JPH06248081A - Production of spherical silicone fine particle - Google Patents

Production of spherical silicone fine particle

Info

Publication number
JPH06248081A
JPH06248081A JP3907893A JP3907893A JPH06248081A JP H06248081 A JPH06248081 A JP H06248081A JP 3907893 A JP3907893 A JP 3907893A JP 3907893 A JP3907893 A JP 3907893A JP H06248081 A JPH06248081 A JP H06248081A
Authority
JP
Japan
Prior art keywords
water
alkali
methyltrialkoxysilane
fine particles
spherical silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3907893A
Other languages
Japanese (ja)
Inventor
Hideyuki Aizawa
秀行 相澤
Tetsuya Watanabe
哲也 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP3907893A priority Critical patent/JPH06248081A/en
Publication of JPH06248081A publication Critical patent/JPH06248081A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject fine particles having extremely narrow particle size distribution at a low cost without using particular apparatus by using a methyltrialkoxysilane having specific residual chlorine content, its partially hydrolyzed and condensed product and water having specified specific conductance. CONSTITUTION:A homogenized mixture is produced by mixing 1 pt.wt. of water having a specific conductance of <=30mus/cm with 0.01-1 pt.wt. of a methyltrialkoxysilane and/or its partial hydrolyzed and condensed product having a chlorine content of <=10ppm preferably at 20-80 deg.C for 10min to 5hr. The obtained homogeneous solution is incorporated with an alkali (preferably caustic soda, etc.) to proceed the hydrolysis and condensation and obtain the objective fine particles having an average particle diameter of 0.1-20mum. The water having a specific conductance of <=30mus/cm is preferably produced by ion-exchange resin treatment. The fine pulverization with the alkali is preferably carried out in general at 15-80 deg.C for 0.5-10hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は球状シリコーン微粒子の
製造方法、すなわち形状が球状であり、特に真球に近
く、粒子径分布が極めて狭いポリメチルシルセスキオキ
サン微粒子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing spherical silicone microparticles, that is, a method for producing polymethylsilsesquioxane microparticles having a spherical shape, particularly close to a true sphere and having an extremely narrow particle size distribution.

【0002】[0002]

【従来の技術】形状が球状であることを特徴としたポリ
メチルシルセスキオキサンの製造法としては、メチルト
リアルコキシシランおよび/またはその部分加水分解縮
合物とアンモニアおよび/またはアミンの水溶液との2
層を形成しつつ、その界面で加水分解・縮合させる方法
(特開昭63−77940号公報)。
2. Description of the Related Art A method for producing polymethylsilsesquioxane, which is characterized by having a spherical shape, is a method of preparing methyltrialkoxysilane and / or its partially hydrolyzed condensate and an aqueous solution of ammonia and / or amine. Two
A method of hydrolyzing and condensing at the interface while forming a layer (JP-A-63-77940).

【0003】また、アルカリ金属水酸化物の水溶液濃度
と、メチルトリアルコキシシラアンおよび/またはその
部分加水分解縮合物の滴下速度を限定して製造する方法
(特開平2−209927号公報、特開平4−8802
2号公報)が知られている。
Further, a method for producing by limiting the concentration of an aqueous solution of an alkali metal hydroxide and the dropping rate of methyl trialkoxy silaan and / or its partial hydrolysis-condensation product (JP-A-2-209927, JP-A-2-209927). 4-8802
No. 2) is known.

【0004】また、メチルトリアルコキシシランおよび
/またはその部分加水分解縮合物と水とで均一溶液とし
た後アルカリを添加し、静置下に加水分解・縮合を進行
させて製造する方法(特開平4−88023号公報)が
知られている。
Further, a method in which methyltrialkoxysilane and / or its partially hydrolyzed condensate is made into a uniform solution with water and then an alkali is added, and hydrolysis / condensation is allowed to proceed while still standing (Japanese Patent Application Laid-Open No. Hei 10-1999) No. 4-88023) is known.

【0005】[0005]

【発明が解決しようとする課題】前記の特開昭63−7
7940号公報による方法においては、撹拌速度の制御
が重要であり、特別な撹拌は設備が必要なこと、界面で
の反応であり、アルカリとの接触機会が非常に少ないた
めに反応速度が極端に制限されること、また、アルカリ
として、アンモニウムあるいはアミン類を用いるために
アルカリ強度に限界があり、製造する球状微粒子の粒子
径を高範囲(たとえば、0.1〜20μm)に制御する
ことが難しいことなどの課題が残されている。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the method according to Japanese Patent No. 7940, it is important to control the stirring speed, special stirring requires equipment, and the reaction is at the interface. Since the chance of contact with alkali is very small, the reaction speed is extremely low. It is difficult to control the particle size of the spherical fine particles to be produced in a high range (for example, 0.1 to 20 μm), because the alkali strength is limited because ammonium or amines is used as the alkali. Issues such as that are left.

【0006】また、前記の特開平2−209927号公
報および特開平4−88022号公報による方法におい
ては、メチルトリアルコキシシラおよび/またはその部
分加水分解縮合物をアルカリ金属水酸化物水溶液中へ滴
下する速度を限定し、均一で、狭い粒径分布を有するポ
リメチルシルセスキオキサンを得るものであるが、この
限定された条件下においては、滴下時間が長くなり、工
業的生産効率が低下するなどの課題が残されている。
Further, in the methods described in JP-A-2-209927 and JP-A-4-88022, methyltrialkoxy sila and / or its partial hydrolysis-condensation product is dropped into an aqueous alkali metal hydroxide solution. It is intended to obtain polymethylsilsesquioxane having a uniform and narrow particle size distribution by limiting the rate of drying, but under these limited conditions, the dropping time becomes long and the industrial production efficiency decreases. And other issues remain.

