KR100755278B1 - 전해가공용 전극 제조방법 - Google Patents

전해가공용 전극 제조방법 Download PDF

Info

Publication number
KR100755278B1
KR100755278B1 KR1020060110139A KR20060110139A KR100755278B1 KR 100755278 B1 KR100755278 B1 KR 100755278B1 KR 1020060110139 A KR1020060110139 A KR 1020060110139A KR 20060110139 A KR20060110139 A KR 20060110139A KR 100755278 B1 KR100755278 B1 KR 100755278B1
Authority
KR
South Korea
Prior art keywords
electrode
base material
insulating layer
electrode base
manufacturing
Prior art date
Application number
KR1020060110139A
Other languages
English (en)
Inventor
김영태
이타경
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Priority to KR1020060110139A priority Critical patent/KR100755278B1/ko
Application granted granted Critical
Publication of KR100755278B1 publication Critical patent/KR100755278B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/04Electrodes specially adapted therefor or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H3/00Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
    • B23H3/04Electrodes specially adapted therefor or their manufacture
    • B23H3/06Electrode material

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

전해가공용 전극 제조방법이 개시된다. 도전성의 전극 모재, 전극 모재 상에 형성된 절연층 및 절연층의 일부가 제거되어 전극 모재의 일부를 노출시키는 패턴 홈을 구비하는 전해가공용 전극의 제조방법으로서 절연층을 테플론 코팅에 의해 전극 모재 상에 형성하는 전해가공용 전극 제조방법은 절연층의 기계적 및 화학적 성질이 우수할 뿐만 아니라 절연층의 밀착성을 높일 수 있다.
테플론 코팅, 레이던트 처리, 전해가공

