribution are not particularly limited, but those having a uniform particle size of 0.1 to 25 μm may be used. Preferably used.
The presence or absence of crosslinking is not particularly limited, and the reaction mother liquor dispersion can be used as it is as the spherical polystyrene fine particle dispersion of the present invention.
Furthermore, the shape of the spherical polystyrene fine particle is not particularly limited as long as it has a substantially spherical appearance such as a true spherical shape, a potato shape, or a fine particle aggregate shape.

前記球状ポリスチレン微粒子の添加量は、反応液1重両部に対して、0.01〜0.1重量部であり、0.01重量部以下では単位容積当りの収量が悪くなり、また0.1重両部以上では均一なコア/シェル型複合微粒子として取り出せなくなる。   The amount of the spherical polystyrene fine particles added is 0.01 to 0.1 parts by weight with respect to both parts of the reaction solution. If the amount is 0.01 parts by weight or less, the yield per unit volume is deteriorated. If it is more than one part, it cannot be taken out as uniform core / shell type composite fine particles.

本発明で使用される反応初液および球状ポリスチレン微粒子用分散溶媒は、電気伝導度が500μS/cm以下の水または該水と水溶性有機溶剤との混合物である。
また、上記反応初液および球状ポリスチレン微粒子用分散溶媒には、界面活性剤等を添加することもできる。
The reaction initial solution and the dispersion solvent for spherical polystyrene fine particles used in the present invention are water having an electric conductivity of 500 μS / cm or less or a mixture of the water and a water-soluble organic solvent.
A surfactant or the like can also be added to the reaction initial solution and the dispersion solvent for spherical polystyrene fine particles.

上記水溶性有機溶剤としては、水溶性があり、かつオルガノトリアルコキシシランおよびポリスチレンに対して不活性であれば特に限定されないが、入手が容易であることから低級アルコールが好ましい。
水と水溶性有機溶剤との混合比率は水1重量部に対し水溶性有機溶剤1重両部以下が好ましい。
The water-soluble organic solvent is not particularly limited as long as it is water-soluble and inactive with respect to the organotrialkoxysilane and polystyrene, but a lower alcohol is preferable because it is easily available.
The mixing ratio of water and the water-soluble organic solvent is preferably not more than one part of the water-soluble organic solvent with respect to 1 part by weight of water.

球状ポリスチレン微粒子の分散方法としては、球状ポリスチレン微粒子が分散すればよく、分散方法はとくに限定されないが、例えば超音波分散が好適に用いられる。   As a method for dispersing the spherical polystyrene fine particles, it is only necessary to disperse the spherical polystyrene fine particles, and the dispersion method is not particularly limited. For example, ultrasonic dispersion is preferably used.

本発明で使用されるオルガノトリアルコキシシランは、一般式
Si(OR
で示される。
該一般式において、Rはメチル基、エチル基、プロピル基、ブチル基などの炭素数1〜6の直鎖状あるいは分枝状のアルキル基、フェニル基、アミノ基、エポキシ基、あるいはビニル基を少なくとも1個有する1価の有機基であり、またRはRと同様の炭素数1〜6の直鎖状あるいは分枝状のアルキル基である。
The organotrialkoxysilane used in the present invention has the general formula R 1 Si (OR 2 ) 3
Indicated by
In the general formula, R 1 is a linear or branched alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, or a butyl group, a phenyl group, an amino group, an epoxy group, or a vinyl group. And R 2 is a linear or branched alkyl group having 1 to 6 carbon atoms similar to R 1 .

さらに具体的には、オルガノトリアルコキシシランとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ−n−プロポキシシラン、メチルトリ−i−プロポキシシラン、メチルトリ−n−ブトキシシラン、メチルトリ−i−ブトキシシラン、メチルトリ−s−ブトキシシラン、メチルトリ−t−ブトキシシラン、エチルトリメトキシシラン、n−プロピルトリメトキシシラン、i−プロピルトリメトキシシラン、n−ブチルトリメトキシシラン、s−ブチルトリメトキシシラン、t−ブチルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシランなどが例示される。   More specifically, as the organotrialkoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-propoxysilane, methyltri-i-propoxysilane, methyltri-n-butoxysilane, methyltri-i-butoxysilane , Methyltri-s-butoxysilane, methyltri-t-butoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, i-propyltrimethoxysilane, n-butyltrimethoxysilane, s-butyltrimethoxysilane, t- Examples include butyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, and phenyltrimethoxysilane.