【0007】また、前記特開平4−88023号公報に
よる方法においては、メチルトリアルコキシシランおよ
び/またはその部分加水分解縮合物と水とを均一化した
後、アルカリを添加するものであるが、ここで、均一化
が必ずしも進行しないことがあり、別途、酸、塩基およ
びチタン、スズなどの有機金属化合物を添加し、均一化
する場合がある。このような均一化液から製造されるシ
リコーン微粒子は粒子径のバラツキや凝集が増加したり
する。
Further, in the method according to the above-mentioned JP-A-4-88023, the alkali is added after homogenizing methyltrialkoxysilane and / or its partial hydrolysis-condensation product and water. In this case, the homogenization may not always proceed, and an acid, a base and an organometallic compound such as titanium or tin may be separately added for homogenization. The silicone fine particles produced from such a homogenizing solution have increased variation in particle diameter and increased aggregation.

【0008】本発明の目的は形状が球状であり、その粒
度分布が極めて狭いポリメチルシルセスキオキサン微粒
子を製造するにあたり、特別な装置を必要とせず、操作
が簡単で、したがって安価な工業的製造に適した、しか
も、粒径を高範囲にわたって自由に制御できる製造法を
提供するものである。
The object of the present invention is to produce polymethylsilsesquioxane fine particles having a spherical shape and an extremely narrow particle size distribution, without requiring any special equipment, easy to operate, and therefore inexpensive. The present invention provides a production method suitable for production and capable of freely controlling the particle size over a wide range.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は水1
重量部に対し、メチルトリアルコキシシランおよび/ま
たはその部分加水分解縮合物0.01〜1重量部を撹
拌、混合し、均一溶液とした後、アルカリを添加し加水
分解、縮合を進行させ、球状シリコーン微粒子を製造す
るにあたり、前記メチルトリアルコキシシランおよび/
またはその部分加水分解縮合物中に含まれる塩素量が1
0ppm 以下、かつ、前記水の比電導度が30μs/cm以
下のものを用いて均一化することを特徴とする平均粒子
径があ0.1〜20μmの球状シリコーン微粒子の製造
方法である。
That is, the present invention is based on water 1
0.01 to 1 part by weight of methyltrialkoxysilane and / or its partial hydrolysis-condensation product is stirred and mixed with respect to parts by weight to form a uniform solution, and then alkali is added to allow hydrolysis and condensation to proceed to form spherical particles. The above-mentioned methyltrialkoxysilane and / or
Alternatively, the amount of chlorine contained in the partially hydrolyzed condensate is 1
A method for producing spherical silicone fine particles having an average particle diameter of 0.1 to 20 μm, which is characterized by homogenizing with water having a specific conductivity of 0 ppm or less and the water specific electric conductivity of 30 μs / cm or less.

【0010】本発明における原料のメチルトリアルコキ
シシランとしては、アルコキシ部分が炭素数1乃至4の
アルキルのものが好適に用いられ、たとえばメチルトリ
メトキシシラン、メチルジメトキシエトキシシラン、メ
チルトリエトキシシラン、メチルトリプロポキシシラ
ン、メチルトリブトキシシラン、メチルメトキシジブト
キシシランなどが例示される。
As the raw material methyltrialkoxysilane in the present invention, an alkoxy having an alkyl moiety having 1 to 4 carbon atoms is preferably used, and examples thereof include methyltrimethoxysilane, methyldimethoxyethoxysilane, methyltriethoxysilane and methyl. Examples include tripropoxysilane, methyltributoxysilane, and methylmethoxydibutoxysilane.

【0011】また、部分加水分解縮合物とは、前記のメ
チルトリアルコキシシランのアルコキシ基の1部が加水
分解、縮合されたものでありそれ自身が液状でありメチ
ルトリアルコキシシラン、水、有機溶剤またはこれらの
混合液に可溶性のものである。
The partial hydrolysis-condensation product is a product obtained by hydrolyzing and condensing a part of the alkoxy group of the above-mentioned methyltrialkoxysilane, and is itself liquid, and is methyltrialkoxysilane, water and an organic solvent. Alternatively, it is soluble in these mixed liquids.

【0012】これらのメチルトリアルコキシシランやそ
の部分加水分解縮合物は、それぞれ単独であるいは混合
物で用いてもよい。
These methyltrialkoxysilanes and their partial hydrolysis-condensation products may be used alone or as a mixture.

【0013】これらのメチルトリアルコキシシランのう
ち、入手が容易なメチルトリメトキシシランが最も好ま
しく用いられる。
Of these methyltrialkoxysilanes, methyltrimethoxysilane, which is easily available, is most preferably used.

【0014】本発明において、原料のメチルトリアルコ
キシシランおよび/またはその部分加水分解縮合物中に
残存する塩素量が10ppm以下であることが重要であ
る。
In the present invention, it is important that the amount of chlorine remaining in the raw material methyltrialkoxysilane and / or its partial hydrolysis-condensation product is 10 ppm or less.

【0015】ここでいう塩素とは、硝酸銀で滴定可能な
塩素であり、通常メチルトリアルコキシシラン製造の原
料として用いられるメチルトリクロルシラン由来のケイ
素に結合した塩素などである。
Chlorine as used herein is chlorine that can be titrated with silver nitrate, and is chlorine bonded to silicon derived from methyltrichlorosilane which is usually used as a raw material for the production of methyltrialkoxysilane.