Description

전해가공용 전극 제조방법{METHOD FOR MANUFACTURING ELECTRODE FOR ELECTROCHEMICAL MACHINING}
도 1a 내지 도 1d는 본 발명의 일 실시 예에 따른 전해가공용 전극 제조방법을 순차적으로 나타내는 단면도.
도 2는 본 발명의 일 실시 예에 따른 전해가공용 전극 제조방법을 나타내는 순서도.
도 3a 내지 도 3b는 테플론 코팅의 원리를 나타내는 단면도.
도 4a 내지 도 4d는 본 발명의 다른 실시 예에 따른 전해가공용 전극 제조방법을 순차적으로 나타내는 단면도.
도 5는 본 발명의 다른 실시 예에 따른 전해가공용 전극 제조방법을 나타내는 순서도.
<도면 부호의 설명>
10, 10': 전극
11: 전극 모재 13: 절연층
15: 패턴 홈 17: 도전성 충전재
본 발명은 전해가공용 전극 제조방법에 관한 것이다.
전해가공(electrochemical machining)은 ECM이라고도 하며, 금속 재료가 전기 화학적 용해를 할 때 그 진행을 방해하는 양극 생성물인 금속 산화물막이 생기는데 이를 제거하면서 가공하는 방법을 말한다. 가공해야 할 형태로 만든 공구를 음극으로 하고, 피가공물을 양극으로 하여 양쪽을 전해액에 담그고 전류를 통하면 소재는 음극의 표면 형상과 같이 가공된다. 전해가공은 보통의 공구로는 가공이 곤란한 초경합금, 내열강 등과 같은 난삭재 및 복잡한 형상의 금형 가공에 이용되고 있으며 공작물의 변형이나 잔류 응력 등을 발생시키지 않는 장점이 있다.
종래에는 전해가공에서 전극과 공작물 사이의 간극이 커서 마이크로 단위의 가공에 적용하기 어려워 초정밀 가공에 적용하기 힘들었다. 그러나 최근에 펄스 정류기의 발전과 함께 간극을 마이크로 단위까지 적용할 수 있게 되었으며, 현재는 마이크로 가공에 많이 응용되고 있다. 전해 가공에 있어서 중요시 되는 것 중의 하나가 음극 전극의 제작 기술이다. 음극 전극은 원하는 가공 형상 이외의 부분은 전기적으로 절연되어 있어야 하며, 전극 면의 표면 거칠기도 좋아야 한다. 또한, 전극 절연 부분의 밀착성이 매우 우수해야 하는데, 이는 밀착되어 있는 절연체가 미세한 탈락이 발생하더라도 제품의 형상에 바로 전사되기 때문이다.
본 발명은 절연층의 기계적 화학적 성질이 우수한 전해가공용 전극 제조방법을 제공하는 것이다.
본 발명은 절연층의 밀착성이 우수한 전해가공용 전극 제조방법을 제공하는 것이다.
본 발명의 일 측면에 따른 전해가공용 전극 제조방법은, 도전성의 전극 모재, 전극 모재 상에 형성된 절연층 및 절연층의 일부가 제거되어 전극 모재의 일부를 노출시키는 패턴 홈을 구비하는 전해가공용 전극의 제조방법으로서 절연층을 테플론 코팅에 의해 전극 모재 상에 형성한다.
본 발명의 다른 측면에 따른 전해가공용 전극 제조방법은, 도전성의 전극 모재, 전극 모재 상에 형성된 절연층 및 절연층의 일부가 제거되어 전극 모재의 일부를 노출시키는 패턴 홈을 구비하는 전해가공용 전극 제조방법으로서 절연층을 레이던트 처리에 의해 전극 모재 상에 형성한다.
본 발명에 따른 전해가공용 전극 제조방법의 실시 예들은 다음과 같은 특징들을 하나 또는 그 이상 구비할 수 있다. 예를 들면, 전극 모재는 알루미늄 또는 알루미늄 합금으로 이루어지고, 아노다이징 처리에 의해 전극 모재와 절연층 사이에 산화 절연물층을 형성할 수 있다.
그리고 전극 모재는 철 또는 철 합금으로 이루어지고, 전극 모재에 대한 레 이던트 처리 후 절연층이 형성될 수도 있다.
전극의 제조공정은 전극 모재 상에 절연층을 적층하는 단계, 절연층의 일부를 제거하여 패턴 홈을 형성함으로써 전극 모재의 일부가 노출되도록 하는 단계, 패턴 홈에 도전성 충전재를 충전하는 단계를 포함할 수 있다. 또한, 전극 모재에 패턴 홈을 형성하는 단계, 전극 모재 상에 절연층을 형성하는 단계, 절연층의 일부를 제거하여 전극 모재의 일부를 노출시키는 단계를 포함할 수도 있다.
절연층은 4불화수지(PTFE, Polytetrafluoroethylene), 4불화공중합수지(PFA, Perfluoro Alcoxy Polymer), 4,6불화수지(FEP, Fluorinated ethylene) 및 플루오르고분자(ETFE, Ethylene Tetrafluoroethylene Copolymer)로 구성된 그룹으로 선택된 하나에 의해 이루어질 수 있으며, 도전성 충전재는 금, 금합금, 팔라듐, 팔라듐 합금, 백금 및 니켈 중에서 선택된 하나 또는 이들의 조합에 의해 이루어질 수 있다.