これらのオルガノトリアルコキシシランは単独、あるいは二種以上の混合物で用いても良いが、これらオルガノトリアルコキシシランのうち、入手が容易なメチルトリメトキシシランが好適に用いられる。   These organotrialkoxysilanes may be used alone or in a mixture of two or more. Of these organotrialkoxysilanes, methyltrimethoxysilane, which is easily available, is preferably used.

本発明で用いられるオルガノトリアルコキシシランの添加量は、反応液1重両部に対して0.05〜0.2重量部が好ましく、0.05重量部未満あるいは0.2重両部を越えると均一なコア/シェル型複合粒子が得られない場合がある。   The amount of the organotrialkoxysilane used in the present invention is preferably 0.05 to 0.2 parts by weight with respect to both parts of the reaction solution, less than 0.05 parts by weight or more than 0.2 parts by weight. And uniform core / shell type composite particles may not be obtained.

本発明における合成方法の一つは、(A)球状ポリスチレン微粒子を水または水と水溶性有機溶剤との混合液に分散させた系内に、撹拌下でオルガノトリアルコキシシランを添加して、オルガノトリアルコキシシランの加水分解物を得る工程、(B)これにアルカリ性物質またはその水溶液を添加して、オルガノトリアルコキシシラン加水分解物を脱水縮合させ、該球状ポリスチレン微粒子表面にポリオルガノシルセスキオキサンとして析出させる工程からなることを特徴とする球状コア/シェル型複合微粒子の製造方法である。   One of the synthesis methods in the present invention is that (A) an organotrialkoxysilane is added under stirring to a system in which spherical polystyrene fine particles are dispersed in water or a mixture of water and a water-soluble organic solvent. A step of obtaining a trialkoxysilane hydrolyzate, (B) an alkaline substance or an aqueous solution thereof is added thereto to dehydrate and condense the organotrialkoxysilane hydrolyzate, and polyorganosilsesquioxane is formed on the surface of the spherical polystyrene fine particles. It is a manufacturing method of spherical core / shell type composite fine particles characterized by comprising the step of precipitating as follows.

(A)工程のオルガノトリアルコキシシランの添加方法は特に限定されず、短時間で投入しても良く、また連続滴下しても構わない。   The method for adding the organotrialkoxysilane in the step (A) is not particularly limited, and may be added in a short time or may be continuously dropped.

また、オルガノトリアルコキシシランを予め加水分解したものを球状ポリスチレン微粒子分散液に添加することもできる。   Moreover, what hydrolyzed organotrialkoxysilane previously can also be added to a spherical polystyrene fine particle dispersion.

前記(B)工程のアルカリ性物質としては、一般に周期律表Ia属、IIa属の金属の水酸化物、酸化物、炭酸塩または有機窒素化合物、アンモニアなどが挙げられ、アルカリ性水溶液とは前記したアルカリ性物質の水溶液であるが、反応後除去しやすいことから、特にアンモニアが好ましい。これらアルカリ性物質および/またはその水溶液は単独でも、あるいは2種類以上を混合して用いても良い。また、該アルカリ水溶液に水溶性有機溶剤、界面活性剤などが含まれていても使用することができる。   Examples of the alkaline substance in the step (B) include metal hydroxides, oxides, carbonates or organic nitrogen compounds of the Periodic Table Group Ia and Group IIa, ammonia, and the like. Although it is an aqueous solution of the substance, ammonia is particularly preferable because it is easy to remove after the reaction. These alkaline substances and / or aqueous solutions thereof may be used alone or in combination of two or more. Moreover, even if this aqueous alkali solution contains a water-soluble organic solvent, a surfactant, etc., it can be used.

アルカリ性物質の添加量は、反応液1重量部に対し、0.00001〜0.05重量部が好ましい。   The addition amount of the alkaline substance is preferably 0.00001 to 0.05 parts by weight with respect to 1 part by weight of the reaction solution.