【0016】前記原料中の塩素が、10ppmを超える
量を含む場合、あとで述べるアルカリ添加して加水分解
・縮合させ、球状シリコーン微粒子を製造する際に生成
中和塩が粒子の粒径バラツキや凝集が増加する原因とな
るなどの悪影響を及ぼす。
When chlorine in the raw material contains more than 10 ppm, the neutralization salt produced during the production of spherical silicone fine particles by adding an alkali described later to cause hydrolysis / condensation causes variation in particle diameter of the particles. It has an adverse effect such as an increase in aggregation.

【0017】また、本発明において、前記水は比電導度
30μs/cm以下の水であることが重要である。イオン
性物質を除去し、比電導度30μs/cm以下にする必要
がある。
In the present invention, it is important that the water has a specific electric conductivity of 30 μs / cm or less. It is necessary to remove the ionic substance and make the specific electric conductivity 30 μs / cm or less.

【0018】イオン性物質とは通常天然水、工業用水、
水道水などに含まれるイオンCa2+、Mg2+、Fe3+
Al3+、Na、NH4 + 、HCO3 - 、SO4 2-、P
4 3-、Cl- などや、カルボン酸類、アミン類、フェ
ノール類で代表される有機イオン性物質が例として挙げ
られる。
Ionic substances are usually natural water, industrial water,
Ions Ca 2+ , Mg 2+ , Fe 3+ contained in tap water,
Al 3+ , Na + , NH 4 + , HCO 3 , SO 4 2− , P
Examples thereof include O 4 3− , Cl , and organic ionic substances represented by carboxylic acids, amines, and phenols.

【0019】これらイオン性物質の除去には一般に行わ
れる方法、たとえばイオン交換樹脂処理、蒸留、吸着処
理などの方法で行うことができるが、工業的にはイオン
交換樹脂処理が最も効率的でありよく用いられる。比電
導度は温度によっても変動するが、本発明での表示は室
温での値をいう。
The removal of these ionic substances can be carried out by a method generally used, for example, an ion exchange resin treatment, distillation, adsorption treatment or the like. Industrially, the ion exchange resin treatment is the most efficient. Often used. Although the specific conductivity varies depending on the temperature, the display in the present invention means a value at room temperature.

【0020】前記水がイオン性物質を含み、比電導度3
0μs/cmを超えるような場合、前記原料のメチルトリ
アルコキシシランとの相溶性が悪化し、均一溶液が得ら
れ難くなる。また、たとえ均一溶液が得られたとして
も、あとで述べるアルカリ添加して加水分解・縮合させ
球状シリコーン微粒子を製造する際に、粒子の粒径バラ
ツキや凝集が増加する。
The water contains an ionic substance and has a specific electric conductivity of 3
If it exceeds 0 μs / cm, the compatibility with the above-mentioned raw material methyltrialkoxysilane deteriorates, and it becomes difficult to obtain a uniform solution. Further, even if a uniform solution is obtained, when a spherical silicone fine particle is produced by adding an alkali to be hydrolyzed and condensed as described later, particle size variation and aggregation increase.

【0021】このように、本発明において原料メチルト
リアルコキシシランおよび/またはその部分加水分解縮
合中の塩素含有量が10ppm以下であり、かつ、使用
する水がイオン性物質をほとんど含まない電導度30μ
s/cm以下の水を用いることに大きな特徴があり、生成
粒子の粒度分布が極めて狭い球状シリコーン微粒子を得
るために重要である。
As described above, in the present invention, the content of chlorine in the raw material methyltrialkoxysilane and / or its partial hydrolysis-condensation is 10 ppm or less, and the water used has an electric conductivity of 30 μm and contains almost no ionic substance.
The use of water at s / cm or less is a great feature, and it is important for obtaining spherical silicone fine particles having a very narrow particle size distribution.

【0022】本発明において、前記水と前記原料との均
一化混合比率は、水1重量部に対し、原料0.01〜1
重量部である。原料の水に対する比率が0.01未満で
は、大幅に生産効率が低下するし、また、1を超える場
合は、原料濃度が高すぎて、生成する球状シリコーン微
粒子の凝集が著しく増加するなどの現象があり好ましく
ない。
In the present invention, the homogenizing mixing ratio of the water and the raw material is 0.01 to 1 with respect to 1 part by weight of water.
Parts by weight. When the ratio of the raw material to water is less than 0.01, the production efficiency is significantly reduced, and when it is more than 1, the concentration of the raw material is too high and the agglomeration of spherical silicone fine particles to be produced remarkably increases. Is not preferred.

【0023】均一化の方法は、通常前記水と前記原料と
を混合、撹拌すればよく、温度、時間、撹拌速度などの
条件は特に限定されないが、通常1〜100℃、好まし
くは20〜80℃、1分〜10時間、好ましくは10分
〜5時間であり、撹拌速度は液が正常に流動し、撹拌混
合される速度であればよい。
The homogenizing method is usually carried out by mixing and stirring the water and the raw materials, and conditions such as temperature, time and stirring speed are not particularly limited, but usually 1 to 100 ° C., preferably 20 to 80. C., 1 minute to 10 hours, preferably 10 minutes to 5 hours, and the stirring speed may be a speed at which the liquid normally flows and is stirred and mixed.

【0024】次に前記均一溶液にアルカリを添加し、加
水分解・縮合を進行させる微粒子化について説明する。
Next, the formation of fine particles by adding an alkali to the above-mentioned homogeneous solution to promote hydrolysis / condensation will be described.