이하, 본 발명에 따른 전해가공용 전극 제조방법의 실시 예를 첨부 도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1a 내지 도 1d는 본 발명의 일 실시 예에 따른 전해가공용 전극 제조방법을 순차적으로 도시하는 단면도이고, 도 2는 본 발명의 일 실시 예에 따른 전해가공용 전극 제조방법을 도시한 순서도이다.
우선 전극 모재를 준비하는데, 도 1a를 참조하면 전극 모재(11)의 단면도가 도시되어 있다. 전극 모재(11)의 치수와 외형은 추후에 가공된다. 예를 들면, 전극 모재(11)는 동압 유체 베어링 등의 피가공 부재의 표면에 적합하게 가공될 수 있다. 전극 모재(11)로는 알루미늄(aluminium) 또는 AlmgSi 등의 일반적인 알루미늄 합금을 사용할 수 있고, 동(copper)과 같이 도전성이 높은 재료를 사용할 수도 있다. 그리고 레이던트(RAYDENT) 공정을 적용하기 위해서 전극 모재(11)로서 스테인레스 등과 같은 철 또는 철 합금을 사용할 수도 있다.
도 1b를 참조하면, 전극 모재(11)의 일면에는 절연층(13)이 형성된다(S10). 전해가공용 전극의 표면은 대전류에 의해서 80~100℃에 이르는 고온의 전해액에 노출되기 때문에 열에 의한 변형이 유발될 우려가 있다. 또한, 가공 전극의 소재인 금속과 플라스틱 절연층의 열팽창률의 차이로부터 가공 전극의 결합이 느슨해지거나 파손되거나 또는 절연층이 박리되는 등의 현상이 발생할 가능성이 높다. 이와 같은 문제점을 해결하기 위해서 본 실시 예에서는 절연층(13)을 테플론(Teflon) 코팅에 의해 형성하였다.
테플론은 비점착성으로 거의 모든 물질이 달라붙지 않을 뿐만 아니라, 마찰계수가 0.05~0.29로서 저마찰계수를 갖는다. 그리고 비유성으로서 물과 기름이 잘 묻지 않아 청소가 용이할 뿐만 아니라, 매우 우수한 절연성 및 표면 저항률을 나타내기 때문에 전기적 특성도 우수하다. 또한, 290℃까지 사용이 가능하기 때문에 내열성이 매우 우수할 뿐만 아니라 일부 알칼리 금속과 반응성이 높은 불소 화합물 이외에는 화학적으로도 매우 안정한 물질이다. 따라서 이와 같은 테플론은 고온 및 다양한 화학 약품이 사용되는 전해가공에서 적합하게 사용될 수 있는 물질에 해당 한다.
테플론으로는 4불화수지(PTFE, Polytetrafluoroethylene), 4불화공중합수지(PFA, Perfluoro Alcoxy Polymer), 4,6불화수지(FEP, Fluorinated ethylene) 또는 플루오르고분자(ETFE, Ethylene Tetrafluoroethylene Copolymer) 중에서 원하는 전극의 사양 및 작업 조건 등을 고려하여 선택할 수 있다.
4불화수지(PTFE, Polytetrafluoroethylene)는 불소수지의 대명사 격으로 불리워지는 수지로서 사용 범위가 가장 넓다. 4불화수지는 거의 대부분의 약액(화공약품)에 침해되지 않으며 약 290℃에 이르는 높은 내열성을 나타낼 뿐만 아니라 불소수지 중에서 가장 낮은 마찰계수 및 우수한 내마모성을 갖는다.
4불화공중합수지(PFA, Perfluoro Alcoxy Polymer)는 모든 불소 수지 중에서 가장 안정적인 수지로서 월등한 내화학성 및 내구성을 갖는다. 그리고 약 260℃에 이르는 우수한 내열온도를 나타낼 뿐만 아니라 코팅 두께를 1,500micron까지 할 수 있다는 점에 특징이 있다.
4,6불화수지(FEP, Fluorinated ethylene)는 4불화수지와 hexa fluoro propylene의 공중합체로서 용융점 이상에서도 유동성이 양호하고 대부분의 약액(화공약품)에 대해서도 침해되지 않으며 높은 내열도와 고도의 내식성 재료로서 적용범위가 넓을 뿐만 아니라 특히 내침투성 및 비점착성이 우수하다.
플루오르고분자(ETFE, Ethylene Tetrafluoroethylene Copolymer)는 우수한 내화학성 및 150℃의 사용온도를 갖는다. 그리고 2,500micron의 코팅 두께를 갖는다.
테플론 코팅을 전극 모재(11) 상에 형성하기 위해서는 상기와 같은 불소수지를 전극 모재(11) 상에 접착할 수 있는 접합제(binder)를 사용한다. 도 3a 내지 도 3b는 테플론 코팅의 원리를 도시한 단면도이다.