アルカリ性物質またはその水溶液を添加して、オルガノトリアルコキシシラン加水分解物を脱水縮合させるときの反応液温度は、0〜40℃が好ましい。   The reaction solution temperature when adding an alkaline substance or an aqueous solution thereof to dehydrate-condense the organotrialkoxysilane hydrolyzate is preferably 0 to 40 ° C.

アルカリ性物質の添加方法としては、工程(A)の反応液撹拌下で、速やかに添加することが望ましい。また、工程(A)の反応液の撹拌は特に限定されないが、強い撹拌とすると粒子同士の融着、あるいは不定形粒子が生成する場合があるので、通常、液が混合されている程度の、穏やかな撹拌であることが好ましい。   As a method for adding the alkaline substance, it is desirable to add it quickly while stirring the reaction solution in the step (A). In addition, the stirring of the reaction liquid in the step (A) is not particularly limited, but if strong stirring is performed, the particles may be fused together, or amorphous particles may be generated. Gentle stirring is preferred.

本発明におけるもう一つの合成方法は、(A)水または水と水溶性有機溶剤との混合液に撹拌下でオルガノトリアルコキシシランを添加して、オルガノトリアルコキシシランの加水分解物を得る工程、(B)これに球状ポリスチレン微粒子を投入してよく分散した後に、アルカリ性物質またはその水溶液を添加して、オルガノトリアルコキシシラン加水分解物を脱水縮合させ、該球状ポリスチレン微粒子表面にポリオルガノシルセスキオキサンとして析出させる工程からなることを特徴とする球状コア/シェル型複合微粒子の製造方法である。   Another synthesis method in the present invention is (A) a step of adding organotrialkoxysilane to water or a mixture of water and a water-soluble organic solvent under stirring to obtain a hydrolyzate of organotrialkoxysilane. (B) After the spherical polystyrene fine particles are put into the well and dispersed well, an alkaline substance or an aqueous solution thereof is added to dehydrate and condense the organotrialkoxysilane hydrolyzate, and polyorganosilsesquioxy on the surface of the spherical polystyrene fine particles. It is a method for producing spherical core / shell type composite fine particles characterized by comprising a step of precipitation as sun.

この合成方法においても、(B)工程で使用するアルカリ性物質またはその水溶液については前記したアルカリ性物質またはその水溶液が適用される。   Also in this synthesis method, the alkaline substance or its aqueous solution described above is applied to the alkaline substance or its aqueous solution used in step (B).

このようにして製造した球状コア/シェル型複合微粒子は、その後、ろ過分離・水洗浄あるいは有機溶剤洗浄をした後、乾燥し、場合によっては解砕して微粒子を得る。
得られた微粒子は、平均粒子径が0.5〜30μmの球状コア/シェル型複合微粒子である。
The spherical core / shell composite fine particles produced in this manner are then filtered and separated, washed with water or organic solvent, dried and then crushed to obtain fine particles.
The obtained fine particles are spherical core / shell type composite fine particles having an average particle diameter of 0.5 to 30 μm.

以下、本発明の方法を、実施例を挙げて具体的に説明するが、本発明はこれら実施例によって限定されるものではない。   Hereinafter, the method of the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