【0025】ここで用いられるアルカリとしては、その
水溶液がアルカリ性を示すものであればいずれも使用可
能である。一般的には周期律表Ia、IIa族金属の水酸
化物、酸化物、炭酸塩、有機窒素化合物、アンモニアな
どが挙げられる。特に好ましくは苛性ソーダ、苛性カリ
などの周期律表Ia族金属水酸化物やエチレンジアミ
ン、ジエチルアミン、トリエチルアミンなどの有機窒素
化合物、そしてアンモニアが用いられる。
As the alkali used here, any alkali can be used as long as its aqueous solution shows alkalinity. In general, hydroxides, oxides, carbonates, organic nitrogen compounds, ammonia and the like of metals of Group Ia and IIa of the Periodic Table are mentioned. Particularly preferably, Group Ia metal hydroxides such as caustic soda and caustic potash, organic nitrogen compounds such as ethylenediamine, diethylamine and triethylamine, and ammonia are used.

【0026】これらのアルカリは単独で用いても、2種
以上を混合してもよい。また、アルカリ添加量について
も特に限定されるものではない。しかし、アルカリ量、
すなわちpHは生成する球状シリコーン微粒子の粒子径
に大きな影響を与える。小さい粒子を得ようとすればp
Hを高く、大きい粒子を得ようとすればpHを低くする
ことで粒子径の制御が可能となる。したがって、目的と
する粒子径に適した添加量を選択すればよい。
These alkalis may be used alone or in combination of two or more. Also, the amount of alkali added is not particularly limited. However, the amount of alkali,
That is, the pH greatly affects the particle size of the spherical silicone particles produced. If you want to get small particles, p
If H is high and large particles are to be obtained, the particle size can be controlled by lowering the pH. Therefore, it suffices to select an addition amount suitable for the intended particle size.

【0027】アルカリの添加速度も限定されないが、で
きるだけ素早く添加し、早めに均一混合することが好ま
しく、アルカリを添加するときまた添加後は当然ながら
十分な撹拌を行う。
Although the addition rate of the alkali is not limited, it is preferable that the addition is carried out as quickly as possible and the mixture is uniformly mixed as early as possible. When the alkali is added, and of course, sufficient stirring is naturally performed.

【0028】本発明の方法において、アルカリを添加
し、撹拌混合後、撹拌を続けてもよいが、アルカリが均
一に混合された後撹拌を停止し、静置下に加水分解、縮
合を進行させることが生成粒子の粒子間の凝集を抑える
ことに大きな効果がある。
In the method of the present invention, the alkali may be added, and the stirring may be continued after the mixing. However, the stirring is stopped after the alkali is uniformly mixed, and the hydrolysis and condensation are allowed to proceed while standing. This is very effective in suppressing the agglomeration of the generated particles.

【0029】ただし、静置して加水分解、縮合を進行さ
せた場合、必然的に生成粒子は沈降し、反応器底部に堆
積する。しかし、粒子の生成が終わった後、通常の撹拌
で再スラリーが可能であり何ら支障はない。
However, when the hydrolysis and condensation are allowed to proceed by standing still, the produced particles inevitably settle and accumulate at the bottom of the reactor. However, after the generation of particles is completed, the slurry can be re-slurried by ordinary stirring without any problem.

【0030】本発明の方法において微粒子化を実施する
温度についても特に限定するものではない。水の凝固点
である0℃から常圧の沸点である100℃の範囲から選
ぶことができる。また必要に応じて加圧下に100℃以
上で反応させてもよい、一般的には15℃から80℃が
よく用いられる。さらに、最初は低温(たとえば10〜
15℃)からスタートし、徐々に昇温(たとえば80
℃)することも可能である。
There is no particular limitation on the temperature at which the method of the present invention is carried out. It can be selected from the range of 0 ° C., which is the freezing point of water, to 100 ° C., which is the boiling point of normal pressure. If necessary, the reaction may be carried out at 100 ° C. or higher under pressure. Generally, 15 ° C. to 80 ° C. is often used. Furthermore, initially at low temperatures (eg 10-
Start from 15 ° C and gradually raise the temperature (eg 80
℃) is also possible.

【0031】微粒子化に要する時間は温度との関係もあ
り、一概に限定することはできないが、一般的には均一
化、アルカリ添加、時間を含む微粒子化の合計時間は
0.5〜10時間程度である。
The time required for microparticulation has a relationship with temperature and cannot be unconditionally limited, but generally the total time of homogenization, addition of alkali, and microparticulation including time is 0.5 to 10 hours. It is a degree.

【0032】本発明の方法において、平均粒子径0.1
〜20μmの球状シリコーン微粒子を得るには前記均一
溶液調製時の原料と水との混合比率、前記アルカリの添
加量、そして温度を選択することにより自由に粒子径制
御が可能である。
In the method of the present invention, the average particle size is 0.1.
In order to obtain spherical silicone fine particles of ˜20 μm, the particle size can be freely controlled by selecting the mixing ratio of the raw material and water, the addition amount of the alkali, and the temperature at the time of preparing the uniform solution.

【0033】特に、本発明の方法は平均粒子径1μm以
上の比較的大きい粒子を製造する場合に適する方法であ
る。すなわち、1μm以上の粒子を得るには、前記原料
の前記水に対する混合比率をたとえば、水1重量部に対
し0.1〜1重量部と高くし、しかも、アルカリ添加量
を非常に少ない条件、たとえば強塩基の苛性ソーダの場
合、均一溶液に対し500ppm以下という条件を選択
することにより製造することができる。
The method of the present invention is particularly suitable for producing relatively large particles having an average particle size of 1 μm or more. That is, in order to obtain particles of 1 μm or more, the mixing ratio of the raw material to the water is set to be high, for example, 0.1 to 1 part by weight with respect to 1 part by weight of water, and the amount of alkali added is very small. For example, strong base caustic soda can be produced by selecting a condition of 500 ppm or less with respect to a homogeneous solution.