도 3a를 참조하면, 전극 기재(11) 상에 초도(19) 및 상도(21)가 형성되어 있다. 초도(primer)(19)로는 접합제를 사용하는데 초도(19)의 두께가 얇거나 두꺼운 경우 접착력에 문제가 발생하므로 적절한 두께를 선택한다. 초도(19)로 사용되는 접합제는 PAI(Polyamideimide)수지, PES(Poly ether sulfon) 수지, 에폭시(epoxy) 수지 등을 들 수 있다. 이와 같은 바인더 중에서 내마모성은 PAI, PES 및 에폭시 수지 순으로 높고, 최고 사용온도는 PAI가 260℃, PES가 200~220℃ 및 에폭시가 150℃이다. 초도(19)로서 사용되는 접합제를 충분히 건조하지 못하면 블리스터(blister) 등이 발생할 가능성이 있기 때문에 충분히 건조 후 상도(21)를 형성한다.
상도(21)로는 위에서 설명한 4불화수지, 4불화공중합수지, 4,6불화수지 또는 플루오르고분자수지 중에서 선택한 하나를 주성분으로 사용할 수 있으며, 상도의 두께가 내구성을 좌우한다. 상도(21)로 사용되는 불소수지를 건조 후 충분히 소성시키면, 도 3b와 같이 불소수지 입자(25)가 상도(21)의 하면에 달라붙고 접합제 입자(23)가 전극 모재(11)의 상면에 달라붙으면서 불소수지가 접착제에 의해 고정되어 절연층(13)이 형성된다. 절연층(13)의 두께는 사용되는 불소수지의 종류 및 작업 온도에 따라 달라진다. 예를 들면, 플루오르고분자(ETFE)는 0~125℃의 온도 범위에서 약 75~1200㎛, 4불화공중합수지(PFA) 슬러리(slurry)는 0~250℃의 온도 범위에서 500~1500㎛, 4불화공중합주시(PFA) 파우더(podwer)는 0~250℃의 온도 범위에서 50~500㎛ 그리고 4,6불화수지(FEP) 파우더(podwer)는 0~200℃의 온도 범위에서 50~120㎛의 코팅 두께로 형성될 수 있다.
전극 모재(11) 상에 절연층(13)을 형성한 후, 도 1c에 도시된 바와 같이, 절연층(13)의 일부를 제어하여 패턴 홈(15)을 형성한다(S20). 패턴 홈(15)의 깊이는 절연층(13)의 두께보다 크게 형성하는데, 이는 가공 전극에 있어서 동이나 알루미늄 등과 같은 도전율이 높은 금속 부분을 확실하게 노출시키기 위함이다. 패턴 홈(15)의 위치는 동압 베어링 등에 있어서 형성하고자 하는 홈의 위치에 대응한다. 패턴 홈(15)을 형성하는 방법으로는 레이저 또는 라우터 등과 같은 기계 가공, 에칭 등과 같은 화학적 가공법 등이 있다.
그리고 전극 모재(11)가 SUS 등과 같은 철 합금이 아니고 동이나 알루미늄 또는 이들의 합금인 경우에는 전해가공 중에 가해지는 전해액에 의해 피막이 발생하거나 부식이 발생하므로, 패턴 홈(15) 내부에 도전성 충전재를 형성한다(S30). 이와 같은 도전성 충전재의 형성에 의해 가공 전극의 효율을 높이고 전극 표면의 물리적 안정성을 향상시키며 전극에 흐르는 전류의 저항을 최소로 할 수 있게 된다.
도 1d에는 홈 패턴(15)의 내부에 도전성 충전재(17)가 형성되어 있는 단면 형상을 나타낸다(S30). 도전성 충전재(17)는 금, 금합금, 팔라듐, 팔라듐 합금, 백금 및 니켈 중에서 선택된 하나 또는 이들의 조합에 의해 이루어지는 재료를 화학적 및/또는 전기화학적 방법에 의해 충전한다. 이와 같은 충전 방법으로는 전류를 이용하지 않은 전기 도금 기술인 듈니 코트(DURNI-COAT:등록상표) 등을 사용할 수 있으며, 도전성이 높은 금 또는 니켈 등의 재료를 이용한 화학적 및/또는 전기화학적 방법에 의해 피막을 형성할 수 있는 기술이라면 어떠한 것도 사용 가능하다.
그리고 전극 모재(11)가 알루미늄 또는 그 합금인 경우 전극 모재(11)와 절연층(13)과의 접합성을 위해서 전극 모재(11)를 아노다이징(anodizing) 처리한 후 테플론 코팅을 통해 절연층(13)을 형성한다. 아노다이징(anodizing)은, 전기-화학 반응을 이용하여 알루미늄 등 금속 표면에 인위적인 산화물 도장을 입히는 것이다. 이때, 전기-화학 반응은 전해액 또는 산 용액을 이용하여 자동차의 배터리와 비슷하게 전기를 통하도록 하여 금속표면에 아노다이징 과정을 일으키고 진행시킨다. 이러한 아노다이징 처리로 인해 제품의 미관을 수려하게 하고 표면 마모를 막아주며, 부식방지 또는 표면의 전기 전도성을 줄일 수 있다. 그리고 아노다이징 공정에 의해 생성된 금속 산화 절연물층(도시하지 않음)은 전극의 절연성을 높이고 절연층(13)의 밀착성을 높이게 되어, 전극의 내구성이 향상되어 수명이 증가한다.
알루미늄 또는 그 합금으로 이루어진 전극 모재(11)에 아노다이징 처리를 수행하여 금속 산화 절연물층(도시하지 않음)을 형성한 후 테플론 코팅을 수행하면 내압 특성이 1500V, 비커스 경도(Vickers Hardness)가 600Hv인 절연층(13)을 0.01mm의 치수 정도로 얻을 수 있다.