[実施例1]
温度計、還流装置および撹拌装置を備えた反応容器に水300重量部を仕込み、これに予め20重量%メタノール水溶液に超音波分散した平均粒子径1.0μm、変動係数(標準偏差/平均粒子径×100)5%の10重量%球状ポリスチレン微粒子分散液100重量部を撹拌しながら添加してポリスチレン微粒子分散液を得た。
上記分散液を液温25℃として、メチルトリメトキシシラン70重量部を1分間で添加したところ、加水分解反応が進行し、5分後には反応温度が35℃まで上昇した。
引き続き液温を35℃に維持して30分間撹拌した後、1重量%のアンモニア水30重量部を速やかに添加して、1分後に撹拌を停止した。
静置下で20時間熟成した後、ろ過、乾燥して白色粉末を得た。得られた粉末を電子顕微鏡観察したところ、平均粒子径1.5μm、最大粒子径1.7μm、最小粒子径1.2μmの球状微粒子であり、球状ポリスチレン微粒子に相当する1.0μm程度の粒子は確認されなかった。
コア粒子である球状ポリスチレン微粒子の屈折率は1.59、シェルのポリメチルシルセスキオキサンの屈折率は1.42であり、コアとシェルの屈折率差が0.17の球状コア/シェル型複合微粒子であった。
[Example 1]
A reaction vessel equipped with a thermometer, a reflux device and a stirrer was charged with 300 parts by weight of water, and this was preliminarily ultrasonically dispersed in a 20% by weight aqueous methanol solution with an average particle size of 1.0 μm and a variation coefficient (standard deviation / average particle size) X100) 100 parts by weight of 5% 10% by weight spherical polystyrene fine particle dispersion was added with stirring to obtain a polystyrene fine particle dispersion.
When the dispersion was heated to 25 ° C. and 70 parts by weight of methyltrimethoxysilane was added in 1 minute, the hydrolysis reaction proceeded, and the reaction temperature rose to 35 ° C. after 5 minutes.
Subsequently, after stirring for 30 minutes while maintaining the liquid temperature at 35 ° C., 30 parts by weight of 1 wt% aqueous ammonia was quickly added, and stirring was stopped after 1 minute.
After aging for 20 hours, the mixture was filtered and dried to obtain a white powder. When the obtained powder was observed with an electron microscope, it was a spherical fine particle having an average particle size of 1.5 μm, a maximum particle size of 1.7 μm, and a minimum particle size of 1.2 μm. Particles of about 1.0 μm corresponding to spherical polystyrene fine particles were It was not confirmed.
Spherical core / shell type in which the spherical polystyrene fine particle as the core particle has a refractive index of 1.59, the polymethylsilsesquioxane of the shell has a refractive index of 1.42, and the refractive index difference between the core and the shell is 0.17. It was a composite fine particle.

[実施例2〜9]
実施例2は、反応温度を表1のようにした以外は実施例1と同様にして球状コア/シェル型複合微粒子を得た。
実施例3〜5は仕込み量を表1のようにした以外は実施例1と同様にして球状コア/シェル型複合微粒子を得た。
実施例6〜8は球状ポリスチレン微粒子の平均粒子径を表1に示したものを用いて、仕込み量を表1のようにした以外は実施例1と同様にして球状コア/シェル型複合微粒子を得た。
実施例9は分散重合法により得た球状ポリスチレン微粒子反応液そのもの、つまり平均粒子径1.3μmの球状ポリスチレン微粒子6.8重量%、分散媒イソプロピルアルコール:水=65:35の反応液を精製せずに用いた以外は実施例1と同様にして球状コア/シェル型複合微粒子を得た。
これら製造した微粒子について電子顕微鏡観察したところ、表1に示すような平均粒子径、最大粒子径、最小粒子径の球状微粒子であった。
実施例3の電子顕微鏡写真を図1に示す。
[Examples 2 to 9]
In Example 2, spherical core / shell type composite fine particles were obtained in the same manner as in Example 1 except that the reaction temperature was as shown in Table 1.
In Examples 3 to 5, spherical core / shell type composite fine particles were obtained in the same manner as in Example 1 except that the amount charged was as shown in Table 1.
In Examples 6 to 8, spherical core / shell composite fine particles were prepared in the same manner as in Example 1 except that the average particle diameter of spherical polystyrene fine particles shown in Table 1 was used, and the charged amount was as shown in Table 1. Obtained.
In Example 9, the reaction solution of spherical polystyrene fine particles obtained by the dispersion polymerization method itself, that is, a reaction solution of 6.8% by weight of spherical polystyrene fine particles having an average particle diameter of 1.3 μm and a dispersion medium isopropyl alcohol: water = 65: 35 is purified. Spherical core / shell type composite fine particles were obtained in the same manner as in Example 1 except that they were used.
Observation of these produced fine particles with an electron microscope revealed that they were spherical fine particles having an average particle size, a maximum particle size, and a minimum particle size as shown in Table 1.
An electron micrograph of Example 3 is shown in FIG.