【0034】したがって、原料や使用水の品質の影響を
受けやすく、本発明の方法である原料メチルトリアルコ
キシシランおよび/またはその部分加水分解縮合物中の
塩素含有量を10ppm以下とし、かつ、使用水中のイ
オン性物質含有量を極力減少させた比電導度30μs/
cm以下の純水を用いる必要がここにある。
Therefore, it is easily affected by the quality of the raw material and the used water, and the chlorine content in the raw material methyltrialkoxysilane and / or its partial hydrolysis-condensation product, which is the method of the present invention, is set to 10 ppm or less, and it is used. Specific electric conductivity of 30μs / which reduces the content of ionic substances in water as much as possible
It is necessary to use pure water of less than cm.

【0035】このようにして製造した真球状シリコーン
微粒子は、この後濾過分離・水洗浄あるいは有機溶剤洗
浄するが、酸性物質を添加して中和後、同様に濾過分離
・水洗あるいは有機溶剤洗浄して乾燥し、場合によって
解砕し微粒子を得る。
The spherical silicone fine particles produced in this manner are then filtered, separated, washed with water or washed with an organic solvent. After neutralization by adding an acidic substance, they are similarly separated by filtration, washed with water or washed with an organic solvent. And dry and optionally crush to obtain fine particles.

【0036】得られた粒子は長径と短径の比が1.1以
下、粒子径は0.1〜20μm、変動係数は5%以下で
あり、しかも粒子間の凝集の少ない球状シリコーン微粒
子である。
The obtained particles are spherical silicone fine particles having a ratio of major axis to minor axis of 1.1 or less, a particle diameter of 0.1 to 20 μm, a coefficient of variation of 5% or less, and less aggregation between particles. .

【0037】[0037]

【実施例】以下、本発明の内容を実施例で説明する。EXAMPLES The contents of the present invention will be described below with reference to examples.

【0038】実施例における生成微粒子の評価は、走査
型電子顕微鏡写真から粒子50個以上を計測し、平均粒
子径(D)〔μm〕、長径/短径比、変動係数〔粒径標
準偏差σ/平均粒子径D×100(%)〕を算出した。
収率は(メチルシルセスキオキサン/メチルトリアルコ
オキシシラン)〔モル%〕で示した。
In the evaluation of the fine particles produced in the examples, 50 or more particles were measured from a scanning electron micrograph, and the average particle diameter (D) [μm], the long diameter / short diameter ratio, and the variation coefficient [particle diameter standard deviation σ]. / Average particle diameter D × 100 (%)] was calculated.
The yield was represented by (methylsilsesquioxane / methyltrialcooxysilane) [mol%].

【0039】実施例1 1リットル四つ口丸底フラスコに撹拌機、温度計、滴下
ロートを取付け、フラスコに比電導度0.5μs/cmの
イオン交換処理水600gを入れ200rpm で撹拌しつ
つ、オイルバスにて昇温した。60℃に到達したところ
で、塩素含有量0.5ppmのメチルトリメトキシシラ
ン75gを加え、約5分後には発熱により62℃まで上
昇し、この時点で反応系内は平均透明溶液となった。メ
チルトリメトキシシランを添加してから30分後に、1
N−NaOH水溶液6.0mlを加えた。200rpm で3
0秒間撹拌した時点で白濁が始まり、同時に撹拌を停止
した。60〜65℃に保ち、1時間後、大部分沈降した
微粒子を撹拌により再スラリー化後、10%酢酸水3.
6gを添加、中和し、濾過、水洗・メタノール洗浄を行
い、最後に150℃、2時間オーブンにて乾燥し、白色
粉末34gを得た(収率93%モル%)。走査型電子顕
微鏡にて粒径を測定した結果、平均粒径1.1μm、長
径/短径の比1.03、変度係数3.0%の凝集のない
球状シリコーン微粒子であった。
Example 1 A 1-liter four-necked round-bottomed flask was equipped with a stirrer, a thermometer, and a dropping funnel, and 600 g of ion-exchange treated water having a specific electric conductivity of 0.5 μs / cm was put into the flask and stirred at 200 rpm. The temperature was raised in an oil bath. When the temperature reached 60 ° C., 75 g of methyltrimethoxysilane having a chlorine content of 0.5 ppm was added, and after about 5 minutes, the temperature rose to 62 ° C. due to heat generation, at which point the reaction system became an average transparent solution. 30 minutes after adding methyltrimethoxysilane, 1
6.0 ml of N-NaOH aqueous solution was added. 3 at 200 rpm
At the time of stirring for 0 seconds, white turbidity started and stirring was stopped at the same time. After keeping the temperature at 60 to 65 ° C. for 1 hour, most of the fine particles that have settled are reslurried by stirring and then 10% acetic acid water 3.
6 g was added, neutralized, filtered, washed with water and washed with methanol, and finally dried in an oven at 150 ° C. for 2 hours to obtain 34 g of a white powder (yield 93% mol%). As a result of measuring the particle size with a scanning electron microscope, it was found to be non-aggregated spherical silicone fine particles having an average particle size of 1.1 μm, a major axis / minor axis ratio of 1.03 and a coefficient of variation of 3.0%.