그리고 전극 모재(11)가 SUS 등과 같은 철합금일 경우 절연층(13)은 테플론 코팅이 아닌 레이던트(RAYDENT) 처리를 통해 형성될 수 있다. 레이던트 처리는 초미립자의 세라믹 상으로 전기 분해된 레이던트 피막층을 형성함으로써 뛰어난 내식 성을 지니며 박막(1~2㎛)과 소재와의 일체화를 실현한 신세대형 표면 개질 기술이다. 레이던트(RAYDENT) 공업주식회사에 의해 1966년 최초로 일본에서 개발된 레이던트 처리는 일반적인 도금에서는 얻을 수 없었던 뛰어난 내식성 및 2차 고도 기능 부여(표면설계-고체 윤활성, 내약품성, 물성조정) 등이 가능하며, 반도체, 액정 장치, 기반실장 장치와 화상처리, 의료기기, 방산장비, 화학장비, 우주항공, 정밀 전자기기에 이용되어 장치의 고성능화에 기여하였다.
레이던트 피막은 아주 얇은 막(1~2㎛의 균일 막)이면서 장기간 동안 방청력을 갖는다. 그리고 레이던트 피막이 갖는 초밀착력으로 절연층(13)과 전극 모재(11) 사이의 완전 일체화(METAL POLYMER ALLOY)를 이룰 수 있다. 그리고 레이던트 처리는 모든 표면 처리 중 가장 뛰어난 비수소 기포에 의한 고도의 모재 안전성을 나타내고, 금속(특히 철강)의 표면개질 및 장기 수명화를 실현할 수 있다. 또한, 레이던트 처리의 ㎛ 단위 피막두께 원리에 따라, 예를 들면 정밀 조립부품의 공차 수정을 위한 육성 가공이 기계 가공 없이도 가능하고, 종래 도장재의 1/2~1/3 이하의 사용량으로 충분히 같은 기능을 발휘하므로 공정 단가를 낮출 수 있는 장점이 있다.
레이던트 공정에 의해 절연층(11)을 형성한 후 S20 및 S30에 기재된 공정에 의해 패턴 홈(15) 형성 및 도전성 물질(17)을 충전하여 전해가공용 전극(10)을 형성한다.
도 4a 내지 도 4d는 본 발명의 다른 실시 예에 따른 전해가공용 전극 제조방법을 순차적으로 나타낸 단면도이고, 도 5는 도 4a 내지 도 4d에 도시된 가공 방법 에 대한 순서도이다.
도 4a에 도시된 바와 같이 전극 모재(11)를 준비한다. 전극 모재(11)로는 알루미늄 또는 그 합금, 동 또는 그 합금, 스테인레스 등과 같은 철 합금 등을 사용할 수 있다. 그리고 도 4b에 도시된 바와 같이 전극 모재(11)의 일부를 제거하여 패턴 홈(15)을 형성한다(S40). 패턴 홈(15)을 형성하는 방법으로는 레이저 또는 라우터 등과 같은 기계적 방법 그리고 에칭 등과 같은 화학적 방법을 사용할 수 있다.
그리고 도 4c에 도시된 바와 같이 전극 모재(11) 상에 절연층(13)을 형성한다. 절연층(13)을 형성하는 방법으로는 위에서 설명한 테플론 코팅 또는 레이던트 처리를 들 수 있다. 또한, 전극 모재(11)가 알루미늄인 경우에는 아노다이징 처리를 한 후 테플론 코팅을 함으로써 절연층(13)의 접착성을 높일 수 있고, 전극 모재(11)가 스테인리스 등인 경우 절연층(13)은 레이던트 처리에 의해 형성될 수 있음은 위에서 설명한 바와 같다.
절연층(13)을 형성한 후, 도 4d에 도시된 바와 같이, 표면처리를 수행하여 절연층(13)의 일부를 제거함으로써 전극 모재(11)의 표면이 노출되도록 한다(S60). 이와 같은 공정에 의해 전해가공용 전극(10')이 형성된다. 절연층(13)을 제거하는 방법으로는 래핑(lapping) 등과 같은 공정을 사용할 수 있다.
이와 같은 공정에 의해 제조된 전해가공용 전극(10, 10')은 예를 들면 유체 동압 베어링에 형성된 레디얼(radial) 또는 스러스트(thrust) 홈의 가공에 사용된다. 유체 동압 베어링은 유체 베어링 또는 저널 베어링(journal bearing)이라고도 하는데, 동압이 발생하는 부재의 면 사이로는 그 부재 표면의 회전에 의해 펌프 효과가 발생하면서 두께가 균일한 동질의 윤활막을 이용하는 베어링이다. 이 윤활막은 축의 계속적인 회전에 의한 동압에 의해 유지된다. 이와 같은 유체 동압 베어링을 이용함으로써 모터 등과 같은 축을 이용한 회전 장치의 작동시 노이즈나 진동이 감소하게 된다.
이상에서 본 발명의 실시 예를 설명하였지만, 본 발명의 다양한 변경 예와 수정 예도 본 발명의 기술적 사상을 구현하는 한 본 발명의 범위에 속하는 것으로 해석되어야 한다.
본 발명은 절연층의 기계적 화학적 성질이 우수한 전해가공용 전극 제조방법을 제공할 수 있다.
본 발명은 절연층의 밀착성이 우수한 전해가공용 전극 제조방법을 제공할 수 있다.