[実施例10]
メチルトリメトキシシラン70重量部の代わりにフェニルトリメトキシシラン64重量部とメチルトリメトキシシラン16重量部の混合物を添加した以外は実施例1と同様にして球状コア/シェル型複合微粒子を得た。
得られたコア/シェル型複合微粒子は、電子顕微鏡観察したところ、平均粒子径が1.7μm、最大粒子径が2.1μm、最小粒子径が1.2μmであった。
コア粒子である球状ポリスチレン微粒子の屈折率は1.59、シェルのポリオルガノシルセスキオキサンの屈折率は1.55であり、コアとシェルの屈折率差が0.04の球状コア/シェル型複合微粒子であった。
[Example 10]
Spherical core / shell type composite fine particles were obtained in the same manner as in Example 1 except that a mixture of 64 parts by weight of phenyltrimethoxysilane and 16 parts by weight of methyltrimethoxysilane was added instead of 70 parts by weight of methyltrimethoxysilane.
When the obtained core / shell type composite fine particles were observed with an electron microscope, the average particle size was 1.7 μm, the maximum particle size was 2.1 μm, and the minimum particle size was 1.2 μm.
A spherical core / shell type in which the spherical polystyrene fine particles as the core particle have a refractive index of 1.59, the polyorganosilsesquioxane of the shell has a refractive index of 1.55, and the refractive index difference between the core and the shell is 0.04. It was a composite fine particle.

[実施例11]
1重量%アンモニア水30重量部の代わりに、0.1重量%水酸化ナトリウム水溶液を10重量部を添加した以外は、実施例1と同様に球状コア/シェル型複合微粒子を合成した。合成した微粒子は、電子顕微鏡観察したところ、平均粒子径が1.5μm、最大粒子径が1.7μm、最小粒子径が1.2μmの球状微粒子であった。
[Example 11]
Spherical core / shell type composite fine particles were synthesized in the same manner as in Example 1 except that 10 parts by weight of a 0.1% by weight aqueous sodium hydroxide solution was added instead of 30 parts by weight of 1% by weight aqueous ammonia. When the synthesized fine particles were observed with an electron microscope, they were spherical fine particles having an average particle size of 1.5 μm, a maximum particle size of 1.7 μm, and a minimum particle size of 1.2 μm.

[実施例12]
温度計、還流装置および撹拌装置を備えた反応容器に水300重量部を仕込み、液温25℃として、撹拌しながらメチルトリメトキシシラン70重量部を1分間で添加したところ、加水分解反応が進行し、10分後には反応温度が35℃まで上昇した。
引き続き液温を35℃に維持して1時間撹拌した後、これに予め20重量%メタノール水溶液に超音波分散した平均粒子径1.0μm、変動係数5%の10重量%球状ポリスチレン微粒子分散液100重量部を撹拌しながら添加して球状ポリスチレン微粒子を均一に分散させた。続いて1重量%のアンモニア水30重量部を速やかに添加して、1分後に撹拌を停止した。
静置下で20時間熟成した後、ろ過、乾燥して白色粉末を得た。得られた粉末を電子顕微鏡観察したところ、平均粒子径1.6μm、最大粒子径1.9μm、最小粒子径1.2μmの球状微粒子であり、球状ポリスチレン微粒子に相当する1.0μm程度の粒子は確認されなかった。
[Example 12]
When 300 parts by weight of water was charged into a reaction vessel equipped with a thermometer, a reflux device and a stirrer, and the liquid temperature was 25 ° C., 70 parts by weight of methyltrimethoxysilane was added in 1 minute while stirring, and the hydrolysis reaction proceeded. After 10 minutes, the reaction temperature rose to 35 ° C.
Subsequently, the liquid temperature was maintained at 35 ° C. and the mixture was stirred for 1 hour, and then 10 wt% spherical polystyrene fine particle dispersion 100 having an average particle diameter of 1.0 μm and a coefficient of variation of 5%, which was previously ultrasonically dispersed in a 20 wt% methanol aqueous solution. Part by weight was added with stirring to uniformly disperse the spherical polystyrene fine particles. Subsequently, 30 parts by weight of 1% by weight aqueous ammonia was quickly added, and stirring was stopped after 1 minute.
After aging for 20 hours, the mixture was filtered and dried to obtain a white powder. When the obtained powder was observed with an electron microscope, it was a spherical fine particle having an average particle size of 1.6 μm, a maximum particle size of 1.9 μm, and a minimum particle size of 1.2 μm. It was not confirmed.