【0040】実施例2 1リットル四つ口丸底フラスコに攪拌器、温度計、滴下
ロートを取付け、フラスコに比電導度20μs/cmの水
600gを入れ、200rpm で撹拌しつつ、オイルバス
にて昇温した。50℃到達後、塩素含有量0.1ppm
のメチルトリメトキシシラン40gを加えた。10分後
には均一透明溶液に変化した。メチルトリメトキシシラ
ンを添加し、30分径経過後、200rpm で撹拌された
均一溶液中に10重量%苛性ソーダ水溶液21gを全量
一括添加した。4〜5秒で反応系内は白濁した。温度5
0〜55℃、撹拌200rpm で1時間処理後、10重量
%酢酸31.5gを添加し中和した。濾過、水洗メタノ
ール洗浄を行い、150℃、2時間オーブンにて乾燥
し、15.0gの白色粉末を得た(収率77モル%)。
Example 2 A 1-liter four-necked round bottom flask was equipped with a stirrer, a thermometer and a dropping funnel, and 600 g of water having a specific electric conductivity of 20 μs / cm was put in the flask and stirred in an oil bath at 200 rpm. The temperature was raised. After reaching 50 ℃, chlorine content 0.1ppm
40 g of methyltrimethoxysilane was added. After 10 minutes, it turned into a uniform transparent solution. Methyltrimethoxysilane was added, and after 30 minutes had passed, 21 g of a 10 wt% aqueous sodium hydroxide solution was added all at once to the homogeneous solution stirred at 200 rpm. The reaction system became cloudy in 4 to 5 seconds. Temperature 5
After treatment at 0 to 55 ° C. and stirring at 200 rpm for 1 hour, 31.5 g of 10 wt% acetic acid was added to neutralize. It was filtered, washed with water and washed with methanol, and dried in an oven at 150 ° C. for 2 hours to obtain 15.0 g of a white powder (yield 77 mol%).

【0041】この粉末を走査型電子顕微鏡にて観察した
結果、平均粒径0.5μm、長径/短径の比1.07、
変度係数5%の真球状シリコーン微粒子であった。粒子
の凝集は2〜4個凝集しているものが少量見受けられた
程度であった。
As a result of observing this powder with a scanning electron microscope, the average particle diameter was 0.5 μm, the ratio of major axis / minor axis was 1.07,
The spherical silicone fine particles had a coefficient of variation of 5%. The aggregation of particles was such that a small amount of 2 to 4 aggregates was found.

【0042】実施例3 アルカリとして20重量%エチレンジアミンの水溶液を
30g用いたこと以外は、すべて実施例2と同様に行っ
た。
Example 3 The same procedure as in Example 2 was carried out except that 30 g of an aqueous solution of 20% by weight ethylenediamine was used as the alkali.

【0043】得られた乾燥粉末は18.2g(収率93
モル%)。平均粒子径0.9μm、長径/短径の比1.
03、変度係数4.5%の真球状シリコーン微粒子であ
った。
The dry powder obtained was 18.2 g (yield 93
Mol%). Average particle size 0.9 μm, ratio of major axis / minor axis 1.
03, true spherical silicone fine particles having a coefficient of variation of 4.5%.

【0044】実施例4 比電導度0.5μs/cmのイオン交換樹脂処理水525
gとメチルトリメトキシシレンの部分加水分解縮合物の
50wt%水溶液150gを用いたこと以外はすべて実
施例1と同様に均一化、微粒子化、後処理を行い、平均
粒敬1.2μm、長径/短径の比1.05、変度係数
4.5%の凝集のない球状シリコーン微粒子を得た(収
率90モル%)。
Example 4 Ion-exchange resin treated water 525 having a specific electric conductivity of 0.5 μs / cm
g, homogenization, atomization, and post-treatment were carried out in the same manner as in Example 1 except that 150 g of a 50 wt% aqueous solution of a partial hydrolyzed condensate of methyltrimethoxysilene was used. Agglomerated spherical silicone fine particles having a ratio of minor axis of 1.05 and a coefficient of variation of 4.5% were obtained (yield 90 mol%).

【0045】比較実施例1〜6 実施例1と同様の装置を用い、水仕込み量を600g、
撹拌、温度、静置時間を実施例1を同様に設定し、原料
のメチルトリメトキシシランおよび/またはその部分加
水分解縮合物中の塩素量、仕込んだ水の比電導度、水/
原料重量比、アルカリ添加量を変化させ実施した結果を
表1に示す。
Comparative Examples 1 to 6 Using the same apparatus as in Example 1, the amount of water charged was 600 g,
The stirring, temperature, and standing time were set in the same manner as in Example 1, and the amount of chlorine in the raw material methyltrimethoxysilane and / or its partial hydrolysis-condensation product, the specific conductivity of the charged water, water /
Table 1 shows the results obtained by changing the weight ratio of raw materials and the amount of alkali added.

【0046】[0046]

【表1】 ※1:水道水をそのまま使用。[Table 1] * 1: Tap water is used as it is.

【0047】※2:水道水をイオン交換樹脂処理した純
水。
* 2: Pure water obtained by treating tap water with an ion exchange resin.

【0048】※3:イオン交換処理した純水にNaCl
50ppm添加した水。
* 3: NaCl in pure water that has been subjected to ion exchange treatment
Water added with 50 ppm.

【0049】※4:イオン交換処理水にNH4 Cl 2
0ppm添加した水。
* 4: NH 4 Cl 2 in ion exchange treated water
Water added with 0 ppm.