Claims (8)

  1. 도전성의 전극 모재, 상기 전극 모재 상에 형성된 절연층 및 상기 절연층의 일부가 제거되어 상기 전극 모재의 일부를 노출시키는 패턴 홈을 구비하는 전해가공용 전극 제조방법에 있어서,
    상기 절연층은 테플론 코팅에 의해 상기 전극 모재 상에 형성되는 전해가공용 전극 제조방법.
  2. 도전성의 전극 모재, 상기 전극 모재 상에 형성된 절연층 및 상기 절연층의 일부가 제거되어 상기 전극 모재의 일부를 노출시키는 패턴 홈을 구비하는 전해가공용 전극 제조방법에 있어서,
    상기 절연층은 레이던트 처리에 의해 상기 전극 모재 상에 형성되는 전해가공용 전극 제조방법.
  3. 제 1 항에 있어서,
    상기 전극 모재는 알루미늄 또는 알루미늄 합금으로 이루어지고,
    아노다이징 처리에 의해 상기 전극 모재와 상기 절연층 사이에 산화 절연물층이 형성되는 전해가공용 전극 제조방법.
  4. 제 1 항에 있어서,
    상기 전극 모재는 철 또는 철 합금으로 이루어지고,
    상기 전극 모재에 대한 레이던트 처리 후 상기 절연층이 형성되는 전해가공용 전극 제조방법.
  5. 제 1 항 또는 제 2 항 중 어느 하나의 항에 있어서,
    상기 전극 모재 상에 상기 절연층을 적층하는 단계;
    상기 절연층의 일부를 제거하여 상기 패턴 홈을 형성함으로써 상기 전극 모재의 일부가 노출되도록 하는 단계;
    상기 패턴 홈에 도전성 충전재를 충전하는 단계;를 포함하는 전해가공용 전극 제조방법.
  6. 제 1 항 또는 제 2 항 중 어느 하나의 항에 있어서,
    상기 전극 모재에 상기 패턴 홈을 형성하는 단계;
    상기 전극 모재 상에 상기 절연층을 형성하는 단계;
    상기 절연층의 일부를 제거하여 상기 전극 모재의 일부를 노출시키는 단계;를 포함하는 전해가공용 전극 제조방법.
  7. 제 1 항에 있어서,
    상기 절연층은 4불화수지(PTFE, Polytetrafluoroethylene), 4불화공중합수지(PFA, Perfluoro Alcoxy Polymer), 4,6불화수지(FEP, Fluorinated ethylene) 및 플루오르고분자(ETFE, Ethylene Tetrafluoroethylene Copolymer)로 구성된 그룹으로 선택된 하나에 의해 이루어지는 전해가공용 전극 제조방법.
  8. 제 5 항에 있어서,
    상기 도전성 충전재는 금, 금합금, 팔라듐, 팔라듐 합금, 백금 및 니켈 중에서 선택된 하나 또는 이들의 조합에 의해 이루어지는 전해가공용 전극 제조방법.
KR1020060110139A 2006-11-08 2006-11-08 전해가공용 전극 제조방법 KR100755278B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060110139A KR100755278B1 (ko) 2006-11-08 2006-11-08 전해가공용 전극 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060110139A KR100755278B1 (ko) 2006-11-08 2006-11-08 전해가공용 전극 제조방법