[比較例]
温度計、環流装置および撹拌装置を備えた反応容器に水380重量部を仕込み、これに予め超音波分散した平均粒子径1.0μmの20重量%球状ポリスチレン微粒子分散液10重両部を撹拌しながら添加してポリスチレン微粒子分散液を得た。
上記分散液の液温を25℃として、メチルトリメトキシシラン70重両部を1分間で添加したところ、加水分解反応が進行し、5分後には反応温度が35℃まで上昇した。
引き続き液温を35℃で維持して30分間撹拌した後、1重量%のアンモニア水を30重量部速やかに添加して、1分後に撹拌を停止した。
静置下で20時間熟成した後、ろ過、乾燥して白色粉末を得た。得られた粉末の電子顕微鏡観察したところ、平均粒子径が3.2μm、最小粒子径6.3μm、最大粒子径0.7μmの球状微粒子であったが、該微粒子は球状コア/シェル型複合微粒子ではなく、ポリメチルシルセスキオキサンの単独発生されたものが確認された。
[Comparative example]
380 parts by weight of water was charged into a reaction vessel equipped with a thermometer, a reflux device and a stirrer, and 10 parts of a 20 wt% spherical polystyrene fine particle dispersion with an average particle size of 1.0 μm, which had been ultrasonically dispersed in advance, were stirred. While adding, a polystyrene fine particle dispersion was obtained.
When the temperature of the dispersion was 25 ° C. and 70 parts of methyltrimethoxysilane were added in 1 minute, the hydrolysis reaction proceeded, and the reaction temperature rose to 35 ° C. after 5 minutes.
Subsequently, after stirring for 30 minutes while maintaining the liquid temperature at 35 ° C., 30 parts by weight of 1 wt% aqueous ammonia was quickly added, and stirring was stopped after 1 minute.
After aging for 20 hours, the mixture was filtered and dried to obtain a white powder. When the obtained powder was observed with an electron microscope, it was a spherical fine particle having an average particle size of 3.2 μm, a minimum particle size of 6.3 μm, and a maximum particle size of 0.7 μm. Instead, it was confirmed that polymethylsilsesquioxane was generated alone.

実験例3で製造された球状コア/シェル型複合微粒子の電子顕微鏡写真図である。4 is an electron micrograph of spherical core / shell composite fine particles produced in Experimental Example 3. FIG.

Claims (4)

球状ポリスチレン微粒子をコア粒子とし、これをポリオルガノシルセスキオキサンで被覆してなる球状コア/シェル型複合微粒子であって、該球状コア/シェル型複合微粒子における球状ポリスチレン微粒子の割合が5〜50重量%であることを特徴とする球状コア/シェル型複合微粒子。   A spherical core / shell type composite fine particle obtained by forming a spherical polystyrene fine particle as a core particle and coating it with polyorganosilsesquioxane, wherein the ratio of the spherical polystyrene fine particle in the spherical core / shell type composite fine particle is 5 to 50 Spherical core / shell type composite fine particles characterized in that it is in weight percent. オルガノトリアルコキシシランを加水分解、脱水縮合させる工程において、球状ポリスチレン微粒子を前記オルガノトリアルコキシシランが脱水縮合する前までに反応系内に添加して、前記球状ポリスチレン微粒子の表面にポリオルガノシルセスキオキサンを析出させることを特徴とする球状コア/シェル型複合微粒子の製造方法。   In the process of hydrolyzing and dehydrating and condensing the organotrialkoxysilane, the spherical polystyrene fine particles are added to the reaction system before the organotrialkoxysilane is dehydrated and condensed, and the surface of the spherical polystyrene fine particles is polyorganosilsesquioxy. A method for producing spherical core / shell composite fine particles, characterized by depositing sun. (A)球状ポリスチレン微粒子を水または水と水溶性有機溶剤との混合液に分散させた系内に、撹拌下でオルガノトリアルコキシシランを添加して、オルガノトリアルコキシシランの加水分解物を得る工程、(B)これにアルカリ性物質またはその水溶液を添加して、オルガノトリアルコキシシラン加水分解物を脱水縮合させ、該球状ポリスチレン微粒子表面にポリオルガノシルセスキオキサンとして析出させる工程からなることを特徴とする球状コア/シェル型複合微粒子の製造方法。   (A) A step in which organotrialkoxysilane hydrolyzate is obtained by adding organotrialkoxysilane under stirring to a system in which spherical polystyrene fine particles are dispersed in water or a mixture of water and a water-soluble organic solvent. And (B) adding an alkaline substance or an aqueous solution thereof, dehydrating and condensing the organotrialkoxysilane hydrolyzate, and depositing it on the surface of the spherical polystyrene fine particles as polyorganosilsesquioxane, To produce spherical core / shell composite fine particles. (A)水または水と水溶性有機溶媒との混合液に撹拌下でオルガノトリアルコキシシランを添加して、オルガノトリアルコキシシランの加水分解物を得る工程、(B)これに球状ポリスチレン微粒子を投入してよく分散した後に、アルカリ性物質またはその水溶液を添加して、オルガノトリアルコキシシラン加水分解物を脱水縮合させ、該球状ポリスチレン微粒子表面にポリオルガノシルセスキオキサンとして析出させる工程からなることを特徴とする球状コア/シェル型複合微粒子の製造方法。   (A) A step of adding organotrialkoxysilane to water or a mixture of water and a water-soluble organic solvent under stirring to obtain a hydrolyzate of organotrialkoxysilane, (B) adding spherical polystyrene fine particles to this And after being well dispersed, it comprises a step of adding an alkaline substance or an aqueous solution thereof, dehydrating and condensing the organotrialkoxysilane hydrolyzate, and depositing it on the surface of the spherical polystyrene fine particles as polyorganosilsesquioxane. A method for producing spherical core / shell composite fine particles.
JP2007263500A 2007-10-09 2007-10-09 Spherical core-shell composite particulates and their production method Pending JP2009091466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007263500A JP2009091466A (en) 2007-10-09 2007-10-09 Spherical core-shell composite particulates and their production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007263500A JP2009091466A (en) 2007-10-09 2007-10-09 Spherical core-shell composite particulates and their production method