【0050】※5:イオン交換処理水にCH3 COON
a 50ppm添加した水。
* 5: CH 3 COON in ion-exchanged water
a Water added with 50 ppm.

【0051】[0051]

【発明の効果】本発明の方法により、平均粒子径が0.
1〜20μmで、粒子径分布が極めて狭く、粒子の凝集
が少ない球状シリコーン微粒子の製造が可能になった。
According to the method of the present invention, the average particle diameter is 0.
When the particle size is 1 to 20 μm, it is possible to produce spherical silicone fine particles having a very narrow particle size distribution and less aggregation of particles.

【0052】また、本発明によって得られる微粒子は化
粧品、塗料、接着剤などに添加し、はっ水性、耐熱性、
滑り特性などの向上に効果があり、さらに、樹脂の中に
添加して硬化や熱による収縮、膨脹によって生じる応力
の緩和剤、吸収剤などとして有効に利用することができ
る。また、表面に染料、紫外線吸収剤などを吸着、結合
したり、金属をメッキすることなどによって新たな機能
を付与して利用することができる。
Further, the fine particles obtained by the present invention are added to cosmetics, paints, adhesives, etc. to obtain water repellency, heat resistance,
It has the effect of improving the sliding property and the like, and can be effectively used as a relieving agent and an absorbent of stress caused by curing and shrinkage and expansion by being added to the resin. In addition, a new function can be imparted and used by adsorbing and binding a dye, an ultraviolet absorber or the like on the surface, or plating a metal.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水1重量部に対し、メチルトリアルコキ
シシランおよび/またはその部分加水分解縮合物0.0
1〜1重量部を撹拌混合し、均一溶液とした後、アルカ
リを添加し加水分解、縮合を進行させ、球状シリコーン
微粒子を製造するにあたり、前記メチルトリアルコキシ
シランおよび/またはその部分加水分解縮合物中に含ま
れる塩素量が10ppm 以下、かつ、前記水の比電導度が
30μs/cm以下のものを用いて均一化することを特
徴とする平均粒子径が0.1〜20μmの球状シリコー
ン微粒子の製造方法。
1. Methyltrialkoxysilane and / or its partial hydrolysis-condensation product 0.0 per 1 part by weight of water.
After stirring and mixing 1 to 1 part by weight to form a uniform solution, an alkali is added to proceed hydrolysis and condensation to produce spherical silicone microparticles, and the methyltrialkoxysilane and / or its partial hydrolyzed condensate is produced. A spherical silicone fine particle having an average particle diameter of 0.1 to 20 μm, which is characterized in that the chlorine content in the water is 10 ppm or less and the specific conductivity of the water is 30 μs / cm or less. Production method.
JP3907893A 1993-02-26 1993-02-26 Production of spherical silicone fine particle Pending JPH06248081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3907893A JPH06248081A (en) 1993-02-26 1993-02-26 Production of spherical silicone fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3907893A JPH06248081A (en) 1993-02-26 1993-02-26 Production of spherical silicone fine particle

Publications (1)

Publication Number Publication Date
JPH06248081A true JPH06248081A (en) 1994-09-06

Family

ID=12543075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3907893A Pending JPH06248081A (en) 1993-02-26 1993-02-26 Production of spherical silicone fine particle

Country Status (1)