Publications (1)

Publication Number Publication Date
KR100755278B1 true KR100755278B1 (ko) 2007-09-05

Family

ID=38736429

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060110139A KR100755278B1 (ko) 2006-11-08 2006-11-08 전해가공용 전극 제조방법

Country Status (1)

Country Link
KR (1) KR100755278B1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009183B1 (ko) * 2008-06-23 2011-01-18 삼성전기주식회사 전해가공용 전극공구 및 그 제조방법
KR101154145B1 (ko) * 2010-08-10 2012-06-14 나경록 유연한 전자회로 부품용 전주마스터 제조방법
KR101478509B1 (ko) * 2013-06-27 2015-01-02 앰코 테크놀로지 코리아 주식회사 반도체 패키지 제조용 원 레이어 기판 제조 방법
KR101664540B1 (ko) 2014-04-02 2016-10-25 오씨아이 주식회사 전해 도금용 전극 및 이를 포함하는 전해 도금 장치
KR20190113383A (ko) * 2018-03-28 2019-10-08 주식회사 엘지화학 전해용 전극의 제조방법 및 이를 사용하여 제조된 전해용 전극
CN111136352A (zh) * 2019-12-31 2020-05-12 安徽工业大学 一种柔性板带式电解加工工具阴极及其加工方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227000A (ja) 2001-02-02 2002-08-14 Canon Inc 電解エッチング用電極、電解エッチング方法、光起電力素子の製造方法及び電極の製造方法
KR20030041217A (ko) * 2001-11-19 2003-05-27 주성엔지니어링(주) Icp 발생 장치의 안테나 전극
KR100455918B1 (ko) 2002-02-08 2004-11-06 오한준 섬유상 소재의 양극산화용 양극장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227000A (ja) 2001-02-02 2002-08-14 Canon Inc 電解エッチング用電極、電解エッチング方法、光起電力素子の製造方法及び電極の製造方法
KR20030041217A (ko) * 2001-11-19 2003-05-27 주성엔지니어링(주) Icp 발생 장치의 안테나 전극
KR100455918B1 (ko) 2002-02-08 2004-11-06 오한준 섬유상 소재의 양극산화용 양극장치