Publications (1)

Publication Number Publication Date
JP2009091466A true JP2009091466A (en) 2009-04-30

Family

ID=40663779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007263500A Pending JP2009091466A (en) 2007-10-09 2007-10-09 Spherical core-shell composite particulates and their production method

Country Status (1)

Country Link
JP (1) JP2009091466A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092890A1 (en) * 2009-02-10 2010-08-19 綜研化学株式会社 Coated particles and manufacturing method thereof
CN103226213A (en) * 2013-05-02 2013-07-31 江苏裕兴薄膜科技股份有限公司 Polyester reflective film containing polymer microsphere, and preparation method of polyester reflective film
WO2014104017A1 (en) * 2012-12-28 2014-07-03 積水化学工業株式会社 Organic-inorganic hybrid particle, conductive particle, conductive material and connection structure
JP2014143188A (en) * 2012-12-28 2014-08-07 Sekisui Chem Co Ltd Organic/inorganic hybrid particle, conductive particle, conductive material and connection structure
US9725561B2 (en) 2014-06-20 2017-08-08 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core and silsesquioxane polymer outer layer and methods
US9957416B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable end-capped silsesquioxane polymer comprising reactive groups
US9957358B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core silsesquioxane polymer outer layer, and reactive groups
KR20180087364A (en) * 2016-09-27 2018-08-01 와커 헤미 아게 Process for producing spherical polysilsesquioxane particles
KR20180090874A (en) * 2016-10-06 2018-08-13 와커 헤미 아게 Process for producing spherical polysilsesquioxane particles
US10066123B2 (en) 2013-12-09 2018-09-04 3M Innovative Properties Company Curable silsesquioxane polymers, compositions, articles, and methods
US10370564B2 (en) 2014-06-20 2019-08-06 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US10392538B2 (en) 2014-06-20 2019-08-27 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010092890A1 (en) * 2009-02-10 2012-08-16 綜研化学株式会社 Coated particles and method for producing the same
WO2010092890A1 (en) * 2009-02-10 2010-08-19 綜研化学株式会社 Coated particles and manufacturing method thereof
WO2014104017A1 (en) * 2012-12-28 2014-07-03 積水化学工業株式会社 Organic-inorganic hybrid particle, conductive particle, conductive material and connection structure
JP2014143188A (en) * 2012-12-28 2014-08-07 Sekisui Chem Co Ltd Organic/inorganic hybrid particle, conductive particle, conductive material and connection structure
JP5620608B1 (en) * 2012-12-28 2014-11-05 積水化学工業株式会社 Organic-inorganic hybrid particles, conductive particles, conductive materials, and connection structures
CN104619754A (en) * 2012-12-28 2015-05-13 积水化学工业株式会社 Organic-inorganic hybrid particle, conductive particle, conductive material and connection structure
KR20150100601A (en) * 2012-12-28 2015-09-02 세키스이가가쿠 고교가부시키가이샤 Organic-inorganic hybrid particle, conductive particle, conductive material and connection structure
KR102095290B1 (en) 2012-12-28 2020-03-31 세키스이가가쿠 고교가부시키가이샤 Organic-inorganic hybrid particle, conductive particle, conductive material and connection structure
CN103226213A (en) * 2013-05-02 2013-07-31 江苏裕兴薄膜科技股份有限公司 Polyester reflective film containing polymer microsphere, and preparation method of polyester reflective film
US10066123B2 (en) 2013-12-09 2018-09-04 3M Innovative Properties Company Curable silsesquioxane polymers, compositions, articles, and methods