Country Link
JP (1) JPH06248081A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178357A (en) * 1998-12-14 2000-06-27 Ge Toshiba Silicones Co Ltd Production of fine silicone particle
JP2000186148A (en) * 1998-12-21 2000-07-04 Ge Toshiba Silicones Co Ltd Production of spherical polymethylsilsesquioxane particle
JP2003002973A (en) * 2001-04-18 2003-01-08 Ge Toshiba Silicones Co Ltd Method for producing fine spherical silicone particle
JP2003183395A (en) * 2001-12-21 2003-07-03 Ge Toshiba Silicones Co Ltd Method for producing spherical silicone fine particle
JP2003335860A (en) * 2002-05-20 2003-11-28 Ge Toshiba Silicones Co Ltd Spherical polymethylphenylsilsesquioxane fine particle and manufacturing method therefor
JP2004099630A (en) * 2002-09-04 2004-04-02 Nitto Denko Corp Method for producing polysilsesquioxane fine particle and polysilsesquioxane fine particle obtained by the producing method
JP2010235876A (en) * 2009-03-31 2010-10-21 Nippon Shokubai Co Ltd Method for producing polyorganosiloxane particle and organic inorganic composite particle
WO2011102272A1 (en) 2010-02-19 2011-08-25 東レ株式会社 Phosphor-containing cured silicone, process for production of same, phosphor-containing silicone composition, precursor of the composition, sheet-shaped moldings, led package, light -emitting device, and process for production of led-mounted substrate
WO2012081411A1 (en) 2010-12-13 2012-06-21 東レ株式会社 Phosphor sheet, led and light emitting device using same and method for producing led
WO2014065358A1 (en) 2012-10-25 2014-05-01 東レ株式会社 Fluorescent-material-containing resin sheet and light-emitting device
WO2018059670A1 (en) 2016-09-27 2018-04-05 Wacker Chemie Ag Process for producing spherical polysilsesquioxane particles
WO2018149475A1 (en) 2017-02-14 2018-08-23 Wacker Chemie Ag Method for producing spherical polysilsesquioxane particles
WO2019086094A1 (en) 2017-10-30 2019-05-09 Wacker Chemie Ag Method for producing spherical polysilsesquioxane particles
US10662293B2 (en) 2016-10-06 2020-05-26 Wacker Chemie Ag Method for producing spherical polysilsesquioxane particles
JP2020132778A (en) * 2019-02-21 2020-08-31 株式会社日本触媒 Production method of polymethylsilsesquioxane particles
CN115636937A (en) * 2022-09-15 2023-01-24 齐鲁师范学院 Hydrophobic organic silicon resin microsphere with controllable particle size and preparation method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178357A (en) * 1998-12-14 2000-06-27 Ge Toshiba Silicones Co Ltd Production of fine silicone particle
JP2000186148A (en) * 1998-12-21 2000-07-04 Ge Toshiba Silicones Co Ltd Production of spherical polymethylsilsesquioxane particle
JP2003002973A (en) * 2001-04-18 2003-01-08 Ge Toshiba Silicones Co Ltd Method for producing fine spherical silicone particle
JP2003183395A (en) * 2001-12-21 2003-07-03 Ge Toshiba Silicones Co Ltd Method for producing spherical silicone fine particle
JP2003335860A (en) * 2002-05-20 2003-11-28 Ge Toshiba Silicones Co Ltd Spherical polymethylphenylsilsesquioxane fine particle and manufacturing method therefor
JP2004099630A (en) * 2002-09-04 2004-04-02 Nitto Denko Corp Method for producing polysilsesquioxane fine particle and polysilsesquioxane fine particle obtained by the producing method
JP2010235876A (en) * 2009-03-31 2010-10-21 Nippon Shokubai Co Ltd Method for producing polyorganosiloxane particle and organic inorganic composite particle
WO2011102272A1 (en) 2010-02-19 2011-08-25 東レ株式会社 Phosphor-containing cured silicone, process for production of same, phosphor-containing silicone composition, precursor of the composition, sheet-shaped moldings, led package, light -emitting device, and process for production of led-mounted substrate
EP2943046A1 (en) 2010-12-13 2015-11-11 Toray Industries, Inc. Phosphor sheet, led and light emitting device using same and method for producing led
WO2012081411A1 (en) 2010-12-13 2012-06-21 東レ株式会社 Phosphor sheet, led and light emitting device using same and method for producing led
WO2014065358A1 (en) 2012-10-25 2014-05-01 東レ株式会社 Fluorescent-material-containing resin sheet and light-emitting device
WO2018059670A1 (en) 2016-09-27 2018-04-05 Wacker Chemie Ag Process for producing spherical polysilsesquioxane particles
US10662292B2 (en) 2016-09-27 2020-05-26 Wacker Chemie Ag Process for producing spherical polysilsesquioxane particles
US10662293B2 (en) 2016-10-06 2020-05-26 Wacker Chemie Ag Method for producing spherical polysilsesquioxane particles
WO2018149475A1 (en) 2017-02-14 2018-08-23 Wacker Chemie Ag Method for producing spherical polysilsesquioxane particles
US11028228B2 (en) 2017-02-14 2021-06-08 Wacker Chemie Ag Process for producing sperhical polysilsesquioxane particles
WO2019086094A1 (en) 2017-10-30 2019-05-09 Wacker Chemie Ag Method for producing spherical polysilsesquioxane particles
JP2020132778A (en) * 2019-02-21 2020-08-31 株式会社日本触媒 Production method of polymethylsilsesquioxane particles
CN115636937A (en) * 2022-09-15 2023-01-24 齐鲁师范学院 Hydrophobic organic silicon resin microsphere with controllable particle size and preparation method thereof
CN115636937B (en) * 2022-09-15 2024-01-26 齐鲁师范学院 Hydrophobic particle-diameter-controllable organic silicon resin microsphere and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH06248081A (en) Production of spherical silicone fine particle
KR101444949B1 (en) Process for production of zirconia sol
JP5218465B2 (en) Silica and production method thereof
KR910009572B1 (en) Process for producing a precipituted silica
TWI406814B (en) Process for preparing surface-reacted calcium carbonate and its use
JPH0488023A (en) Production of spherical fine silicone particle
TW200300159A (en) Easy to disperse, high durability tio2 pigment and method of making same
JPH05338B2 (en)
CN107250289B (en) The organic solvent dispersion and its manufacturing method of titan oxide particles
TW201105583A (en) Process to prepare a surface-reacted calcium carbonate implementing a weak acid, resulting products and uses thereof
JP2007153732A (en) Method for producing neutral colloidal silica
WO2004087577A1 (en) Surface-modified titanium dioxide fine particles and dispersion comprising the same, and method for producing the same
CN1891626A (en) Process for producing hydrophobic silica powder
KR102046273B1 (en) Method of producing titanium oxide
JPH03128903A (en) Method for modifying synthetic resin and modified synthetic resin
KR20100014355A (en) Process for producing silica sol of long and thin shape
WO2018124117A1 (en) Silica particle dispersion and method for producing same
Lazareva et al. Synthesis of high-purity silica nanoparticles by sol-gel method
JP6933976B2 (en) Silica-based particle dispersion and its manufacturing method
JP2007023127A (en) Method for producing silica-coated zinc oxide, silica-coated zinc oxide, and cosmetic containing the same
JP3584485B2 (en) Method for producing silica sol
JPH05263045A (en) Film-forming coating liquid and its production
JP4458396B2 (en) Method for producing high-purity hydrophilic organic solvent-dispersed silica sol, high-purity hydrophilic organic solvent-dispersed silica sol obtained by the method, method for producing high-purity organic solvent-dispersed silica sol, and high-purity organic solvent-dispersed silica sol obtained by the method
JP3758391B2 (en) High-purity silica aqueous sol and method for producing the same
JPH06279589A (en) Production of fine spherical silicone particles