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009183B1 (ko) * 2008-06-23 2011-01-18 삼성전기주식회사 전해가공용 전극공구 및 그 제조방법
US8317995B2 (en) 2008-06-23 2012-11-27 Samsung Electro-Mechanics Co., Ltd. Electrode tool for electrochemical machining and method of manufacturing the same
KR101154145B1 (ko) * 2010-08-10 2012-06-14 나경록 유연한 전자회로 부품용 전주마스터 제조방법
KR101478509B1 (ko) * 2013-06-27 2015-01-02 앰코 테크놀로지 코리아 주식회사 반도체 패키지 제조용 원 레이어 기판 제조 방법
KR101664540B1 (ko) 2014-04-02 2016-10-25 오씨아이 주식회사 전해 도금용 전극 및 이를 포함하는 전해 도금 장치
KR20190113383A (ko) * 2018-03-28 2019-10-08 주식회사 엘지화학 전해용 전극의 제조방법 및 이를 사용하여 제조된 전해용 전극
KR102472146B1 (ko) * 2018-03-28 2022-11-28 주식회사 엘지화학 전해용 전극의 제조방법 및 이를 사용하여 제조된 전해용 전극
CN111136352A (zh) * 2019-12-31 2020-05-12 安徽工业大学 一种柔性板带式电解加工工具阴极及其加工方法

Similar Documents

Publication Publication Date Title
KR100755278B1 (ko) 전해가공용 전극 제조방법
DK2004880T3 (en) PROCEDURE FOR MAKING A DIAMOND ELECTRODE
US8852448B2 (en) Method for fabricating 3D structure having hydrophobic surface by dipping method
JP6810536B2 (ja) 金属材およびその製造方法
US10392717B2 (en) Protective coating for titanium last stage buckets
TW200541182A (en) Anisotropic conductive sheet
KR102316967B1 (ko) Sn 도금재 및 그의 제조 방법
CN108779802A (zh) 带有绝缘涂层的轴承圈
CN108604569B (zh) 静电卡盘装置
US20110262771A1 (en) Method for roughening metal surfaces and article manufactured thereby
JP2012041579A (ja) アルミニウム又はアルミニウム合金材の表面加工方法、複合材料及び表面加工前処理液
JP2005516787A (ja) 被加工部材を電解加工するための加工電極の製造方法、及びこの方法により製造された加工電極
JP2006239803A (ja) 電解加工用電極工具及びその製造方法
JP4906786B2 (ja) 燃料電池用セパレータおよびその製造方法
US20110012285A1 (en) Method for fabricating 3d structure having hydrophobic surface using metal foil
CA2781967C (en) Method for roughening metal surfaces and article manufactured thereby
JP2005045553A (ja) 耐熱性エレクトレット用材料、それを用いた耐熱性エレクトレットおよびその製造方法、並びに静電型音響センサー
CN108723652B (zh) 一种机械密封组件的焊装工艺方法
KR101431055B1 (ko) 가스 배기용 펌프의 스테이터 및 그 제조방법과, 그 스테이터를 구비한 펌프 및 그 제조방법 및 조립방법
JP3811596B2 (ja) 転がり運動部品
US20200111726A1 (en) Bottom up electroplating with release layer
CN104668676A (zh) 制造电化学加工用工具的方法以及用该方法制造的工具
JP3861011B2 (ja) 電解加工用電極およびそれを用いた電解加工方法と電解加工用電極の製造方法
JP4534083B2 (ja) 電着塗装材料、摺動部材及びカードリーダ
JP2018001165A (ja) 塗工装置

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130624

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150707

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160701

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180702

Year of fee payment: 12