US9725561B2 (en) 2014-06-20 2017-08-08 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core and silsesquioxane polymer outer layer and methods
US10370564B2 (en) 2014-06-20 2019-08-06 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US10392538B2 (en) 2014-06-20 2019-08-27 3M Innovative Properties Company Adhesive compositions comprising a silsesquioxane polymer crosslinker, articles and methods
US9957358B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable polymers comprising silsesquioxane polymer core silsesquioxane polymer outer layer, and reactive groups
US9957416B2 (en) 2014-09-22 2018-05-01 3M Innovative Properties Company Curable end-capped silsesquioxane polymer comprising reactive groups
KR20180087364A (en) * 2016-09-27 2018-08-01 와커 헤미 아게 Process for producing spherical polysilsesquioxane particles
KR102090267B1 (en) 2016-09-27 2020-03-18 와커 헤미 아게 Method for producing spherical polysilsesquioxane particles
KR20180090874A (en) * 2016-10-06 2018-08-13 와커 헤미 아게 Process for producing spherical polysilsesquioxane particles
KR102091457B1 (en) 2016-10-06 2020-03-23 와커 헤미 아게 Method for producing spherical polysilsesquioxane particles

Similar Documents

Publication Publication Date Title
JP2009091466A (en) Spherical core-shell composite particulates and their production method
WO2009130745A1 (en) Process for producing sugar-plum-shaped particle
JP3970449B2 (en) Method for producing spherical polymethylsilsesquioxane fine particles
JP5577242B2 (en) Polyalkylsilsesquioxane particles and method for producing the same
TW201736516A (en) Silicone rubber composition and cured product thereof
JP5061334B2 (en) Polysilsesquioxane fine particle organic solvent dispersion and production method thereof, and polysilsesquioxane fine particle aqueous dispersion and production method thereof
JPH0488023A (en) Production of spherical fine silicone particle
TW201918528A (en) Coating solution, method for producing coating film, and coating film
JP2005162795A (en) Water- and oil-repellent film and method for producing the same
JPH06263875A (en) Production of fine polyorganosililsequioxane particle
JP2002047348A (en) Method of manufacturing spherical silicone resin fine particle
JPH1045914A (en) Production of spherical polyorganosilsesquioxane powder
CN107998997A (en) One species raspberry shape microballoon, super-hydrophobic coat and preparation method thereof
KR100692612B1 (en) Producing method of spherical silicone fine particles
JP2003183396A (en) Method for producing spherical silicone fine particle
JP5153163B2 (en) Method for producing spherical polyorganosilsesquioxane fine particles
JP2003002973A (en) Method for producing fine spherical silicone particle
JPH03281536A (en) Production of emulsion type silicone composition and silicone fine particle
JP4031575B2 (en) Method for producing polyorganosiloxane fine particles
JPH03269020A (en) Production of silsesqueoxane globular fine powder containing acryloxy group and mercapto group
JP5953942B2 (en) Silicone fine particles and method for producing the same
JP3632749B2 (en) Method for producing spherical silicone resin fine particles
JPH0649209A (en) Production of spherical silicone fine particle
JP2003183395A (en) Method for producing spherical silicone fine particle
JP4271725B1 (en) Method for producing confetti particles